Abstract

Variations of hemoglobin (Hb) oxygenation in tissue provide important indications concerning the physiological conditions of tissue, and the data related to these variations are of intense interest in medical research as well as in clinical care. In this study, we derived a new algorithm to estimate Hb oxygenation from diffuse reflectance spectra. The algorithm was developed based on the unique spectral profile differences between the extinction coefficient spectra of oxy-Hb and deoxy-Hb within the visible wavelength region. Using differential wavelet transformation, these differences were quantified using the locations of certain spectral features, and, then, they were related to the oxygenation saturation level of Hb. The applicability of the algorithm was evaluated using a set of diffuse reflectance spectra produced by a Monte Carlo simulation model of photon migration and by tissue phantoms experimentally. The algorithm was further applied to the diffuse reflectance spectra acquired from in vivo experiments to demonstrate its clinical utility. The validation and evaluation results concluded that the algorithm is applicable to various tissue types (i.e., scattering properties) and can be easily used in conjunction with a diverse range of probe geometries for real-time monitoring of Hb oxygenation.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Bateman, M. D. Sharpe, and C. G. Ellis, “Bench-to-bedside review: microvascular dysfunction in sepsis--hemodynamics, oxygen transport, and nitric oxide,” Crit. Care 7(5), 359–373 (2003).
    [CrossRef] [PubMed]
  2. M. Siegemund, J. van Bommel, and C. Ince, “Assessment of regional tissue oxygenation,” Intensive Care Med. 25(10), 1044–1060 (1999).
    [CrossRef] [PubMed]
  3. D. A. Benaron, I. H. Parachikov, S. Friedland, R. Soetikno, J. Brock-Utne, P. J. van der Starre, C. Nezhat, M. K. Terris, P. G. Maxim, J. J. Carson, M. K. Razavi, H. B. Gladstone, E. F. Fincher, C. P. Hsu, F. L. Clark, W. F. Cheong, J. L. Duckworth, and D. K. Stevenson, “Continuous, noninvasive, and localized microvascular tissue oximetry using visible light spectroscopy,” Anesthesiology 100(6), 1469–1475 (2004).
    [CrossRef] [PubMed]
  4. C. Verdant and D. De Backer, “How monitoring of the microcirculation may help us at the bedside,” Curr. Opin. Crit. Care 11(3), 240–244 (2005).
    [CrossRef] [PubMed]
  5. H. Knotzer and W. R. Hasibeder, “Microcirculatory function monitoring at the bedside--a view from the intensive care,” Physiol. Meas. 28(9), R65–R86 (2007).
    [CrossRef] [PubMed]
  6. R. Mallia, S. S. Thomas, A. Mathews, R. Kumar, P. Sebastian, J. Madhavan, and N. Subhash, “Oxygenated hemoglobin diffuse reflectance ratio for in vivo detection of oral pre-cancer,” J. Biomed. Opt. 13(4), 041306 (2008).
    [CrossRef] [PubMed]
  7. H. W. Wang, J. K. Jiang, C. H. Lin, J. K. Lin, G. J. Huang, and J. S. Yu, “Diffuse reflectance spectroscopy detects increased hemoglobin concentration and decreased oxygenation during colon carcinogenesis from normal to malignant tumors,” Opt. Express 17(4), 2805–2817 (2009).
    [CrossRef] [PubMed]
  8. L. J. Brown, “A new instrument for the simultaneous measurement of total hemoglobin, % oxyhemoglobin, % carboxyhemoglobin, % methemoglobin, and oxygen content in whole blood,” IEEE Trans. Biomed. Eng. BME-27(3), 132–138 (1980).
    [CrossRef] [PubMed]
  9. W. T. Knoefel, N. Kollias, D. W. Rattner, N. S. Nishioka, and A. L. Warshaw, “Reflectance spectroscopy of pancreatic microcirculation,” J. Appl. Physiol. 80(1), 116–123 (1996).
    [PubMed]
  10. J. Gade, D. Palmqvist, P. Plomgård, and G. Greisen, “Diffuse reflectance spectrophotometry with visible light: comparison of four different methods in a tissue phantom,” Phys. Med. Biol. 51(1), 121–136 (2006).
    [CrossRef] [PubMed]
  11. R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
    [CrossRef] [PubMed]
  12. G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45(5), 1062–1071 (2006).
    [CrossRef] [PubMed]
  13. A. A. Stratonnikov and V. B. Loschenov, “Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra,” J. Biomed. Opt. 6(4), 457–467 (2001).
    [CrossRef] [PubMed]
  14. S. L. Jacques, R. Samatham, and N. Choudhury, “Rapid spectral analysis for spectral imaging,” Biomed. Opt. Express 1(1), 157–164 (2010).
    [CrossRef] [PubMed]
  15. P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
    [CrossRef] [PubMed]
  16. R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46(29), 7317–7328 (2007).
    [CrossRef] [PubMed]
  17. S. Mallat, “Zero-crossings of a wavelet transform,” IEEE Trans. Inf. Theory 37(4), 1019–1033 (1991).
    [CrossRef]
  18. E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(4), 041304 (2008).
    [CrossRef] [PubMed]
  19. A. M. Nilsson, C. Sturesson, D. L. Liu, and S. Andersson-Engels, “Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,” Appl. Opt. 37(7), 1256–1267 (1998).
    [CrossRef] [PubMed]
  20. J. C. Finlay and T. H. Foster, “Effect of pigment packaging on diffuse reflectance spectroscopy of samples containing red blood cells,” Opt. Lett. 29(9), 965–967 (2004).
    [CrossRef] [PubMed]
  21. W. C. Lin, D. I. Sandberg, S. Bhatia, M. Johnson, S. Oh, and J. Ragheb, “Diffuse reflectance spectroscopy for in vivo pediatric brain tumor detection,” J. Biomed. Opt. 15(6), 061709 (2010).
    [CrossRef] [PubMed]
  22. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE, Bellingham, 2007).
  23. N. T. Evans and P. F. Naylor, “The oxygen tension gradient across human epidermis,” Respir. Physiol. 3(1), 38–42 (1967).
    [CrossRef] [PubMed]
  24. Y. Ti and W. C. Lin, “Effects of probe contact pressure on in vivo optical spectroscopy,” Opt. Express 16(6), 4250–4262 (2008).
    [CrossRef] [PubMed]
  25. B. Meyer, C. Schaller, C. Frenkel, B. Ebeling, and J. Schramm, “Distributions of local oxygen saturation and its response to changes of mean arterial blood pressure in the cerebral cortex adjacent to arteriovenous malformations,” Stroke 30(12), 2623–2630 (1999).
    [PubMed]
  26. R. L. Jensen, “Brain tumor hypoxia: tumorigenesis, angiogenesis, imaging, pseudoprogression, and as a therapeutic target,” J. Neurooncol. 92(3), 317–335 (2009).
    [CrossRef] [PubMed]
  27. S. Mallat, A Wavelet Tour of Signal Processing (Academic, London, 1999).

2010 (2)

S. L. Jacques, R. Samatham, and N. Choudhury, “Rapid spectral analysis for spectral imaging,” Biomed. Opt. Express 1(1), 157–164 (2010).
[CrossRef] [PubMed]

W. C. Lin, D. I. Sandberg, S. Bhatia, M. Johnson, S. Oh, and J. Ragheb, “Diffuse reflectance spectroscopy for in vivo pediatric brain tumor detection,” J. Biomed. Opt. 15(6), 061709 (2010).
[CrossRef] [PubMed]

2009 (2)

2008 (3)

R. Mallia, S. S. Thomas, A. Mathews, R. Kumar, P. Sebastian, J. Madhavan, and N. Subhash, “Oxygenated hemoglobin diffuse reflectance ratio for in vivo detection of oral pre-cancer,” J. Biomed. Opt. 13(4), 041306 (2008).
[CrossRef] [PubMed]

Y. Ti and W. C. Lin, “Effects of probe contact pressure on in vivo optical spectroscopy,” Opt. Express 16(6), 4250–4262 (2008).
[CrossRef] [PubMed]

E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(4), 041304 (2008).
[CrossRef] [PubMed]

2007 (2)

H. Knotzer and W. R. Hasibeder, “Microcirculatory function monitoring at the bedside--a view from the intensive care,” Physiol. Meas. 28(9), R65–R86 (2007).
[CrossRef] [PubMed]

R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46(29), 7317–7328 (2007).
[CrossRef] [PubMed]

2006 (2)

J. Gade, D. Palmqvist, P. Plomgård, and G. Greisen, “Diffuse reflectance spectrophotometry with visible light: comparison of four different methods in a tissue phantom,” Phys. Med. Biol. 51(1), 121–136 (2006).
[CrossRef] [PubMed]

G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45(5), 1062–1071 (2006).
[CrossRef] [PubMed]

2005 (2)

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[CrossRef] [PubMed]

C. Verdant and D. De Backer, “How monitoring of the microcirculation may help us at the bedside,” Curr. Opin. Crit. Care 11(3), 240–244 (2005).
[CrossRef] [PubMed]

2004 (2)

D. A. Benaron, I. H. Parachikov, S. Friedland, R. Soetikno, J. Brock-Utne, P. J. van der Starre, C. Nezhat, M. K. Terris, P. G. Maxim, J. J. Carson, M. K. Razavi, H. B. Gladstone, E. F. Fincher, C. P. Hsu, F. L. Clark, W. F. Cheong, J. L. Duckworth, and D. K. Stevenson, “Continuous, noninvasive, and localized microvascular tissue oximetry using visible light spectroscopy,” Anesthesiology 100(6), 1469–1475 (2004).
[CrossRef] [PubMed]

J. C. Finlay and T. H. Foster, “Effect of pigment packaging on diffuse reflectance spectroscopy of samples containing red blood cells,” Opt. Lett. 29(9), 965–967 (2004).
[CrossRef] [PubMed]

2003 (1)

R. M. Bateman, M. D. Sharpe, and C. G. Ellis, “Bench-to-bedside review: microvascular dysfunction in sepsis--hemodynamics, oxygen transport, and nitric oxide,” Crit. Care 7(5), 359–373 (2003).
[CrossRef] [PubMed]

2001 (1)

A. A. Stratonnikov and V. B. Loschenov, “Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra,” J. Biomed. Opt. 6(4), 457–467 (2001).
[CrossRef] [PubMed]

1999 (3)

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[CrossRef] [PubMed]

M. Siegemund, J. van Bommel, and C. Ince, “Assessment of regional tissue oxygenation,” Intensive Care Med. 25(10), 1044–1060 (1999).
[CrossRef] [PubMed]

B. Meyer, C. Schaller, C. Frenkel, B. Ebeling, and J. Schramm, “Distributions of local oxygen saturation and its response to changes of mean arterial blood pressure in the cerebral cortex adjacent to arteriovenous malformations,” Stroke 30(12), 2623–2630 (1999).
[PubMed]

1998 (1)

1996 (1)

W. T. Knoefel, N. Kollias, D. W. Rattner, N. S. Nishioka, and A. L. Warshaw, “Reflectance spectroscopy of pancreatic microcirculation,” J. Appl. Physiol. 80(1), 116–123 (1996).
[PubMed]

1991 (1)

S. Mallat, “Zero-crossings of a wavelet transform,” IEEE Trans. Inf. Theory 37(4), 1019–1033 (1991).
[CrossRef]

1980 (1)

L. J. Brown, “A new instrument for the simultaneous measurement of total hemoglobin, % oxyhemoglobin, % carboxyhemoglobin, % methemoglobin, and oxygen content in whole blood,” IEEE Trans. Biomed. Eng. BME-27(3), 132–138 (1980).
[CrossRef] [PubMed]

1967 (1)

N. T. Evans and P. F. Naylor, “The oxygen tension gradient across human epidermis,” Respir. Physiol. 3(1), 38–42 (1967).
[CrossRef] [PubMed]

A’Amar, O.

Aalders, M. C.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[CrossRef] [PubMed]

Alerstam, E.

E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(4), 041304 (2008).
[CrossRef] [PubMed]

Andersson-Engels, S.

Bargo, P. R.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[CrossRef] [PubMed]

Bateman, R. M.

R. M. Bateman, M. D. Sharpe, and C. G. Ellis, “Bench-to-bedside review: microvascular dysfunction in sepsis--hemodynamics, oxygen transport, and nitric oxide,” Crit. Care 7(5), 359–373 (2003).
[CrossRef] [PubMed]

Benaron, D. A.

D. A. Benaron, I. H. Parachikov, S. Friedland, R. Soetikno, J. Brock-Utne, P. J. van der Starre, C. Nezhat, M. K. Terris, P. G. Maxim, J. J. Carson, M. K. Razavi, H. B. Gladstone, E. F. Fincher, C. P. Hsu, F. L. Clark, W. F. Cheong, J. L. Duckworth, and D. K. Stevenson, “Continuous, noninvasive, and localized microvascular tissue oximetry using visible light spectroscopy,” Anesthesiology 100(6), 1469–1475 (2004).
[CrossRef] [PubMed]

Bhatia, S.

W. C. Lin, D. I. Sandberg, S. Bhatia, M. Johnson, S. Oh, and J. Ragheb, “Diffuse reflectance spectroscopy for in vivo pediatric brain tumor detection,” J. Biomed. Opt. 15(6), 061709 (2010).
[CrossRef] [PubMed]

Bigio, I. J.

Blair, G.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[CrossRef] [PubMed]

Brock-Utne, J.

D. A. Benaron, I. H. Parachikov, S. Friedland, R. Soetikno, J. Brock-Utne, P. J. van der Starre, C. Nezhat, M. K. Terris, P. G. Maxim, J. J. Carson, M. K. Razavi, H. B. Gladstone, E. F. Fincher, C. P. Hsu, F. L. Clark, W. F. Cheong, J. L. Duckworth, and D. K. Stevenson, “Continuous, noninvasive, and localized microvascular tissue oximetry using visible light spectroscopy,” Anesthesiology 100(6), 1469–1475 (2004).
[CrossRef] [PubMed]

Brown, L. J.

L. J. Brown, “A new instrument for the simultaneous measurement of total hemoglobin, % oxyhemoglobin, % carboxyhemoglobin, % methemoglobin, and oxygen content in whole blood,” IEEE Trans. Biomed. Eng. BME-27(3), 132–138 (1980).
[CrossRef] [PubMed]

Carson, J. J.

D. A. Benaron, I. H. Parachikov, S. Friedland, R. Soetikno, J. Brock-Utne, P. J. van der Starre, C. Nezhat, M. K. Terris, P. G. Maxim, J. J. Carson, M. K. Razavi, H. B. Gladstone, E. F. Fincher, C. P. Hsu, F. L. Clark, W. F. Cheong, J. L. Duckworth, and D. K. Stevenson, “Continuous, noninvasive, and localized microvascular tissue oximetry using visible light spectroscopy,” Anesthesiology 100(6), 1469–1475 (2004).
[CrossRef] [PubMed]

Cheong, W. F.

D. A. Benaron, I. H. Parachikov, S. Friedland, R. Soetikno, J. Brock-Utne, P. J. van der Starre, C. Nezhat, M. K. Terris, P. G. Maxim, J. J. Carson, M. K. Razavi, H. B. Gladstone, E. F. Fincher, C. P. Hsu, F. L. Clark, W. F. Cheong, J. L. Duckworth, and D. K. Stevenson, “Continuous, noninvasive, and localized microvascular tissue oximetry using visible light spectroscopy,” Anesthesiology 100(6), 1469–1475 (2004).
[CrossRef] [PubMed]

Choudhury, N.

Clark, F. L.

D. A. Benaron, I. H. Parachikov, S. Friedland, R. Soetikno, J. Brock-Utne, P. J. van der Starre, C. Nezhat, M. K. Terris, P. G. Maxim, J. J. Carson, M. K. Razavi, H. B. Gladstone, E. F. Fincher, C. P. Hsu, F. L. Clark, W. F. Cheong, J. L. Duckworth, and D. K. Stevenson, “Continuous, noninvasive, and localized microvascular tissue oximetry using visible light spectroscopy,” Anesthesiology 100(6), 1469–1475 (2004).
[CrossRef] [PubMed]

Cross, F. W.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[CrossRef] [PubMed]

De Backer, D.

C. Verdant and D. De Backer, “How monitoring of the microcirculation may help us at the bedside,” Curr. Opin. Crit. Care 11(3), 240–244 (2005).
[CrossRef] [PubMed]

Doornbos, R. M.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[CrossRef] [PubMed]

Duckworth, J. L.

D. A. Benaron, I. H. Parachikov, S. Friedland, R. Soetikno, J. Brock-Utne, P. J. van der Starre, C. Nezhat, M. K. Terris, P. G. Maxim, J. J. Carson, M. K. Razavi, H. B. Gladstone, E. F. Fincher, C. P. Hsu, F. L. Clark, W. F. Cheong, J. L. Duckworth, and D. K. Stevenson, “Continuous, noninvasive, and localized microvascular tissue oximetry using visible light spectroscopy,” Anesthesiology 100(6), 1469–1475 (2004).
[CrossRef] [PubMed]

Ebeling, B.

B. Meyer, C. Schaller, C. Frenkel, B. Ebeling, and J. Schramm, “Distributions of local oxygen saturation and its response to changes of mean arterial blood pressure in the cerebral cortex adjacent to arteriovenous malformations,” Stroke 30(12), 2623–2630 (1999).
[PubMed]

Ellis, C. G.

R. M. Bateman, M. D. Sharpe, and C. G. Ellis, “Bench-to-bedside review: microvascular dysfunction in sepsis--hemodynamics, oxygen transport, and nitric oxide,” Crit. Care 7(5), 359–373 (2003).
[CrossRef] [PubMed]

Evans, N. T.

N. T. Evans and P. F. Naylor, “The oxygen tension gradient across human epidermis,” Respir. Physiol. 3(1), 38–42 (1967).
[CrossRef] [PubMed]

Fincher, E. F.

D. A. Benaron, I. H. Parachikov, S. Friedland, R. Soetikno, J. Brock-Utne, P. J. van der Starre, C. Nezhat, M. K. Terris, P. G. Maxim, J. J. Carson, M. K. Razavi, H. B. Gladstone, E. F. Fincher, C. P. Hsu, F. L. Clark, W. F. Cheong, J. L. Duckworth, and D. K. Stevenson, “Continuous, noninvasive, and localized microvascular tissue oximetry using visible light spectroscopy,” Anesthesiology 100(6), 1469–1475 (2004).
[CrossRef] [PubMed]

Finlay, J. C.

Foster, T. H.

Frenkel, C.

B. Meyer, C. Schaller, C. Frenkel, B. Ebeling, and J. Schramm, “Distributions of local oxygen saturation and its response to changes of mean arterial blood pressure in the cerebral cortex adjacent to arteriovenous malformations,” Stroke 30(12), 2623–2630 (1999).
[PubMed]

Friedland, S.

D. A. Benaron, I. H. Parachikov, S. Friedland, R. Soetikno, J. Brock-Utne, P. J. van der Starre, C. Nezhat, M. K. Terris, P. G. Maxim, J. J. Carson, M. K. Razavi, H. B. Gladstone, E. F. Fincher, C. P. Hsu, F. L. Clark, W. F. Cheong, J. L. Duckworth, and D. K. Stevenson, “Continuous, noninvasive, and localized microvascular tissue oximetry using visible light spectroscopy,” Anesthesiology 100(6), 1469–1475 (2004).
[CrossRef] [PubMed]

Gade, J.

J. Gade, D. Palmqvist, P. Plomgård, and G. Greisen, “Diffuse reflectance spectrophotometry with visible light: comparison of four different methods in a tissue phantom,” Phys. Med. Biol. 51(1), 121–136 (2006).
[CrossRef] [PubMed]

Gladstone, H. B.

D. A. Benaron, I. H. Parachikov, S. Friedland, R. Soetikno, J. Brock-Utne, P. J. van der Starre, C. Nezhat, M. K. Terris, P. G. Maxim, J. J. Carson, M. K. Razavi, H. B. Gladstone, E. F. Fincher, C. P. Hsu, F. L. Clark, W. F. Cheong, J. L. Duckworth, and D. K. Stevenson, “Continuous, noninvasive, and localized microvascular tissue oximetry using visible light spectroscopy,” Anesthesiology 100(6), 1469–1475 (2004).
[CrossRef] [PubMed]

Goodell, T. T.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[CrossRef] [PubMed]

Greisen, G.

J. Gade, D. Palmqvist, P. Plomgård, and G. Greisen, “Diffuse reflectance spectrophotometry with visible light: comparison of four different methods in a tissue phantom,” Phys. Med. Biol. 51(1), 121–136 (2006).
[CrossRef] [PubMed]

Hasibeder, W. R.

H. Knotzer and W. R. Hasibeder, “Microcirculatory function monitoring at the bedside--a view from the intensive care,” Physiol. Meas. 28(9), R65–R86 (2007).
[CrossRef] [PubMed]

Hsu, C. P.

D. A. Benaron, I. H. Parachikov, S. Friedland, R. Soetikno, J. Brock-Utne, P. J. van der Starre, C. Nezhat, M. K. Terris, P. G. Maxim, J. J. Carson, M. K. Razavi, H. B. Gladstone, E. F. Fincher, C. P. Hsu, F. L. Clark, W. F. Cheong, J. L. Duckworth, and D. K. Stevenson, “Continuous, noninvasive, and localized microvascular tissue oximetry using visible light spectroscopy,” Anesthesiology 100(6), 1469–1475 (2004).
[CrossRef] [PubMed]

Huang, G. J.

Ince, C.

M. Siegemund, J. van Bommel, and C. Ince, “Assessment of regional tissue oxygenation,” Intensive Care Med. 25(10), 1044–1060 (1999).
[CrossRef] [PubMed]

Jacques, S. L.

S. L. Jacques, R. Samatham, and N. Choudhury, “Rapid spectral analysis for spectral imaging,” Biomed. Opt. Express 1(1), 157–164 (2010).
[CrossRef] [PubMed]

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[CrossRef] [PubMed]

Jensen, R. L.

R. L. Jensen, “Brain tumor hypoxia: tumorigenesis, angiogenesis, imaging, pseudoprogression, and as a therapeutic target,” J. Neurooncol. 92(3), 317–335 (2009).
[CrossRef] [PubMed]

Jiang, J. K.

Johnson, M.

W. C. Lin, D. I. Sandberg, S. Bhatia, M. Johnson, S. Oh, and J. Ragheb, “Diffuse reflectance spectroscopy for in vivo pediatric brain tumor detection,” J. Biomed. Opt. 15(6), 061709 (2010).
[CrossRef] [PubMed]

Knoefel, W. T.

W. T. Knoefel, N. Kollias, D. W. Rattner, N. S. Nishioka, and A. L. Warshaw, “Reflectance spectroscopy of pancreatic microcirculation,” J. Appl. Physiol. 80(1), 116–123 (1996).
[PubMed]

Knotzer, H.

H. Knotzer and W. R. Hasibeder, “Microcirculatory function monitoring at the bedside--a view from the intensive care,” Physiol. Meas. 28(9), R65–R86 (2007).
[CrossRef] [PubMed]

Kollias, N.

W. T. Knoefel, N. Kollias, D. W. Rattner, N. S. Nishioka, and A. L. Warshaw, “Reflectance spectroscopy of pancreatic microcirculation,” J. Appl. Physiol. 80(1), 116–123 (1996).
[PubMed]

Koval, G.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[CrossRef] [PubMed]

Kumar, R.

R. Mallia, S. S. Thomas, A. Mathews, R. Kumar, P. Sebastian, J. Madhavan, and N. Subhash, “Oxygenated hemoglobin diffuse reflectance ratio for in vivo detection of oral pre-cancer,” J. Biomed. Opt. 13(4), 041306 (2008).
[CrossRef] [PubMed]

Lang, R.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[CrossRef] [PubMed]

Lin, C. H.

Lin, J. K.

Lin, W. C.

W. C. Lin, D. I. Sandberg, S. Bhatia, M. Johnson, S. Oh, and J. Ragheb, “Diffuse reflectance spectroscopy for in vivo pediatric brain tumor detection,” J. Biomed. Opt. 15(6), 061709 (2010).
[CrossRef] [PubMed]

Y. Ti and W. C. Lin, “Effects of probe contact pressure on in vivo optical spectroscopy,” Opt. Express 16(6), 4250–4262 (2008).
[CrossRef] [PubMed]

Liu, D. L.

Loschenov, V. B.

A. A. Stratonnikov and V. B. Loschenov, “Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra,” J. Biomed. Opt. 6(4), 457–467 (2001).
[CrossRef] [PubMed]

Madhavan, J.

R. Mallia, S. S. Thomas, A. Mathews, R. Kumar, P. Sebastian, J. Madhavan, and N. Subhash, “Oxygenated hemoglobin diffuse reflectance ratio for in vivo detection of oral pre-cancer,” J. Biomed. Opt. 13(4), 041306 (2008).
[CrossRef] [PubMed]

Mallat, S.

S. Mallat, “Zero-crossings of a wavelet transform,” IEEE Trans. Inf. Theory 37(4), 1019–1033 (1991).
[CrossRef]

Mallia, R.

R. Mallia, S. S. Thomas, A. Mathews, R. Kumar, P. Sebastian, J. Madhavan, and N. Subhash, “Oxygenated hemoglobin diffuse reflectance ratio for in vivo detection of oral pre-cancer,” J. Biomed. Opt. 13(4), 041306 (2008).
[CrossRef] [PubMed]

Mathews, A.

R. Mallia, S. S. Thomas, A. Mathews, R. Kumar, P. Sebastian, J. Madhavan, and N. Subhash, “Oxygenated hemoglobin diffuse reflectance ratio for in vivo detection of oral pre-cancer,” J. Biomed. Opt. 13(4), 041306 (2008).
[CrossRef] [PubMed]

Maxim, P. G.

D. A. Benaron, I. H. Parachikov, S. Friedland, R. Soetikno, J. Brock-Utne, P. J. van der Starre, C. Nezhat, M. K. Terris, P. G. Maxim, J. J. Carson, M. K. Razavi, H. B. Gladstone, E. F. Fincher, C. P. Hsu, F. L. Clark, W. F. Cheong, J. L. Duckworth, and D. K. Stevenson, “Continuous, noninvasive, and localized microvascular tissue oximetry using visible light spectroscopy,” Anesthesiology 100(6), 1469–1475 (2004).
[CrossRef] [PubMed]

Meyer, B.

B. Meyer, C. Schaller, C. Frenkel, B. Ebeling, and J. Schramm, “Distributions of local oxygen saturation and its response to changes of mean arterial blood pressure in the cerebral cortex adjacent to arteriovenous malformations,” Stroke 30(12), 2623–2630 (1999).
[PubMed]

Naylor, P. F.

N. T. Evans and P. F. Naylor, “The oxygen tension gradient across human epidermis,” Respir. Physiol. 3(1), 38–42 (1967).
[CrossRef] [PubMed]

Nezhat, C.

D. A. Benaron, I. H. Parachikov, S. Friedland, R. Soetikno, J. Brock-Utne, P. J. van der Starre, C. Nezhat, M. K. Terris, P. G. Maxim, J. J. Carson, M. K. Razavi, H. B. Gladstone, E. F. Fincher, C. P. Hsu, F. L. Clark, W. F. Cheong, J. L. Duckworth, and D. K. Stevenson, “Continuous, noninvasive, and localized microvascular tissue oximetry using visible light spectroscopy,” Anesthesiology 100(6), 1469–1475 (2004).
[CrossRef] [PubMed]

Nilsson, A. M.

Nishioka, N. S.

W. T. Knoefel, N. Kollias, D. W. Rattner, N. S. Nishioka, and A. L. Warshaw, “Reflectance spectroscopy of pancreatic microcirculation,” J. Appl. Physiol. 80(1), 116–123 (1996).
[PubMed]

Oh, S.

W. C. Lin, D. I. Sandberg, S. Bhatia, M. Johnson, S. Oh, and J. Ragheb, “Diffuse reflectance spectroscopy for in vivo pediatric brain tumor detection,” J. Biomed. Opt. 15(6), 061709 (2010).
[CrossRef] [PubMed]

Palmer, G. M.

Palmqvist, D.

J. Gade, D. Palmqvist, P. Plomgård, and G. Greisen, “Diffuse reflectance spectrophotometry with visible light: comparison of four different methods in a tissue phantom,” Phys. Med. Biol. 51(1), 121–136 (2006).
[CrossRef] [PubMed]

Parachikov, I. H.

D. A. Benaron, I. H. Parachikov, S. Friedland, R. Soetikno, J. Brock-Utne, P. J. van der Starre, C. Nezhat, M. K. Terris, P. G. Maxim, J. J. Carson, M. K. Razavi, H. B. Gladstone, E. F. Fincher, C. P. Hsu, F. L. Clark, W. F. Cheong, J. L. Duckworth, and D. K. Stevenson, “Continuous, noninvasive, and localized microvascular tissue oximetry using visible light spectroscopy,” Anesthesiology 100(6), 1469–1475 (2004).
[CrossRef] [PubMed]

Plomgård, P.

J. Gade, D. Palmqvist, P. Plomgård, and G. Greisen, “Diffuse reflectance spectrophotometry with visible light: comparison of four different methods in a tissue phantom,” Phys. Med. Biol. 51(1), 121–136 (2006).
[CrossRef] [PubMed]

Prahl, S. A.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[CrossRef] [PubMed]

Ragheb, J.

W. C. Lin, D. I. Sandberg, S. Bhatia, M. Johnson, S. Oh, and J. Ragheb, “Diffuse reflectance spectroscopy for in vivo pediatric brain tumor detection,” J. Biomed. Opt. 15(6), 061709 (2010).
[CrossRef] [PubMed]

Ramanujam, N.

Rattner, D. W.

W. T. Knoefel, N. Kollias, D. W. Rattner, N. S. Nishioka, and A. L. Warshaw, “Reflectance spectroscopy of pancreatic microcirculation,” J. Appl. Physiol. 80(1), 116–123 (1996).
[PubMed]

Razavi, M. K.

D. A. Benaron, I. H. Parachikov, S. Friedland, R. Soetikno, J. Brock-Utne, P. J. van der Starre, C. Nezhat, M. K. Terris, P. G. Maxim, J. J. Carson, M. K. Razavi, H. B. Gladstone, E. F. Fincher, C. P. Hsu, F. L. Clark, W. F. Cheong, J. L. Duckworth, and D. K. Stevenson, “Continuous, noninvasive, and localized microvascular tissue oximetry using visible light spectroscopy,” Anesthesiology 100(6), 1469–1475 (2004).
[CrossRef] [PubMed]

Reif, R.

Samatham, R.

Sandberg, D. I.

W. C. Lin, D. I. Sandberg, S. Bhatia, M. Johnson, S. Oh, and J. Ragheb, “Diffuse reflectance spectroscopy for in vivo pediatric brain tumor detection,” J. Biomed. Opt. 15(6), 061709 (2010).
[CrossRef] [PubMed]

Schaller, C.

B. Meyer, C. Schaller, C. Frenkel, B. Ebeling, and J. Schramm, “Distributions of local oxygen saturation and its response to changes of mean arterial blood pressure in the cerebral cortex adjacent to arteriovenous malformations,” Stroke 30(12), 2623–2630 (1999).
[PubMed]

Schramm, J.

B. Meyer, C. Schaller, C. Frenkel, B. Ebeling, and J. Schramm, “Distributions of local oxygen saturation and its response to changes of mean arterial blood pressure in the cerebral cortex adjacent to arteriovenous malformations,” Stroke 30(12), 2623–2630 (1999).
[PubMed]

Sebastian, P.

R. Mallia, S. S. Thomas, A. Mathews, R. Kumar, P. Sebastian, J. Madhavan, and N. Subhash, “Oxygenated hemoglobin diffuse reflectance ratio for in vivo detection of oral pre-cancer,” J. Biomed. Opt. 13(4), 041306 (2008).
[CrossRef] [PubMed]

Sharpe, M. D.

R. M. Bateman, M. D. Sharpe, and C. G. Ellis, “Bench-to-bedside review: microvascular dysfunction in sepsis--hemodynamics, oxygen transport, and nitric oxide,” Crit. Care 7(5), 359–373 (2003).
[CrossRef] [PubMed]

Siegemund, M.

M. Siegemund, J. van Bommel, and C. Ince, “Assessment of regional tissue oxygenation,” Intensive Care Med. 25(10), 1044–1060 (1999).
[CrossRef] [PubMed]

Sleven, R. A.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[CrossRef] [PubMed]

Soetikno, R.

D. A. Benaron, I. H. Parachikov, S. Friedland, R. Soetikno, J. Brock-Utne, P. J. van der Starre, C. Nezhat, M. K. Terris, P. G. Maxim, J. J. Carson, M. K. Razavi, H. B. Gladstone, E. F. Fincher, C. P. Hsu, F. L. Clark, W. F. Cheong, J. L. Duckworth, and D. K. Stevenson, “Continuous, noninvasive, and localized microvascular tissue oximetry using visible light spectroscopy,” Anesthesiology 100(6), 1469–1475 (2004).
[CrossRef] [PubMed]

Sterenborg, H. J.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[CrossRef] [PubMed]

Stevenson, D. K.

D. A. Benaron, I. H. Parachikov, S. Friedland, R. Soetikno, J. Brock-Utne, P. J. van der Starre, C. Nezhat, M. K. Terris, P. G. Maxim, J. J. Carson, M. K. Razavi, H. B. Gladstone, E. F. Fincher, C. P. Hsu, F. L. Clark, W. F. Cheong, J. L. Duckworth, and D. K. Stevenson, “Continuous, noninvasive, and localized microvascular tissue oximetry using visible light spectroscopy,” Anesthesiology 100(6), 1469–1475 (2004).
[CrossRef] [PubMed]

Stratonnikov, A. A.

A. A. Stratonnikov and V. B. Loschenov, “Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra,” J. Biomed. Opt. 6(4), 457–467 (2001).
[CrossRef] [PubMed]

Sturesson, C.

Subhash, N.

R. Mallia, S. S. Thomas, A. Mathews, R. Kumar, P. Sebastian, J. Madhavan, and N. Subhash, “Oxygenated hemoglobin diffuse reflectance ratio for in vivo detection of oral pre-cancer,” J. Biomed. Opt. 13(4), 041306 (2008).
[CrossRef] [PubMed]

Svensson, T.

E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(4), 041304 (2008).
[CrossRef] [PubMed]

Terris, M. K.

D. A. Benaron, I. H. Parachikov, S. Friedland, R. Soetikno, J. Brock-Utne, P. J. van der Starre, C. Nezhat, M. K. Terris, P. G. Maxim, J. J. Carson, M. K. Razavi, H. B. Gladstone, E. F. Fincher, C. P. Hsu, F. L. Clark, W. F. Cheong, J. L. Duckworth, and D. K. Stevenson, “Continuous, noninvasive, and localized microvascular tissue oximetry using visible light spectroscopy,” Anesthesiology 100(6), 1469–1475 (2004).
[CrossRef] [PubMed]

Thomas, S. S.

R. Mallia, S. S. Thomas, A. Mathews, R. Kumar, P. Sebastian, J. Madhavan, and N. Subhash, “Oxygenated hemoglobin diffuse reflectance ratio for in vivo detection of oral pre-cancer,” J. Biomed. Opt. 13(4), 041306 (2008).
[CrossRef] [PubMed]

Ti, Y.

van Bommel, J.

M. Siegemund, J. van Bommel, and C. Ince, “Assessment of regional tissue oxygenation,” Intensive Care Med. 25(10), 1044–1060 (1999).
[CrossRef] [PubMed]

van der Starre, P. J.

D. A. Benaron, I. H. Parachikov, S. Friedland, R. Soetikno, J. Brock-Utne, P. J. van der Starre, C. Nezhat, M. K. Terris, P. G. Maxim, J. J. Carson, M. K. Razavi, H. B. Gladstone, E. F. Fincher, C. P. Hsu, F. L. Clark, W. F. Cheong, J. L. Duckworth, and D. K. Stevenson, “Continuous, noninvasive, and localized microvascular tissue oximetry using visible light spectroscopy,” Anesthesiology 100(6), 1469–1475 (2004).
[CrossRef] [PubMed]

Verdant, C.

C. Verdant and D. De Backer, “How monitoring of the microcirculation may help us at the bedside,” Curr. Opin. Crit. Care 11(3), 240–244 (2005).
[CrossRef] [PubMed]

Wang, H. W.

Warshaw, A. L.

W. T. Knoefel, N. Kollias, D. W. Rattner, N. S. Nishioka, and A. L. Warshaw, “Reflectance spectroscopy of pancreatic microcirculation,” J. Appl. Physiol. 80(1), 116–123 (1996).
[PubMed]

Yu, J. S.

Anesthesiology (1)

D. A. Benaron, I. H. Parachikov, S. Friedland, R. Soetikno, J. Brock-Utne, P. J. van der Starre, C. Nezhat, M. K. Terris, P. G. Maxim, J. J. Carson, M. K. Razavi, H. B. Gladstone, E. F. Fincher, C. P. Hsu, F. L. Clark, W. F. Cheong, J. L. Duckworth, and D. K. Stevenson, “Continuous, noninvasive, and localized microvascular tissue oximetry using visible light spectroscopy,” Anesthesiology 100(6), 1469–1475 (2004).
[CrossRef] [PubMed]

Appl. Opt. (3)

Biomed. Opt. Express (1)

Crit. Care (1)

R. M. Bateman, M. D. Sharpe, and C. G. Ellis, “Bench-to-bedside review: microvascular dysfunction in sepsis--hemodynamics, oxygen transport, and nitric oxide,” Crit. Care 7(5), 359–373 (2003).
[CrossRef] [PubMed]

Curr. Opin. Crit. Care (1)

C. Verdant and D. De Backer, “How monitoring of the microcirculation may help us at the bedside,” Curr. Opin. Crit. Care 11(3), 240–244 (2005).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (1)

L. J. Brown, “A new instrument for the simultaneous measurement of total hemoglobin, % oxyhemoglobin, % carboxyhemoglobin, % methemoglobin, and oxygen content in whole blood,” IEEE Trans. Biomed. Eng. BME-27(3), 132–138 (1980).
[CrossRef] [PubMed]

IEEE Trans. Inf. Theory (1)

S. Mallat, “Zero-crossings of a wavelet transform,” IEEE Trans. Inf. Theory 37(4), 1019–1033 (1991).
[CrossRef]

Intensive Care Med. (1)

M. Siegemund, J. van Bommel, and C. Ince, “Assessment of regional tissue oxygenation,” Intensive Care Med. 25(10), 1044–1060 (1999).
[CrossRef] [PubMed]

J. Appl. Physiol. (1)

W. T. Knoefel, N. Kollias, D. W. Rattner, N. S. Nishioka, and A. L. Warshaw, “Reflectance spectroscopy of pancreatic microcirculation,” J. Appl. Physiol. 80(1), 116–123 (1996).
[PubMed]

J. Biomed. Opt. (5)

E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(4), 041304 (2008).
[CrossRef] [PubMed]

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[CrossRef] [PubMed]

A. A. Stratonnikov and V. B. Loschenov, “Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra,” J. Biomed. Opt. 6(4), 457–467 (2001).
[CrossRef] [PubMed]

R. Mallia, S. S. Thomas, A. Mathews, R. Kumar, P. Sebastian, J. Madhavan, and N. Subhash, “Oxygenated hemoglobin diffuse reflectance ratio for in vivo detection of oral pre-cancer,” J. Biomed. Opt. 13(4), 041306 (2008).
[CrossRef] [PubMed]

W. C. Lin, D. I. Sandberg, S. Bhatia, M. Johnson, S. Oh, and J. Ragheb, “Diffuse reflectance spectroscopy for in vivo pediatric brain tumor detection,” J. Biomed. Opt. 15(6), 061709 (2010).
[CrossRef] [PubMed]

J. Neurooncol. (1)

R. L. Jensen, “Brain tumor hypoxia: tumorigenesis, angiogenesis, imaging, pseudoprogression, and as a therapeutic target,” J. Neurooncol. 92(3), 317–335 (2009).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Med. Biol. (2)

J. Gade, D. Palmqvist, P. Plomgård, and G. Greisen, “Diffuse reflectance spectrophotometry with visible light: comparison of four different methods in a tissue phantom,” Phys. Med. Biol. 51(1), 121–136 (2006).
[CrossRef] [PubMed]

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[CrossRef] [PubMed]

Physiol. Meas. (1)

H. Knotzer and W. R. Hasibeder, “Microcirculatory function monitoring at the bedside--a view from the intensive care,” Physiol. Meas. 28(9), R65–R86 (2007).
[CrossRef] [PubMed]

Respir. Physiol. (1)

N. T. Evans and P. F. Naylor, “The oxygen tension gradient across human epidermis,” Respir. Physiol. 3(1), 38–42 (1967).
[CrossRef] [PubMed]

Stroke (1)

B. Meyer, C. Schaller, C. Frenkel, B. Ebeling, and J. Schramm, “Distributions of local oxygen saturation and its response to changes of mean arterial blood pressure in the cerebral cortex adjacent to arteriovenous malformations,” Stroke 30(12), 2623–2630 (1999).
[PubMed]

Other (2)

S. Mallat, A Wavelet Tour of Signal Processing (Academic, London, 1999).

V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE, Bellingham, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The correlation between the number of unusable spectra and S/N(s,n) at various r. The long dash line represents the number of unusable spectra in R d s i m ( r , λ ) . The solid curve is the mean S/N of transformed R d s i m ( r , λ ) , and the error bars represent the standard deviations. Panel (a) represents the condition of s = 6 and n = 2 in DWT. Panel (b) represents the condition of s = 6 and n = 3 in DWT

Fig. 2
Fig. 2

Panel (a) describes the effects of the SatO2 induced spectral profile alterations in ε S a t O 2 ( λ ) on Z 2 , 6 , 2 ε for SatO2 ≥ 40%. The top and the bottom groups of curves represent the filtered ε S a t O 2 ( λ ) and the DWT of ε S a t O 2 ( λ ) , respectively, at various SatO2 levels. The dot vertical lines show that the inflection points in the filtered ε S a t O 2 ( λ ) are accurately localized by Z 2 , 6 , 2 ε . Panel (b) describes the similar capability of Z 4 , 6 , 3 ε for SatO2 < 40%

Fig. 3
Fig. 3

In panel (a), the solid dots show Z 2 , 6 , 2 ε as a function of SatO2 (≥ 40%). The solid line is the curve fit of all Z 2 , 6 , 2 ε using a rational decay function, which becomes the lookup function S 2 , 6 , 2 . The empty squares represent the medians of Z 2 , 6 , 2 R d and the error bars represent the corresponding 10th and 90th percentiles. In panel (b), the solid dots are Z 4 , 6 , 3 ε at various levels of SatO2 that are less than 40%. The solid line is the curve fit of all Z 4 , 6 , 3 R d using a 5th order polynomial function, which becomes the lookup function S 4 , 6 , 3 . The empty squares represent the medians of Z 4 , 6 , 3 R d and the error bars represent the corresponding 10th and 90th percentiles. These numbers are calculated from the entire reduced R d s i m ( r , λ ) database.

Fig. 4
Fig. 4

(a) SatO2 –dependence and (b) BVF-dependence of the SatO2 estimation errors. The solid bars represent the average estimation errors; the error bars represent the one standard deviation.

Fig. 5
Fig. 5

μ s ' ( λ ) -dependence of the SatO2 estimation errors. The solid bars represent the average estimation errors; the error bars represent the one standard deviation.

Fig. 6
Fig. 6

r-dependence of the SatO2 estimation errors. The solid line represents the average estimation errors; the error bars represent the one standard deviation. The long dash line represents the number of usable spectra in R d s i m ( r , λ ) .

Fig. 7
Fig. 7

The relationship between the estimation errors versus S/N(2,6,2) for SatO2 ≥ 40% and S/N(4,6,3) for SatO2 < 40%. The solid bars represent the average estimation errors within a specific range of S/N; the error bars represent the one standard deviation. The solid line represents the overall estimation error (2.39%).

Fig. 8
Fig. 8

(a) Results of the tissue phantom study. Each symbol represents the SatO2 level estimated by the algorithm and the SatO2,ref level determined by collimated transmission during the de-oxygenation process of two tissue phantoms. The line indicates unity. (b) Time histories of local SatO2 variations at the fingertip during experimentally-induced ischemia. The SatO2 levels were derived from the diffuse reflectance spectra, recorded through fiber A and fiber B, using the proposed algorithm.

Fig. 9
Fig. 9

Representative time histories of the estimated SatO2 levels of normal cortex (black) and tumor (grey) from all six patients.

Tables (2)

Tables Icon

Table 1 Variables used in constructing R d s i m ( r , λ ) and their ranges used

Tables Icon

Table 2 Demographic data on the 6 patients who participated in the clinical study

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ε S a t O 2 ( λ ) = S a t O 2 ε o x y ( λ ) + ( 1 S a t O 2 ) ε d e o x y ( λ ) [ liter / mole / cm ] ,
S a t O 2 = S j , s , n ( Z j , s , n ε ) [ % ] .
E ( r , λ ) = E 0 ( r 0 , λ ) e μ a ( λ ) l ( r , λ ) [ J ] ,
R d ( r , λ ) = i = 1 x E i ( r , λ ) T = E 0 ( r , λ ) T i = 1 x e μ a ( λ ) l i ( r , λ ) E 0 ( r , λ ) T e μ a ( λ ) k ( r , λ ) [ W ] ,
S a t O 2 ( j , s , n ) e s t = S j , s , n ( Z j , s , n R d ) [ % ]
μ a ( λ ) = B V F [ S a t O 2 ¯ × μ a o x y ( λ ) + ( 1 S a t O 2 ¯ ) × μ a d e o x y ( λ ) ] [ 1 / cm ] ,
μ s ' ( λ ) = A × w B [ 1 / cm ] ,
S a t O 2 ( j , s , n ) e r r o r = | S a t O 2 ¯ S a t O 2 ( j , s , n ) e s t | [ % ] ,
S / N ( s , n ) = | u = 540 560 W s n { ln [ R d ( r , u ) ] } | 2 | u = 540 560 W 1 n { ln [ R d ( r , u ) ] } | 2 .
W s ε S a t O 2 ( u ) = + ε S a t O 2 ( λ ) 1 s ψ ( λ u s ) d λ ,
W s ε S a t O 2 ( u ) = f × ψ s ( u ) ,
W s n ε S a t O 2 ( u ) = s n d n d u n ( ε S a t O 2 × ρ s ) ( u ) ,

Metrics