Abstract

Diffuse reflectance spectroscopy (DRS) has been extensively applied for the characterization of biological tissue, especially for dysplasia and cancer detection, by determination of the tissue optical properties. A major challenge in performing routine clinical diagnosis lies in the extraction of the relevant parameters, especially at high absorption levels typically observed in cancerous tissue. Here, we present a new least-squares support vector machine (LS-SVM) based regression algorithm for rapid and accurate determination of the absorption and scattering properties. Using physical tissue models, we demonstrate that the proposed method can be implemented more than two orders of magnitude faster than the state-of-the-art approaches while providing better prediction accuracy. Our results show that the proposed regression method has great potential for clinical applications including in tissue scanners for cancer margin assessment, where rapid quantification of optical properties is critical to the performance.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
    [Crossref] [PubMed]
  2. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999).
    [Crossref] [PubMed]
  3. P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
    [Crossref] [PubMed]
  4. E. Hull and T. Foster, “Steady-state reflectance spectroscopy in the P3 approximation,” J. Opt. Soc. Am. A 18(3), 584–599 (2001).
    [Crossref]
  5. Y. N. Mirabal, S. K. Chang, E. N. Atkinson, A. Malpica, M. Follen, and R. Richards-Kortum, “Reflectance spectroscopy for in vivo detection of cervical precancer,” J. Biomed. Opt. 7(4), 587–594 (2002).
    [Crossref] [PubMed]
  6. D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9(1), 230–238 (2004).
    [Crossref] [PubMed]
  7. A. Fournell, L. A. Schwarte, T. W. L. Scheeren, D. Kindgen-Milles, P. Feindt, and S. A. Loer, “Clinical evaluation of reflectance spectrophotometry for the measurement of gastric microvascular oxygen saturation in patients undergoing cardiopulmonary bypass,” J. Cardiothorac. Vasc. Anesth. 16(5), 576–581 (2002).
    [Crossref] [PubMed]
  8. W. T. Knoefel, N. Kollias, D. W. Rattner, N. S. Nishioka, and A. L. Warshaw, “Reflectance spectroscopy of pancreatic microcirculation,” J. Appl. Physiol. 80(1), 116–123 (1996).
    [PubMed]
  9. N. M. Marín, A. Milbourne, H. Rhodes, T. Ehlen, D. Miller, L. Benedet, R. Richards-Kortum, and M. Follen, “Diffuse reflectance patterns in cervical spectroscopy,” Gynecol. Oncol. 99(3Suppl 1), S116–S120 (2005).
    [Crossref] [PubMed]
  10. T. M. Bydlon, S. A. Kennedy, L. M. Richards, J. Q. Brown, B. Yu, M. K. Junker, J. Gallagher, J. Geradts, L. G. Wilke, and N. Ramanujam, “Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins,” Opt. Express 18(8), 8058–8076 (2010).
    [Crossref] [PubMed]
  11. G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45(5), 1062–1071 (2006).
    [Crossref] [PubMed]
  12. A. Amelink and H. J. Sterenborg, “Measurement of the local optical properties of turbid media by differential path-length spectroscopy,” Appl. Opt. 43(15), 3048–3054 (2004).
    [Crossref] [PubMed]
  13. R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46(29), 7317–7328 (2007).
    [Crossref] [PubMed]
  14. N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
    [Crossref] [PubMed]
  15. T. A. Erickson, A. Mazhar, D. Cuccia, A. J. Durkin, and J. W. Tunnell, “Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime,” J. Biomed. Opt. 15(3), 036013 (2010).
    [Crossref] [PubMed]
  16. A. J. Berger, T. W. Koo, I. Itzkan, and M. S. Feld, “An enhanced algorithm for linear multivariate calibration,” Anal. Chem. 70(3), 623–627 (1998).
    [Crossref] [PubMed]
  17. T. J. Farrell, B. C. Wilson, and M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37(12), 2281–2286 (1992).
    [Crossref] [PubMed]
  18. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35(13), 2304–2314 (1996).
    [Crossref] [PubMed]
  19. T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, “Reflectance-based determination of optical properties in highly attenuating tissue,” J. Biomed. Opt. 8(2), 206–215 (2003).
    [Crossref] [PubMed]
  20. U. Thissen, B. Ustün, W. J. Melssen, and L. M. C. Buydens, “Multivariate calibration with least-squares support vector machines,” Anal. Chem. 76(11), 3099–3105 (2004).
    [Crossref] [PubMed]
  21. J. A. K. Suykens, T. Van Gestel, D. De Brabanter, B. De Moor, and J. Vandewalle, Least Squares Support Vector Machines (World Scientific, Singapore, 2002).
  22. B. Scholkopf, and A. J. Smola, Learning with Kernels (MIT Press, Cambridge, MA, 2002)
  23. F. Chauchard, S. Roussel, J.-M. Roger, V. Bellon-Maurel, C. Abrahamsson, T. Svensson, S. Andersson-Engels, and S. Svanberg, “Least-squares support vector machines modelization for time-resolved spectroscopy,” Appl. Opt. 44(33), 7091–7097 (2005).
    [Crossref] [PubMed]
  24. N. Cristianini, and J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods (Cambridge University Press, New York, 2000).
  25. A. J. Welch, and M. J. Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995).
  26. D. Qi and A. J. Berger, “Correction method for absorption-dependent signal enhancement by a liquid-core optical fiber,” Appl. Opt. 45(3), 489–494 (2006).
    [Crossref] [PubMed]
  27. K. Pelckmans, J. A. K. Suykens, T. Van Gestel, D. De Brabanter, L. Lukas, B. Hamers, B. De Moor, and J. Vandewalle, LS-SVMlab: a Matlab/C Toolbox for Least Squares Support Vector Machines, Internal Report 02–44, ESAT-SISTA; K.U. Leuven: Leuven, 2002. Available at http://www.esat.kuleuven.be/sista/lssvmlab/ .
  28. F. Fabbri, M. A. Franceschini, and S. Fantini, “Characterization of spatial and temporal variations in the optical properties of tissuelike media with diffuse reflectance imaging,” Appl. Opt. 42(16), 3063–3072 (2003).
    [Crossref] [PubMed]
  29. H. Martens, and T. Naes, Multivariate Calibration (Wiley, Chichester, UK, 1989).
  30. I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, and M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem. 82(23), 9719–9726 (2010).
    [Crossref] [PubMed]
  31. X. Shao, X. Bian, J. Liu, M. Zhang, and W. Cai, “Multivariate calibration methods in near infrared spectroscopic analysis,” Anal. Methods 2(11), 1662–1666 (2010).
    [Crossref]
  32. R. G. Brereton and G. R. Lloyd, “Support vector machines for classification and regression,” Analyst (Lond.) 135(2), 230–267 (2010).
    [Crossref] [PubMed]

2010 (5)

T. M. Bydlon, S. A. Kennedy, L. M. Richards, J. Q. Brown, B. Yu, M. K. Junker, J. Gallagher, J. Geradts, L. G. Wilke, and N. Ramanujam, “Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins,” Opt. Express 18(8), 8058–8076 (2010).
[Crossref] [PubMed]

T. A. Erickson, A. Mazhar, D. Cuccia, A. J. Durkin, and J. W. Tunnell, “Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime,” J. Biomed. Opt. 15(3), 036013 (2010).
[Crossref] [PubMed]

I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, and M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem. 82(23), 9719–9726 (2010).
[Crossref] [PubMed]

X. Shao, X. Bian, J. Liu, M. Zhang, and W. Cai, “Multivariate calibration methods in near infrared spectroscopic analysis,” Anal. Methods 2(11), 1662–1666 (2010).
[Crossref]

R. G. Brereton and G. R. Lloyd, “Support vector machines for classification and regression,” Analyst (Lond.) 135(2), 230–267 (2010).
[Crossref] [PubMed]

2008 (1)

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (2)

2005 (3)

F. Chauchard, S. Roussel, J.-M. Roger, V. Bellon-Maurel, C. Abrahamsson, T. Svensson, S. Andersson-Engels, and S. Svanberg, “Least-squares support vector machines modelization for time-resolved spectroscopy,” Appl. Opt. 44(33), 7091–7097 (2005).
[Crossref] [PubMed]

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[Crossref] [PubMed]

N. M. Marín, A. Milbourne, H. Rhodes, T. Ehlen, D. Miller, L. Benedet, R. Richards-Kortum, and M. Follen, “Diffuse reflectance patterns in cervical spectroscopy,” Gynecol. Oncol. 99(3Suppl 1), S116–S120 (2005).
[Crossref] [PubMed]

2004 (3)

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9(1), 230–238 (2004).
[Crossref] [PubMed]

A. Amelink and H. J. Sterenborg, “Measurement of the local optical properties of turbid media by differential path-length spectroscopy,” Appl. Opt. 43(15), 3048–3054 (2004).
[Crossref] [PubMed]

U. Thissen, B. Ustün, W. J. Melssen, and L. M. C. Buydens, “Multivariate calibration with least-squares support vector machines,” Anal. Chem. 76(11), 3099–3105 (2004).
[Crossref] [PubMed]

2003 (2)

F. Fabbri, M. A. Franceschini, and S. Fantini, “Characterization of spatial and temporal variations in the optical properties of tissuelike media with diffuse reflectance imaging,” Appl. Opt. 42(16), 3063–3072 (2003).
[Crossref] [PubMed]

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, “Reflectance-based determination of optical properties in highly attenuating tissue,” J. Biomed. Opt. 8(2), 206–215 (2003).
[Crossref] [PubMed]

2002 (2)

A. Fournell, L. A. Schwarte, T. W. L. Scheeren, D. Kindgen-Milles, P. Feindt, and S. A. Loer, “Clinical evaluation of reflectance spectrophotometry for the measurement of gastric microvascular oxygen saturation in patients undergoing cardiopulmonary bypass,” J. Cardiothorac. Vasc. Anesth. 16(5), 576–581 (2002).
[Crossref] [PubMed]

Y. N. Mirabal, S. K. Chang, E. N. Atkinson, A. Malpica, M. Follen, and R. Richards-Kortum, “Reflectance spectroscopy for in vivo detection of cervical precancer,” J. Biomed. Opt. 7(4), 587–594 (2002).
[Crossref] [PubMed]

2001 (1)

1999 (1)

1998 (1)

A. J. Berger, T. W. Koo, I. Itzkan, and M. S. Feld, “An enhanced algorithm for linear multivariate calibration,” Anal. Chem. 70(3), 623–627 (1998).
[Crossref] [PubMed]

1996 (2)

1992 (2)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

T. J. Farrell, B. C. Wilson, and M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37(12), 2281–2286 (1992).
[Crossref] [PubMed]

A’Amar, O.

Abrahamsson, C.

Amelink, A.

Andersson-Engels, S.

Atkinson, E. N.

Y. N. Mirabal, S. K. Chang, E. N. Atkinson, A. Malpica, M. Follen, and R. Richards-Kortum, “Reflectance spectroscopy for in vivo detection of cervical precancer,” J. Biomed. Opt. 7(4), 587–594 (2002).
[Crossref] [PubMed]

Backman, V.

Bargo, P. R.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[Crossref] [PubMed]

Barman, I.

I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, and M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem. 82(23), 9719–9726 (2010).
[Crossref] [PubMed]

Bellon-Maurel, V.

Benedet, L.

N. M. Marín, A. Milbourne, H. Rhodes, T. Ehlen, D. Miller, L. Benedet, R. Richards-Kortum, and M. Follen, “Diffuse reflectance patterns in cervical spectroscopy,” Gynecol. Oncol. 99(3Suppl 1), S116–S120 (2005).
[Crossref] [PubMed]

Bennett, C. L.

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, “Reflectance-based determination of optical properties in highly attenuating tissue,” J. Biomed. Opt. 8(2), 206–215 (2003).
[Crossref] [PubMed]

Berger, A. J.

D. Qi and A. J. Berger, “Correction method for absorption-dependent signal enhancement by a liquid-core optical fiber,” Appl. Opt. 45(3), 489–494 (2006).
[Crossref] [PubMed]

A. J. Berger, T. W. Koo, I. Itzkan, and M. S. Feld, “An enhanced algorithm for linear multivariate calibration,” Anal. Chem. 70(3), 623–627 (1998).
[Crossref] [PubMed]

Bevilacqua, F.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9(1), 230–238 (2004).
[Crossref] [PubMed]

Bian, X.

X. Shao, X. Bian, J. Liu, M. Zhang, and W. Cai, “Multivariate calibration methods in near infrared spectroscopic analysis,” Anal. Methods 2(11), 1662–1666 (2010).
[Crossref]

Bigio, I. J.

Blair, G.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[Crossref] [PubMed]

Brereton, R. G.

R. G. Brereton and G. R. Lloyd, “Support vector machines for classification and regression,” Analyst (Lond.) 135(2), 230–267 (2010).
[Crossref] [PubMed]

Brown, J. Q.

Butler, J.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9(1), 230–238 (2004).
[Crossref] [PubMed]

Buydens, L. M. C.

U. Thissen, B. Ustün, W. J. Melssen, and L. M. C. Buydens, “Multivariate calibration with least-squares support vector machines,” Anal. Chem. 76(11), 3099–3105 (2004).
[Crossref] [PubMed]

Bydlon, T. M.

Cai, W.

X. Shao, X. Bian, J. Liu, M. Zhang, and W. Cai, “Multivariate calibration methods in near infrared spectroscopic analysis,” Anal. Methods 2(11), 1662–1666 (2010).
[Crossref]

Cerussi, A. E.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9(1), 230–238 (2004).
[Crossref] [PubMed]

Chang, S. K.

Y. N. Mirabal, S. K. Chang, E. N. Atkinson, A. Malpica, M. Follen, and R. Richards-Kortum, “Reflectance spectroscopy for in vivo detection of cervical precancer,” J. Biomed. Opt. 7(4), 587–594 (2002).
[Crossref] [PubMed]

Chauchard, F.

Cuccia, D.

T. A. Erickson, A. Mazhar, D. Cuccia, A. J. Durkin, and J. W. Tunnell, “Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime,” J. Biomed. Opt. 15(3), 036013 (2010).
[Crossref] [PubMed]

Dasari, R. R.

I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, and M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem. 82(23), 9719–9726 (2010).
[Crossref] [PubMed]

Dingari, N. C.

I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, and M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem. 82(23), 9719–9726 (2010).
[Crossref] [PubMed]

Durkin, A. J.

T. A. Erickson, A. Mazhar, D. Cuccia, A. J. Durkin, and J. W. Tunnell, “Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime,” J. Biomed. Opt. 15(3), 036013 (2010).
[Crossref] [PubMed]

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, “Reflectance-based determination of optical properties in highly attenuating tissue,” J. Biomed. Opt. 8(2), 206–215 (2003).
[Crossref] [PubMed]

Ediger, M. N.

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, “Reflectance-based determination of optical properties in highly attenuating tissue,” J. Biomed. Opt. 8(2), 206–215 (2003).
[Crossref] [PubMed]

Ehlen, T.

N. M. Marín, A. Milbourne, H. Rhodes, T. Ehlen, D. Miller, L. Benedet, R. Richards-Kortum, and M. Follen, “Diffuse reflectance patterns in cervical spectroscopy,” Gynecol. Oncol. 99(3Suppl 1), S116–S120 (2005).
[Crossref] [PubMed]

Erickson, T. A.

T. A. Erickson, A. Mazhar, D. Cuccia, A. J. Durkin, and J. W. Tunnell, “Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime,” J. Biomed. Opt. 15(3), 036013 (2010).
[Crossref] [PubMed]

Fabbri, F.

Fantini, S.

Farrell, T. J.

T. J. Farrell, B. C. Wilson, and M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37(12), 2281–2286 (1992).
[Crossref] [PubMed]

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Feindt, P.

A. Fournell, L. A. Schwarte, T. W. L. Scheeren, D. Kindgen-Milles, P. Feindt, and S. A. Loer, “Clinical evaluation of reflectance spectrophotometry for the measurement of gastric microvascular oxygen saturation in patients undergoing cardiopulmonary bypass,” J. Cardiothorac. Vasc. Anesth. 16(5), 576–581 (2002).
[Crossref] [PubMed]

Feld, M. S.

I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, and M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem. 82(23), 9719–9726 (2010).
[Crossref] [PubMed]

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999).
[Crossref] [PubMed]

A. J. Berger, T. W. Koo, I. Itzkan, and M. S. Feld, “An enhanced algorithm for linear multivariate calibration,” Anal. Chem. 70(3), 623–627 (1998).
[Crossref] [PubMed]

Fitzmaurice, M.

Follen, M.

N. M. Marín, A. Milbourne, H. Rhodes, T. Ehlen, D. Miller, L. Benedet, R. Richards-Kortum, and M. Follen, “Diffuse reflectance patterns in cervical spectroscopy,” Gynecol. Oncol. 99(3Suppl 1), S116–S120 (2005).
[Crossref] [PubMed]

Y. N. Mirabal, S. K. Chang, E. N. Atkinson, A. Malpica, M. Follen, and R. Richards-Kortum, “Reflectance spectroscopy for in vivo detection of cervical precancer,” J. Biomed. Opt. 7(4), 587–594 (2002).
[Crossref] [PubMed]

Foster, T.

Fournell, A.

A. Fournell, L. A. Schwarte, T. W. L. Scheeren, D. Kindgen-Milles, P. Feindt, and S. A. Loer, “Clinical evaluation of reflectance spectrophotometry for the measurement of gastric microvascular oxygen saturation in patients undergoing cardiopulmonary bypass,” J. Cardiothorac. Vasc. Anesth. 16(5), 576–581 (2002).
[Crossref] [PubMed]

Franceschini, M. A.

Gall, J. A.

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, “Reflectance-based determination of optical properties in highly attenuating tissue,” J. Biomed. Opt. 8(2), 206–215 (2003).
[Crossref] [PubMed]

Gallagher, J.

Geradts, J.

Goodell, T. T.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[Crossref] [PubMed]

Hibst, R.

Hsiang, D.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9(1), 230–238 (2004).
[Crossref] [PubMed]

Hull, E.

Itzkan, I.

A. J. Berger, T. W. Koo, I. Itzkan, and M. S. Feld, “An enhanced algorithm for linear multivariate calibration,” Anal. Chem. 70(3), 623–627 (1998).
[Crossref] [PubMed]

Jacques, S. L.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[Crossref] [PubMed]

Jakubowski, D. B.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9(1), 230–238 (2004).
[Crossref] [PubMed]

Junker, M. K.

Kennedy, S. A.

Kienle, A.

Kindgen-Milles, D.

A. Fournell, L. A. Schwarte, T. W. L. Scheeren, D. Kindgen-Milles, P. Feindt, and S. A. Loer, “Clinical evaluation of reflectance spectrophotometry for the measurement of gastric microvascular oxygen saturation in patients undergoing cardiopulmonary bypass,” J. Cardiothorac. Vasc. Anesth. 16(5), 576–581 (2002).
[Crossref] [PubMed]

Knoefel, W. T.

W. T. Knoefel, N. Kollias, D. W. Rattner, N. S. Nishioka, and A. L. Warshaw, “Reflectance spectroscopy of pancreatic microcirculation,” J. Appl. Physiol. 80(1), 116–123 (1996).
[PubMed]

Kollias, N.

W. T. Knoefel, N. Kollias, D. W. Rattner, N. S. Nishioka, and A. L. Warshaw, “Reflectance spectroscopy of pancreatic microcirculation,” J. Appl. Physiol. 80(1), 116–123 (1996).
[PubMed]

Kong, C. R.

I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, and M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem. 82(23), 9719–9726 (2010).
[Crossref] [PubMed]

Koo, T. W.

A. J. Berger, T. W. Koo, I. Itzkan, and M. S. Feld, “An enhanced algorithm for linear multivariate calibration,” Anal. Chem. 70(3), 623–627 (1998).
[Crossref] [PubMed]

Koval, G.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[Crossref] [PubMed]

Lilge, L.

Liu, J.

X. Shao, X. Bian, J. Liu, M. Zhang, and W. Cai, “Multivariate calibration methods in near infrared spectroscopic analysis,” Anal. Methods 2(11), 1662–1666 (2010).
[Crossref]

Lloyd, G. R.

R. G. Brereton and G. R. Lloyd, “Support vector machines for classification and regression,” Analyst (Lond.) 135(2), 230–267 (2010).
[Crossref] [PubMed]

Loer, S. A.

A. Fournell, L. A. Schwarte, T. W. L. Scheeren, D. Kindgen-Milles, P. Feindt, and S. A. Loer, “Clinical evaluation of reflectance spectrophotometry for the measurement of gastric microvascular oxygen saturation in patients undergoing cardiopulmonary bypass,” J. Cardiothorac. Vasc. Anesth. 16(5), 576–581 (2002).
[Crossref] [PubMed]

Malpica, A.

Y. N. Mirabal, S. K. Chang, E. N. Atkinson, A. Malpica, M. Follen, and R. Richards-Kortum, “Reflectance spectroscopy for in vivo detection of cervical precancer,” J. Biomed. Opt. 7(4), 587–594 (2002).
[Crossref] [PubMed]

Manoharan, R.

Marín, N. M.

N. M. Marín, A. Milbourne, H. Rhodes, T. Ehlen, D. Miller, L. Benedet, R. Richards-Kortum, and M. Follen, “Diffuse reflectance patterns in cervical spectroscopy,” Gynecol. Oncol. 99(3Suppl 1), S116–S120 (2005).
[Crossref] [PubMed]

Matchette, L. S.

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, “Reflectance-based determination of optical properties in highly attenuating tissue,” J. Biomed. Opt. 8(2), 206–215 (2003).
[Crossref] [PubMed]

Mazhar, A.

T. A. Erickson, A. Mazhar, D. Cuccia, A. J. Durkin, and J. W. Tunnell, “Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime,” J. Biomed. Opt. 15(3), 036013 (2010).
[Crossref] [PubMed]

Melssen, W. J.

U. Thissen, B. Ustün, W. J. Melssen, and L. M. C. Buydens, “Multivariate calibration with least-squares support vector machines,” Anal. Chem. 76(11), 3099–3105 (2004).
[Crossref] [PubMed]

Milbourne, A.

N. M. Marín, A. Milbourne, H. Rhodes, T. Ehlen, D. Miller, L. Benedet, R. Richards-Kortum, and M. Follen, “Diffuse reflectance patterns in cervical spectroscopy,” Gynecol. Oncol. 99(3Suppl 1), S116–S120 (2005).
[Crossref] [PubMed]

Miller, D.

N. M. Marín, A. Milbourne, H. Rhodes, T. Ehlen, D. Miller, L. Benedet, R. Richards-Kortum, and M. Follen, “Diffuse reflectance patterns in cervical spectroscopy,” Gynecol. Oncol. 99(3Suppl 1), S116–S120 (2005).
[Crossref] [PubMed]

Mirabal, Y. N.

Y. N. Mirabal, S. K. Chang, E. N. Atkinson, A. Malpica, M. Follen, and R. Richards-Kortum, “Reflectance spectroscopy for in vivo detection of cervical precancer,” J. Biomed. Opt. 7(4), 587–594 (2002).
[Crossref] [PubMed]

Nguyen, T. H.

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[Crossref] [PubMed]

Nishioka, N. S.

W. T. Knoefel, N. Kollias, D. W. Rattner, N. S. Nishioka, and A. L. Warshaw, “Reflectance spectroscopy of pancreatic microcirculation,” J. Appl. Physiol. 80(1), 116–123 (1996).
[PubMed]

Palmer, G. M.

Patterson, M. S.

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35(13), 2304–2314 (1996).
[Crossref] [PubMed]

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

T. J. Farrell, B. C. Wilson, and M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37(12), 2281–2286 (1992).
[Crossref] [PubMed]

Perelman, L. T.

Pfefer, T. J.

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, “Reflectance-based determination of optical properties in highly attenuating tissue,” J. Biomed. Opt. 8(2), 206–215 (2003).
[Crossref] [PubMed]

Prahl, S. A.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[Crossref] [PubMed]

Qi, D.

Rajaram, N.

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[Crossref] [PubMed]

Ramanujam, N.

Rattner, D. W.

W. T. Knoefel, N. Kollias, D. W. Rattner, N. S. Nishioka, and A. L. Warshaw, “Reflectance spectroscopy of pancreatic microcirculation,” J. Appl. Physiol. 80(1), 116–123 (1996).
[PubMed]

Reif, R.

Rhodes, H.

N. M. Marín, A. Milbourne, H. Rhodes, T. Ehlen, D. Miller, L. Benedet, R. Richards-Kortum, and M. Follen, “Diffuse reflectance patterns in cervical spectroscopy,” Gynecol. Oncol. 99(3Suppl 1), S116–S120 (2005).
[Crossref] [PubMed]

Richards, L. M.

Richards-Kortum, R.

N. M. Marín, A. Milbourne, H. Rhodes, T. Ehlen, D. Miller, L. Benedet, R. Richards-Kortum, and M. Follen, “Diffuse reflectance patterns in cervical spectroscopy,” Gynecol. Oncol. 99(3Suppl 1), S116–S120 (2005).
[Crossref] [PubMed]

Y. N. Mirabal, S. K. Chang, E. N. Atkinson, A. Malpica, M. Follen, and R. Richards-Kortum, “Reflectance spectroscopy for in vivo detection of cervical precancer,” J. Biomed. Opt. 7(4), 587–594 (2002).
[Crossref] [PubMed]

Roger, J.-M.

Roussel, S.

Scheeren, T. W. L.

A. Fournell, L. A. Schwarte, T. W. L. Scheeren, D. Kindgen-Milles, P. Feindt, and S. A. Loer, “Clinical evaluation of reflectance spectrophotometry for the measurement of gastric microvascular oxygen saturation in patients undergoing cardiopulmonary bypass,” J. Cardiothorac. Vasc. Anesth. 16(5), 576–581 (2002).
[Crossref] [PubMed]

Schwarte, L. A.

A. Fournell, L. A. Schwarte, T. W. L. Scheeren, D. Kindgen-Milles, P. Feindt, and S. A. Loer, “Clinical evaluation of reflectance spectrophotometry for the measurement of gastric microvascular oxygen saturation in patients undergoing cardiopulmonary bypass,” J. Cardiothorac. Vasc. Anesth. 16(5), 576–581 (2002).
[Crossref] [PubMed]

Shah, N.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9(1), 230–238 (2004).
[Crossref] [PubMed]

Shao, X.

X. Shao, X. Bian, J. Liu, M. Zhang, and W. Cai, “Multivariate calibration methods in near infrared spectroscopic analysis,” Anal. Methods 2(11), 1662–1666 (2010).
[Crossref]

Sleven, R. A.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[Crossref] [PubMed]

Steiner, R.

Sterenborg, H. J.

Svanberg, S.

Svensson, T.

Thissen, U.

U. Thissen, B. Ustün, W. J. Melssen, and L. M. C. Buydens, “Multivariate calibration with least-squares support vector machines,” Anal. Chem. 76(11), 3099–3105 (2004).
[Crossref] [PubMed]

Tromberg, B. J.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9(1), 230–238 (2004).
[Crossref] [PubMed]

Tunnell, J. W.

T. A. Erickson, A. Mazhar, D. Cuccia, A. J. Durkin, and J. W. Tunnell, “Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime,” J. Biomed. Opt. 15(3), 036013 (2010).
[Crossref] [PubMed]

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[Crossref] [PubMed]

Ustün, B.

U. Thissen, B. Ustün, W. J. Melssen, and L. M. C. Buydens, “Multivariate calibration with least-squares support vector machines,” Anal. Chem. 76(11), 3099–3105 (2004).
[Crossref] [PubMed]

Van Dam, J.

Warshaw, A. L.

W. T. Knoefel, N. Kollias, D. W. Rattner, N. S. Nishioka, and A. L. Warshaw, “Reflectance spectroscopy of pancreatic microcirculation,” J. Appl. Physiol. 80(1), 116–123 (1996).
[PubMed]

Wilke, J. N.

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, “Reflectance-based determination of optical properties in highly attenuating tissue,” J. Biomed. Opt. 8(2), 206–215 (2003).
[Crossref] [PubMed]

Wilke, L. G.

Wilson, B.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Wilson, B. C.

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35(13), 2304–2314 (1996).
[Crossref] [PubMed]

T. J. Farrell, B. C. Wilson, and M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37(12), 2281–2286 (1992).
[Crossref] [PubMed]

Yu, B.

Zhang, M.

X. Shao, X. Bian, J. Liu, M. Zhang, and W. Cai, “Multivariate calibration methods in near infrared spectroscopic analysis,” Anal. Methods 2(11), 1662–1666 (2010).
[Crossref]

Zonios, G.

Anal. Chem. (3)

A. J. Berger, T. W. Koo, I. Itzkan, and M. S. Feld, “An enhanced algorithm for linear multivariate calibration,” Anal. Chem. 70(3), 623–627 (1998).
[Crossref] [PubMed]

U. Thissen, B. Ustün, W. J. Melssen, and L. M. C. Buydens, “Multivariate calibration with least-squares support vector machines,” Anal. Chem. 76(11), 3099–3105 (2004).
[Crossref] [PubMed]

I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, and M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem. 82(23), 9719–9726 (2010).
[Crossref] [PubMed]

Anal. Methods (1)

X. Shao, X. Bian, J. Liu, M. Zhang, and W. Cai, “Multivariate calibration methods in near infrared spectroscopic analysis,” Anal. Methods 2(11), 1662–1666 (2010).
[Crossref]

Analyst (Lond.) (1)

R. G. Brereton and G. R. Lloyd, “Support vector machines for classification and regression,” Analyst (Lond.) 135(2), 230–267 (2010).
[Crossref] [PubMed]

Appl. Opt. (8)

F. Chauchard, S. Roussel, J.-M. Roger, V. Bellon-Maurel, C. Abrahamsson, T. Svensson, S. Andersson-Engels, and S. Svanberg, “Least-squares support vector machines modelization for time-resolved spectroscopy,” Appl. Opt. 44(33), 7091–7097 (2005).
[Crossref] [PubMed]

D. Qi and A. J. Berger, “Correction method for absorption-dependent signal enhancement by a liquid-core optical fiber,” Appl. Opt. 45(3), 489–494 (2006).
[Crossref] [PubMed]

F. Fabbri, M. A. Franceschini, and S. Fantini, “Characterization of spatial and temporal variations in the optical properties of tissuelike media with diffuse reflectance imaging,” Appl. Opt. 42(16), 3063–3072 (2003).
[Crossref] [PubMed]

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35(13), 2304–2314 (1996).
[Crossref] [PubMed]

G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45(5), 1062–1071 (2006).
[Crossref] [PubMed]

A. Amelink and H. J. Sterenborg, “Measurement of the local optical properties of turbid media by differential path-length spectroscopy,” Appl. Opt. 43(15), 3048–3054 (2004).
[Crossref] [PubMed]

R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46(29), 7317–7328 (2007).
[Crossref] [PubMed]

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999).
[Crossref] [PubMed]

Gynecol. Oncol. (1)

N. M. Marín, A. Milbourne, H. Rhodes, T. Ehlen, D. Miller, L. Benedet, R. Richards-Kortum, and M. Follen, “Diffuse reflectance patterns in cervical spectroscopy,” Gynecol. Oncol. 99(3Suppl 1), S116–S120 (2005).
[Crossref] [PubMed]

J. Appl. Physiol. (1)

W. T. Knoefel, N. Kollias, D. W. Rattner, N. S. Nishioka, and A. L. Warshaw, “Reflectance spectroscopy of pancreatic microcirculation,” J. Appl. Physiol. 80(1), 116–123 (1996).
[PubMed]

J. Biomed. Opt. (6)

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[Crossref] [PubMed]

Y. N. Mirabal, S. K. Chang, E. N. Atkinson, A. Malpica, M. Follen, and R. Richards-Kortum, “Reflectance spectroscopy for in vivo detection of cervical precancer,” J. Biomed. Opt. 7(4), 587–594 (2002).
[Crossref] [PubMed]

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9(1), 230–238 (2004).
[Crossref] [PubMed]

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[Crossref] [PubMed]

T. A. Erickson, A. Mazhar, D. Cuccia, A. J. Durkin, and J. W. Tunnell, “Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime,” J. Biomed. Opt. 15(3), 036013 (2010).
[Crossref] [PubMed]

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. J. Durkin, and M. N. Ediger, “Reflectance-based determination of optical properties in highly attenuating tissue,” J. Biomed. Opt. 8(2), 206–215 (2003).
[Crossref] [PubMed]

J. Cardiothorac. Vasc. Anesth. (1)

A. Fournell, L. A. Schwarte, T. W. L. Scheeren, D. Kindgen-Milles, P. Feindt, and S. A. Loer, “Clinical evaluation of reflectance spectrophotometry for the measurement of gastric microvascular oxygen saturation in patients undergoing cardiopulmonary bypass,” J. Cardiothorac. Vasc. Anesth. 16(5), 576–581 (2002).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Med. Phys. (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Med. Biol. (1)

T. J. Farrell, B. C. Wilson, and M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37(12), 2281–2286 (1992).
[Crossref] [PubMed]

Other (6)

H. Martens, and T. Naes, Multivariate Calibration (Wiley, Chichester, UK, 1989).

K. Pelckmans, J. A. K. Suykens, T. Van Gestel, D. De Brabanter, L. Lukas, B. Hamers, B. De Moor, and J. Vandewalle, LS-SVMlab: a Matlab/C Toolbox for Least Squares Support Vector Machines, Internal Report 02–44, ESAT-SISTA; K.U. Leuven: Leuven, 2002. Available at http://www.esat.kuleuven.be/sista/lssvmlab/ .

N. Cristianini, and J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods (Cambridge University Press, New York, 2000).

A. J. Welch, and M. J. Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995).

J. A. K. Suykens, T. Van Gestel, D. De Brabanter, B. De Moor, and J. Vandewalle, Least Squares Support Vector Machines (World Scientific, Singapore, 2002).

B. Scholkopf, and A. J. Smola, Learning with Kernels (MIT Press, Cambridge, MA, 2002)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Reduced scattering and absorption coefficients as a function of wavelengths. The dashed line indicates the raw data and PLS, LUT and LS-SVM model fits are shown with green, blue and red solid lines, respectively. For this representative phantom, PLS (green) and LS-SVM (red) fits for the reduced scattering coefficient are nearly coincident. Similarly, the raw data (black) and LS-SVM (red) fit coalesce for the absorption coefficient plot.

Fig. 2
Fig. 2

Box plot of prediction error percentages for reduced scattering (µs') and absorption (µa) coefficients using PLS, LUT and LS-SVM regression models. The red dotted line indicates the position where the observed values are equal to the reference values in the samples.

Fig. 3
Fig. 3

Bar plot of average computation time for the prediction step of PLS, LUT and LS-SVM algorithms.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

y = w T x + b
Q L S S V M = 1 2 w 2 + γ i = 1 N e i 2  where  e i = y i w T x i b
y = i = 1 N α i x i , x + b  where  α i = ( x i , x i + ( 2 γ ) 1 ) 1 ( y i b )
y = i = 1 N α i K x i , x + b

Metrics