Abstract

An optical approach allowing the extraction and the separation of remote vibration sources has recently been proposed. The approach has also been applied for medical related applications as blood pressure and heart beats monitoring. In this paper we demonstrate its capability to monitor glucose concentration in blood stream. The technique is based on the tracking of temporal changes of reflected secondary speckle produced in human skin (wrist) when being illuminated by a laser beam. A temporal change in skin’s vibration profile generated due to blood pulsation is analyzed for estimating the glucose concentration. Experimental tests that were carried out in order to verify the proposed approach showed good match with the change of the glucose level at the positive slope stage as it was obtained from conventional reference measurement.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. B. Davidson, Diabetes Mellitus- Diagnosis and Treatment, 3rd ed. (Churchill Livingstone, 1991).
  2. http://www.iso.org/iso/home.html .
  3. L. S. Jefferson, A. D. Chernington, and H. M. Goodman, “The endocrine system, Volume 2, the endocrine pancreas and regulating of metabolism,” in Handbook of Physiology (Oxford University Press, 2001).
  4. J. A. Tamada, S. Garg, L. Jovanovic, K. R. Pitzer, S. Fermi, R. O. Potts, and Cygnus Research Team, “Noninvasive glucose monitoring: comprehensive clinical results,” JAMA, J. Am. Med. Assoc. 282(19), 1839–1844 (1999).
    [CrossRef] [PubMed]
  5. T. Koschinsky and L. Heinemann, “Sensors for glucose monitoring: technical and clinical aspects,” Diabetes Metab. Res. Rev. 17(2), 113–123 (2001).
    [CrossRef] [PubMed]
  6. R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5(1), 5–16 (2000).
    [CrossRef] [PubMed]
  7. N. S. Oliver, C. Toumazou, A. E. G. Cass, and D. G. Johnston, “Glucose sensors: a review of current and emerging technology,” Diabet. Med. 26(3), 197–210 (2009).
    [CrossRef] [PubMed]
  8. K.-U. Jagemann, C. Fischbacher, K. Danzer, U. A. Muller, and B. Mertes, “Application of near-infrared spectroscopy for non-invasive determination of blood/tissue glucose using neural networks,” Z. Phys. Chem. 191, 179–190 (1995).
  9. R. Marbach, Th. Koschinsky, F. A. Gries, and H. M. Heise, “Non-invasive blood glucose assay by near-infrared diffued reflectance spectroscopy of the human inner lip,” Appl. Spectrosc. 47(7), 875–881 (1993).
    [CrossRef]
  10. H. M. Heise, R. Marbach, G. Janatsch, and J. D. Kruse-Jarres, “Multivariate determination of glucose in whole blood by attenuated total reflection infrared spectroscopy,” Anal. Chem. 61(18), 2009–2015 (1989).
    [CrossRef] [PubMed]
  11. S. Y. Wang, C. E. Hasty, P. A. Watson, J. P. Wicksted, R. D. Stith, and W. F. March, “Analysis of metabolites in aqueous solutions by using laser Raman spectroscopy,” Appl. Opt. 32(6), 925–929 (1993).
    [CrossRef] [PubMed]
  12. G. B. Christison and H. A. MacKenzie, “Laser photoacoustic determination of physiological glucose concentrations in human whole blood,” Med. Biol. Eng. Comput. 31(3), 284–290 (1993).
    [CrossRef] [PubMed]
  13. K. M. Quan, G. B. Christison, H. A. MacKenzie, and P. Hodgson, “Glucose determination by a pulsed photoacoustic technique: an experimental study using a gelatin-based tissue phantom,” Phys. Med. Biol. 38(12), 1911–1922 (1993).
    [CrossRef] [PubMed]
  14. J. T. Bruulsema, M. Essenpreis, L. Heinemann, J. E. Hayward, M. Berger, F. A. Greis, T. Koschinsky, J. Sandahl-Christiansen, H. Orskov, T. J. Farrell, M. S. Patterson, and D. Bocker, “Detection of changes in blood glucose concentration in- vivo with spatially resolved diffuse reflectance,” in Conference on Biomedical Optical Spectroscopy and Diagnostics (Optical Society of America 1996).
  15. Y. Hori, T. Yasui, and T. Araki, “Multiple-scattering-free optical glucose monitoring based on femtosecond pulse interferometry,” Opt. Rev. 12(3), 202–206 (2005).
    [CrossRef]
  16. Y. Hori, T. Yasui, and T. Araki, “Optical glucose monitoring based on femtosecond two-color pulse interferometry,” Opt. Rev. 13(1), 29–33 (2006).
    [CrossRef]
  17. R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett. 26(13), 992–994 (2001).
    [CrossRef] [PubMed]
  18. K. V. Larin, M. G. Ghosn, S. N. Ivers, A. Tellez, and J. F. Granada, “Quantification of glucose diffusion in arterial tissues by using optical coherence tomography,” Laser Phys. Lett. 4(4), 312–317 (2007).
    [CrossRef]
  19. V. V. Sapozhnikova, R. V. Kuranov, I. Cicenaite, R. O. Esenaliev, and D. S. Prough, “Effect on blood glucose monitoring of skin pressure exerted by an optical coherence tomography probe,” J. Biomed. Opt. 13(2), 021112 (2008).
    [CrossRef] [PubMed]
  20. M. Kinnunen, R. Myllylä, and S. Vainio, “Detecting glucose-induced changes in in vitro and in vivo experiments with optical coherence tomography,” J. Biomed. Opt. 13(2), 021111 (2008).
    [CrossRef] [PubMed]
  21. S. Mansouri and J. S. Schultz, “A miniature optical glucose sensor based on affinity binding,” Biotechnology 2(10), 885–890 (1984).
    [CrossRef]
  22. R. J. Russell, M. V. Pishko, C. C. Gefrides, M. J. McShane, and G. L. Coté, “A fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in a poly(ethylene glycol) hydrogel,” Anal. Chem. 71(15), 3126–3132 (1999).
    [CrossRef] [PubMed]
  23. J. F. Sierra, J. Galbam, S. DeMarcos, and J. R. Castillo, “Direct determination of glucose in serum by fluorimetry using a labeled enzyme,” Anal. Chim. Acta 414(1-2), 33–41 (2000).
    [CrossRef]
  24. Z. Zalevsky and J. Garcia, “Motion detection system and method,” Israeli Patent Application No. 184868 (July 2007); WO/2009/013738 International Application No PCT/IL 2008/001008 (July 2008).
  25. Z. Zalevsky, Y. Beiderman, I. Margalit, S. Gingold, M. Teicher, V. Mico, and J. Garcia, “Simultaneous remote extraction of multiple speech sources and heart beats from secondary speckles pattern,” Opt. Express 17(24), 21566–21580 (2009).
    [CrossRef] [PubMed]
  26. Y. Beiderman, I. Horovitz, N. Burshtein, M. Teicher, J. Garcia, V. Mico, and Z. Zalevsky, “Remote estimation of blood pulse pressure via temporal tracking of reflected secondary speckles pattern,” J. Biomed. Opt. 15(6), 061707 (2010).
    [CrossRef] [PubMed]
  27. J. C. Dainty, Laser Speckle and Related Phenomena, 2nd ed. (Springer-Verlag, 1989).
  28. P. Drouin, D. Rousselle, J. F. Stoltz, C. Guimont, S. Gaillard, G. Vernhes, and G. Debry, “Study of blood viscosity and erythrocyte parameters in diabetic patients using an artificial pancreas,” Scand. J. Clin. Lab. Invest. 41(s156), 165–169 (1981).
    [CrossRef]
  29. J. W. Hurst, “Naming of the waves in the ECG, with a brief account of their genesis,” Circulation 98(18), 1937–1942 (1998).
    [PubMed]
  30. S. G. Laychock, “Glucose metabolism, second messengers and insulin secretion,” Life Sci. 47(25), 2307–2316 (1990).
    [CrossRef] [PubMed]

2010 (1)

Y. Beiderman, I. Horovitz, N. Burshtein, M. Teicher, J. Garcia, V. Mico, and Z. Zalevsky, “Remote estimation of blood pulse pressure via temporal tracking of reflected secondary speckles pattern,” J. Biomed. Opt. 15(6), 061707 (2010).
[CrossRef] [PubMed]

2009 (2)

2008 (2)

V. V. Sapozhnikova, R. V. Kuranov, I. Cicenaite, R. O. Esenaliev, and D. S. Prough, “Effect on blood glucose monitoring of skin pressure exerted by an optical coherence tomography probe,” J. Biomed. Opt. 13(2), 021112 (2008).
[CrossRef] [PubMed]

M. Kinnunen, R. Myllylä, and S. Vainio, “Detecting glucose-induced changes in in vitro and in vivo experiments with optical coherence tomography,” J. Biomed. Opt. 13(2), 021111 (2008).
[CrossRef] [PubMed]

2007 (1)

K. V. Larin, M. G. Ghosn, S. N. Ivers, A. Tellez, and J. F. Granada, “Quantification of glucose diffusion in arterial tissues by using optical coherence tomography,” Laser Phys. Lett. 4(4), 312–317 (2007).
[CrossRef]

2006 (1)

Y. Hori, T. Yasui, and T. Araki, “Optical glucose monitoring based on femtosecond two-color pulse interferometry,” Opt. Rev. 13(1), 29–33 (2006).
[CrossRef]

2005 (1)

Y. Hori, T. Yasui, and T. Araki, “Multiple-scattering-free optical glucose monitoring based on femtosecond pulse interferometry,” Opt. Rev. 12(3), 202–206 (2005).
[CrossRef]

2001 (2)

R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett. 26(13), 992–994 (2001).
[CrossRef] [PubMed]

T. Koschinsky and L. Heinemann, “Sensors for glucose monitoring: technical and clinical aspects,” Diabetes Metab. Res. Rev. 17(2), 113–123 (2001).
[CrossRef] [PubMed]

2000 (2)

R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5(1), 5–16 (2000).
[CrossRef] [PubMed]

J. F. Sierra, J. Galbam, S. DeMarcos, and J. R. Castillo, “Direct determination of glucose in serum by fluorimetry using a labeled enzyme,” Anal. Chim. Acta 414(1-2), 33–41 (2000).
[CrossRef]

1999 (2)

J. A. Tamada, S. Garg, L. Jovanovic, K. R. Pitzer, S. Fermi, R. O. Potts, and Cygnus Research Team, “Noninvasive glucose monitoring: comprehensive clinical results,” JAMA, J. Am. Med. Assoc. 282(19), 1839–1844 (1999).
[CrossRef] [PubMed]

R. J. Russell, M. V. Pishko, C. C. Gefrides, M. J. McShane, and G. L. Coté, “A fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in a poly(ethylene glycol) hydrogel,” Anal. Chem. 71(15), 3126–3132 (1999).
[CrossRef] [PubMed]

1998 (1)

J. W. Hurst, “Naming of the waves in the ECG, with a brief account of their genesis,” Circulation 98(18), 1937–1942 (1998).
[PubMed]

1995 (1)

K.-U. Jagemann, C. Fischbacher, K. Danzer, U. A. Muller, and B. Mertes, “Application of near-infrared spectroscopy for non-invasive determination of blood/tissue glucose using neural networks,” Z. Phys. Chem. 191, 179–190 (1995).

1993 (4)

R. Marbach, Th. Koschinsky, F. A. Gries, and H. M. Heise, “Non-invasive blood glucose assay by near-infrared diffued reflectance spectroscopy of the human inner lip,” Appl. Spectrosc. 47(7), 875–881 (1993).
[CrossRef]

S. Y. Wang, C. E. Hasty, P. A. Watson, J. P. Wicksted, R. D. Stith, and W. F. March, “Analysis of metabolites in aqueous solutions by using laser Raman spectroscopy,” Appl. Opt. 32(6), 925–929 (1993).
[CrossRef] [PubMed]

G. B. Christison and H. A. MacKenzie, “Laser photoacoustic determination of physiological glucose concentrations in human whole blood,” Med. Biol. Eng. Comput. 31(3), 284–290 (1993).
[CrossRef] [PubMed]

K. M. Quan, G. B. Christison, H. A. MacKenzie, and P. Hodgson, “Glucose determination by a pulsed photoacoustic technique: an experimental study using a gelatin-based tissue phantom,” Phys. Med. Biol. 38(12), 1911–1922 (1993).
[CrossRef] [PubMed]

1990 (1)

S. G. Laychock, “Glucose metabolism, second messengers and insulin secretion,” Life Sci. 47(25), 2307–2316 (1990).
[CrossRef] [PubMed]

1989 (1)

H. M. Heise, R. Marbach, G. Janatsch, and J. D. Kruse-Jarres, “Multivariate determination of glucose in whole blood by attenuated total reflection infrared spectroscopy,” Anal. Chem. 61(18), 2009–2015 (1989).
[CrossRef] [PubMed]

1984 (1)

S. Mansouri and J. S. Schultz, “A miniature optical glucose sensor based on affinity binding,” Biotechnology 2(10), 885–890 (1984).
[CrossRef]

1981 (1)

P. Drouin, D. Rousselle, J. F. Stoltz, C. Guimont, S. Gaillard, G. Vernhes, and G. Debry, “Study of blood viscosity and erythrocyte parameters in diabetic patients using an artificial pancreas,” Scand. J. Clin. Lab. Invest. 41(s156), 165–169 (1981).
[CrossRef]

Araki, T.

Y. Hori, T. Yasui, and T. Araki, “Optical glucose monitoring based on femtosecond two-color pulse interferometry,” Opt. Rev. 13(1), 29–33 (2006).
[CrossRef]

Y. Hori, T. Yasui, and T. Araki, “Multiple-scattering-free optical glucose monitoring based on femtosecond pulse interferometry,” Opt. Rev. 12(3), 202–206 (2005).
[CrossRef]

Beiderman, Y.

Y. Beiderman, I. Horovitz, N. Burshtein, M. Teicher, J. Garcia, V. Mico, and Z. Zalevsky, “Remote estimation of blood pulse pressure via temporal tracking of reflected secondary speckles pattern,” J. Biomed. Opt. 15(6), 061707 (2010).
[CrossRef] [PubMed]

Z. Zalevsky, Y. Beiderman, I. Margalit, S. Gingold, M. Teicher, V. Mico, and J. Garcia, “Simultaneous remote extraction of multiple speech sources and heart beats from secondary speckles pattern,” Opt. Express 17(24), 21566–21580 (2009).
[CrossRef] [PubMed]

Burshtein, N.

Y. Beiderman, I. Horovitz, N. Burshtein, M. Teicher, J. Garcia, V. Mico, and Z. Zalevsky, “Remote estimation of blood pulse pressure via temporal tracking of reflected secondary speckles pattern,” J. Biomed. Opt. 15(6), 061707 (2010).
[CrossRef] [PubMed]

Cass, A. E. G.

N. S. Oliver, C. Toumazou, A. E. G. Cass, and D. G. Johnston, “Glucose sensors: a review of current and emerging technology,” Diabet. Med. 26(3), 197–210 (2009).
[CrossRef] [PubMed]

Castillo, J. R.

J. F. Sierra, J. Galbam, S. DeMarcos, and J. R. Castillo, “Direct determination of glucose in serum by fluorimetry using a labeled enzyme,” Anal. Chim. Acta 414(1-2), 33–41 (2000).
[CrossRef]

Christison, G. B.

G. B. Christison and H. A. MacKenzie, “Laser photoacoustic determination of physiological glucose concentrations in human whole blood,” Med. Biol. Eng. Comput. 31(3), 284–290 (1993).
[CrossRef] [PubMed]

K. M. Quan, G. B. Christison, H. A. MacKenzie, and P. Hodgson, “Glucose determination by a pulsed photoacoustic technique: an experimental study using a gelatin-based tissue phantom,” Phys. Med. Biol. 38(12), 1911–1922 (1993).
[CrossRef] [PubMed]

Cicenaite, I.

V. V. Sapozhnikova, R. V. Kuranov, I. Cicenaite, R. O. Esenaliev, and D. S. Prough, “Effect on blood glucose monitoring of skin pressure exerted by an optical coherence tomography probe,” J. Biomed. Opt. 13(2), 021112 (2008).
[CrossRef] [PubMed]

Coté, G. L.

R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5(1), 5–16 (2000).
[CrossRef] [PubMed]

R. J. Russell, M. V. Pishko, C. C. Gefrides, M. J. McShane, and G. L. Coté, “A fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in a poly(ethylene glycol) hydrogel,” Anal. Chem. 71(15), 3126–3132 (1999).
[CrossRef] [PubMed]

Danzer, K.

K.-U. Jagemann, C. Fischbacher, K. Danzer, U. A. Muller, and B. Mertes, “Application of near-infrared spectroscopy for non-invasive determination of blood/tissue glucose using neural networks,” Z. Phys. Chem. 191, 179–190 (1995).

Debry, G.

P. Drouin, D. Rousselle, J. F. Stoltz, C. Guimont, S. Gaillard, G. Vernhes, and G. Debry, “Study of blood viscosity and erythrocyte parameters in diabetic patients using an artificial pancreas,” Scand. J. Clin. Lab. Invest. 41(s156), 165–169 (1981).
[CrossRef]

DeMarcos, S.

J. F. Sierra, J. Galbam, S. DeMarcos, and J. R. Castillo, “Direct determination of glucose in serum by fluorimetry using a labeled enzyme,” Anal. Chim. Acta 414(1-2), 33–41 (2000).
[CrossRef]

Drouin, P.

P. Drouin, D. Rousselle, J. F. Stoltz, C. Guimont, S. Gaillard, G. Vernhes, and G. Debry, “Study of blood viscosity and erythrocyte parameters in diabetic patients using an artificial pancreas,” Scand. J. Clin. Lab. Invest. 41(s156), 165–169 (1981).
[CrossRef]

Esenaliev, R. O.

V. V. Sapozhnikova, R. V. Kuranov, I. Cicenaite, R. O. Esenaliev, and D. S. Prough, “Effect on blood glucose monitoring of skin pressure exerted by an optical coherence tomography probe,” J. Biomed. Opt. 13(2), 021112 (2008).
[CrossRef] [PubMed]

R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett. 26(13), 992–994 (2001).
[CrossRef] [PubMed]

Fermi, S.

J. A. Tamada, S. Garg, L. Jovanovic, K. R. Pitzer, S. Fermi, R. O. Potts, and Cygnus Research Team, “Noninvasive glucose monitoring: comprehensive clinical results,” JAMA, J. Am. Med. Assoc. 282(19), 1839–1844 (1999).
[CrossRef] [PubMed]

Fischbacher, C.

K.-U. Jagemann, C. Fischbacher, K. Danzer, U. A. Muller, and B. Mertes, “Application of near-infrared spectroscopy for non-invasive determination of blood/tissue glucose using neural networks,” Z. Phys. Chem. 191, 179–190 (1995).

Gaillard, S.

P. Drouin, D. Rousselle, J. F. Stoltz, C. Guimont, S. Gaillard, G. Vernhes, and G. Debry, “Study of blood viscosity and erythrocyte parameters in diabetic patients using an artificial pancreas,” Scand. J. Clin. Lab. Invest. 41(s156), 165–169 (1981).
[CrossRef]

Galbam, J.

J. F. Sierra, J. Galbam, S. DeMarcos, and J. R. Castillo, “Direct determination of glucose in serum by fluorimetry using a labeled enzyme,” Anal. Chim. Acta 414(1-2), 33–41 (2000).
[CrossRef]

Garcia, J.

Y. Beiderman, I. Horovitz, N. Burshtein, M. Teicher, J. Garcia, V. Mico, and Z. Zalevsky, “Remote estimation of blood pulse pressure via temporal tracking of reflected secondary speckles pattern,” J. Biomed. Opt. 15(6), 061707 (2010).
[CrossRef] [PubMed]

Z. Zalevsky, Y. Beiderman, I. Margalit, S. Gingold, M. Teicher, V. Mico, and J. Garcia, “Simultaneous remote extraction of multiple speech sources and heart beats from secondary speckles pattern,” Opt. Express 17(24), 21566–21580 (2009).
[CrossRef] [PubMed]

Garg, S.

J. A. Tamada, S. Garg, L. Jovanovic, K. R. Pitzer, S. Fermi, R. O. Potts, and Cygnus Research Team, “Noninvasive glucose monitoring: comprehensive clinical results,” JAMA, J. Am. Med. Assoc. 282(19), 1839–1844 (1999).
[CrossRef] [PubMed]

Gefrides, C. C.

R. J. Russell, M. V. Pishko, C. C. Gefrides, M. J. McShane, and G. L. Coté, “A fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in a poly(ethylene glycol) hydrogel,” Anal. Chem. 71(15), 3126–3132 (1999).
[CrossRef] [PubMed]

Ghosn, M. G.

K. V. Larin, M. G. Ghosn, S. N. Ivers, A. Tellez, and J. F. Granada, “Quantification of glucose diffusion in arterial tissues by using optical coherence tomography,” Laser Phys. Lett. 4(4), 312–317 (2007).
[CrossRef]

Gingold, S.

Granada, J. F.

K. V. Larin, M. G. Ghosn, S. N. Ivers, A. Tellez, and J. F. Granada, “Quantification of glucose diffusion in arterial tissues by using optical coherence tomography,” Laser Phys. Lett. 4(4), 312–317 (2007).
[CrossRef]

Gries, F. A.

Guimont, C.

P. Drouin, D. Rousselle, J. F. Stoltz, C. Guimont, S. Gaillard, G. Vernhes, and G. Debry, “Study of blood viscosity and erythrocyte parameters in diabetic patients using an artificial pancreas,” Scand. J. Clin. Lab. Invest. 41(s156), 165–169 (1981).
[CrossRef]

Hasty, C. E.

Heinemann, L.

T. Koschinsky and L. Heinemann, “Sensors for glucose monitoring: technical and clinical aspects,” Diabetes Metab. Res. Rev. 17(2), 113–123 (2001).
[CrossRef] [PubMed]

Heise, H. M.

R. Marbach, Th. Koschinsky, F. A. Gries, and H. M. Heise, “Non-invasive blood glucose assay by near-infrared diffued reflectance spectroscopy of the human inner lip,” Appl. Spectrosc. 47(7), 875–881 (1993).
[CrossRef]

H. M. Heise, R. Marbach, G. Janatsch, and J. D. Kruse-Jarres, “Multivariate determination of glucose in whole blood by attenuated total reflection infrared spectroscopy,” Anal. Chem. 61(18), 2009–2015 (1989).
[CrossRef] [PubMed]

Hodgson, P.

K. M. Quan, G. B. Christison, H. A. MacKenzie, and P. Hodgson, “Glucose determination by a pulsed photoacoustic technique: an experimental study using a gelatin-based tissue phantom,” Phys. Med. Biol. 38(12), 1911–1922 (1993).
[CrossRef] [PubMed]

Hori, Y.

Y. Hori, T. Yasui, and T. Araki, “Optical glucose monitoring based on femtosecond two-color pulse interferometry,” Opt. Rev. 13(1), 29–33 (2006).
[CrossRef]

Y. Hori, T. Yasui, and T. Araki, “Multiple-scattering-free optical glucose monitoring based on femtosecond pulse interferometry,” Opt. Rev. 12(3), 202–206 (2005).
[CrossRef]

Horovitz, I.

Y. Beiderman, I. Horovitz, N. Burshtein, M. Teicher, J. Garcia, V. Mico, and Z. Zalevsky, “Remote estimation of blood pulse pressure via temporal tracking of reflected secondary speckles pattern,” J. Biomed. Opt. 15(6), 061707 (2010).
[CrossRef] [PubMed]

Hurst, J. W.

J. W. Hurst, “Naming of the waves in the ECG, with a brief account of their genesis,” Circulation 98(18), 1937–1942 (1998).
[PubMed]

Ivers, S. N.

K. V. Larin, M. G. Ghosn, S. N. Ivers, A. Tellez, and J. F. Granada, “Quantification of glucose diffusion in arterial tissues by using optical coherence tomography,” Laser Phys. Lett. 4(4), 312–317 (2007).
[CrossRef]

Jagemann, K.-U.

K.-U. Jagemann, C. Fischbacher, K. Danzer, U. A. Muller, and B. Mertes, “Application of near-infrared spectroscopy for non-invasive determination of blood/tissue glucose using neural networks,” Z. Phys. Chem. 191, 179–190 (1995).

Janatsch, G.

H. M. Heise, R. Marbach, G. Janatsch, and J. D. Kruse-Jarres, “Multivariate determination of glucose in whole blood by attenuated total reflection infrared spectroscopy,” Anal. Chem. 61(18), 2009–2015 (1989).
[CrossRef] [PubMed]

Johnston, D. G.

N. S. Oliver, C. Toumazou, A. E. G. Cass, and D. G. Johnston, “Glucose sensors: a review of current and emerging technology,” Diabet. Med. 26(3), 197–210 (2009).
[CrossRef] [PubMed]

Jovanovic, L.

J. A. Tamada, S. Garg, L. Jovanovic, K. R. Pitzer, S. Fermi, R. O. Potts, and Cygnus Research Team, “Noninvasive glucose monitoring: comprehensive clinical results,” JAMA, J. Am. Med. Assoc. 282(19), 1839–1844 (1999).
[CrossRef] [PubMed]

Kinnunen, M.

M. Kinnunen, R. Myllylä, and S. Vainio, “Detecting glucose-induced changes in in vitro and in vivo experiments with optical coherence tomography,” J. Biomed. Opt. 13(2), 021111 (2008).
[CrossRef] [PubMed]

Koschinsky, T.

T. Koschinsky and L. Heinemann, “Sensors for glucose monitoring: technical and clinical aspects,” Diabetes Metab. Res. Rev. 17(2), 113–123 (2001).
[CrossRef] [PubMed]

Koschinsky, Th.

Kruse-Jarres, J. D.

H. M. Heise, R. Marbach, G. Janatsch, and J. D. Kruse-Jarres, “Multivariate determination of glucose in whole blood by attenuated total reflection infrared spectroscopy,” Anal. Chem. 61(18), 2009–2015 (1989).
[CrossRef] [PubMed]

Kuranov, R. V.

V. V. Sapozhnikova, R. V. Kuranov, I. Cicenaite, R. O. Esenaliev, and D. S. Prough, “Effect on blood glucose monitoring of skin pressure exerted by an optical coherence tomography probe,” J. Biomed. Opt. 13(2), 021112 (2008).
[CrossRef] [PubMed]

Larin, K. V.

K. V. Larin, M. G. Ghosn, S. N. Ivers, A. Tellez, and J. F. Granada, “Quantification of glucose diffusion in arterial tissues by using optical coherence tomography,” Laser Phys. Lett. 4(4), 312–317 (2007).
[CrossRef]

R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett. 26(13), 992–994 (2001).
[CrossRef] [PubMed]

Larina, I. V.

Laychock, S. G.

S. G. Laychock, “Glucose metabolism, second messengers and insulin secretion,” Life Sci. 47(25), 2307–2316 (1990).
[CrossRef] [PubMed]

MacKenzie, H. A.

K. M. Quan, G. B. Christison, H. A. MacKenzie, and P. Hodgson, “Glucose determination by a pulsed photoacoustic technique: an experimental study using a gelatin-based tissue phantom,” Phys. Med. Biol. 38(12), 1911–1922 (1993).
[CrossRef] [PubMed]

G. B. Christison and H. A. MacKenzie, “Laser photoacoustic determination of physiological glucose concentrations in human whole blood,” Med. Biol. Eng. Comput. 31(3), 284–290 (1993).
[CrossRef] [PubMed]

Mansouri, S.

S. Mansouri and J. S. Schultz, “A miniature optical glucose sensor based on affinity binding,” Biotechnology 2(10), 885–890 (1984).
[CrossRef]

Marbach, R.

R. Marbach, Th. Koschinsky, F. A. Gries, and H. M. Heise, “Non-invasive blood glucose assay by near-infrared diffued reflectance spectroscopy of the human inner lip,” Appl. Spectrosc. 47(7), 875–881 (1993).
[CrossRef]

H. M. Heise, R. Marbach, G. Janatsch, and J. D. Kruse-Jarres, “Multivariate determination of glucose in whole blood by attenuated total reflection infrared spectroscopy,” Anal. Chem. 61(18), 2009–2015 (1989).
[CrossRef] [PubMed]

March, W. F.

Margalit, I.

McNichols, R. J.

R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5(1), 5–16 (2000).
[CrossRef] [PubMed]

McShane, M. J.

R. J. Russell, M. V. Pishko, C. C. Gefrides, M. J. McShane, and G. L. Coté, “A fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in a poly(ethylene glycol) hydrogel,” Anal. Chem. 71(15), 3126–3132 (1999).
[CrossRef] [PubMed]

Mertes, B.

K.-U. Jagemann, C. Fischbacher, K. Danzer, U. A. Muller, and B. Mertes, “Application of near-infrared spectroscopy for non-invasive determination of blood/tissue glucose using neural networks,” Z. Phys. Chem. 191, 179–190 (1995).

Mico, V.

Y. Beiderman, I. Horovitz, N. Burshtein, M. Teicher, J. Garcia, V. Mico, and Z. Zalevsky, “Remote estimation of blood pulse pressure via temporal tracking of reflected secondary speckles pattern,” J. Biomed. Opt. 15(6), 061707 (2010).
[CrossRef] [PubMed]

Z. Zalevsky, Y. Beiderman, I. Margalit, S. Gingold, M. Teicher, V. Mico, and J. Garcia, “Simultaneous remote extraction of multiple speech sources and heart beats from secondary speckles pattern,” Opt. Express 17(24), 21566–21580 (2009).
[CrossRef] [PubMed]

Motamedi, M.

Muller, U. A.

K.-U. Jagemann, C. Fischbacher, K. Danzer, U. A. Muller, and B. Mertes, “Application of near-infrared spectroscopy for non-invasive determination of blood/tissue glucose using neural networks,” Z. Phys. Chem. 191, 179–190 (1995).

Myllylä, R.

M. Kinnunen, R. Myllylä, and S. Vainio, “Detecting glucose-induced changes in in vitro and in vivo experiments with optical coherence tomography,” J. Biomed. Opt. 13(2), 021111 (2008).
[CrossRef] [PubMed]

Oliver, N. S.

N. S. Oliver, C. Toumazou, A. E. G. Cass, and D. G. Johnston, “Glucose sensors: a review of current and emerging technology,” Diabet. Med. 26(3), 197–210 (2009).
[CrossRef] [PubMed]

Pishko, M. V.

R. J. Russell, M. V. Pishko, C. C. Gefrides, M. J. McShane, and G. L. Coté, “A fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in a poly(ethylene glycol) hydrogel,” Anal. Chem. 71(15), 3126–3132 (1999).
[CrossRef] [PubMed]

Pitzer, K. R.

J. A. Tamada, S. Garg, L. Jovanovic, K. R. Pitzer, S. Fermi, R. O. Potts, and Cygnus Research Team, “Noninvasive glucose monitoring: comprehensive clinical results,” JAMA, J. Am. Med. Assoc. 282(19), 1839–1844 (1999).
[CrossRef] [PubMed]

Potts, R. O.

J. A. Tamada, S. Garg, L. Jovanovic, K. R. Pitzer, S. Fermi, R. O. Potts, and Cygnus Research Team, “Noninvasive glucose monitoring: comprehensive clinical results,” JAMA, J. Am. Med. Assoc. 282(19), 1839–1844 (1999).
[CrossRef] [PubMed]

Prough, D. S.

V. V. Sapozhnikova, R. V. Kuranov, I. Cicenaite, R. O. Esenaliev, and D. S. Prough, “Effect on blood glucose monitoring of skin pressure exerted by an optical coherence tomography probe,” J. Biomed. Opt. 13(2), 021112 (2008).
[CrossRef] [PubMed]

Quan, K. M.

K. M. Quan, G. B. Christison, H. A. MacKenzie, and P. Hodgson, “Glucose determination by a pulsed photoacoustic technique: an experimental study using a gelatin-based tissue phantom,” Phys. Med. Biol. 38(12), 1911–1922 (1993).
[CrossRef] [PubMed]

Rousselle, D.

P. Drouin, D. Rousselle, J. F. Stoltz, C. Guimont, S. Gaillard, G. Vernhes, and G. Debry, “Study of blood viscosity and erythrocyte parameters in diabetic patients using an artificial pancreas,” Scand. J. Clin. Lab. Invest. 41(s156), 165–169 (1981).
[CrossRef]

Russell, R. J.

R. J. Russell, M. V. Pishko, C. C. Gefrides, M. J. McShane, and G. L. Coté, “A fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in a poly(ethylene glycol) hydrogel,” Anal. Chem. 71(15), 3126–3132 (1999).
[CrossRef] [PubMed]

Sapozhnikova, V. V.

V. V. Sapozhnikova, R. V. Kuranov, I. Cicenaite, R. O. Esenaliev, and D. S. Prough, “Effect on blood glucose monitoring of skin pressure exerted by an optical coherence tomography probe,” J. Biomed. Opt. 13(2), 021112 (2008).
[CrossRef] [PubMed]

Schultz, J. S.

S. Mansouri and J. S. Schultz, “A miniature optical glucose sensor based on affinity binding,” Biotechnology 2(10), 885–890 (1984).
[CrossRef]

Sierra, J. F.

J. F. Sierra, J. Galbam, S. DeMarcos, and J. R. Castillo, “Direct determination of glucose in serum by fluorimetry using a labeled enzyme,” Anal. Chim. Acta 414(1-2), 33–41 (2000).
[CrossRef]

Stith, R. D.

Stoltz, J. F.

P. Drouin, D. Rousselle, J. F. Stoltz, C. Guimont, S. Gaillard, G. Vernhes, and G. Debry, “Study of blood viscosity and erythrocyte parameters in diabetic patients using an artificial pancreas,” Scand. J. Clin. Lab. Invest. 41(s156), 165–169 (1981).
[CrossRef]

Tamada, J. A.

J. A. Tamada, S. Garg, L. Jovanovic, K. R. Pitzer, S. Fermi, R. O. Potts, and Cygnus Research Team, “Noninvasive glucose monitoring: comprehensive clinical results,” JAMA, J. Am. Med. Assoc. 282(19), 1839–1844 (1999).
[CrossRef] [PubMed]

Teicher, M.

Y. Beiderman, I. Horovitz, N. Burshtein, M. Teicher, J. Garcia, V. Mico, and Z. Zalevsky, “Remote estimation of blood pulse pressure via temporal tracking of reflected secondary speckles pattern,” J. Biomed. Opt. 15(6), 061707 (2010).
[CrossRef] [PubMed]

Z. Zalevsky, Y. Beiderman, I. Margalit, S. Gingold, M. Teicher, V. Mico, and J. Garcia, “Simultaneous remote extraction of multiple speech sources and heart beats from secondary speckles pattern,” Opt. Express 17(24), 21566–21580 (2009).
[CrossRef] [PubMed]

Tellez, A.

K. V. Larin, M. G. Ghosn, S. N. Ivers, A. Tellez, and J. F. Granada, “Quantification of glucose diffusion in arterial tissues by using optical coherence tomography,” Laser Phys. Lett. 4(4), 312–317 (2007).
[CrossRef]

Toumazou, C.

N. S. Oliver, C. Toumazou, A. E. G. Cass, and D. G. Johnston, “Glucose sensors: a review of current and emerging technology,” Diabet. Med. 26(3), 197–210 (2009).
[CrossRef] [PubMed]

Vainio, S.

M. Kinnunen, R. Myllylä, and S. Vainio, “Detecting glucose-induced changes in in vitro and in vivo experiments with optical coherence tomography,” J. Biomed. Opt. 13(2), 021111 (2008).
[CrossRef] [PubMed]

Vernhes, G.

P. Drouin, D. Rousselle, J. F. Stoltz, C. Guimont, S. Gaillard, G. Vernhes, and G. Debry, “Study of blood viscosity and erythrocyte parameters in diabetic patients using an artificial pancreas,” Scand. J. Clin. Lab. Invest. 41(s156), 165–169 (1981).
[CrossRef]

Wang, S. Y.

Watson, P. A.

Wicksted, J. P.

Yasui, T.

Y. Hori, T. Yasui, and T. Araki, “Optical glucose monitoring based on femtosecond two-color pulse interferometry,” Opt. Rev. 13(1), 29–33 (2006).
[CrossRef]

Y. Hori, T. Yasui, and T. Araki, “Multiple-scattering-free optical glucose monitoring based on femtosecond pulse interferometry,” Opt. Rev. 12(3), 202–206 (2005).
[CrossRef]

Zalevsky, Z.

Y. Beiderman, I. Horovitz, N. Burshtein, M. Teicher, J. Garcia, V. Mico, and Z. Zalevsky, “Remote estimation of blood pulse pressure via temporal tracking of reflected secondary speckles pattern,” J. Biomed. Opt. 15(6), 061707 (2010).
[CrossRef] [PubMed]

Z. Zalevsky, Y. Beiderman, I. Margalit, S. Gingold, M. Teicher, V. Mico, and J. Garcia, “Simultaneous remote extraction of multiple speech sources and heart beats from secondary speckles pattern,” Opt. Express 17(24), 21566–21580 (2009).
[CrossRef] [PubMed]

Anal. Chem. (2)

H. M. Heise, R. Marbach, G. Janatsch, and J. D. Kruse-Jarres, “Multivariate determination of glucose in whole blood by attenuated total reflection infrared spectroscopy,” Anal. Chem. 61(18), 2009–2015 (1989).
[CrossRef] [PubMed]

R. J. Russell, M. V. Pishko, C. C. Gefrides, M. J. McShane, and G. L. Coté, “A fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in a poly(ethylene glycol) hydrogel,” Anal. Chem. 71(15), 3126–3132 (1999).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

J. F. Sierra, J. Galbam, S. DeMarcos, and J. R. Castillo, “Direct determination of glucose in serum by fluorimetry using a labeled enzyme,” Anal. Chim. Acta 414(1-2), 33–41 (2000).
[CrossRef]

Appl. Opt. (1)

Appl. Spectrosc. (1)

Biotechnology (1)

S. Mansouri and J. S. Schultz, “A miniature optical glucose sensor based on affinity binding,” Biotechnology 2(10), 885–890 (1984).
[CrossRef]

Circulation (1)

J. W. Hurst, “Naming of the waves in the ECG, with a brief account of their genesis,” Circulation 98(18), 1937–1942 (1998).
[PubMed]

Diabet. Med. (1)

N. S. Oliver, C. Toumazou, A. E. G. Cass, and D. G. Johnston, “Glucose sensors: a review of current and emerging technology,” Diabet. Med. 26(3), 197–210 (2009).
[CrossRef] [PubMed]

Diabetes Metab. Res. Rev. (1)

T. Koschinsky and L. Heinemann, “Sensors for glucose monitoring: technical and clinical aspects,” Diabetes Metab. Res. Rev. 17(2), 113–123 (2001).
[CrossRef] [PubMed]

J. Biomed. Opt. (4)

R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5(1), 5–16 (2000).
[CrossRef] [PubMed]

Y. Beiderman, I. Horovitz, N. Burshtein, M. Teicher, J. Garcia, V. Mico, and Z. Zalevsky, “Remote estimation of blood pulse pressure via temporal tracking of reflected secondary speckles pattern,” J. Biomed. Opt. 15(6), 061707 (2010).
[CrossRef] [PubMed]

V. V. Sapozhnikova, R. V. Kuranov, I. Cicenaite, R. O. Esenaliev, and D. S. Prough, “Effect on blood glucose monitoring of skin pressure exerted by an optical coherence tomography probe,” J. Biomed. Opt. 13(2), 021112 (2008).
[CrossRef] [PubMed]

M. Kinnunen, R. Myllylä, and S. Vainio, “Detecting glucose-induced changes in in vitro and in vivo experiments with optical coherence tomography,” J. Biomed. Opt. 13(2), 021111 (2008).
[CrossRef] [PubMed]

JAMA, J. Am. Med. Assoc. (1)

J. A. Tamada, S. Garg, L. Jovanovic, K. R. Pitzer, S. Fermi, R. O. Potts, and Cygnus Research Team, “Noninvasive glucose monitoring: comprehensive clinical results,” JAMA, J. Am. Med. Assoc. 282(19), 1839–1844 (1999).
[CrossRef] [PubMed]

Laser Phys. Lett. (1)

K. V. Larin, M. G. Ghosn, S. N. Ivers, A. Tellez, and J. F. Granada, “Quantification of glucose diffusion in arterial tissues by using optical coherence tomography,” Laser Phys. Lett. 4(4), 312–317 (2007).
[CrossRef]

Life Sci. (1)

S. G. Laychock, “Glucose metabolism, second messengers and insulin secretion,” Life Sci. 47(25), 2307–2316 (1990).
[CrossRef] [PubMed]

Med. Biol. Eng. Comput. (1)

G. B. Christison and H. A. MacKenzie, “Laser photoacoustic determination of physiological glucose concentrations in human whole blood,” Med. Biol. Eng. Comput. 31(3), 284–290 (1993).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Opt. Rev. (2)

Y. Hori, T. Yasui, and T. Araki, “Multiple-scattering-free optical glucose monitoring based on femtosecond pulse interferometry,” Opt. Rev. 12(3), 202–206 (2005).
[CrossRef]

Y. Hori, T. Yasui, and T. Araki, “Optical glucose monitoring based on femtosecond two-color pulse interferometry,” Opt. Rev. 13(1), 29–33 (2006).
[CrossRef]

Phys. Med. Biol. (1)

K. M. Quan, G. B. Christison, H. A. MacKenzie, and P. Hodgson, “Glucose determination by a pulsed photoacoustic technique: an experimental study using a gelatin-based tissue phantom,” Phys. Med. Biol. 38(12), 1911–1922 (1993).
[CrossRef] [PubMed]

Scand. J. Clin. Lab. Invest. (1)

P. Drouin, D. Rousselle, J. F. Stoltz, C. Guimont, S. Gaillard, G. Vernhes, and G. Debry, “Study of blood viscosity and erythrocyte parameters in diabetic patients using an artificial pancreas,” Scand. J. Clin. Lab. Invest. 41(s156), 165–169 (1981).
[CrossRef]

Z. Phys. Chem. (1)

K.-U. Jagemann, C. Fischbacher, K. Danzer, U. A. Muller, and B. Mertes, “Application of near-infrared spectroscopy for non-invasive determination of blood/tissue glucose using neural networks,” Z. Phys. Chem. 191, 179–190 (1995).

Other (6)

M. B. Davidson, Diabetes Mellitus- Diagnosis and Treatment, 3rd ed. (Churchill Livingstone, 1991).

http://www.iso.org/iso/home.html .

L. S. Jefferson, A. D. Chernington, and H. M. Goodman, “The endocrine system, Volume 2, the endocrine pancreas and regulating of metabolism,” in Handbook of Physiology (Oxford University Press, 2001).

J. T. Bruulsema, M. Essenpreis, L. Heinemann, J. E. Hayward, M. Berger, F. A. Greis, T. Koschinsky, J. Sandahl-Christiansen, H. Orskov, T. J. Farrell, M. S. Patterson, and D. Bocker, “Detection of changes in blood glucose concentration in- vivo with spatially resolved diffuse reflectance,” in Conference on Biomedical Optical Spectroscopy and Diagnostics (Optical Society of America 1996).

J. C. Dainty, Laser Speckle and Related Phenomena, 2nd ed. (Springer-Verlag, 1989).

Z. Zalevsky and J. Garcia, “Motion detection system and method,” Israeli Patent Application No. 184868 (July 2007); WO/2009/013738 International Application No PCT/IL 2008/001008 (July 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The implemented optical configuration for remote measuring of glucose level in blood from subject’s hand: (a). Sketch of the optical system (b). Subject’s hand under laser illumination as viewed by the camera.

Fig. 2
Fig. 2

Temporal plot of the outcome from the system used in the clinical tests with the graphical description of the observed parameters.

Fig. 3
Fig. 3

Stability of the system: constant glucose level in blood (denoted by blue line with triangles) and the estimated parameter 6 (denoted by magenta line with rectangles). Glucose level is given in units of 0.1[ml/dl] (representing a constant level of 100 [ml/dl), while the estimated optical values are given in pixels.

Fig. 4
Fig. 4

Data of subject #1: Glucose level in blood and amplitude of positive peak (parameter #1). Glucose level is denoted by blue line with triangles and the optically measured parameter is denoted by magenta line with rectangles.

Fig. 8
Fig. 8

Data of subject #4: Glucose level in blood and amplitude of positive peak (parameter #1). Glucose level is denoted by blue line with triangles and the optically measured parameter is denoted by magenta line with rectangles.

Fig. 5
Fig. 5

Data of subject #1: Glucose level in blood and the ratio between positive and negative peak (parameter #9). Glucose level is denoted by blue line with triangles and the optically measured parameter is denoted by magenta line with rectangles.

Fig. 6
Fig. 6

Data of subject #2: Glucose level in blood and amplitude of positive peak (parameter #1). Glucose level is denoted by blue line with triangles and the optically measured parameter is denoted by magenta line with rectangles.

Fig. 7
Fig. 7

Data of subject #3: Glucose level in blood and amplitude of positive peak. Glucose level is denoted by blue line with triangles and the optically measured parameter is denoted by magenta line with rectangles.

Tables (4)

Tables Icon

Table 1 Summary of the Observed Parameters

Tables Icon

Table 2 Summary of the Subjects’ Personal Information

Tables Icon

Table 3 Summary of Correlation Coefficients from All the Tests Taken with the Four Subjects

Tables Icon

Table 4 Summary of RMSE Estimator Coefficients from All the Tests Taken with the Four Subjects

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

C v ( t ) = ( 1 ε ) q 0 h ( t ) F
ε = ( C a C v ) C a
β = 4 π tan α λ 4 π α λ
C V ( t ) β ( t )
R M S E = i = 1 N ( x i r i ) 2 N

Metrics