Abstract

In this paper, we present methods for 3D visualization and quantitative measurements of retinal blood flow in rats by the use of optical microangiography imaging technique (OMAG). We use ultrahigh sensitive OMAG to provide high-quality 3D RBF perfusion maps in the rat eye, from which the Doppler angle, as well as the diameters of blood vessels, are evaluated. Estimation of flow velocity (i.e. axial flow velocity) is achieved by the use of Doppler OMAG, which has its origins in phase-resolved Doppler optical coherence tomography. The measurements of the Doppler angle, vessel size, and the axial velocity lead to the quantitative assessment of the absolute flow velocity and the blood flow rate in selected retinal vessels. We demonstrate the feasibility of OMAG to provide 3D microangiograms and quantitative assessment of retinal blood flow in a rat model subjected to raised intra-ocular pressure (IOP). We show that OMAG is capable of monitoring the longitudinal response of absolute blood velocity and flow rate of retinal blood vessels to increased IOP in the rat, demonstrating its usefulness for ophthalmological research.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Pournaras, E. Rungger-Brändle, C. E. Riva, S. H. Hardarson, and E. Stefansson, “Regulation of retinal blood flow in health and disease,” Prog. Retin. Eye Res. 27(3), 284–330 (2008).
    [CrossRef] [PubMed]
  2. T. J. Ffytche, C. J. Bulpitt, E. M. Kohner, D. Archer, and C. T. Dollery, “Effect of changes in intraocular pressure on the retinal microcirculation,” Br. J. Ophthalmol. 58(5), 514–522 (1974).
    [CrossRef] [PubMed]
  3. A. P. Shepherd and G. L. Riedel, “Continuous measurement of intestinal mucosal blood flow by laser-Doppler velocimetry,” Am. J. Physiol. 242(6), G668–G672 (1982).
    [PubMed]
  4. Y. Liang, J. C. Downs, B. Fortune, G. Cull, G. A. Cioffi, and L. Wang, “Impact of systemic blood pressure on the relationship between intraocular pressure and blood flow in the optic nerve head of nonhuman primates,” Invest. Ophthalmol. Vis. Sci. 50(5), 2154–2160 (2009).
    [CrossRef] [PubMed]
  5. S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18(4), 3967–3972 (2010).
    [CrossRef] [PubMed]
  6. Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22(14), 1119–1121 (1997).
    [CrossRef] [PubMed]
  7. Y. Zhao, Z. Chen, Z. Ding, H. Ren, and J. S. Nelson, “Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation,” Opt. Lett. 27(2), 98–100 (2002).
    [CrossRef] [PubMed]
  8. R. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003).
    [CrossRef] [PubMed]
  9. A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 17(13), 10584–10598 (2009).
    [CrossRef] [PubMed]
  10. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
    [CrossRef] [PubMed]
  11. B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5493 (2005).
    [CrossRef] [PubMed]
  12. Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Opt. Express 16(16), 12350–12361 (2008).
    [CrossRef] [PubMed]
  13. Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
    [CrossRef] [PubMed]
  14. Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
    [CrossRef] [PubMed]
  15. Y. Wang, A. Fawzi, O. Tan, J. Gil-Flamer, and D. Huang, “Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography,” Opt. Express 17(5), 4061–4073 (2009).
    [CrossRef] [PubMed]
  16. R. K. Wang and S. Hurst, “Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 μm wavelength,” Opt. Express 15(18), 11402–11412 (2007).
    [CrossRef] [PubMed]
  17. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008).
    [CrossRef] [PubMed]
  18. R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express 17(11), 8926–8940 (2009).
    [CrossRef] [PubMed]
  19. L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
    [CrossRef] [PubMed]
  20. R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
    [CrossRef] [PubMed]
  21. Y. Jia, L. An, and R. K. Wang, “Label-free and highly sensitive optical imaging of detailed microcirculation within meninges and cortex in mice with the cranium left intact,” J. Biomed. Opt. 15(3), 030510 (2010).
    [CrossRef] [PubMed]
  22. Y. Jung, Z. Zhi, and R. K. Wang, “Three-dimensional optical imaging of microvascular networks within intact lymph node in vivo,” J. Biomed. Opt. 15(5), 050501 (2010).
    [CrossRef] [PubMed]
  23. J. C. Morrison, W. O. Cepurna Ying Guo, and E. C. Johnson, “Pathophysiology of human glaucomatous optic nerve damage: Insights from rodent models of glaucoma,” Exp. Eye Res. (2010).
    [CrossRef] [PubMed]
  24. I. H. Pang and A. F. Clark, “Rodent models for glaucoma retinopathy and optic neuropathy,” J. Glaucoma 16(5), 483–505 (2007).
    [CrossRef] [PubMed]
  25. M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
    [CrossRef] [PubMed]
  26. V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
    [CrossRef] [PubMed]
  27. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007).
    [CrossRef] [PubMed]
  28. V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with optical coherence tomography,” Opt. Express 18(3), 2477–2494 (2010).
    [CrossRef] [PubMed]
  29. I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express 17(26), 23736–23754 (2009).
    [CrossRef] [PubMed]
  30. D. Piao, L. L. Otis, and Q. Zhu, “Doppler angle and flow velocity mapping by combined Doppler shift and Doppler bandwidth measurements in optical Doppler tomography,” Opt. Lett. 28(13), 1120–1122 (2003).
    [CrossRef] [PubMed]
  31. C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography,” Opt. Lett. 32(5), 506–508 (2007).
    [CrossRef] [PubMed]
  32. Z. Ma, A. Liu, X. Yin, A. Troyer, K. Thornburg, R. K. Wang, and S. Rugonyi, “Measurement of absolute blood flow velocity in outflow tract of HH18 chicken embryo based on 4D reconstruction using spectral domain optical coherence tomography,” Biomed. Opt. Express 1(3), 798–811 (2010).
    [CrossRef] [PubMed]
  33. B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11(25), 3490–3497 (2003).
    [CrossRef] [PubMed]
  34. The AGIS Investigators, “The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration,” Am. J. Ophthalmol. 130(4), 429–440 (2000).
    [CrossRef] [PubMed]
  35. A. Sommer, “Intraocular pressure and glaucoma,” Am. J. Ophthalmol. 107(2), 186–188 (1989).
    [PubMed]
  36. M. Mozaffarieh, M. C. Grieshaber, and J. Flammer, “Oxygen and blood flow: players in the pathogenesis of glaucoma,” Mol. Vis. 14, 224–233 (2008).
    [PubMed]
  37. D. Moore, A. Harris, D. Wudunn, N. Kheradiya, and B. Siesky, “Dysfunctional regulation of ocular blood flow: A risk factor for glaucoma?” Clinical Ophthalmol. 2(4), 849–861 (2008).
    [PubMed]
  38. C. Geijer and A. Bill, “Effects of raised intraocular pressure on retinal, prelaminar, laminar, and retrolaminar optic nerve blood flow in monkeys,” Invest. Ophthalmol. Vis. Sci. 18(10), 1030–1042 (1979).
    [PubMed]

2010 (8)

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18(4), 3967–3972 (2010).
[CrossRef] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
[CrossRef] [PubMed]

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
[CrossRef] [PubMed]

Y. Jia, L. An, and R. K. Wang, “Label-free and highly sensitive optical imaging of detailed microcirculation within meninges and cortex in mice with the cranium left intact,” J. Biomed. Opt. 15(3), 030510 (2010).
[CrossRef] [PubMed]

Y. Jung, Z. Zhi, and R. K. Wang, “Three-dimensional optical imaging of microvascular networks within intact lymph node in vivo,” J. Biomed. Opt. 15(5), 050501 (2010).
[CrossRef] [PubMed]

J. C. Morrison, W. O. Cepurna Ying Guo, and E. C. Johnson, “Pathophysiology of human glaucomatous optic nerve damage: Insights from rodent models of glaucoma,” Exp. Eye Res. (2010).
[CrossRef] [PubMed]

V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with optical coherence tomography,” Opt. Express 18(3), 2477–2494 (2010).
[CrossRef] [PubMed]

Z. Ma, A. Liu, X. Yin, A. Troyer, K. Thornburg, R. K. Wang, and S. Rugonyi, “Measurement of absolute blood flow velocity in outflow tract of HH18 chicken embryo based on 4D reconstruction using spectral domain optical coherence tomography,” Biomed. Opt. Express 1(3), 798–811 (2010).
[CrossRef] [PubMed]

2009 (5)

2008 (6)

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[CrossRef] [PubMed]

L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008).
[CrossRef] [PubMed]

Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Opt. Express 16(16), 12350–12361 (2008).
[CrossRef] [PubMed]

C. J. Pournaras, E. Rungger-Brändle, C. E. Riva, S. H. Hardarson, and E. Stefansson, “Regulation of retinal blood flow in health and disease,” Prog. Retin. Eye Res. 27(3), 284–330 (2008).
[CrossRef] [PubMed]

M. Mozaffarieh, M. C. Grieshaber, and J. Flammer, “Oxygen and blood flow: players in the pathogenesis of glaucoma,” Mol. Vis. 14, 224–233 (2008).
[PubMed]

D. Moore, A. Harris, D. Wudunn, N. Kheradiya, and B. Siesky, “Dysfunctional regulation of ocular blood flow: A risk factor for glaucoma?” Clinical Ophthalmol. 2(4), 849–861 (2008).
[PubMed]

2007 (6)

C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography,” Opt. Lett. 32(5), 506–508 (2007).
[CrossRef] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
[CrossRef] [PubMed]

R. K. Wang and S. Hurst, “Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 μm wavelength,” Opt. Express 15(18), 11402–11412 (2007).
[CrossRef] [PubMed]

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007).
[CrossRef] [PubMed]

I. H. Pang and A. F. Clark, “Rodent models for glaucoma retinopathy and optic neuropathy,” J. Glaucoma 16(5), 483–505 (2007).
[CrossRef] [PubMed]

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

2006 (2)

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
[CrossRef] [PubMed]

2005 (1)

2003 (3)

2002 (1)

2000 (1)

The AGIS Investigators, “The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration,” Am. J. Ophthalmol. 130(4), 429–440 (2000).
[CrossRef] [PubMed]

1997 (1)

1989 (1)

A. Sommer, “Intraocular pressure and glaucoma,” Am. J. Ophthalmol. 107(2), 186–188 (1989).
[PubMed]

1982 (1)

A. P. Shepherd and G. L. Riedel, “Continuous measurement of intestinal mucosal blood flow by laser-Doppler velocimetry,” Am. J. Physiol. 242(6), G668–G672 (1982).
[PubMed]

1979 (1)

C. Geijer and A. Bill, “Effects of raised intraocular pressure on retinal, prelaminar, laminar, and retrolaminar optic nerve blood flow in monkeys,” Invest. Ophthalmol. Vis. Sci. 18(10), 1030–1042 (1979).
[PubMed]

1974 (1)

T. J. Ffytche, C. J. Bulpitt, E. M. Kohner, D. Archer, and C. T. Dollery, “Effect of changes in intraocular pressure on the retinal microcirculation,” Br. J. Ophthalmol. 58(5), 514–522 (1974).
[CrossRef] [PubMed]

An, L.

Archer, D.

T. J. Ffytche, C. J. Bulpitt, E. M. Kohner, D. Archer, and C. T. Dollery, “Effect of changes in intraocular pressure on the retinal microcirculation,” Br. J. Ophthalmol. 58(5), 514–522 (1974).
[CrossRef] [PubMed]

Bajraszewski, T.

Bill, A.

C. Geijer and A. Bill, “Effects of raised intraocular pressure on retinal, prelaminar, laminar, and retrolaminar optic nerve blood flow in monkeys,” Invest. Ophthalmol. Vis. Sci. 18(10), 1030–1042 (1979).
[PubMed]

Boas, D. A.

Bouma, B.

Bower, B. A.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[CrossRef] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
[CrossRef] [PubMed]

Bulpitt, C. J.

T. J. Ffytche, C. J. Bulpitt, E. M. Kohner, D. Archer, and C. T. Dollery, “Effect of changes in intraocular pressure on the retinal microcirculation,” Br. J. Ophthalmol. 58(5), 514–522 (1974).
[CrossRef] [PubMed]

Bursell, S. E.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

Carvalho, M.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

Cense, B.

Cepurna Ying Guo, W. O.

J. C. Morrison, W. O. Cepurna Ying Guo, and E. C. Johnson, “Pathophysiology of human glaucomatous optic nerve damage: Insights from rodent models of glaucoma,” Exp. Eye Res. (2010).
[CrossRef] [PubMed]

Chen, T.

Chen, Z.

Cioffi, G. A.

Y. Liang, J. C. Downs, B. Fortune, G. Cull, G. A. Cioffi, and L. Wang, “Impact of systemic blood pressure on the relationship between intraocular pressure and blood flow in the optic nerve head of nonhuman primates,” Invest. Ophthalmol. Vis. Sci. 50(5), 2154–2160 (2009).
[CrossRef] [PubMed]

Clark, A. F.

I. H. Pang and A. F. Clark, “Rodent models for glaucoma retinopathy and optic neuropathy,” J. Glaucoma 16(5), 483–505 (2007).
[CrossRef] [PubMed]

Clermont, A.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

Cull, G.

Y. Liang, J. C. Downs, B. Fortune, G. Cull, G. A. Cioffi, and L. Wang, “Impact of systemic blood pressure on the relationship between intraocular pressure and blood flow in the optic nerve head of nonhuman primates,” Invest. Ophthalmol. Vis. Sci. 50(5), 2154–2160 (2009).
[CrossRef] [PubMed]

Davis, A. M.

de Boer, J.

Ding, Z.

Dollery, C. T.

T. J. Ffytche, C. J. Bulpitt, E. M. Kohner, D. Archer, and C. T. Dollery, “Effect of changes in intraocular pressure on the retinal microcirculation,” Br. J. Ophthalmol. 58(5), 514–522 (1974).
[CrossRef] [PubMed]

Downs, J. C.

Y. Liang, J. C. Downs, B. Fortune, G. Cull, G. A. Cioffi, and L. Wang, “Impact of systemic blood pressure on the relationship between intraocular pressure and blood flow in the optic nerve head of nonhuman primates,” Invest. Ophthalmol. Vis. Sci. 50(5), 2154–2160 (2009).
[CrossRef] [PubMed]

Drexler, W.

Duan, Y.

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

Duker, J. S.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

Fawzi, A.

Fercher, A.

Ffytche, T. J.

T. J. Ffytche, C. J. Bulpitt, E. M. Kohner, D. Archer, and C. T. Dollery, “Effect of changes in intraocular pressure on the retinal microcirculation,” Br. J. Ophthalmol. 58(5), 514–522 (1974).
[CrossRef] [PubMed]

Flammer, J.

M. Mozaffarieh, M. C. Grieshaber, and J. Flammer, “Oxygen and blood flow: players in the pathogenesis of glaucoma,” Mol. Vis. 14, 224–233 (2008).
[PubMed]

Fortune, B.

Y. Liang, J. C. Downs, B. Fortune, G. Cull, G. A. Cioffi, and L. Wang, “Impact of systemic blood pressure on the relationship between intraocular pressure and blood flow in the optic nerve head of nonhuman primates,” Invest. Ophthalmol. Vis. Sci. 50(5), 2154–2160 (2009).
[CrossRef] [PubMed]

Francis, P.

Fujimoto, J. G.

V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with optical coherence tomography,” Opt. Express 18(3), 2477–2494 (2010).
[CrossRef] [PubMed]

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

Geijer, C.

C. Geijer and A. Bill, “Effects of raised intraocular pressure on retinal, prelaminar, laminar, and retrolaminar optic nerve blood flow in monkeys,” Invest. Ophthalmol. Vis. Sci. 18(10), 1030–1042 (1979).
[PubMed]

Gil-Flamer, J.

Gorczynska, I.

Gregori, G.

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

Grieshaber, M. C.

M. Mozaffarieh, M. C. Grieshaber, and J. Flammer, “Oxygen and blood flow: players in the pathogenesis of glaucoma,” Mol. Vis. 14, 224–233 (2008).
[PubMed]

Gruber, A.

Grulkowski, I.

Hackam, A.

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

Hanson, S. R.

Hardarson, S. H.

C. J. Pournaras, E. Rungger-Brändle, C. E. Riva, S. H. Hardarson, and E. Stefansson, “Regulation of retinal blood flow in health and disease,” Prog. Retin. Eye Res. 27(3), 284–330 (2008).
[CrossRef] [PubMed]

Harris, A.

D. Moore, A. Harris, D. Wudunn, N. Kheradiya, and B. Siesky, “Dysfunctional regulation of ocular blood flow: A risk factor for glaucoma?” Clinical Ophthalmol. 2(4), 849–861 (2008).
[PubMed]

Hong, Y.

Hu, J.

Huang, D.

Y. Wang, A. Fawzi, O. Tan, J. Gil-Flamer, and D. Huang, “Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography,” Opt. Express 17(5), 4061–4073 (2009).
[CrossRef] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[CrossRef] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
[CrossRef] [PubMed]

C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography,” Opt. Lett. 32(5), 506–508 (2007).
[CrossRef] [PubMed]

Hurst, S.

Izatt, J. A.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[CrossRef] [PubMed]

Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Opt. Express 16(16), 12350–12361 (2008).
[CrossRef] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
[CrossRef] [PubMed]

Jacques, S. L.

Jia, Y.

Y. Jia, L. An, and R. K. Wang, “Label-free and highly sensitive optical imaging of detailed microcirculation within meninges and cortex in mice with the cranium left intact,” J. Biomed. Opt. 15(3), 030510 (2010).
[CrossRef] [PubMed]

Jiang, M.

Jiao, S.

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18(4), 3967–3972 (2010).
[CrossRef] [PubMed]

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

Jockovich, M. E.

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

Johnson, E. C.

J. C. Morrison, W. O. Cepurna Ying Guo, and E. C. Johnson, “Pathophysiology of human glaucomatous optic nerve damage: Insights from rodent models of glaucoma,” Exp. Eye Res. (2010).
[CrossRef] [PubMed]

Jung, Y.

Y. Jung, Z. Zhi, and R. K. Wang, “Three-dimensional optical imaging of microvascular networks within intact lymph node in vivo,” J. Biomed. Opt. 15(5), 050501 (2010).
[CrossRef] [PubMed]

Kheradiya, N.

D. Moore, A. Harris, D. Wudunn, N. Kheradiya, and B. Siesky, “Dysfunctional regulation of ocular blood flow: A risk factor for glaucoma?” Clinical Ophthalmol. 2(4), 849–861 (2008).
[PubMed]

Ko, T. H.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

Kohner, E. M.

T. J. Ffytche, C. J. Bulpitt, E. M. Kohner, D. Archer, and C. T. Dollery, “Effect of changes in intraocular pressure on the retinal microcirculation,” Br. J. Ophthalmol. 58(5), 514–522 (1974).
[CrossRef] [PubMed]

Kowalczyk, A.

Leitgeb, R.

Leitgeb, R. A.

Lem, J.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

Liang, Y.

Y. Liang, J. C. Downs, B. Fortune, G. Cull, G. A. Cioffi, and L. Wang, “Impact of systemic blood pressure on the relationship between intraocular pressure and blood flow in the optic nerve head of nonhuman primates,” Invest. Ophthalmol. Vis. Sci. 50(5), 2154–2160 (2009).
[CrossRef] [PubMed]

Liu, A.

Ma, Z.

Makita, S.

Malekafzali, A.

Milner, T. E.

Moore, D.

D. Moore, A. Harris, D. Wudunn, N. Kheradiya, and B. Siesky, “Dysfunctional regulation of ocular blood flow: A risk factor for glaucoma?” Clinical Ophthalmol. 2(4), 849–861 (2008).
[PubMed]

Morrison, J. C.

J. C. Morrison, W. O. Cepurna Ying Guo, and E. C. Johnson, “Pathophysiology of human glaucomatous optic nerve damage: Insights from rodent models of glaucoma,” Exp. Eye Res. (2010).
[CrossRef] [PubMed]

Mozaffarieh, M.

M. Mozaffarieh, M. C. Grieshaber, and J. Flammer, “Oxygen and blood flow: players in the pathogenesis of glaucoma,” Mol. Vis. 14, 224–233 (2008).
[PubMed]

Nassif, N.

Nelson, J. S.

Otis, L. L.

Pang, I. H.

I. H. Pang and A. F. Clark, “Rodent models for glaucoma retinopathy and optic neuropathy,” J. Glaucoma 16(5), 483–505 (2007).
[CrossRef] [PubMed]

Park, B.

Pedersen, C. J.

Piao, D.

Pierce, M.

Pournaras, C. J.

C. J. Pournaras, E. Rungger-Brändle, C. E. Riva, S. H. Hardarson, and E. Stefansson, “Regulation of retinal blood flow in health and disease,” Prog. Retin. Eye Res. 27(3), 284–330 (2008).
[CrossRef] [PubMed]

Puliafito, C. A.

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18(4), 3967–3972 (2010).
[CrossRef] [PubMed]

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

Qin, J.

Ren, H.

Riedel, G. L.

A. P. Shepherd and G. L. Riedel, “Continuous measurement of intestinal mucosal blood flow by laser-Doppler velocimetry,” Am. J. Physiol. 242(6), G668–G672 (1982).
[PubMed]

Riva, C. E.

C. J. Pournaras, E. Rungger-Brändle, C. E. Riva, S. H. Hardarson, and E. Stefansson, “Regulation of retinal blood flow in health and disease,” Prog. Retin. Eye Res. 27(3), 284–330 (2008).
[CrossRef] [PubMed]

Rollins, A. M.

Ruggeri, M.

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

Rugonyi, S.

Rungger-Brändle, E.

C. J. Pournaras, E. Rungger-Brändle, C. E. Riva, S. H. Hardarson, and E. Stefansson, “Regulation of retinal blood flow in health and disease,” Prog. Retin. Eye Res. 27(3), 284–330 (2008).
[CrossRef] [PubMed]

Ruvinskaya, S.

Sakadzic, S.

Schmetterer, L.

Schuman, J. S.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

Shepherd, A. P.

A. P. Shepherd and G. L. Riedel, “Continuous measurement of intestinal mucosal blood flow by laser-Doppler velocimetry,” Am. J. Physiol. 242(6), G668–G672 (1982).
[PubMed]

Shung, K. K.

Shure, M. A.

Siesky, B.

D. Moore, A. Harris, D. Wudunn, N. Kheradiya, and B. Siesky, “Dysfunctional regulation of ocular blood flow: A risk factor for glaucoma?” Clinical Ophthalmol. 2(4), 849–861 (2008).
[PubMed]

Sommer, A.

A. Sommer, “Intraocular pressure and glaucoma,” Am. J. Ophthalmol. 107(2), 186–188 (1989).
[PubMed]

Song, Q. H.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

Srinivas, S.

Srinivasan, V. J.

V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with optical coherence tomography,” Opt. Express 18(3), 2477–2494 (2010).
[CrossRef] [PubMed]

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

Stefansson, E.

C. J. Pournaras, E. Rungger-Brändle, C. E. Riva, S. H. Hardarson, and E. Stefansson, “Regulation of retinal blood flow in health and disease,” Prog. Retin. Eye Res. 27(3), 284–330 (2008).
[CrossRef] [PubMed]

Szkulmowska, A.

Szkulmowski, M.

Szlag, D.

Tan, O.

Y. Wang, A. Fawzi, O. Tan, J. Gil-Flamer, and D. Huang, “Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography,” Opt. Express 17(5), 4061–4073 (2009).
[CrossRef] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[CrossRef] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
[CrossRef] [PubMed]

Tao, Y. K.

Tearney, G.

Thornburg, K.

Troyer, A.

Vakoc, B.

van Gemert, M. J.

Wang, L.

Y. Liang, J. C. Downs, B. Fortune, G. Cull, G. A. Cioffi, and L. Wang, “Impact of systemic blood pressure on the relationship between intraocular pressure and blood flow in the optic nerve head of nonhuman primates,” Invest. Ophthalmol. Vis. Sci. 50(5), 2154–2160 (2009).
[CrossRef] [PubMed]

Wang, R. K.

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
[CrossRef] [PubMed]

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
[CrossRef] [PubMed]

Y. Jung, Z. Zhi, and R. K. Wang, “Three-dimensional optical imaging of microvascular networks within intact lymph node in vivo,” J. Biomed. Opt. 15(5), 050501 (2010).
[CrossRef] [PubMed]

Y. Jia, L. An, and R. K. Wang, “Label-free and highly sensitive optical imaging of detailed microcirculation within meninges and cortex in mice with the cranium left intact,” J. Biomed. Opt. 15(3), 030510 (2010).
[CrossRef] [PubMed]

Z. Ma, A. Liu, X. Yin, A. Troyer, K. Thornburg, R. K. Wang, and S. Rugonyi, “Measurement of absolute blood flow velocity in outflow tract of HH18 chicken embryo based on 4D reconstruction using spectral domain optical coherence tomography,” Biomed. Opt. Express 1(3), 798–811 (2010).
[CrossRef] [PubMed]

R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express 17(11), 8926–8940 (2009).
[CrossRef] [PubMed]

L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008).
[CrossRef] [PubMed]

R. K. Wang and S. Hurst, “Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 μm wavelength,” Opt. Express 15(18), 11402–11412 (2007).
[CrossRef] [PubMed]

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007).
[CrossRef] [PubMed]

Wang, X.

Wang, Y.

Y. Wang, A. Fawzi, O. Tan, J. Gil-Flamer, and D. Huang, “Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography,” Opt. Express 17(5), 4061–4073 (2009).
[CrossRef] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[CrossRef] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
[CrossRef] [PubMed]

Wehbe, H.

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

White, B.

Wilson, D. J.

Wojtkowski, M.

Wu, W.

Wudunn, D.

D. Moore, A. Harris, D. Wudunn, N. Kheradiya, and B. Siesky, “Dysfunctional regulation of ocular blood flow: A risk factor for glaucoma?” Clinical Ophthalmol. 2(4), 849–861 (2008).
[PubMed]

Yamanari, M.

Yasuno, Y.

Yatagai, T.

Yin, X.

Yun, S.

Zawadzki, R.

Zhang, H. F.

Zhao, Y.

Zhi, Z.

Y. Jung, Z. Zhi, and R. K. Wang, “Three-dimensional optical imaging of microvascular networks within intact lymph node in vivo,” J. Biomed. Opt. 15(5), 050501 (2010).
[CrossRef] [PubMed]

Zhou, Q.

Zhu, Q.

Am. J. Ophthalmol. (2)

The AGIS Investigators, “The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration,” Am. J. Ophthalmol. 130(4), 429–440 (2000).
[CrossRef] [PubMed]

A. Sommer, “Intraocular pressure and glaucoma,” Am. J. Ophthalmol. 107(2), 186–188 (1989).
[PubMed]

Am. J. Physiol. (1)

A. P. Shepherd and G. L. Riedel, “Continuous measurement of intestinal mucosal blood flow by laser-Doppler velocimetry,” Am. J. Physiol. 242(6), G668–G672 (1982).
[PubMed]

Biomed. Opt. Express (1)

Br. J. Ophthalmol. (1)

T. J. Ffytche, C. J. Bulpitt, E. M. Kohner, D. Archer, and C. T. Dollery, “Effect of changes in intraocular pressure on the retinal microcirculation,” Br. J. Ophthalmol. 58(5), 514–522 (1974).
[CrossRef] [PubMed]

Clinical Ophthalmol. (1)

D. Moore, A. Harris, D. Wudunn, N. Kheradiya, and B. Siesky, “Dysfunctional regulation of ocular blood flow: A risk factor for glaucoma?” Clinical Ophthalmol. 2(4), 849–861 (2008).
[PubMed]

Exp. Eye Res. (1)

J. C. Morrison, W. O. Cepurna Ying Guo, and E. C. Johnson, “Pathophysiology of human glaucomatous optic nerve damage: Insights from rodent models of glaucoma,” Exp. Eye Res. (2010).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (4)

C. Geijer and A. Bill, “Effects of raised intraocular pressure on retinal, prelaminar, laminar, and retrolaminar optic nerve blood flow in monkeys,” Invest. Ophthalmol. Vis. Sci. 18(10), 1030–1042 (1979).
[PubMed]

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

Y. Liang, J. C. Downs, B. Fortune, G. Cull, G. A. Cioffi, and L. Wang, “Impact of systemic blood pressure on the relationship between intraocular pressure and blood flow in the optic nerve head of nonhuman primates,” Invest. Ophthalmol. Vis. Sci. 50(5), 2154–2160 (2009).
[CrossRef] [PubMed]

J. Biomed. Opt. (4)

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
[CrossRef] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[CrossRef] [PubMed]

Y. Jia, L. An, and R. K. Wang, “Label-free and highly sensitive optical imaging of detailed microcirculation within meninges and cortex in mice with the cranium left intact,” J. Biomed. Opt. 15(3), 030510 (2010).
[CrossRef] [PubMed]

Y. Jung, Z. Zhi, and R. K. Wang, “Three-dimensional optical imaging of microvascular networks within intact lymph node in vivo,” J. Biomed. Opt. 15(5), 050501 (2010).
[CrossRef] [PubMed]

J. Glaucoma (1)

I. H. Pang and A. F. Clark, “Rodent models for glaucoma retinopathy and optic neuropathy,” J. Glaucoma 16(5), 483–505 (2007).
[CrossRef] [PubMed]

Mol. Vis. (1)

M. Mozaffarieh, M. C. Grieshaber, and J. Flammer, “Oxygen and blood flow: players in the pathogenesis of glaucoma,” Mol. Vis. 14, 224–233 (2008).
[PubMed]

Opt. Express (15)

B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11(25), 3490–3497 (2003).
[CrossRef] [PubMed]

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007).
[CrossRef] [PubMed]

V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with optical coherence tomography,” Opt. Express 18(3), 2477–2494 (2010).
[CrossRef] [PubMed]

I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express 17(26), 23736–23754 (2009).
[CrossRef] [PubMed]

Y. Wang, A. Fawzi, O. Tan, J. Gil-Flamer, and D. Huang, “Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography,” Opt. Express 17(5), 4061–4073 (2009).
[CrossRef] [PubMed]

R. K. Wang and S. Hurst, “Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 μm wavelength,” Opt. Express 15(18), 11402–11412 (2007).
[CrossRef] [PubMed]

L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008).
[CrossRef] [PubMed]

R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express 17(11), 8926–8940 (2009).
[CrossRef] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
[CrossRef] [PubMed]

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18(4), 3967–3972 (2010).
[CrossRef] [PubMed]

R. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003).
[CrossRef] [PubMed]

A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 17(13), 10584–10598 (2009).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
[CrossRef] [PubMed]

B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5493 (2005).
[CrossRef] [PubMed]

Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Opt. Express 16(16), 12350–12361 (2008).
[CrossRef] [PubMed]

Opt. Lett. (5)

Prog. Retin. Eye Res. (1)

C. J. Pournaras, E. Rungger-Brändle, C. E. Riva, S. H. Hardarson, and E. Stefansson, “Regulation of retinal blood flow in health and disease,” Prog. Retin. Eye Res. 27(3), 284–330 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the OMAG system used for collecting the spectral interferogram data sets to perform 3D angiogram and quantitative blood flow measurement of the rat retina in vivo. CCD: the charge coupled device, PC: polarization controller. Raster-scanning both the X and Y-scanner, we can collect a 3D volume data set. By keeping one of the scanners static, repeated B-scan (i.e., M-B scan) could be achieved.

Fig. 2
Fig. 2

Calculation of vessel Doppler angle from the 3D data volume. (A) Illustration of the defined vessel Doppler angle. (B) Schematic representation of the vessel Doppler angle calculation. (C) and (D) show two cross-sections of UHS-OMAG blood flow image along the C-scan direction. The three components used for Doppler angle calculation could be obtained for the two vessels circled with two different colors.

Fig. 3
Fig. 3

Typical in vivo 3-D vasculature perfusion image of the rat retina using UHS-OMAG. (A) One typical cross-sectional structural image of a rat eye around optic disk, where the different layers of posterior segment of the rat eye are demarcated; and the corresponding (B) UHS-OMAG flow image. (C) 3D vasculature perfusion image and (D) the maximal projection map of vasculatures in the rat retina. White bar = 250 µm.

Fig. 4
Fig. 4

Measurement of absolute velocity within retinal blood vessels in the rat. (A) Microvasculature angiogram of a normal rat retina in vivo where the blue line and arrow indicate where the D-OMAG data were captured. (B) D-OMAG phase difference map in one cross section (upper row) and the 3D rendered phase difference extended in 20 seconds at the same cross section. C) 3D vasculature image showing the vessel orientation that was used for calculating the Doppler angle and vessel diameter for the vessels analyzed. (D) The axial velocity profile of vessel 2 along depth direction. (E) The axial velocities in the three vessels over 20 sec periods and (F) the FFT of the values for V2 in (E). White bar = 500 µm.

Fig. 5
Fig. 5

Representative UHS-OMAG micro-angiogram maps of the rat RBF showing the changes of retinal microvascular network around the optic disk due to the increase of IOPs (10 mmHg to 100mmHg), and its reperfusion after the IOP returned back to 10 mmHg. The IOP in mmHg is given in the upper middle of each image, and white bar = 500 µm.

Fig. 6
Fig. 6

(A) shows the microangiogram from Fig. 5 used for locating the vessels for quantitative analysis. The position marked as the blue line indicates the cross-section where the Doppler OMAG data were captured. (B) Cross-sectional Doppler phase image obtained using D-OMAG algorithm. (C) Plot of the absolute blood flow velocity at the center of the three vessels 1, 2 and 3 shown in (A) and (B) labeled as V1, V2, V3 versus different IOPs. Vessel 1 is an artery while vessel 2 and 3 are veins. White bar = 500 µm.

Fig. 7
Fig. 7

Plot of the blood flow rates in the three vessels 1, 2 and 3 in Figs. 6 (A) and 6 (B) labeled as V1, V2, and V3 under different IOPs.

Tables (1)

Tables Icon

Table 1 Quantitative Results of the Blood Flow for the Retinal Artery and Vein

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I ( k j , t ) = 2 S ( k j ) E R [ a ( z , t ) cos ( 2 k j n z ) d z + a ( z 1 ) cos ( 2 k j n ( z 1 v t ) ) ]
I i ( t , k ) = I ( t + Δ t B , k ) I ( t , k ) , i = 1 , 2 , 3...200
V Z = Δ φ λ 0 4 π n Δ t A
V Z max = ± λ 0 4 n Δ t A
ϕ = π arccos ( δ z δ x 2 + δ y 2 + δ z 2 )
V = | V Z cos ϕ |
F l o w R a t e = V ¯ S

Metrics