Abstract

The Shack-Hartmann wavefront sensor (SHWS) spots upon which ocular aberration measurements depend have poor quality in mice due to light reflected from multiple retinal layers. We have designed and implemented a SHWS that can favor light from a specific retinal layer and measured monochromatic aberrations in 20 eyes from 10 anesthetized C57BL/6J mice. Using this instrument, we show that mice are myopic, not hyperopic as is frequently reported. We have also measured longitudinal chromatic aberration (LCA) of the mouse eye and found that it follows predictions of the water-filled schematic mouse eye. Results indicate that the optical quality of the mouse eye assessed by measurement of its aberrations is remarkably good, better for retinal imaging than the human eye. The dilated mouse eye has a much larger numerical aperture (NA) than that of the dilated human eye (0.5 NA vs. 0.2 NA), but it has a similar amount of root mean square (RMS) higher order aberrations compared to the dilated human eye. These measurements predict that adaptive optics based on this method of wavefront sensing will provide improvements in retinal image quality and potentially two times higher lateral resolution than that in the human eye.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Remtulla and P. E. Hallett, “A schematic eye for the mouse, and comparisons with the rat,” Vision Res. 25(1), 21–31 (1985).
    [CrossRef] [PubMed]
  2. C. Schmucker and F. Schaeffel, “A paraxial schematic eye model for the growing C57BL/6 mouse,” Vision Res. 44(16), 1857–1867 (2004).
    [CrossRef] [PubMed]
  3. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
    [CrossRef] [PubMed]
  4. D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14(16), 7144–7158 (2006).
    [CrossRef] [PubMed]
  5. D. C. Gray, R. Wolfe, B. P. Gee, D. Scoles, Y. Geng, B. D. Masella, A. Dubra, S. Luque, D. R. Williams, and W. H. Merigan, “In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells,” Invest. Ophthalmol. Vis. Sci. 49(1), 467–473 (2008).
    [CrossRef] [PubMed]
  6. J. I. Morgan,, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Vis. Sci. 50(3), 1350–1359 (2008).
    [CrossRef] [PubMed]
  7. D. P. Biss, D. Sumorok, S. A. Burns, R. H. Webb, Y. Zhou, T. G. Bifano, D. Côté, I. Veilleux, P. Zamiri, and C. P. Lin, “In vivo fluorescent imaging of the mouse retina using adaptive optics,” Opt. Lett. 32(6), 659–661 (2007).
    [CrossRef] [PubMed]
  8. Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In vivo imaging of microscopic structures in the rat retina,” Invest. Ophthalmol. Vis. Sci. 50(12), 5872–5879 (2009).
    [CrossRef] [PubMed]
  9. C. Alt, D. P. Biss, N. Tajouri, T. C. Jakobs, and C. P. Lin, “An adaptive-optics scanning laser ophthalmoscope for imaging murine retinal microstructure,” Proc. SPIE 7550, 75501 (2010).
  10. P. Artal, P. Herreros de Tejada, C. Muñoz Tedó, and D. G. Green, “Retinal image quality in the rodent eye,” Vis. Neurosci. 15(04), 597–605 (1998).
    [CrossRef] [PubMed]
  11. E. L. Irving, M. L. Kisilak, K. M. Clements, and M. C. W. Campbell, “Refractive error and optical image quality in three strains of albino rats,” Invest. Ophthalmol. Visual Sci. 46,000–000 (2005).
  12. M. Bird, M. L. Kisilak, and M. C. W. Campbell, “Optical quality of the rat eye,” Invest. Ophthalmol. Visual Sci. 48000–000 (2007).
  13. E. G. de la Cera, G. Rodríguez, L. Llorente, F. Schaeffel, and S. Marcos, “Optical aberrations in the mouse eye,” Vision Res. 46(16), 2546–2553 (2006).
    [CrossRef] [PubMed]
  14. O. Lardiere, R. Conan, C. Bradley, K. Jackson, and G. Herriot, “A laser guide star wavefront sensor bench demonstrator for TMT,” Opt. Express 16(8), 5527–5543 (2008).
    [CrossRef] [PubMed]
  15. S. L. Polyak, The vertebrate visual system (University of Chicago Press., Chicago, 1957).
  16. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18(3), 497–506 (2001).
    [CrossRef] [PubMed]
  17. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11(7), 1949–1957 (1994).
    [CrossRef] [PubMed]
  18. R. A. Muller and A. Buffington, “Real-time correction of atmospherically degraded telescope images through image sharpening,” J. Opt. Soc. Am. 64(9), 1200–1210 (1974).
    [CrossRef]
  19. P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A 17(8), 1388–1398 (2000).
    [CrossRef] [PubMed]
  20. A. N. S. Institute, “Methods for Reporting Optical Aberrations of Eyes,” in ANSI Z80.28 (2004), pp. 19–28.
  21. A. Dubra and Z. Harvey, “Registration of 2D images from fast scanning ophthalmic instruments,” in Biomedical Image Registration, B. Fischer, B. Dawant, and C. Lorenz, eds. (Springer, Berlin, 2010), pp. 60–71.
  22. V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
    [CrossRef] [PubMed]
  23. M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
    [CrossRef] [PubMed]
  24. O. P. Kocaoglu, S. R. Uhlhorn, E. Hernandez, R. A. Juarez, R. Will, J. M. Parel, and F. Manns, “Simultaneous fundus imaging and optical coherence tomography of the mouse retina,” Invest. Ophthalmol. Vis. Sci. 48(3), 1283–1289 (2007).
    [CrossRef] [PubMed]
  25. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
    [CrossRef] [PubMed]
  26. E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, “Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser,” Opt. Express 13(2), 400–409 (2005).
    [CrossRef] [PubMed]
  27. A. Hughes, “A useful table of reduced schematic eyes for vertebrates which includes computed longitudinal chromatic aberrations,” Vision Res. 19(11), 1273–1275 (1979).
    [CrossRef] [PubMed]
  28. C. J. Jeon, E. Strettoi, and R. H. Masland, “The major cell populations of the mouse retina,” J. Neurosci. 18(21), 8936–8946 (1998).
    [PubMed]
  29. E. Soucy, Y. S. Wang, S. Nirenberg, J. Nathans, and M. Meister, “A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina,” Neuron 21(3), 481–493 (1998).
    [CrossRef] [PubMed]
  30. S. S. Nikonov, R. Kholodenko, J. Lem, and E. N. Pugh., “Physiological features of the S- and M-cone photoreceptors of wild-type mice from single-cell recordings,” J. Gen. Physiol. 127(4), 359–374 (2006).
    [CrossRef] [PubMed]
  31. J. Z. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14(11), 2873–2883 (1997).
    [CrossRef] [PubMed]
  32. J. Porter, H. Queener, J. Lin, K. Thorn, and A. Awwal, Adaptive Optics for Vision Science (Wiley-Interscience, 2006), pp. 68–69.
  33. A. Dubra, “Wavefront sensor and wavefront corrector matching in adaptive optics,” Opt. Express 15(6), 2762–2769 (2007).
    [CrossRef] [PubMed]
  34. F. W. Campbell and D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. 181(3), 576–593 (1965).
    [PubMed]
  35. R. Sabesan and G. Yoon (Institute of Optics, University of Rochester, Rochester, New York, USA, personal communication).
  36. N. Putnam (School of Optometry and Vision Science Graduate Group, University of California, Berkeley, Berkeley, California, USA, personal communication).
  37. S. Tuohy and A. G. Podoleanu, “Depth-resolved wavefront aberrations using a coherence-gated Shack-Hartmann wavefront sensor,” Opt. Express 18(4), 3458–3476 (2010).
    [CrossRef] [PubMed]
  38. A. Dubra (Flaum Eye Institute, University of Rochester, Rochester,New York, USA, personal communication, 2010).
  39. M. Glickstein and M. Millodot, “Retinoscopy and eye size,” Science 168(931), 605–606 (1970).
    [CrossRef] [PubMed]
  40. J. Tejedor and P. de la Villa, “Refractive changes induced by form deprivation in the mouse eye,” Invest. Ophthalmol. Vis. Sci. 44(1), 32–36 (2003).
    [CrossRef] [PubMed]
  41. V. A. Barathi, V. G. Boopathi, E. P. Yap, and R. W. Beuerman, “Two models of experimental myopia in the mouse,” Vision Res. 48(7), 904–916 (2008).
    [CrossRef] [PubMed]
  42. T. V. Tkatchenko and A. V. Tkatchenko, “Ketamine-xylazine anesthesia causes hyperopic refractive shift in mice,” J. Neurosci. Methods 193(1), 67–71 (2010).
    [CrossRef] [PubMed]
  43. A. Chaudhuri, P. E. Hallett, and J. A. Parker, “Aspheric curvatures, refractive indices and chromatic aberration for the rat eye,” Vision Res. 23(12), 1351–1363 (1983).
    [CrossRef] [PubMed]
  44. M. Millodot and J. Sivak, “Hypermetropia of small animals and chromatic aberration,” Vision Res. 18(1), 125–126 (1978).
    [CrossRef] [PubMed]
  45. A. Hughes, “The artefact of retinoscopy in the rat and rabbit eye has its origin at the retina/vitreous interface rather than in longitudinal chromatic aberration,” Vision Res. 19(11), 1293–1294 (1979).
    [CrossRef] [PubMed]
  46. K. R. Huxlin, G. Yoon, L. Nagy, J. Porter, and D. Williams, “Monochromatic ocular wavefront aberrations in the awake-behaving cat,” Vision Res. 44(18), 2159–2169 (2004).
    [CrossRef] [PubMed]
  47. F. Schaeffel, E. Burkhardt, H. C. Howland, and R. W. Williams, “Measurement of refractive state and deprivation myopia in two strains of mice,” Optom. Vis. Sci. 81(2), 99–110 (2004).
    [CrossRef] [PubMed]
  48. M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vis. Sci. 77(10), 537–548 (2000).
    [CrossRef] [PubMed]
  49. A. Roorda, M. C. Campbell, and W. R. Bobier, “Geometrical theory to predict eccentric photorefraction intensity profiles in the human eye,” J. Opt. Soc. Am. A 12(8), 1647–1656 (1995).
    [CrossRef] [PubMed]
  50. A. Roorda, M. C. Campbell, and W. R. Bobier, “Slope-based eccentric photorefraction: theoretical analysis of different light source configurations and effects of ocular aberrations,” J. Opt. Soc. Am. A 14(10), 2547–2556 (1997).
    [CrossRef] [PubMed]
  51. L. Gianfranceschi, A. Fiorentini, and L. Maffei, “Behavioural visual acuity of wild type and bcl2 transgenic mouse,” Vision Res. 39(3), 569–574 (1999).
    [CrossRef] [PubMed]
  52. G. T. Prusky and R. M. Douglas, “Developmental plasticity of mouse visual acuity,” Eur. J. Neurosci. 17(1), 167–173 (2003).
    [CrossRef] [PubMed]
  53. C. Schmucker, M. Seeliger, P. Humphries, M. Biel, and F. Schaeffel, “Grating acuity at different luminances in wild-type mice and in mice lacking rod or cone function,” Invest. Ophthalmol. Vis. Sci. 46(1), 398–407 (2005).
    [CrossRef] [PubMed]
  54. J. D. Pettigrew, B. Dreher, C. S. Hopkins, M. J. McCall, and M. Brown, “Peak density and distribution of ganglion cells in the retinae of microchiropteran bats: implications for visual acuity,” Brain Behav. Evol. 32(1), 39–56 (1988).
    [CrossRef] [PubMed]
  55. U. C. Dräger and J. F. Olsen, “Ganglion cell distribution in the retina of the mouse,” Invest. Ophthalmol. Vis. Sci. 20(3), 285–293 (1981).
    [PubMed]
  56. L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80(1), 26–35 (2003).
    [CrossRef] [PubMed]
  57. G. A. Horridge, “The compound eye of insects,” Sci. Am. 237(1), 108–120 (1977).
    [CrossRef] [PubMed]
  58. A. W. Snyder, S. B. Laughlin, and D. G. Stavenga, “Information capacity of eyes,” Vision Res. 17(10), 1163–1175 (1977).
    [CrossRef] [PubMed]
  59. A. W. Snyder, T. R. J. Bossomaier, and A. Hughes, “Optical image quality and the cone mosaic,” Science 231(4737), 499–501 (1986).
    [CrossRef] [PubMed]
  60. W. M. Harmening, M. A. Vobig, P. Walter, and H. Wagner, “Ocular aberrations in barn owl eyes,” Vision Res. 47(23), 2934–2942 (2007).
    [CrossRef] [PubMed]
  61. W. M. Harmening, P. Nikolay, J. Orlowski, and H. Wagner, “Spatial contrast sensitivity and grating acuity of barn owls,” J. Vis. 9(7), 13 (2009).
    [CrossRef] [PubMed]
  62. M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res. 45(28), 3512–3519 (2005).
    [CrossRef] [PubMed]
  63. M. Paques, M. Simonutti, M. J. Roux, S. Picaud, E. Levavasseur, C. Bellman, and J. A. Sahel, “High resolution fundus imaging by confocal scanning laser ophthalmoscopy in the mouse,” Vision Res. 46(8-9), 1336–1345 (2006).
    [CrossRef] [PubMed]
  64. M. K. Walsh and H. A. Quigley, “In vivo time-lapse fluorescence imaging of individual retinal ganglion cells in mice,” J. Neurosci. Methods 169(1), 214–221 (2008).
    [CrossRef] [PubMed]
  65. C. K. Leung, J. D. Lindsey, J. G. Crowston, C. Lijia, S. Chiang, and R. N. Weinreb, “Longitudinal profile of retinal ganglion cell damage after optic nerve crush with blue-light confocal scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 49(11), 4898–4902 (2008).
    [CrossRef] [PubMed]
  66. G. J. McCormick, J. Porter, I. G. Cox, and S. MacRae, “Higher-order aberrations in eyes with irregular corneas after laser refractive surgery,” Ophthalmology 112(10), 1699–1709 (2005).
    [CrossRef] [PubMed]

2010 (2)

S. Tuohy and A. G. Podoleanu, “Depth-resolved wavefront aberrations using a coherence-gated Shack-Hartmann wavefront sensor,” Opt. Express 18(4), 3458–3476 (2010).
[CrossRef] [PubMed]

T. V. Tkatchenko and A. V. Tkatchenko, “Ketamine-xylazine anesthesia causes hyperopic refractive shift in mice,” J. Neurosci. Methods 193(1), 67–71 (2010).
[CrossRef] [PubMed]

2009 (2)

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In vivo imaging of microscopic structures in the rat retina,” Invest. Ophthalmol. Vis. Sci. 50(12), 5872–5879 (2009).
[CrossRef] [PubMed]

W. M. Harmening, P. Nikolay, J. Orlowski, and H. Wagner, “Spatial contrast sensitivity and grating acuity of barn owls,” J. Vis. 9(7), 13 (2009).
[CrossRef] [PubMed]

2008 (6)

V. A. Barathi, V. G. Boopathi, E. P. Yap, and R. W. Beuerman, “Two models of experimental myopia in the mouse,” Vision Res. 48(7), 904–916 (2008).
[CrossRef] [PubMed]

M. K. Walsh and H. A. Quigley, “In vivo time-lapse fluorescence imaging of individual retinal ganglion cells in mice,” J. Neurosci. Methods 169(1), 214–221 (2008).
[CrossRef] [PubMed]

C. K. Leung, J. D. Lindsey, J. G. Crowston, C. Lijia, S. Chiang, and R. N. Weinreb, “Longitudinal profile of retinal ganglion cell damage after optic nerve crush with blue-light confocal scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 49(11), 4898–4902 (2008).
[CrossRef] [PubMed]

D. C. Gray, R. Wolfe, B. P. Gee, D. Scoles, Y. Geng, B. D. Masella, A. Dubra, S. Luque, D. R. Williams, and W. H. Merigan, “In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells,” Invest. Ophthalmol. Vis. Sci. 49(1), 467–473 (2008).
[CrossRef] [PubMed]

J. I. Morgan,, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Vis. Sci. 50(3), 1350–1359 (2008).
[CrossRef] [PubMed]

O. Lardiere, R. Conan, C. Bradley, K. Jackson, and G. Herriot, “A laser guide star wavefront sensor bench demonstrator for TMT,” Opt. Express 16(8), 5527–5543 (2008).
[CrossRef] [PubMed]

2007 (6)

M. Bird, M. L. Kisilak, and M. C. W. Campbell, “Optical quality of the rat eye,” Invest. Ophthalmol. Visual Sci. 48000–000 (2007).

D. P. Biss, D. Sumorok, S. A. Burns, R. H. Webb, Y. Zhou, T. G. Bifano, D. Côté, I. Veilleux, P. Zamiri, and C. P. Lin, “In vivo fluorescent imaging of the mouse retina using adaptive optics,” Opt. Lett. 32(6), 659–661 (2007).
[CrossRef] [PubMed]

A. Dubra, “Wavefront sensor and wavefront corrector matching in adaptive optics,” Opt. Express 15(6), 2762–2769 (2007).
[CrossRef] [PubMed]

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

O. P. Kocaoglu, S. R. Uhlhorn, E. Hernandez, R. A. Juarez, R. Will, J. M. Parel, and F. Manns, “Simultaneous fundus imaging and optical coherence tomography of the mouse retina,” Invest. Ophthalmol. Vis. Sci. 48(3), 1283–1289 (2007).
[CrossRef] [PubMed]

W. M. Harmening, M. A. Vobig, P. Walter, and H. Wagner, “Ocular aberrations in barn owl eyes,” Vision Res. 47(23), 2934–2942 (2007).
[CrossRef] [PubMed]

2006 (5)

M. Paques, M. Simonutti, M. J. Roux, S. Picaud, E. Levavasseur, C. Bellman, and J. A. Sahel, “High resolution fundus imaging by confocal scanning laser ophthalmoscopy in the mouse,” Vision Res. 46(8-9), 1336–1345 (2006).
[CrossRef] [PubMed]

S. S. Nikonov, R. Kholodenko, J. Lem, and E. N. Pugh., “Physiological features of the S- and M-cone photoreceptors of wild-type mice from single-cell recordings,” J. Gen. Physiol. 127(4), 359–374 (2006).
[CrossRef] [PubMed]

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14(16), 7144–7158 (2006).
[CrossRef] [PubMed]

E. G. de la Cera, G. Rodríguez, L. Llorente, F. Schaeffel, and S. Marcos, “Optical aberrations in the mouse eye,” Vision Res. 46(16), 2546–2553 (2006).
[CrossRef] [PubMed]

2005 (5)

E. L. Irving, M. L. Kisilak, K. M. Clements, and M. C. W. Campbell, “Refractive error and optical image quality in three strains of albino rats,” Invest. Ophthalmol. Visual Sci. 46,000–000 (2005).

E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, “Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser,” Opt. Express 13(2), 400–409 (2005).
[CrossRef] [PubMed]

G. J. McCormick, J. Porter, I. G. Cox, and S. MacRae, “Higher-order aberrations in eyes with irregular corneas after laser refractive surgery,” Ophthalmology 112(10), 1699–1709 (2005).
[CrossRef] [PubMed]

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res. 45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

C. Schmucker, M. Seeliger, P. Humphries, M. Biel, and F. Schaeffel, “Grating acuity at different luminances in wild-type mice and in mice lacking rod or cone function,” Invest. Ophthalmol. Vis. Sci. 46(1), 398–407 (2005).
[CrossRef] [PubMed]

2004 (3)

K. R. Huxlin, G. Yoon, L. Nagy, J. Porter, and D. Williams, “Monochromatic ocular wavefront aberrations in the awake-behaving cat,” Vision Res. 44(18), 2159–2169 (2004).
[CrossRef] [PubMed]

F. Schaeffel, E. Burkhardt, H. C. Howland, and R. W. Williams, “Measurement of refractive state and deprivation myopia in two strains of mice,” Optom. Vis. Sci. 81(2), 99–110 (2004).
[CrossRef] [PubMed]

C. Schmucker and F. Schaeffel, “A paraxial schematic eye model for the growing C57BL/6 mouse,” Vision Res. 44(16), 1857–1867 (2004).
[CrossRef] [PubMed]

2003 (3)

J. Tejedor and P. de la Villa, “Refractive changes induced by form deprivation in the mouse eye,” Invest. Ophthalmol. Vis. Sci. 44(1), 32–36 (2003).
[CrossRef] [PubMed]

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80(1), 26–35 (2003).
[CrossRef] [PubMed]

G. T. Prusky and R. M. Douglas, “Developmental plasticity of mouse visual acuity,” Eur. J. Neurosci. 17(1), 167–173 (2003).
[CrossRef] [PubMed]

2001 (1)

2000 (2)

P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A 17(8), 1388–1398 (2000).
[CrossRef] [PubMed]

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vis. Sci. 77(10), 537–548 (2000).
[CrossRef] [PubMed]

1999 (1)

L. Gianfranceschi, A. Fiorentini, and L. Maffei, “Behavioural visual acuity of wild type and bcl2 transgenic mouse,” Vision Res. 39(3), 569–574 (1999).
[CrossRef] [PubMed]

1998 (3)

P. Artal, P. Herreros de Tejada, C. Muñoz Tedó, and D. G. Green, “Retinal image quality in the rodent eye,” Vis. Neurosci. 15(04), 597–605 (1998).
[CrossRef] [PubMed]

C. J. Jeon, E. Strettoi, and R. H. Masland, “The major cell populations of the mouse retina,” J. Neurosci. 18(21), 8936–8946 (1998).
[PubMed]

E. Soucy, Y. S. Wang, S. Nirenberg, J. Nathans, and M. Meister, “A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina,” Neuron 21(3), 481–493 (1998).
[CrossRef] [PubMed]

1997 (3)

1995 (1)

1994 (1)

1992 (1)

1988 (1)

J. D. Pettigrew, B. Dreher, C. S. Hopkins, M. J. McCall, and M. Brown, “Peak density and distribution of ganglion cells in the retinae of microchiropteran bats: implications for visual acuity,” Brain Behav. Evol. 32(1), 39–56 (1988).
[CrossRef] [PubMed]

1986 (1)

A. W. Snyder, T. R. J. Bossomaier, and A. Hughes, “Optical image quality and the cone mosaic,” Science 231(4737), 499–501 (1986).
[CrossRef] [PubMed]

1985 (1)

S. Remtulla and P. E. Hallett, “A schematic eye for the mouse, and comparisons with the rat,” Vision Res. 25(1), 21–31 (1985).
[CrossRef] [PubMed]

1983 (1)

A. Chaudhuri, P. E. Hallett, and J. A. Parker, “Aspheric curvatures, refractive indices and chromatic aberration for the rat eye,” Vision Res. 23(12), 1351–1363 (1983).
[CrossRef] [PubMed]

1981 (1)

U. C. Dräger and J. F. Olsen, “Ganglion cell distribution in the retina of the mouse,” Invest. Ophthalmol. Vis. Sci. 20(3), 285–293 (1981).
[PubMed]

1979 (2)

A. Hughes, “The artefact of retinoscopy in the rat and rabbit eye has its origin at the retina/vitreous interface rather than in longitudinal chromatic aberration,” Vision Res. 19(11), 1293–1294 (1979).
[CrossRef] [PubMed]

A. Hughes, “A useful table of reduced schematic eyes for vertebrates which includes computed longitudinal chromatic aberrations,” Vision Res. 19(11), 1273–1275 (1979).
[CrossRef] [PubMed]

1978 (1)

M. Millodot and J. Sivak, “Hypermetropia of small animals and chromatic aberration,” Vision Res. 18(1), 125–126 (1978).
[CrossRef] [PubMed]

1977 (2)

G. A. Horridge, “The compound eye of insects,” Sci. Am. 237(1), 108–120 (1977).
[CrossRef] [PubMed]

A. W. Snyder, S. B. Laughlin, and D. G. Stavenga, “Information capacity of eyes,” Vision Res. 17(10), 1163–1175 (1977).
[CrossRef] [PubMed]

1974 (1)

1970 (1)

M. Glickstein and M. Millodot, “Retinoscopy and eye size,” Science 168(931), 605–606 (1970).
[CrossRef] [PubMed]

1965 (1)

F. W. Campbell and D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. 181(3), 576–593 (1965).
[PubMed]

Acar, N.

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res. 45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

Ahamd, K.

Aragón, J. L.

Artal, P.

Barathi, V. A.

V. A. Barathi, V. G. Boopathi, E. P. Yap, and R. W. Beuerman, “Two models of experimental myopia in the mouse,” Vision Res. 48(7), 904–916 (2008).
[CrossRef] [PubMed]

Beck, S. C.

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res. 45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

Bellman, C.

M. Paques, M. Simonutti, M. J. Roux, S. Picaud, E. Levavasseur, C. Bellman, and J. A. Sahel, “High resolution fundus imaging by confocal scanning laser ophthalmoscopy in the mouse,” Vision Res. 46(8-9), 1336–1345 (2006).
[CrossRef] [PubMed]

Beuerman, R. W.

V. A. Barathi, V. G. Boopathi, E. P. Yap, and R. W. Beuerman, “Two models of experimental myopia in the mouse,” Vision Res. 48(7), 904–916 (2008).
[CrossRef] [PubMed]

Biel, M.

C. Schmucker, M. Seeliger, P. Humphries, M. Biel, and F. Schaeffel, “Grating acuity at different luminances in wild-type mice and in mice lacking rod or cone function,” Invest. Ophthalmol. Vis. Sci. 46(1), 398–407 (2005).
[CrossRef] [PubMed]

Bifano, T. G.

Bille, J. F.

Bird, M.

M. Bird, M. L. Kisilak, and M. C. W. Campbell, “Optical quality of the rat eye,” Invest. Ophthalmol. Visual Sci. 48000–000 (2007).

Biss, D. P.

Bobier, W. R.

Boopathi, V. G.

V. A. Barathi, V. G. Boopathi, E. P. Yap, and R. W. Beuerman, “Two models of experimental myopia in the mouse,” Vision Res. 48(7), 904–916 (2008).
[CrossRef] [PubMed]

Bossomaier, T. R. J.

A. W. Snyder, T. R. J. Bossomaier, and A. Hughes, “Optical image quality and the cone mosaic,” Science 231(4737), 499–501 (1986).
[CrossRef] [PubMed]

Bradley, A.

Bradley, C.

Brown, M.

J. D. Pettigrew, B. Dreher, C. S. Hopkins, M. J. McCall, and M. Brown, “Peak density and distribution of ganglion cells in the retinae of microchiropteran bats: implications for visual acuity,” Brain Behav. Evol. 32(1), 39–56 (1988).
[CrossRef] [PubMed]

Buffington, A.

Burkhardt, E.

F. Schaeffel, E. Burkhardt, H. C. Howland, and R. W. Williams, “Measurement of refractive state and deprivation myopia in two strains of mice,” Optom. Vis. Sci. 81(2), 99–110 (2004).
[CrossRef] [PubMed]

Burns, S. A.

Bursell, S. E.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

Campbell, F. W.

F. W. Campbell and D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. 181(3), 576–593 (1965).
[PubMed]

Campbell, M. C.

Campbell, M. C. W.

M. Bird, M. L. Kisilak, and M. C. W. Campbell, “Optical quality of the rat eye,” Invest. Ophthalmol. Visual Sci. 48000–000 (2007).

E. L. Irving, M. L. Kisilak, K. M. Clements, and M. C. W. Campbell, “Refractive error and optical image quality in three strains of albino rats,” Invest. Ophthalmol. Visual Sci. 46,000–000 (2005).

Carvalho, M.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

Chaudhuri, A.

A. Chaudhuri, P. E. Hallett, and J. A. Parker, “Aspheric curvatures, refractive indices and chromatic aberration for the rat eye,” Vision Res. 23(12), 1351–1363 (1983).
[CrossRef] [PubMed]

Chiang, S.

C. K. Leung, J. D. Lindsey, J. G. Crowston, C. Lijia, S. Chiang, and R. N. Weinreb, “Longitudinal profile of retinal ganglion cell damage after optic nerve crush with blue-light confocal scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 49(11), 4898–4902 (2008).
[CrossRef] [PubMed]

Choi, M.

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vis. Sci. 77(10), 537–548 (2000).
[CrossRef] [PubMed]

Clements, K. M.

E. L. Irving, M. L. Kisilak, K. M. Clements, and M. C. W. Campbell, “Refractive error and optical image quality in three strains of albino rats,” Invest. Ophthalmol. Visual Sci. 46,000–000 (2005).

Clermont, A.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

Conan, R.

Côté, D.

Cox, I. G.

G. J. McCormick, J. Porter, I. G. Cox, and S. MacRae, “Higher-order aberrations in eyes with irregular corneas after laser refractive surgery,” Ophthalmology 112(10), 1699–1709 (2005).
[CrossRef] [PubMed]

Crowston, J. G.

C. K. Leung, J. D. Lindsey, J. G. Crowston, C. Lijia, S. Chiang, and R. N. Weinreb, “Longitudinal profile of retinal ganglion cell damage after optic nerve crush with blue-light confocal scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 49(11), 4898–4902 (2008).
[CrossRef] [PubMed]

Dangel, S.

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res. 45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

de la Cera, E. G.

E. G. de la Cera, G. Rodríguez, L. Llorente, F. Schaeffel, and S. Marcos, “Optical aberrations in the mouse eye,” Vision Res. 46(16), 2546–2553 (2006).
[CrossRef] [PubMed]

de la Villa, P.

J. Tejedor and P. de la Villa, “Refractive changes induced by form deprivation in the mouse eye,” Invest. Ophthalmol. Vis. Sci. 44(1), 32–36 (2003).
[CrossRef] [PubMed]

Diaz-Santana, L.

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80(1), 26–35 (2003).
[CrossRef] [PubMed]

Douglas, R. M.

G. T. Prusky and R. M. Douglas, “Developmental plasticity of mouse visual acuity,” Eur. J. Neurosci. 17(1), 167–173 (2003).
[CrossRef] [PubMed]

Dräger, U. C.

U. C. Dräger and J. F. Olsen, “Ganglion cell distribution in the retina of the mouse,” Invest. Ophthalmol. Vis. Sci. 20(3), 285–293 (1981).
[PubMed]

Dreher, B.

J. D. Pettigrew, B. Dreher, C. S. Hopkins, M. J. McCall, and M. Brown, “Peak density and distribution of ganglion cells in the retinae of microchiropteran bats: implications for visual acuity,” Brain Behav. Evol. 32(1), 39–56 (1988).
[CrossRef] [PubMed]

Drexler, W.

Duan, Y.

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

Dubra, A.

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In vivo imaging of microscopic structures in the rat retina,” Invest. Ophthalmol. Vis. Sci. 50(12), 5872–5879 (2009).
[CrossRef] [PubMed]

J. I. Morgan,, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Vis. Sci. 50(3), 1350–1359 (2008).
[CrossRef] [PubMed]

D. C. Gray, R. Wolfe, B. P. Gee, D. Scoles, Y. Geng, B. D. Masella, A. Dubra, S. Luque, D. R. Williams, and W. H. Merigan, “In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells,” Invest. Ophthalmol. Vis. Sci. 49(1), 467–473 (2008).
[CrossRef] [PubMed]

A. Dubra, “Wavefront sensor and wavefront corrector matching in adaptive optics,” Opt. Express 15(6), 2762–2769 (2007).
[CrossRef] [PubMed]

D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14(16), 7144–7158 (2006).
[CrossRef] [PubMed]

Duker, J. S.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

Fahl, E.

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res. 45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

Fernández, E. J.

Fiorentini, A.

L. Gianfranceschi, A. Fiorentini, and L. Maffei, “Behavioural visual acuity of wild type and bcl2 transgenic mouse,” Vision Res. 39(3), 569–574 (1999).
[CrossRef] [PubMed]

Flannery, J. G.

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In vivo imaging of microscopic structures in the rat retina,” Invest. Ophthalmol. Vis. Sci. 50(12), 5872–5879 (2009).
[CrossRef] [PubMed]

Fujimoto, J. G.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

Gee, B. P.

D. C. Gray, R. Wolfe, B. P. Gee, D. Scoles, Y. Geng, B. D. Masella, A. Dubra, S. Luque, D. R. Williams, and W. H. Merigan, “In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells,” Invest. Ophthalmol. Vis. Sci. 49(1), 467–473 (2008).
[CrossRef] [PubMed]

D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14(16), 7144–7158 (2006).
[CrossRef] [PubMed]

Geng, Y.

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In vivo imaging of microscopic structures in the rat retina,” Invest. Ophthalmol. Vis. Sci. 50(12), 5872–5879 (2009).
[CrossRef] [PubMed]

D. C. Gray, R. Wolfe, B. P. Gee, D. Scoles, Y. Geng, B. D. Masella, A. Dubra, S. Luque, D. R. Williams, and W. H. Merigan, “In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells,” Invest. Ophthalmol. Vis. Sci. 49(1), 467–473 (2008).
[CrossRef] [PubMed]

Gianfranceschi, L.

L. Gianfranceschi, A. Fiorentini, and L. Maffei, “Behavioural visual acuity of wild type and bcl2 transgenic mouse,” Vision Res. 39(3), 569–574 (1999).
[CrossRef] [PubMed]

Glickstein, M.

M. Glickstein and M. Millodot, “Retinoscopy and eye size,” Science 168(931), 605–606 (1970).
[CrossRef] [PubMed]

Goelz, S.

Gray, D. C.

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In vivo imaging of microscopic structures in the rat retina,” Invest. Ophthalmol. Vis. Sci. 50(12), 5872–5879 (2009).
[CrossRef] [PubMed]

D. C. Gray, R. Wolfe, B. P. Gee, D. Scoles, Y. Geng, B. D. Masella, A. Dubra, S. Luque, D. R. Williams, and W. H. Merigan, “In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells,” Invest. Ophthalmol. Vis. Sci. 49(1), 467–473 (2008).
[CrossRef] [PubMed]

D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14(16), 7144–7158 (2006).
[CrossRef] [PubMed]

Green, D. G.

P. Artal, P. Herreros de Tejada, C. Muñoz Tedó, and D. G. Green, “Retinal image quality in the rodent eye,” Vis. Neurosci. 15(04), 597–605 (1998).
[CrossRef] [PubMed]

F. W. Campbell and D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. 181(3), 576–593 (1965).
[PubMed]

Greenberg, K. P.

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In vivo imaging of microscopic structures in the rat retina,” Invest. Ophthalmol. Vis. Sci. 50(12), 5872–5879 (2009).
[CrossRef] [PubMed]

Gregori, G.

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

Grimm, B.

Hackam, A.

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

Hallett, P. E.

S. Remtulla and P. E. Hallett, “A schematic eye for the mouse, and comparisons with the rat,” Vision Res. 25(1), 21–31 (1985).
[CrossRef] [PubMed]

A. Chaudhuri, P. E. Hallett, and J. A. Parker, “Aspheric curvatures, refractive indices and chromatic aberration for the rat eye,” Vision Res. 23(12), 1351–1363 (1983).
[CrossRef] [PubMed]

Harmening, W. M.

W. M. Harmening, P. Nikolay, J. Orlowski, and H. Wagner, “Spatial contrast sensitivity and grating acuity of barn owls,” J. Vis. 9(7), 13 (2009).
[CrossRef] [PubMed]

W. M. Harmening, M. A. Vobig, P. Walter, and H. Wagner, “Ocular aberrations in barn owl eyes,” Vision Res. 47(23), 2934–2942 (2007).
[CrossRef] [PubMed]

Hermann, B.

Hernandez, E.

O. P. Kocaoglu, S. R. Uhlhorn, E. Hernandez, R. A. Juarez, R. Will, J. M. Parel, and F. Manns, “Simultaneous fundus imaging and optical coherence tomography of the mouse retina,” Invest. Ophthalmol. Vis. Sci. 48(3), 1283–1289 (2007).
[CrossRef] [PubMed]

Herreros de Tejada, P.

P. Artal, P. Herreros de Tejada, C. Muñoz Tedó, and D. G. Green, “Retinal image quality in the rodent eye,” Vis. Neurosci. 15(04), 597–605 (1998).
[CrossRef] [PubMed]

Herriot, G.

Hofer, H.

Hopkins, C. S.

J. D. Pettigrew, B. Dreher, C. S. Hopkins, M. J. McCall, and M. Brown, “Peak density and distribution of ganglion cells in the retinae of microchiropteran bats: implications for visual acuity,” Brain Behav. Evol. 32(1), 39–56 (1988).
[CrossRef] [PubMed]

Horridge, G. A.

G. A. Horridge, “The compound eye of insects,” Sci. Am. 237(1), 108–120 (1977).
[CrossRef] [PubMed]

Howland, H. C.

F. Schaeffel, E. Burkhardt, H. C. Howland, and R. W. Williams, “Measurement of refractive state and deprivation myopia in two strains of mice,” Optom. Vis. Sci. 81(2), 99–110 (2004).
[CrossRef] [PubMed]

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vis. Sci. 77(10), 537–548 (2000).
[CrossRef] [PubMed]

Hughes, A.

A. W. Snyder, T. R. J. Bossomaier, and A. Hughes, “Optical image quality and the cone mosaic,” Science 231(4737), 499–501 (1986).
[CrossRef] [PubMed]

A. Hughes, “The artefact of retinoscopy in the rat and rabbit eye has its origin at the retina/vitreous interface rather than in longitudinal chromatic aberration,” Vision Res. 19(11), 1293–1294 (1979).
[CrossRef] [PubMed]

A. Hughes, “A useful table of reduced schematic eyes for vertebrates which includes computed longitudinal chromatic aberrations,” Vision Res. 19(11), 1273–1275 (1979).
[CrossRef] [PubMed]

Humphries, P.

C. Schmucker, M. Seeliger, P. Humphries, M. Biel, and F. Schaeffel, “Grating acuity at different luminances in wild-type mice and in mice lacking rod or cone function,” Invest. Ophthalmol. Vis. Sci. 46(1), 398–407 (2005).
[CrossRef] [PubMed]

Hunter, J. J.

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In vivo imaging of microscopic structures in the rat retina,” Invest. Ophthalmol. Vis. Sci. 50(12), 5872–5879 (2009).
[CrossRef] [PubMed]

Huxlin, K. R.

K. R. Huxlin, G. Yoon, L. Nagy, J. Porter, and D. Williams, “Monochromatic ocular wavefront aberrations in the awake-behaving cat,” Vision Res. 44(18), 2159–2169 (2004).
[CrossRef] [PubMed]

Irving, E. L.

E. L. Irving, M. L. Kisilak, K. M. Clements, and M. C. W. Campbell, “Refractive error and optical image quality in three strains of albino rats,” Invest. Ophthalmol. Visual Sci. 46,000–000 (2005).

Jackson, K.

Jeon, C. J.

C. J. Jeon, E. Strettoi, and R. H. Masland, “The major cell populations of the mouse retina,” J. Neurosci. 18(21), 8936–8946 (1998).
[PubMed]

Jiao, S.

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

Jockovich, M. E.

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

Juarez, R. A.

O. P. Kocaoglu, S. R. Uhlhorn, E. Hernandez, R. A. Juarez, R. Will, J. M. Parel, and F. Manns, “Simultaneous fundus imaging and optical coherence tomography of the mouse retina,” Invest. Ophthalmol. Vis. Sci. 48(3), 1283–1289 (2007).
[CrossRef] [PubMed]

Kholodenko, R.

S. S. Nikonov, R. Kholodenko, J. Lem, and E. N. Pugh., “Physiological features of the S- and M-cone photoreceptors of wild-type mice from single-cell recordings,” J. Gen. Physiol. 127(4), 359–374 (2006).
[CrossRef] [PubMed]

Kisilak, M. L.

M. Bird, M. L. Kisilak, and M. C. W. Campbell, “Optical quality of the rat eye,” Invest. Ophthalmol. Visual Sci. 48000–000 (2007).

E. L. Irving, M. L. Kisilak, K. M. Clements, and M. C. W. Campbell, “Refractive error and optical image quality in three strains of albino rats,” Invest. Ophthalmol. Visual Sci. 46,000–000 (2005).

Ko, T. H.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

Kocaoglu, O. P.

O. P. Kocaoglu, S. R. Uhlhorn, E. Hernandez, R. A. Juarez, R. Will, J. M. Parel, and F. Manns, “Simultaneous fundus imaging and optical coherence tomography of the mouse retina,” Invest. Ophthalmol. Vis. Sci. 48(3), 1283–1289 (2007).
[CrossRef] [PubMed]

Lara-Saucedo, D.

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80(1), 26–35 (2003).
[CrossRef] [PubMed]

Lardiere, O.

Laughlin, S. B.

A. W. Snyder, S. B. Laughlin, and D. G. Stavenga, “Information capacity of eyes,” Vision Res. 17(10), 1163–1175 (1977).
[CrossRef] [PubMed]

Lem, J.

S. S. Nikonov, R. Kholodenko, J. Lem, and E. N. Pugh., “Physiological features of the S- and M-cone photoreceptors of wild-type mice from single-cell recordings,” J. Gen. Physiol. 127(4), 359–374 (2006).
[CrossRef] [PubMed]

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

Leung, C. K.

C. K. Leung, J. D. Lindsey, J. G. Crowston, C. Lijia, S. Chiang, and R. N. Weinreb, “Longitudinal profile of retinal ganglion cell damage after optic nerve crush with blue-light confocal scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 49(11), 4898–4902 (2008).
[CrossRef] [PubMed]

Levavasseur, E.

M. Paques, M. Simonutti, M. J. Roux, S. Picaud, E. Levavasseur, C. Bellman, and J. A. Sahel, “High resolution fundus imaging by confocal scanning laser ophthalmoscopy in the mouse,” Vision Res. 46(8-9), 1336–1345 (2006).
[CrossRef] [PubMed]

Liang, J.

Liang, J. Z.

Lijia, C.

C. K. Leung, J. D. Lindsey, J. G. Crowston, C. Lijia, S. Chiang, and R. N. Weinreb, “Longitudinal profile of retinal ganglion cell damage after optic nerve crush with blue-light confocal scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 49(11), 4898–4902 (2008).
[CrossRef] [PubMed]

Lin, C. P.

Lindsey, J. D.

C. K. Leung, J. D. Lindsey, J. G. Crowston, C. Lijia, S. Chiang, and R. N. Weinreb, “Longitudinal profile of retinal ganglion cell damage after optic nerve crush with blue-light confocal scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 49(11), 4898–4902 (2008).
[CrossRef] [PubMed]

Llorente, L.

E. G. de la Cera, G. Rodríguez, L. Llorente, F. Schaeffel, and S. Marcos, “Optical aberrations in the mouse eye,” Vision Res. 46(16), 2546–2553 (2006).
[CrossRef] [PubMed]

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80(1), 26–35 (2003).
[CrossRef] [PubMed]

Luhmann, U. F.

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res. 45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

Luque, S.

D. C. Gray, R. Wolfe, B. P. Gee, D. Scoles, Y. Geng, B. D. Masella, A. Dubra, S. Luque, D. R. Williams, and W. H. Merigan, “In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells,” Invest. Ophthalmol. Vis. Sci. 49(1), 467–473 (2008).
[CrossRef] [PubMed]

MacRae, S.

G. J. McCormick, J. Porter, I. G. Cox, and S. MacRae, “Higher-order aberrations in eyes with irregular corneas after laser refractive surgery,” Ophthalmology 112(10), 1699–1709 (2005).
[CrossRef] [PubMed]

Maffei, L.

L. Gianfranceschi, A. Fiorentini, and L. Maffei, “Behavioural visual acuity of wild type and bcl2 transgenic mouse,” Vision Res. 39(3), 569–574 (1999).
[CrossRef] [PubMed]

Manns, F.

O. P. Kocaoglu, S. R. Uhlhorn, E. Hernandez, R. A. Juarez, R. Will, J. M. Parel, and F. Manns, “Simultaneous fundus imaging and optical coherence tomography of the mouse retina,” Invest. Ophthalmol. Vis. Sci. 48(3), 1283–1289 (2007).
[CrossRef] [PubMed]

Marcos, S.

E. G. de la Cera, G. Rodríguez, L. Llorente, F. Schaeffel, and S. Marcos, “Optical aberrations in the mouse eye,” Vision Res. 46(16), 2546–2553 (2006).
[CrossRef] [PubMed]

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80(1), 26–35 (2003).
[CrossRef] [PubMed]

Masella, B. D.

D. C. Gray, R. Wolfe, B. P. Gee, D. Scoles, Y. Geng, B. D. Masella, A. Dubra, S. Luque, D. R. Williams, and W. H. Merigan, “In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells,” Invest. Ophthalmol. Vis. Sci. 49(1), 467–473 (2008).
[CrossRef] [PubMed]

Masland, R. H.

C. J. Jeon, E. Strettoi, and R. H. Masland, “The major cell populations of the mouse retina,” J. Neurosci. 18(21), 8936–8946 (1998).
[PubMed]

McCall, M. J.

J. D. Pettigrew, B. Dreher, C. S. Hopkins, M. J. McCall, and M. Brown, “Peak density and distribution of ganglion cells in the retinae of microchiropteran bats: implications for visual acuity,” Brain Behav. Evol. 32(1), 39–56 (1988).
[CrossRef] [PubMed]

McCormick, G. J.

G. J. McCormick, J. Porter, I. G. Cox, and S. MacRae, “Higher-order aberrations in eyes with irregular corneas after laser refractive surgery,” Ophthalmology 112(10), 1699–1709 (2005).
[CrossRef] [PubMed]

Meister, M.

E. Soucy, Y. S. Wang, S. Nirenberg, J. Nathans, and M. Meister, “A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina,” Neuron 21(3), 481–493 (1998).
[CrossRef] [PubMed]

Merigan, W.

Merigan, W. H.

D. C. Gray, R. Wolfe, B. P. Gee, D. Scoles, Y. Geng, B. D. Masella, A. Dubra, S. Luque, D. R. Williams, and W. H. Merigan, “In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells,” Invest. Ophthalmol. Vis. Sci. 49(1), 467–473 (2008).
[CrossRef] [PubMed]

J. I. Morgan,, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Vis. Sci. 50(3), 1350–1359 (2008).
[CrossRef] [PubMed]

Miller, D. T.

Millodot, M.

M. Millodot and J. Sivak, “Hypermetropia of small animals and chromatic aberration,” Vision Res. 18(1), 125–126 (1978).
[CrossRef] [PubMed]

M. Glickstein and M. Millodot, “Retinoscopy and eye size,” Science 168(931), 605–606 (1970).
[CrossRef] [PubMed]

Morgan,, J. I.

J. I. Morgan,, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Vis. Sci. 50(3), 1350–1359 (2008).
[CrossRef] [PubMed]

Muller, R. A.

Muñoz Tedó, C.

P. Artal, P. Herreros de Tejada, C. Muñoz Tedó, and D. G. Green, “Retinal image quality in the rodent eye,” Vis. Neurosci. 15(04), 597–605 (1998).
[CrossRef] [PubMed]

Nagy, L.

K. R. Huxlin, G. Yoon, L. Nagy, J. Porter, and D. Williams, “Monochromatic ocular wavefront aberrations in the awake-behaving cat,” Vision Res. 44(18), 2159–2169 (2004).
[CrossRef] [PubMed]

Narfström, K.

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res. 45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

Nathans, J.

E. Soucy, Y. S. Wang, S. Nirenberg, J. Nathans, and M. Meister, “A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina,” Neuron 21(3), 481–493 (1998).
[CrossRef] [PubMed]

Nikolay, P.

W. M. Harmening, P. Nikolay, J. Orlowski, and H. Wagner, “Spatial contrast sensitivity and grating acuity of barn owls,” J. Vis. 9(7), 13 (2009).
[CrossRef] [PubMed]

Nikonov, S. S.

S. S. Nikonov, R. Kholodenko, J. Lem, and E. N. Pugh., “Physiological features of the S- and M-cone photoreceptors of wild-type mice from single-cell recordings,” J. Gen. Physiol. 127(4), 359–374 (2006).
[CrossRef] [PubMed]

Nirenberg, S.

E. Soucy, Y. S. Wang, S. Nirenberg, J. Nathans, and M. Meister, “A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina,” Neuron 21(3), 481–493 (1998).
[CrossRef] [PubMed]

Olsen, J. F.

U. C. Dräger and J. F. Olsen, “Ganglion cell distribution in the retina of the mouse,” Invest. Ophthalmol. Vis. Sci. 20(3), 285–293 (1981).
[PubMed]

Orlowski, J.

W. M. Harmening, P. Nikolay, J. Orlowski, and H. Wagner, “Spatial contrast sensitivity and grating acuity of barn owls,” J. Vis. 9(7), 13 (2009).
[CrossRef] [PubMed]

Paques, M.

M. Paques, M. Simonutti, M. J. Roux, S. Picaud, E. Levavasseur, C. Bellman, and J. A. Sahel, “High resolution fundus imaging by confocal scanning laser ophthalmoscopy in the mouse,” Vision Res. 46(8-9), 1336–1345 (2006).
[CrossRef] [PubMed]

Parel, J. M.

O. P. Kocaoglu, S. R. Uhlhorn, E. Hernandez, R. A. Juarez, R. Will, J. M. Parel, and F. Manns, “Simultaneous fundus imaging and optical coherence tomography of the mouse retina,” Invest. Ophthalmol. Vis. Sci. 48(3), 1283–1289 (2007).
[CrossRef] [PubMed]

Parker, J. A.

A. Chaudhuri, P. E. Hallett, and J. A. Parker, “Aspheric curvatures, refractive indices and chromatic aberration for the rat eye,” Vision Res. 23(12), 1351–1363 (1983).
[CrossRef] [PubMed]

Pereyra-Muñoz, N.

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res. 45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

Pettigrew, J. D.

J. D. Pettigrew, B. Dreher, C. S. Hopkins, M. J. McCall, and M. Brown, “Peak density and distribution of ganglion cells in the retinae of microchiropteran bats: implications for visual acuity,” Brain Behav. Evol. 32(1), 39–56 (1988).
[CrossRef] [PubMed]

Picaud, S.

M. Paques, M. Simonutti, M. J. Roux, S. Picaud, E. Levavasseur, C. Bellman, and J. A. Sahel, “High resolution fundus imaging by confocal scanning laser ophthalmoscopy in the mouse,” Vision Res. 46(8-9), 1336–1345 (2006).
[CrossRef] [PubMed]

Podoleanu, A. G.

Porter, J.

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In vivo imaging of microscopic structures in the rat retina,” Invest. Ophthalmol. Vis. Sci. 50(12), 5872–5879 (2009).
[CrossRef] [PubMed]

D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14(16), 7144–7158 (2006).
[CrossRef] [PubMed]

G. J. McCormick, J. Porter, I. G. Cox, and S. MacRae, “Higher-order aberrations in eyes with irregular corneas after laser refractive surgery,” Ophthalmology 112(10), 1699–1709 (2005).
[CrossRef] [PubMed]

K. R. Huxlin, G. Yoon, L. Nagy, J. Porter, and D. Williams, “Monochromatic ocular wavefront aberrations in the awake-behaving cat,” Vision Res. 44(18), 2159–2169 (2004).
[CrossRef] [PubMed]

Prieto, P. M.

Prusky, G. T.

G. T. Prusky and R. M. Douglas, “Developmental plasticity of mouse visual acuity,” Eur. J. Neurosci. 17(1), 167–173 (2003).
[CrossRef] [PubMed]

Pugh, E. N.

S. S. Nikonov, R. Kholodenko, J. Lem, and E. N. Pugh., “Physiological features of the S- and M-cone photoreceptors of wild-type mice from single-cell recordings,” J. Gen. Physiol. 127(4), 359–374 (2006).
[CrossRef] [PubMed]

Puliafito, C. A.

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

Quigley, H. A.

M. K. Walsh and H. A. Quigley, “In vivo time-lapse fluorescence imaging of individual retinal ganglion cells in mice,” J. Neurosci. Methods 169(1), 214–221 (2008).
[CrossRef] [PubMed]

Reinholz, F.

Remtulla, S.

S. Remtulla and P. E. Hallett, “A schematic eye for the mouse, and comparisons with the rat,” Vision Res. 25(1), 21–31 (1985).
[CrossRef] [PubMed]

Rodríguez, G.

E. G. de la Cera, G. Rodríguez, L. Llorente, F. Schaeffel, and S. Marcos, “Optical aberrations in the mouse eye,” Vision Res. 46(16), 2546–2553 (2006).
[CrossRef] [PubMed]

Roorda, A.

Roux, M. J.

M. Paques, M. Simonutti, M. J. Roux, S. Picaud, E. Levavasseur, C. Bellman, and J. A. Sahel, “High resolution fundus imaging by confocal scanning laser ophthalmoscopy in the mouse,” Vision Res. 46(8-9), 1336–1345 (2006).
[CrossRef] [PubMed]

Ruggeri, M.

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

Sahel, J. A.

M. Paques, M. Simonutti, M. J. Roux, S. Picaud, E. Levavasseur, C. Bellman, and J. A. Sahel, “High resolution fundus imaging by confocal scanning laser ophthalmoscopy in the mouse,” Vision Res. 46(8-9), 1336–1345 (2006).
[CrossRef] [PubMed]

Samardzija, M.

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res. 45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

Schaeffel, F.

E. G. de la Cera, G. Rodríguez, L. Llorente, F. Schaeffel, and S. Marcos, “Optical aberrations in the mouse eye,” Vision Res. 46(16), 2546–2553 (2006).
[CrossRef] [PubMed]

C. Schmucker, M. Seeliger, P. Humphries, M. Biel, and F. Schaeffel, “Grating acuity at different luminances in wild-type mice and in mice lacking rod or cone function,” Invest. Ophthalmol. Vis. Sci. 46(1), 398–407 (2005).
[CrossRef] [PubMed]

F. Schaeffel, E. Burkhardt, H. C. Howland, and R. W. Williams, “Measurement of refractive state and deprivation myopia in two strains of mice,” Optom. Vis. Sci. 81(2), 99–110 (2004).
[CrossRef] [PubMed]

C. Schmucker and F. Schaeffel, “A paraxial schematic eye model for the growing C57BL/6 mouse,” Vision Res. 44(16), 1857–1867 (2004).
[CrossRef] [PubMed]

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vis. Sci. 77(10), 537–548 (2000).
[CrossRef] [PubMed]

Schmucker, C.

C. Schmucker, M. Seeliger, P. Humphries, M. Biel, and F. Schaeffel, “Grating acuity at different luminances in wild-type mice and in mice lacking rod or cone function,” Invest. Ophthalmol. Vis. Sci. 46(1), 398–407 (2005).
[CrossRef] [PubMed]

C. Schmucker and F. Schaeffel, “A paraxial schematic eye model for the growing C57BL/6 mouse,” Vision Res. 44(16), 1857–1867 (2004).
[CrossRef] [PubMed]

Schuman, J. S.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

Scoles, D.

D. C. Gray, R. Wolfe, B. P. Gee, D. Scoles, Y. Geng, B. D. Masella, A. Dubra, S. Luque, D. R. Williams, and W. H. Merigan, “In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells,” Invest. Ophthalmol. Vis. Sci. 49(1), 467–473 (2008).
[CrossRef] [PubMed]

Seeliger, M.

C. Schmucker, M. Seeliger, P. Humphries, M. Biel, and F. Schaeffel, “Grating acuity at different luminances in wild-type mice and in mice lacking rod or cone function,” Invest. Ophthalmol. Vis. Sci. 46(1), 398–407 (2005).
[CrossRef] [PubMed]

Seeliger, M. W.

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res. 45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

Seidemann, A.

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vis. Sci. 77(10), 537–548 (2000).
[CrossRef] [PubMed]

Simonutti, M.

M. Paques, M. Simonutti, M. J. Roux, S. Picaud, E. Levavasseur, C. Bellman, and J. A. Sahel, “High resolution fundus imaging by confocal scanning laser ophthalmoscopy in the mouse,” Vision Res. 46(8-9), 1336–1345 (2006).
[CrossRef] [PubMed]

Singer, B.

Sivak, J.

M. Millodot and J. Sivak, “Hypermetropia of small animals and chromatic aberration,” Vision Res. 18(1), 125–126 (1978).
[CrossRef] [PubMed]

Snyder, A. W.

A. W. Snyder, T. R. J. Bossomaier, and A. Hughes, “Optical image quality and the cone mosaic,” Science 231(4737), 499–501 (1986).
[CrossRef] [PubMed]

A. W. Snyder, S. B. Laughlin, and D. G. Stavenga, “Information capacity of eyes,” Vision Res. 17(10), 1163–1175 (1977).
[CrossRef] [PubMed]

Song, Q. H.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

Soucy, E.

E. Soucy, Y. S. Wang, S. Nirenberg, J. Nathans, and M. Meister, “A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina,” Neuron 21(3), 481–493 (1998).
[CrossRef] [PubMed]

Srinivasan, V. J.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

Stavenga, D. G.

A. W. Snyder, S. B. Laughlin, and D. G. Stavenga, “Information capacity of eyes,” Vision Res. 17(10), 1163–1175 (1977).
[CrossRef] [PubMed]

Strettoi, E.

C. J. Jeon, E. Strettoi, and R. H. Masland, “The major cell populations of the mouse retina,” J. Neurosci. 18(21), 8936–8946 (1998).
[PubMed]

Sumorok, D.

Tanimoto, N.

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res. 45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

Tejedor, J.

J. Tejedor and P. de la Villa, “Refractive changes induced by form deprivation in the mouse eye,” Invest. Ophthalmol. Vis. Sci. 44(1), 32–36 (2003).
[CrossRef] [PubMed]

Thibos, L. N.

Tkatchenko, A. V.

T. V. Tkatchenko and A. V. Tkatchenko, “Ketamine-xylazine anesthesia causes hyperopic refractive shift in mice,” J. Neurosci. Methods 193(1), 67–71 (2010).
[CrossRef] [PubMed]

Tkatchenko, T. V.

T. V. Tkatchenko and A. V. Tkatchenko, “Ketamine-xylazine anesthesia causes hyperopic refractive shift in mice,” J. Neurosci. Methods 193(1), 67–71 (2010).
[CrossRef] [PubMed]

Tonagel, F.

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res. 45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

Tsai, J. Y.

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res. 45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

Tumbar, R.

Tuohy, S.

Twietmeyer, T. H.

Uhlhorn, S. R.

O. P. Kocaoglu, S. R. Uhlhorn, E. Hernandez, R. A. Juarez, R. Will, J. M. Parel, and F. Manns, “Simultaneous fundus imaging and optical coherence tomography of the mouse retina,” Invest. Ophthalmol. Vis. Sci. 48(3), 1283–1289 (2007).
[CrossRef] [PubMed]

Unterhuber, A.

van de Pavert, S. A.

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res. 45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

Vargas-Martín, F.

Veilleux, I.

Vobig, M. A.

W. M. Harmening, M. A. Vobig, P. Walter, and H. Wagner, “Ocular aberrations in barn owl eyes,” Vision Res. 47(23), 2934–2942 (2007).
[CrossRef] [PubMed]

Wagner, H.

W. M. Harmening, P. Nikolay, J. Orlowski, and H. Wagner, “Spatial contrast sensitivity and grating acuity of barn owls,” J. Vis. 9(7), 13 (2009).
[CrossRef] [PubMed]

W. M. Harmening, M. A. Vobig, P. Walter, and H. Wagner, “Ocular aberrations in barn owl eyes,” Vision Res. 47(23), 2934–2942 (2007).
[CrossRef] [PubMed]

Walsh, M. K.

M. K. Walsh and H. A. Quigley, “In vivo time-lapse fluorescence imaging of individual retinal ganglion cells in mice,” J. Neurosci. Methods 169(1), 214–221 (2008).
[CrossRef] [PubMed]

Walter, P.

W. M. Harmening, M. A. Vobig, P. Walter, and H. Wagner, “Ocular aberrations in barn owl eyes,” Vision Res. 47(23), 2934–2942 (2007).
[CrossRef] [PubMed]

Wang, Y. S.

E. Soucy, Y. S. Wang, S. Nirenberg, J. Nathans, and M. Meister, “A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina,” Neuron 21(3), 481–493 (1998).
[CrossRef] [PubMed]

Webb, R. H.

Wehbe, H.

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

Weinreb, R. N.

C. K. Leung, J. D. Lindsey, J. G. Crowston, C. Lijia, S. Chiang, and R. N. Weinreb, “Longitudinal profile of retinal ganglion cell damage after optic nerve crush with blue-light confocal scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 49(11), 4898–4902 (2008).
[CrossRef] [PubMed]

Weiss, S.

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vis. Sci. 77(10), 537–548 (2000).
[CrossRef] [PubMed]

Wenzel, A.

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res. 45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

Wijnholds, J.

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res. 45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

Wilhelm, B.

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vis. Sci. 77(10), 537–548 (2000).
[CrossRef] [PubMed]

Wilhelm, H.

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vis. Sci. 77(10), 537–548 (2000).
[CrossRef] [PubMed]

Will, R.

O. P. Kocaoglu, S. R. Uhlhorn, E. Hernandez, R. A. Juarez, R. Will, J. M. Parel, and F. Manns, “Simultaneous fundus imaging and optical coherence tomography of the mouse retina,” Invest. Ophthalmol. Vis. Sci. 48(3), 1283–1289 (2007).
[CrossRef] [PubMed]

Williams, D.

K. R. Huxlin, G. Yoon, L. Nagy, J. Porter, and D. Williams, “Monochromatic ocular wavefront aberrations in the awake-behaving cat,” Vision Res. 44(18), 2159–2169 (2004).
[CrossRef] [PubMed]

Williams, D. R.

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In vivo imaging of microscopic structures in the rat retina,” Invest. Ophthalmol. Vis. Sci. 50(12), 5872–5879 (2009).
[CrossRef] [PubMed]

J. I. Morgan,, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Vis. Sci. 50(3), 1350–1359 (2008).
[CrossRef] [PubMed]

D. C. Gray, R. Wolfe, B. P. Gee, D. Scoles, Y. Geng, B. D. Masella, A. Dubra, S. Luque, D. R. Williams, and W. H. Merigan, “In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells,” Invest. Ophthalmol. Vis. Sci. 49(1), 467–473 (2008).
[CrossRef] [PubMed]

D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14(16), 7144–7158 (2006).
[CrossRef] [PubMed]

H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18(3), 497–506 (2001).
[CrossRef] [PubMed]

J. Z. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14(11), 2873–2883 (1997).
[CrossRef] [PubMed]

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
[CrossRef] [PubMed]

Williams, R. W.

F. Schaeffel, E. Burkhardt, H. C. Howland, and R. W. Williams, “Measurement of refractive state and deprivation myopia in two strains of mice,” Optom. Vis. Sci. 81(2), 99–110 (2004).
[CrossRef] [PubMed]

Wojtkowski, M.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

Wolfe, R.

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In vivo imaging of microscopic structures in the rat retina,” Invest. Ophthalmol. Vis. Sci. 50(12), 5872–5879 (2009).
[CrossRef] [PubMed]

D. C. Gray, R. Wolfe, B. P. Gee, D. Scoles, Y. Geng, B. D. Masella, A. Dubra, S. Luque, D. R. Williams, and W. H. Merigan, “In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells,” Invest. Ophthalmol. Vis. Sci. 49(1), 467–473 (2008).
[CrossRef] [PubMed]

J. I. Morgan,, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Vis. Sci. 50(3), 1350–1359 (2008).
[CrossRef] [PubMed]

Wolfing, J. I.

Yap, E. P.

V. A. Barathi, V. G. Boopathi, E. P. Yap, and R. W. Beuerman, “Two models of experimental myopia in the mouse,” Vision Res. 48(7), 904–916 (2008).
[CrossRef] [PubMed]

Ye, M.

Yoon, G.

K. R. Huxlin, G. Yoon, L. Nagy, J. Porter, and D. Williams, “Monochromatic ocular wavefront aberrations in the awake-behaving cat,” Vision Res. 44(18), 2159–2169 (2004).
[CrossRef] [PubMed]

Zamiri, P.

Zhang, X.

Zhou, Y.

Zrenner, E.

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res. 45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

Appl. Opt. (1)

Brain Behav. Evol. (1)

J. D. Pettigrew, B. Dreher, C. S. Hopkins, M. J. McCall, and M. Brown, “Peak density and distribution of ganglion cells in the retinae of microchiropteran bats: implications for visual acuity,” Brain Behav. Evol. 32(1), 39–56 (1988).
[CrossRef] [PubMed]

Eur. J. Neurosci. (1)

G. T. Prusky and R. M. Douglas, “Developmental plasticity of mouse visual acuity,” Eur. J. Neurosci. 17(1), 167–173 (2003).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (10)

C. Schmucker, M. Seeliger, P. Humphries, M. Biel, and F. Schaeffel, “Grating acuity at different luminances in wild-type mice and in mice lacking rod or cone function,” Invest. Ophthalmol. Vis. Sci. 46(1), 398–407 (2005).
[CrossRef] [PubMed]

U. C. Dräger and J. F. Olsen, “Ganglion cell distribution in the retina of the mouse,” Invest. Ophthalmol. Vis. Sci. 20(3), 285–293 (1981).
[PubMed]

J. Tejedor and P. de la Villa, “Refractive changes induced by form deprivation in the mouse eye,” Invest. Ophthalmol. Vis. Sci. 44(1), 32–36 (2003).
[CrossRef] [PubMed]

C. K. Leung, J. D. Lindsey, J. G. Crowston, C. Lijia, S. Chiang, and R. N. Weinreb, “Longitudinal profile of retinal ganglion cell damage after optic nerve crush with blue-light confocal scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 49(11), 4898–4902 (2008).
[CrossRef] [PubMed]

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

O. P. Kocaoglu, S. R. Uhlhorn, E. Hernandez, R. A. Juarez, R. Will, J. M. Parel, and F. Manns, “Simultaneous fundus imaging and optical coherence tomography of the mouse retina,” Invest. Ophthalmol. Vis. Sci. 48(3), 1283–1289 (2007).
[CrossRef] [PubMed]

D. C. Gray, R. Wolfe, B. P. Gee, D. Scoles, Y. Geng, B. D. Masella, A. Dubra, S. Luque, D. R. Williams, and W. H. Merigan, “In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells,” Invest. Ophthalmol. Vis. Sci. 49(1), 467–473 (2008).
[CrossRef] [PubMed]

J. I. Morgan,, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Vis. Sci. 50(3), 1350–1359 (2008).
[CrossRef] [PubMed]

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In vivo imaging of microscopic structures in the rat retina,” Invest. Ophthalmol. Vis. Sci. 50(12), 5872–5879 (2009).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci. (2)

E. L. Irving, M. L. Kisilak, K. M. Clements, and M. C. W. Campbell, “Refractive error and optical image quality in three strains of albino rats,” Invest. Ophthalmol. Visual Sci. 46,000–000 (2005).

M. Bird, M. L. Kisilak, and M. C. W. Campbell, “Optical quality of the rat eye,” Invest. Ophthalmol. Visual Sci. 48000–000 (2007).

J. Gen. Physiol. (1)

S. S. Nikonov, R. Kholodenko, J. Lem, and E. N. Pugh., “Physiological features of the S- and M-cone photoreceptors of wild-type mice from single-cell recordings,” J. Gen. Physiol. 127(4), 359–374 (2006).
[CrossRef] [PubMed]

J. Neurosci. (1)

C. J. Jeon, E. Strettoi, and R. H. Masland, “The major cell populations of the mouse retina,” J. Neurosci. 18(21), 8936–8946 (1998).
[PubMed]

J. Neurosci. Methods (2)

M. K. Walsh and H. A. Quigley, “In vivo time-lapse fluorescence imaging of individual retinal ganglion cells in mice,” J. Neurosci. Methods 169(1), 214–221 (2008).
[CrossRef] [PubMed]

T. V. Tkatchenko and A. V. Tkatchenko, “Ketamine-xylazine anesthesia causes hyperopic refractive shift in mice,” J. Neurosci. Methods 193(1), 67–71 (2010).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (7)

J. Physiol. (1)

F. W. Campbell and D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. 181(3), 576–593 (1965).
[PubMed]

J. Vis. (1)

W. M. Harmening, P. Nikolay, J. Orlowski, and H. Wagner, “Spatial contrast sensitivity and grating acuity of barn owls,” J. Vis. 9(7), 13 (2009).
[CrossRef] [PubMed]

Neuron (1)

E. Soucy, Y. S. Wang, S. Nirenberg, J. Nathans, and M. Meister, “A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina,” Neuron 21(3), 481–493 (1998).
[CrossRef] [PubMed]

Ophthalmology (1)

G. J. McCormick, J. Porter, I. G. Cox, and S. MacRae, “Higher-order aberrations in eyes with irregular corneas after laser refractive surgery,” Ophthalmology 112(10), 1699–1709 (2005).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Optom. Vis. Sci. (3)

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80(1), 26–35 (2003).
[CrossRef] [PubMed]

F. Schaeffel, E. Burkhardt, H. C. Howland, and R. W. Williams, “Measurement of refractive state and deprivation myopia in two strains of mice,” Optom. Vis. Sci. 81(2), 99–110 (2004).
[CrossRef] [PubMed]

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vis. Sci. 77(10), 537–548 (2000).
[CrossRef] [PubMed]

Sci. Am. (1)

G. A. Horridge, “The compound eye of insects,” Sci. Am. 237(1), 108–120 (1977).
[CrossRef] [PubMed]

Science (2)

M. Glickstein and M. Millodot, “Retinoscopy and eye size,” Science 168(931), 605–606 (1970).
[CrossRef] [PubMed]

A. W. Snyder, T. R. J. Bossomaier, and A. Hughes, “Optical image quality and the cone mosaic,” Science 231(4737), 499–501 (1986).
[CrossRef] [PubMed]

Vis. Neurosci. (1)

P. Artal, P. Herreros de Tejada, C. Muñoz Tedó, and D. G. Green, “Retinal image quality in the rodent eye,” Vis. Neurosci. 15(04), 597–605 (1998).
[CrossRef] [PubMed]

Vision Res. (14)

A. Hughes, “A useful table of reduced schematic eyes for vertebrates which includes computed longitudinal chromatic aberrations,” Vision Res. 19(11), 1273–1275 (1979).
[CrossRef] [PubMed]

S. Remtulla and P. E. Hallett, “A schematic eye for the mouse, and comparisons with the rat,” Vision Res. 25(1), 21–31 (1985).
[CrossRef] [PubMed]

C. Schmucker and F. Schaeffel, “A paraxial schematic eye model for the growing C57BL/6 mouse,” Vision Res. 44(16), 1857–1867 (2004).
[CrossRef] [PubMed]

E. G. de la Cera, G. Rodríguez, L. Llorente, F. Schaeffel, and S. Marcos, “Optical aberrations in the mouse eye,” Vision Res. 46(16), 2546–2553 (2006).
[CrossRef] [PubMed]

W. M. Harmening, M. A. Vobig, P. Walter, and H. Wagner, “Ocular aberrations in barn owl eyes,” Vision Res. 47(23), 2934–2942 (2007).
[CrossRef] [PubMed]

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res. 45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

M. Paques, M. Simonutti, M. J. Roux, S. Picaud, E. Levavasseur, C. Bellman, and J. A. Sahel, “High resolution fundus imaging by confocal scanning laser ophthalmoscopy in the mouse,” Vision Res. 46(8-9), 1336–1345 (2006).
[CrossRef] [PubMed]

A. W. Snyder, S. B. Laughlin, and D. G. Stavenga, “Information capacity of eyes,” Vision Res. 17(10), 1163–1175 (1977).
[CrossRef] [PubMed]

L. Gianfranceschi, A. Fiorentini, and L. Maffei, “Behavioural visual acuity of wild type and bcl2 transgenic mouse,” Vision Res. 39(3), 569–574 (1999).
[CrossRef] [PubMed]

V. A. Barathi, V. G. Boopathi, E. P. Yap, and R. W. Beuerman, “Two models of experimental myopia in the mouse,” Vision Res. 48(7), 904–916 (2008).
[CrossRef] [PubMed]

A. Chaudhuri, P. E. Hallett, and J. A. Parker, “Aspheric curvatures, refractive indices and chromatic aberration for the rat eye,” Vision Res. 23(12), 1351–1363 (1983).
[CrossRef] [PubMed]

M. Millodot and J. Sivak, “Hypermetropia of small animals and chromatic aberration,” Vision Res. 18(1), 125–126 (1978).
[CrossRef] [PubMed]

A. Hughes, “The artefact of retinoscopy in the rat and rabbit eye has its origin at the retina/vitreous interface rather than in longitudinal chromatic aberration,” Vision Res. 19(11), 1293–1294 (1979).
[CrossRef] [PubMed]

K. R. Huxlin, G. Yoon, L. Nagy, J. Porter, and D. Williams, “Monochromatic ocular wavefront aberrations in the awake-behaving cat,” Vision Res. 44(18), 2159–2169 (2004).
[CrossRef] [PubMed]

Other (8)

S. L. Polyak, The vertebrate visual system (University of Chicago Press., Chicago, 1957).

A. N. S. Institute, “Methods for Reporting Optical Aberrations of Eyes,” in ANSI Z80.28 (2004), pp. 19–28.

A. Dubra and Z. Harvey, “Registration of 2D images from fast scanning ophthalmic instruments,” in Biomedical Image Registration, B. Fischer, B. Dawant, and C. Lorenz, eds. (Springer, Berlin, 2010), pp. 60–71.

C. Alt, D. P. Biss, N. Tajouri, T. C. Jakobs, and C. P. Lin, “An adaptive-optics scanning laser ophthalmoscope for imaging murine retinal microstructure,” Proc. SPIE 7550, 75501 (2010).

J. Porter, H. Queener, J. Lin, K. Thorn, and A. Awwal, Adaptive Optics for Vision Science (Wiley-Interscience, 2006), pp. 68–69.

A. Dubra (Flaum Eye Institute, University of Rochester, Rochester,New York, USA, personal communication, 2010).

R. Sabesan and G. Yoon (Institute of Optics, University of Rochester, Rochester, New York, USA, personal communication).

N. Putnam (School of Optometry and Vision Science Graduate Group, University of California, Berkeley, Berkeley, California, USA, personal communication).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic explaining the elongation of wavefront sensor spots in the mouse eye. θ: elongation angle. n: refractive index of the retina. Note that the lenslets are in a plane conjugate to the eye’s pupil, and not physically on it.

Fig. 2
Fig. 2

Schematic of the mouse eye wavefront sensor. SLD: fiber coupled Super Luminescent Diode. SH Wavefront Sensor: Shack-Hartmann wavefront sensor. BS: Beam Splitter. RBS: Removable Beam Splitter. FM: Fold Mirror. M1-6: Concave spherical Mirrors.

Fig. 3
Fig. 3

(a) Typical non-optimized wavefront sensor spot pattern in the mouse eye with a cross section of a single spot shown below. (b) An OCT line scan image with a cross section on a particular retinal location. OCT signal vs. depth for the cross section is shown below in linear scale. Both the wavefront spots and the OCT image show back reflections from two major layers from the retina. (c) Improved wavefront spots when the beacon is focused on the outer retina, when source focus was set at ~-10 D. Cross section of a single spot is shown below. Solid line: normalized intensity profile for the cross section. Dashed line: diffraction-limited spot profile for a lenslet. (d) An even sharper spot pattern can be obtained when the beacon is focused on the disk, when the source focus was set at ~20 D. Cross section of a single spot is shown below. Solid line: normalized intensity profile for the cross section. Dashed line: diffraction-limited spot profile for a lenslet. The wavefront sensor spots are very close to diffraction-limited. (e) An OCT line scan image taken on the optic disk with a cross section on the central retinal artery. OCT signal vs. depth for the cross secion is shown below in linear scale.

Fig. 4
Fig. 4

Average equivalent sphere of mice eyes measured in two different positions over two pupil sizes. Left column: spherical equivalent measured on the outer retina. Right column: spherical equivalent measured on the inner retina. Light gray bars: spherical equivalent for 2 mm pupil size. Dark gray bars: spherical equivalent for 0.8 mm pupil size. Error bar: ± 2 times SEM.

Fig. 5
Fig. 5

Experimental data for mouse eye longitudinal chromatic aberration (LCA) and comparisons to theoretical estimates of the mouse eye LCA using human experimental data. Blue dashed lines: estimates of the mouse eye LCA using human LCA data and the water-filled reduced schematic eye. Circle data points: average LCA between wavelengths of 457, 514 and 633 nm, and reference wavelength 789 nm. For example, an average of 10.3 D of chromatic aberration is measured between 457 nm and 789 nm. Error bar: ± 2 SEM.

Fig. 6
Fig. 6

(a) Typical wavefront sensor spot pattern in the mouse eye used for measurement. Image is captured at 2.2 mm pupil size and wavefront is analyzed at 2 mm pupil size. (b) Higher order aberration wavefront maps for 6 eyes from 3 mice for 2 mm pupil size.

Fig. 7
Fig. 7

Mean values of 2nd to 5th order Zernike modes for 20 eyes across a 2 mm pupil, using wavefront spots focused on the outer retina. Zernikes for the 10 left eyes are shown in (a) and ones for the 10 right eyes are shown in (b). Error bars represent ± 2 times SEM. Lower and higher order aberrations are shown using different scales.

Fig. 8
Fig. 8

Strehl ratio for the 20 eyes over a 2 mm pupil at a wavelength of 789 nm. Error bars represent ± 2 SEM. Each data point shows the calculated Strehl ratio after a number of lower order aberrations are corrected. For example, the number 5 means that second, third, fourth and fifth order aberrations (or all aberration modes shown in Fig. 4) are corrected. Dashed line represents a Strehl ratio of 0.8, above which imaging is considered to be diffraction-limited.

Fig. 9
Fig. 9

The total higher order aberration RMS increases, and the Strehl ratio decreases as the eye’s pupil size increases. Strehl ratio is calculated for the measurement wavelength of 789 nm. Diamond data points: average measured higher order RMS (3rd to 10th order) in µm. Dashed line: diffraction-limited RMS of λ/14, according to the Maréchal criterion. Triangular data points: average Strehl ratio for each pupil size. Error bars represent ± 2 SEM for the 20 eyes.

Fig. 10
Fig. 10

Mean of radial averaged MTF for 20 eyes over different pupil sizes (0.6 mm to 2 mm) for the measurement wavelength of 789 nm. Defocus and astigmatism are removed before MTF is calculated.

Fig. 11
Fig. 11

Modulation transfers for a human eye (6 mm pupil) and a mouse eye (2 mm pupil) plotted in (a) cycles/degree to characterize angular resolution for vision and (b) cycles/mm to characterize spatial resolution for imaging the retina. Only higher order aberrations (HOA) are considered. Solid black line: mouse eye with 2 mm pupil size with HOA. Solid green line: human eye with 6 mm pupil size with HOA. Dashed black line: Diffraction-limited mouse eye with 2 mm pupil size. Dashed green line: Diffraction-limited human eye with 6 mm pupil size.

Fig. 12
Fig. 12

Simulated retinal images of ganglion cells and rod photoreceptors under ideal imaging conditions and in the absence of noise with/without AO correction. (a) A fluorescent ganglion cell image from a flat-mounted rat retina imaged with confocal microscopy with 1.2 NA. (b) A simulation of the retina in (a) being imaged without AO correction over a 0.8 mm pupil under the best possible condition. (c) A simulation of the same ganglion cell being imaged with AO correction over a 2 mm pupil under the best possible condition. (d) A simulated rod photoreceptor mosaic in the mouse retina. (e) & (f) are the same without AO and with AO simulations of the rod photoreceptor mosaic. Scale bar: 20 µm.

Fig. 13
Fig. 13

Average modulation transfer functions for the mouse eye over a 0.8 mm pupil diameter. Note that MTFs are calculated for a wavelength of 514 nm, where rods and M-cones are near their spectral sensitivity peak.. To calculate MTF for a visible wavelength using wave aberration data measured at 789 nm, we assume other than defocus, variations in the other aberration coefficients between visible and IR wavelengths are small [26,56]. For all 20 eyes, defocus was increased by 7.9 D based on measured average LCA between the two wavelengths and Zernike coefficients for other aberrations remained the same.

Tables (2)

Tables Icon

Table 1 Elongation angle calculated for the mouse eye vs. the human eye*

Tables Icon

Table 2 Current in vivo measurement and previous estimations of the mouse eye chromatic aberration

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

θ N A z f
θ ' = D e D w θ D e D w N A z f
S = SH image I i , j 2 [ SH image I i , j ] 2

Metrics