Abstract

Changes in corneal optics have been measured after downward gaze. However, ocular aberrations during downward gaze have not been previously measured. A commercial Shack-Hartmann aberrometer (COAS-HD) was modified by adding a relay lens system and a rotatable beam splitter to allow on-axis aberration measurements in primary gaze and downward gaze with binocular fixation. Measurements with the modified aberrometer (COAS-HD relay system) in primary and downward gaze were validated against a conventional aberrometer. In human eyes, there were significant changes (p<0.05) in defocus C(2,0), primary astigmatism C(2,2) and vertical coma C(3,−1) in downward gaze (25 degrees) compared to primary gaze, indicating the potential influence of biomechanical forces on the optics of the eye in downward gaze. To demonstrate a further clinical application of this modified aberrometer, we measured ocular aberrations when wearing a progressive addition lens (PAL) in primary gaze (0 degree), 15 degrees downward gaze and 25 degrees downward gaze.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. C. Howland and B. Howland, “A subjective method for the measurement of monochromatic aberrations of the eye,” J. Opt. Soc. Am. 67(11), 1508–1518 (1977).
    [CrossRef] [PubMed]
  2. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11(7), 1949–1957 (1994).
    [CrossRef] [PubMed]
  3. L. N. Thibos and X. Hong, “Clinical applications of the Shack-Hartmann aberrometer,” Optom. Vis. Sci. 76(12), 817–825 (1999).
    [CrossRef] [PubMed]
  4. J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14(11), 2873–2883 (1997).
    [CrossRef] [PubMed]
  5. X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003).
    [CrossRef] [PubMed]
  6. P. Prado, J. Arines, S. Bará, S. Manzanera, A. Mira-Agudelo, and P. Artal, “Changes of ocular aberrations with gaze,” Ophthalmic Physiol. Opt. 29(3), 264–271 (2009).
    [CrossRef] [PubMed]
  7. H. Radhakrishnan and W. N. Charman, “Refractive changes associated with oblique viewing and reading in myopes and emmetropes,” J. Vis. 7(8), 5–15 (2007).
    [CrossRef] [PubMed]
  8. A. Mathur, D. A. Atchison, S. Kasthurirangan, N. A. Dietz, S. Luong, S. P. Chin, W. L. Lin, and S. W. Hoo, “The influence of oblique viewing on axial and peripheral refraction for emmetropes and myopes,” Ophthalmic Physiol. Opt. 29(2), 155–161 (2009).
    [CrossRef] [PubMed]
  9. T. Buehren, M. J. Collins, and L. Carney, “Corneal aberrations and reading,” Optom. Vis. Sci. 80(2), 159–166 (2003).
    [CrossRef] [PubMed]
  10. D. Mok, A. Ro, W. Cadera, J. D. Crawford, and T. Vilis, “Rotation of Listing’s plane during vergence,” Vision Res. 32(11), 2055–2064 (1992).
    [CrossRef] [PubMed]
  11. M. J. Tjon-Fo-Sang, J. T. de Faber, C. Kingma, and W. H. Beekhuis, “Cyclotorsion: a possible cause of residual astigmatism in refractive surgery,” J. Cataract Refract. Surg. 28(4), 599–602 (2002).
    [CrossRef] [PubMed]
  12. A. Glasser and P. L. Kaufman, “The mechanism of accommodation in primates,” Ophthalmology 106(5), 863–872 (1999).
    [CrossRef] [PubMed]
  13. H. Kasprzak and B. K. Pierscionek, “Modelling the gravitational sag of the cornea and the subsequent quality of the refracted image,” J. Mod. Opt. 49(13), 2153–2166 (2002).
    [CrossRef]
  14. A. J. Shaw, M. J. Collins, B. A. Davis, and L. G. Carney, “Corneal refractive changes due to short-term eyelid pressure in downward gaze,” J. Cataract Refract. Surg. 34(9), 1546–1553 (2008).
    [CrossRef] [PubMed]
  15. A. J. Shaw, M. J. Collins, B. A. Davis, and L. G. Carney, “Eyelid pressure: inferences from corneal topographic changes,” Cornea 28(2), 181–188 (2009).
    [CrossRef] [PubMed]
  16. M. J. Collins, T. Buehren, A. Bece, and S. C. Voetz, “Corneal optics after reading, microscopy and computer work,” Acta Ophthalmol. Scand. 84(2), 216–224 (2006).
    [CrossRef] [PubMed]
  17. M. Collins, B. Davis, and J. Wood, “Microfluctuations of steady-state accommodation and the cardiopulmonary system,” Vision Res. 35(17), 2491–2502 (1995).
    [PubMed]
  18. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Report from the VSIA taskforce on standards for reporting optical aberrations of the eye,” J. Refract. Surg. 16(5), S654–S655 (2000).
    [PubMed]
  19. J. Schwiegerling, “Scaling Zernike expansion coefficients to different pupil sizes,” J. Opt. Soc. Am. A 19(10), 1937–1945 (2002).
    [CrossRef] [PubMed]
  20. D. R. Iskander, M. J. Collins, M. R. Morelande, and M. Zhu, “Analyzing the dynamic wavefront aberrations in the human eye,” IEEE Trans. Biomed. Eng. 51(11), 1969–1980 (2004).
    [CrossRef] [PubMed]
  21. M. G. Doane, “Interactions of eyelids and tears in corneal wetting and the dynamics of the normal human eyeblink,” Am. J. Ophthalmol. 89(4), 507–516 (1980).
    [PubMed]
  22. L. Lundström and P. Unsbo, “Transformation of Zernike coefficients: scaled, translated, and rotated wavefronts with circular and elliptical pupils,” J. Opt. Soc. Am. A 24(3), 569–577 (2007).
    [CrossRef] [PubMed]
  23. D. R. Iskander, B. A. Davis, M. J. Collins, and R. Franklin, “Objective refraction from monochromatic wavefront aberrations via Zernike power polynomials,” Ophthalmic Physiol. Opt. 27(3), 245–255 (2007).
    [CrossRef] [PubMed]
  24. X. Cheng, A. Bradley, and L. N. Thibos, “Predicting subjective judgment of best focus with objective image quality metrics,” J. Vis. 4(4), 7–18 (2004).
    [CrossRef] [PubMed]
  25. D. R. Iskander, “Computational aspects of the visual Strehl ratio,” Optom. Vis. Sci. 83(1), 57–59 (2006).
    [CrossRef] [PubMed]
  26. E. A. Villegas and P. Artal, “Spatially resolved wavefront aberrations of ophthalmic progressive-power lenses in normal viewing conditions,” Optom. Vis. Sci. 80(2), 106–114 (2003).
    [CrossRef] [PubMed]
  27. E. A. Villegas and P. Artal, “Comparison of aberrations in different types of progressive power lenses,” Ophthalmic Physiol. Opt. 24(5), 419–426 (2004).
    [CrossRef] [PubMed]
  28. C. Castellini, F. Francini, and B. Tiribilli, “Hartmann test modification for measuring ophthalmic progressive lenses,” Appl. Opt. 33(19), 4120–4124 (1994).
    [CrossRef] [PubMed]
  29. C. W. Fowler and C. M. Sullivan, “A comparison of three methods for the measurement of progressive addition lenses,” Ophthalmic Physiol. Opt. 9(1), 81–85 (1989).
    [CrossRef] [PubMed]
  30. T. Spiers and C. C. Hull, “Optical Fourier filtering for whole lens assessment of progressive power lenses,” Ophthalmic Physiol. Opt. 20(4), 281–289 (2000).
    [CrossRef] [PubMed]
  31. T. W. Raasch, L. Su, and A. Yi, “Whole-surface characterization of progressive addition lenses,” Optom. Vis. Sci. 88(2), E217–E226 (2011).
    [CrossRef] [PubMed]
  32. B. Bourdoncle, J. P. Chauveau, and J. L. Mercier, “Traps in displaying optical performances of a progressive-addition lens,” Appl. Opt. 31(19), 3586–3593 (1992).
    [CrossRef] [PubMed]
  33. R. Blendowske, E. A. Villegas, and P. Artal, “An analytical model describing aberrations in the progression corridor of progressive addition lenses,” Optom. Vis. Sci. 83(9), 666–671 (2006).
    [CrossRef] [PubMed]
  34. D. Volk and J. W. Weinberg, “The omnifocal lens for presbyopia,” Arch. Ophthalmol. 68, 776–784 (1962).
    [PubMed]
  35. G. Minkwitz, “On the surface astigmatism of a fixed symmetrical aspheric surface,” Opt. Acta (Lond.) 10, 223–227 (1963).
    [PubMed]
  36. R. McIlraith, G. Young, and C. Hunt, “Toric lens orientation and visual acuity in non-standard conditions,” Cont. Lens Anterior Eye 33(1), 23–26 (2010).
    [CrossRef] [PubMed]

2011

T. W. Raasch, L. Su, and A. Yi, “Whole-surface characterization of progressive addition lenses,” Optom. Vis. Sci. 88(2), E217–E226 (2011).
[CrossRef] [PubMed]

2010

R. McIlraith, G. Young, and C. Hunt, “Toric lens orientation and visual acuity in non-standard conditions,” Cont. Lens Anterior Eye 33(1), 23–26 (2010).
[CrossRef] [PubMed]

2009

P. Prado, J. Arines, S. Bará, S. Manzanera, A. Mira-Agudelo, and P. Artal, “Changes of ocular aberrations with gaze,” Ophthalmic Physiol. Opt. 29(3), 264–271 (2009).
[CrossRef] [PubMed]

A. Mathur, D. A. Atchison, S. Kasthurirangan, N. A. Dietz, S. Luong, S. P. Chin, W. L. Lin, and S. W. Hoo, “The influence of oblique viewing on axial and peripheral refraction for emmetropes and myopes,” Ophthalmic Physiol. Opt. 29(2), 155–161 (2009).
[CrossRef] [PubMed]

A. J. Shaw, M. J. Collins, B. A. Davis, and L. G. Carney, “Eyelid pressure: inferences from corneal topographic changes,” Cornea 28(2), 181–188 (2009).
[CrossRef] [PubMed]

2008

A. J. Shaw, M. J. Collins, B. A. Davis, and L. G. Carney, “Corneal refractive changes due to short-term eyelid pressure in downward gaze,” J. Cataract Refract. Surg. 34(9), 1546–1553 (2008).
[CrossRef] [PubMed]

2007

H. Radhakrishnan and W. N. Charman, “Refractive changes associated with oblique viewing and reading in myopes and emmetropes,” J. Vis. 7(8), 5–15 (2007).
[CrossRef] [PubMed]

L. Lundström and P. Unsbo, “Transformation of Zernike coefficients: scaled, translated, and rotated wavefronts with circular and elliptical pupils,” J. Opt. Soc. Am. A 24(3), 569–577 (2007).
[CrossRef] [PubMed]

D. R. Iskander, B. A. Davis, M. J. Collins, and R. Franklin, “Objective refraction from monochromatic wavefront aberrations via Zernike power polynomials,” Ophthalmic Physiol. Opt. 27(3), 245–255 (2007).
[CrossRef] [PubMed]

2006

D. R. Iskander, “Computational aspects of the visual Strehl ratio,” Optom. Vis. Sci. 83(1), 57–59 (2006).
[CrossRef] [PubMed]

R. Blendowske, E. A. Villegas, and P. Artal, “An analytical model describing aberrations in the progression corridor of progressive addition lenses,” Optom. Vis. Sci. 83(9), 666–671 (2006).
[CrossRef] [PubMed]

M. J. Collins, T. Buehren, A. Bece, and S. C. Voetz, “Corneal optics after reading, microscopy and computer work,” Acta Ophthalmol. Scand. 84(2), 216–224 (2006).
[CrossRef] [PubMed]

2004

E. A. Villegas and P. Artal, “Comparison of aberrations in different types of progressive power lenses,” Ophthalmic Physiol. Opt. 24(5), 419–426 (2004).
[CrossRef] [PubMed]

X. Cheng, A. Bradley, and L. N. Thibos, “Predicting subjective judgment of best focus with objective image quality metrics,” J. Vis. 4(4), 7–18 (2004).
[CrossRef] [PubMed]

D. R. Iskander, M. J. Collins, M. R. Morelande, and M. Zhu, “Analyzing the dynamic wavefront aberrations in the human eye,” IEEE Trans. Biomed. Eng. 51(11), 1969–1980 (2004).
[CrossRef] [PubMed]

2003

E. A. Villegas and P. Artal, “Spatially resolved wavefront aberrations of ophthalmic progressive-power lenses in normal viewing conditions,” Optom. Vis. Sci. 80(2), 106–114 (2003).
[CrossRef] [PubMed]

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003).
[CrossRef] [PubMed]

T. Buehren, M. J. Collins, and L. Carney, “Corneal aberrations and reading,” Optom. Vis. Sci. 80(2), 159–166 (2003).
[CrossRef] [PubMed]

2002

H. Kasprzak and B. K. Pierscionek, “Modelling the gravitational sag of the cornea and the subsequent quality of the refracted image,” J. Mod. Opt. 49(13), 2153–2166 (2002).
[CrossRef]

M. J. Tjon-Fo-Sang, J. T. de Faber, C. Kingma, and W. H. Beekhuis, “Cyclotorsion: a possible cause of residual astigmatism in refractive surgery,” J. Cataract Refract. Surg. 28(4), 599–602 (2002).
[CrossRef] [PubMed]

J. Schwiegerling, “Scaling Zernike expansion coefficients to different pupil sizes,” J. Opt. Soc. Am. A 19(10), 1937–1945 (2002).
[CrossRef] [PubMed]

2000

T. Spiers and C. C. Hull, “Optical Fourier filtering for whole lens assessment of progressive power lenses,” Ophthalmic Physiol. Opt. 20(4), 281–289 (2000).
[CrossRef] [PubMed]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Report from the VSIA taskforce on standards for reporting optical aberrations of the eye,” J. Refract. Surg. 16(5), S654–S655 (2000).
[PubMed]

1999

A. Glasser and P. L. Kaufman, “The mechanism of accommodation in primates,” Ophthalmology 106(5), 863–872 (1999).
[CrossRef] [PubMed]

L. N. Thibos and X. Hong, “Clinical applications of the Shack-Hartmann aberrometer,” Optom. Vis. Sci. 76(12), 817–825 (1999).
[CrossRef] [PubMed]

1997

1995

M. Collins, B. Davis, and J. Wood, “Microfluctuations of steady-state accommodation and the cardiopulmonary system,” Vision Res. 35(17), 2491–2502 (1995).
[PubMed]

1994

1992

B. Bourdoncle, J. P. Chauveau, and J. L. Mercier, “Traps in displaying optical performances of a progressive-addition lens,” Appl. Opt. 31(19), 3586–3593 (1992).
[CrossRef] [PubMed]

D. Mok, A. Ro, W. Cadera, J. D. Crawford, and T. Vilis, “Rotation of Listing’s plane during vergence,” Vision Res. 32(11), 2055–2064 (1992).
[CrossRef] [PubMed]

1989

C. W. Fowler and C. M. Sullivan, “A comparison of three methods for the measurement of progressive addition lenses,” Ophthalmic Physiol. Opt. 9(1), 81–85 (1989).
[CrossRef] [PubMed]

1980

M. G. Doane, “Interactions of eyelids and tears in corneal wetting and the dynamics of the normal human eyeblink,” Am. J. Ophthalmol. 89(4), 507–516 (1980).
[PubMed]

1977

1963

G. Minkwitz, “On the surface astigmatism of a fixed symmetrical aspheric surface,” Opt. Acta (Lond.) 10, 223–227 (1963).
[PubMed]

1962

D. Volk and J. W. Weinberg, “The omnifocal lens for presbyopia,” Arch. Ophthalmol. 68, 776–784 (1962).
[PubMed]

Applegate, R. A.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Report from the VSIA taskforce on standards for reporting optical aberrations of the eye,” J. Refract. Surg. 16(5), S654–S655 (2000).
[PubMed]

Arines, J.

P. Prado, J. Arines, S. Bará, S. Manzanera, A. Mira-Agudelo, and P. Artal, “Changes of ocular aberrations with gaze,” Ophthalmic Physiol. Opt. 29(3), 264–271 (2009).
[CrossRef] [PubMed]

Artal, P.

P. Prado, J. Arines, S. Bará, S. Manzanera, A. Mira-Agudelo, and P. Artal, “Changes of ocular aberrations with gaze,” Ophthalmic Physiol. Opt. 29(3), 264–271 (2009).
[CrossRef] [PubMed]

R. Blendowske, E. A. Villegas, and P. Artal, “An analytical model describing aberrations in the progression corridor of progressive addition lenses,” Optom. Vis. Sci. 83(9), 666–671 (2006).
[CrossRef] [PubMed]

E. A. Villegas and P. Artal, “Comparison of aberrations in different types of progressive power lenses,” Ophthalmic Physiol. Opt. 24(5), 419–426 (2004).
[CrossRef] [PubMed]

E. A. Villegas and P. Artal, “Spatially resolved wavefront aberrations of ophthalmic progressive-power lenses in normal viewing conditions,” Optom. Vis. Sci. 80(2), 106–114 (2003).
[CrossRef] [PubMed]

Atchison, D. A.

A. Mathur, D. A. Atchison, S. Kasthurirangan, N. A. Dietz, S. Luong, S. P. Chin, W. L. Lin, and S. W. Hoo, “The influence of oblique viewing on axial and peripheral refraction for emmetropes and myopes,” Ophthalmic Physiol. Opt. 29(2), 155–161 (2009).
[CrossRef] [PubMed]

Bará, S.

P. Prado, J. Arines, S. Bará, S. Manzanera, A. Mira-Agudelo, and P. Artal, “Changes of ocular aberrations with gaze,” Ophthalmic Physiol. Opt. 29(3), 264–271 (2009).
[CrossRef] [PubMed]

Bece, A.

M. J. Collins, T. Buehren, A. Bece, and S. C. Voetz, “Corneal optics after reading, microscopy and computer work,” Acta Ophthalmol. Scand. 84(2), 216–224 (2006).
[CrossRef] [PubMed]

Beekhuis, W. H.

M. J. Tjon-Fo-Sang, J. T. de Faber, C. Kingma, and W. H. Beekhuis, “Cyclotorsion: a possible cause of residual astigmatism in refractive surgery,” J. Cataract Refract. Surg. 28(4), 599–602 (2002).
[CrossRef] [PubMed]

Bille, J. F.

Blendowske, R.

R. Blendowske, E. A. Villegas, and P. Artal, “An analytical model describing aberrations in the progression corridor of progressive addition lenses,” Optom. Vis. Sci. 83(9), 666–671 (2006).
[CrossRef] [PubMed]

Bourdoncle, B.

Bradley, A.

X. Cheng, A. Bradley, and L. N. Thibos, “Predicting subjective judgment of best focus with objective image quality metrics,” J. Vis. 4(4), 7–18 (2004).
[CrossRef] [PubMed]

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003).
[CrossRef] [PubMed]

Buehren, T.

M. J. Collins, T. Buehren, A. Bece, and S. C. Voetz, “Corneal optics after reading, microscopy and computer work,” Acta Ophthalmol. Scand. 84(2), 216–224 (2006).
[CrossRef] [PubMed]

T. Buehren, M. J. Collins, and L. Carney, “Corneal aberrations and reading,” Optom. Vis. Sci. 80(2), 159–166 (2003).
[CrossRef] [PubMed]

Cadera, W.

D. Mok, A. Ro, W. Cadera, J. D. Crawford, and T. Vilis, “Rotation of Listing’s plane during vergence,” Vision Res. 32(11), 2055–2064 (1992).
[CrossRef] [PubMed]

Carney, L.

T. Buehren, M. J. Collins, and L. Carney, “Corneal aberrations and reading,” Optom. Vis. Sci. 80(2), 159–166 (2003).
[CrossRef] [PubMed]

Carney, L. G.

A. J. Shaw, M. J. Collins, B. A. Davis, and L. G. Carney, “Eyelid pressure: inferences from corneal topographic changes,” Cornea 28(2), 181–188 (2009).
[CrossRef] [PubMed]

A. J. Shaw, M. J. Collins, B. A. Davis, and L. G. Carney, “Corneal refractive changes due to short-term eyelid pressure in downward gaze,” J. Cataract Refract. Surg. 34(9), 1546–1553 (2008).
[CrossRef] [PubMed]

Castellini, C.

Charman, W. N.

H. Radhakrishnan and W. N. Charman, “Refractive changes associated with oblique viewing and reading in myopes and emmetropes,” J. Vis. 7(8), 5–15 (2007).
[CrossRef] [PubMed]

Chauveau, J. P.

Cheng, X.

X. Cheng, A. Bradley, and L. N. Thibos, “Predicting subjective judgment of best focus with objective image quality metrics,” J. Vis. 4(4), 7–18 (2004).
[CrossRef] [PubMed]

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003).
[CrossRef] [PubMed]

Chin, S. P.

A. Mathur, D. A. Atchison, S. Kasthurirangan, N. A. Dietz, S. Luong, S. P. Chin, W. L. Lin, and S. W. Hoo, “The influence of oblique viewing on axial and peripheral refraction for emmetropes and myopes,” Ophthalmic Physiol. Opt. 29(2), 155–161 (2009).
[CrossRef] [PubMed]

Collins, M.

M. Collins, B. Davis, and J. Wood, “Microfluctuations of steady-state accommodation and the cardiopulmonary system,” Vision Res. 35(17), 2491–2502 (1995).
[PubMed]

Collins, M. J.

A. J. Shaw, M. J. Collins, B. A. Davis, and L. G. Carney, “Eyelid pressure: inferences from corneal topographic changes,” Cornea 28(2), 181–188 (2009).
[CrossRef] [PubMed]

A. J. Shaw, M. J. Collins, B. A. Davis, and L. G. Carney, “Corneal refractive changes due to short-term eyelid pressure in downward gaze,” J. Cataract Refract. Surg. 34(9), 1546–1553 (2008).
[CrossRef] [PubMed]

D. R. Iskander, B. A. Davis, M. J. Collins, and R. Franklin, “Objective refraction from monochromatic wavefront aberrations via Zernike power polynomials,” Ophthalmic Physiol. Opt. 27(3), 245–255 (2007).
[CrossRef] [PubMed]

M. J. Collins, T. Buehren, A. Bece, and S. C. Voetz, “Corneal optics after reading, microscopy and computer work,” Acta Ophthalmol. Scand. 84(2), 216–224 (2006).
[CrossRef] [PubMed]

D. R. Iskander, M. J. Collins, M. R. Morelande, and M. Zhu, “Analyzing the dynamic wavefront aberrations in the human eye,” IEEE Trans. Biomed. Eng. 51(11), 1969–1980 (2004).
[CrossRef] [PubMed]

T. Buehren, M. J. Collins, and L. Carney, “Corneal aberrations and reading,” Optom. Vis. Sci. 80(2), 159–166 (2003).
[CrossRef] [PubMed]

Crawford, J. D.

D. Mok, A. Ro, W. Cadera, J. D. Crawford, and T. Vilis, “Rotation of Listing’s plane during vergence,” Vision Res. 32(11), 2055–2064 (1992).
[CrossRef] [PubMed]

Davis, B.

M. Collins, B. Davis, and J. Wood, “Microfluctuations of steady-state accommodation and the cardiopulmonary system,” Vision Res. 35(17), 2491–2502 (1995).
[PubMed]

Davis, B. A.

A. J. Shaw, M. J. Collins, B. A. Davis, and L. G. Carney, “Eyelid pressure: inferences from corneal topographic changes,” Cornea 28(2), 181–188 (2009).
[CrossRef] [PubMed]

A. J. Shaw, M. J. Collins, B. A. Davis, and L. G. Carney, “Corneal refractive changes due to short-term eyelid pressure in downward gaze,” J. Cataract Refract. Surg. 34(9), 1546–1553 (2008).
[CrossRef] [PubMed]

D. R. Iskander, B. A. Davis, M. J. Collins, and R. Franklin, “Objective refraction from monochromatic wavefront aberrations via Zernike power polynomials,” Ophthalmic Physiol. Opt. 27(3), 245–255 (2007).
[CrossRef] [PubMed]

de Faber, J. T.

M. J. Tjon-Fo-Sang, J. T. de Faber, C. Kingma, and W. H. Beekhuis, “Cyclotorsion: a possible cause of residual astigmatism in refractive surgery,” J. Cataract Refract. Surg. 28(4), 599–602 (2002).
[CrossRef] [PubMed]

Dietz, N. A.

A. Mathur, D. A. Atchison, S. Kasthurirangan, N. A. Dietz, S. Luong, S. P. Chin, W. L. Lin, and S. W. Hoo, “The influence of oblique viewing on axial and peripheral refraction for emmetropes and myopes,” Ophthalmic Physiol. Opt. 29(2), 155–161 (2009).
[CrossRef] [PubMed]

Doane, M. G.

M. G. Doane, “Interactions of eyelids and tears in corneal wetting and the dynamics of the normal human eyeblink,” Am. J. Ophthalmol. 89(4), 507–516 (1980).
[PubMed]

Fowler, C. W.

C. W. Fowler and C. M. Sullivan, “A comparison of three methods for the measurement of progressive addition lenses,” Ophthalmic Physiol. Opt. 9(1), 81–85 (1989).
[CrossRef] [PubMed]

Francini, F.

Franklin, R.

D. R. Iskander, B. A. Davis, M. J. Collins, and R. Franklin, “Objective refraction from monochromatic wavefront aberrations via Zernike power polynomials,” Ophthalmic Physiol. Opt. 27(3), 245–255 (2007).
[CrossRef] [PubMed]

Glasser, A.

A. Glasser and P. L. Kaufman, “The mechanism of accommodation in primates,” Ophthalmology 106(5), 863–872 (1999).
[CrossRef] [PubMed]

Goelz, S.

Grimm, B.

Himebaugh, N. L.

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003).
[CrossRef] [PubMed]

Hong, X.

L. N. Thibos and X. Hong, “Clinical applications of the Shack-Hartmann aberrometer,” Optom. Vis. Sci. 76(12), 817–825 (1999).
[CrossRef] [PubMed]

Hoo, S. W.

A. Mathur, D. A. Atchison, S. Kasthurirangan, N. A. Dietz, S. Luong, S. P. Chin, W. L. Lin, and S. W. Hoo, “The influence of oblique viewing on axial and peripheral refraction for emmetropes and myopes,” Ophthalmic Physiol. Opt. 29(2), 155–161 (2009).
[CrossRef] [PubMed]

Howland, B.

Howland, H. C.

Hull, C. C.

T. Spiers and C. C. Hull, “Optical Fourier filtering for whole lens assessment of progressive power lenses,” Ophthalmic Physiol. Opt. 20(4), 281–289 (2000).
[CrossRef] [PubMed]

Hunt, C.

R. McIlraith, G. Young, and C. Hunt, “Toric lens orientation and visual acuity in non-standard conditions,” Cont. Lens Anterior Eye 33(1), 23–26 (2010).
[CrossRef] [PubMed]

Iskander, D. R.

D. R. Iskander, B. A. Davis, M. J. Collins, and R. Franklin, “Objective refraction from monochromatic wavefront aberrations via Zernike power polynomials,” Ophthalmic Physiol. Opt. 27(3), 245–255 (2007).
[CrossRef] [PubMed]

D. R. Iskander, “Computational aspects of the visual Strehl ratio,” Optom. Vis. Sci. 83(1), 57–59 (2006).
[CrossRef] [PubMed]

D. R. Iskander, M. J. Collins, M. R. Morelande, and M. Zhu, “Analyzing the dynamic wavefront aberrations in the human eye,” IEEE Trans. Biomed. Eng. 51(11), 1969–1980 (2004).
[CrossRef] [PubMed]

Kasprzak, H.

H. Kasprzak and B. K. Pierscionek, “Modelling the gravitational sag of the cornea and the subsequent quality of the refracted image,” J. Mod. Opt. 49(13), 2153–2166 (2002).
[CrossRef]

Kasthurirangan, S.

A. Mathur, D. A. Atchison, S. Kasthurirangan, N. A. Dietz, S. Luong, S. P. Chin, W. L. Lin, and S. W. Hoo, “The influence of oblique viewing on axial and peripheral refraction for emmetropes and myopes,” Ophthalmic Physiol. Opt. 29(2), 155–161 (2009).
[CrossRef] [PubMed]

Kaufman, P. L.

A. Glasser and P. L. Kaufman, “The mechanism of accommodation in primates,” Ophthalmology 106(5), 863–872 (1999).
[CrossRef] [PubMed]

Kingma, C.

M. J. Tjon-Fo-Sang, J. T. de Faber, C. Kingma, and W. H. Beekhuis, “Cyclotorsion: a possible cause of residual astigmatism in refractive surgery,” J. Cataract Refract. Surg. 28(4), 599–602 (2002).
[CrossRef] [PubMed]

Kollbaum, P. S.

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003).
[CrossRef] [PubMed]

Liang, J.

Lin, W. L.

A. Mathur, D. A. Atchison, S. Kasthurirangan, N. A. Dietz, S. Luong, S. P. Chin, W. L. Lin, and S. W. Hoo, “The influence of oblique viewing on axial and peripheral refraction for emmetropes and myopes,” Ophthalmic Physiol. Opt. 29(2), 155–161 (2009).
[CrossRef] [PubMed]

Lundström, L.

Luong, S.

A. Mathur, D. A. Atchison, S. Kasthurirangan, N. A. Dietz, S. Luong, S. P. Chin, W. L. Lin, and S. W. Hoo, “The influence of oblique viewing on axial and peripheral refraction for emmetropes and myopes,” Ophthalmic Physiol. Opt. 29(2), 155–161 (2009).
[CrossRef] [PubMed]

Manzanera, S.

P. Prado, J. Arines, S. Bará, S. Manzanera, A. Mira-Agudelo, and P. Artal, “Changes of ocular aberrations with gaze,” Ophthalmic Physiol. Opt. 29(3), 264–271 (2009).
[CrossRef] [PubMed]

Mathur, A.

A. Mathur, D. A. Atchison, S. Kasthurirangan, N. A. Dietz, S. Luong, S. P. Chin, W. L. Lin, and S. W. Hoo, “The influence of oblique viewing on axial and peripheral refraction for emmetropes and myopes,” Ophthalmic Physiol. Opt. 29(2), 155–161 (2009).
[CrossRef] [PubMed]

McIlraith, R.

R. McIlraith, G. Young, and C. Hunt, “Toric lens orientation and visual acuity in non-standard conditions,” Cont. Lens Anterior Eye 33(1), 23–26 (2010).
[CrossRef] [PubMed]

Mercier, J. L.

Minkwitz, G.

G. Minkwitz, “On the surface astigmatism of a fixed symmetrical aspheric surface,” Opt. Acta (Lond.) 10, 223–227 (1963).
[PubMed]

Mira-Agudelo, A.

P. Prado, J. Arines, S. Bará, S. Manzanera, A. Mira-Agudelo, and P. Artal, “Changes of ocular aberrations with gaze,” Ophthalmic Physiol. Opt. 29(3), 264–271 (2009).
[CrossRef] [PubMed]

Mok, D.

D. Mok, A. Ro, W. Cadera, J. D. Crawford, and T. Vilis, “Rotation of Listing’s plane during vergence,” Vision Res. 32(11), 2055–2064 (1992).
[CrossRef] [PubMed]

Morelande, M. R.

D. R. Iskander, M. J. Collins, M. R. Morelande, and M. Zhu, “Analyzing the dynamic wavefront aberrations in the human eye,” IEEE Trans. Biomed. Eng. 51(11), 1969–1980 (2004).
[CrossRef] [PubMed]

Pierscionek, B. K.

H. Kasprzak and B. K. Pierscionek, “Modelling the gravitational sag of the cornea and the subsequent quality of the refracted image,” J. Mod. Opt. 49(13), 2153–2166 (2002).
[CrossRef]

Prado, P.

P. Prado, J. Arines, S. Bará, S. Manzanera, A. Mira-Agudelo, and P. Artal, “Changes of ocular aberrations with gaze,” Ophthalmic Physiol. Opt. 29(3), 264–271 (2009).
[CrossRef] [PubMed]

Raasch, T. W.

T. W. Raasch, L. Su, and A. Yi, “Whole-surface characterization of progressive addition lenses,” Optom. Vis. Sci. 88(2), E217–E226 (2011).
[CrossRef] [PubMed]

Radhakrishnan, H.

H. Radhakrishnan and W. N. Charman, “Refractive changes associated with oblique viewing and reading in myopes and emmetropes,” J. Vis. 7(8), 5–15 (2007).
[CrossRef] [PubMed]

Ro, A.

D. Mok, A. Ro, W. Cadera, J. D. Crawford, and T. Vilis, “Rotation of Listing’s plane during vergence,” Vision Res. 32(11), 2055–2064 (1992).
[CrossRef] [PubMed]

Schwiegerling, J.

Schwiegerling, J. T.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Report from the VSIA taskforce on standards for reporting optical aberrations of the eye,” J. Refract. Surg. 16(5), S654–S655 (2000).
[PubMed]

Shaw, A. J.

A. J. Shaw, M. J. Collins, B. A. Davis, and L. G. Carney, “Eyelid pressure: inferences from corneal topographic changes,” Cornea 28(2), 181–188 (2009).
[CrossRef] [PubMed]

A. J. Shaw, M. J. Collins, B. A. Davis, and L. G. Carney, “Corneal refractive changes due to short-term eyelid pressure in downward gaze,” J. Cataract Refract. Surg. 34(9), 1546–1553 (2008).
[CrossRef] [PubMed]

Spiers, T.

T. Spiers and C. C. Hull, “Optical Fourier filtering for whole lens assessment of progressive power lenses,” Ophthalmic Physiol. Opt. 20(4), 281–289 (2000).
[CrossRef] [PubMed]

Su, L.

T. W. Raasch, L. Su, and A. Yi, “Whole-surface characterization of progressive addition lenses,” Optom. Vis. Sci. 88(2), E217–E226 (2011).
[CrossRef] [PubMed]

Sullivan, C. M.

C. W. Fowler and C. M. Sullivan, “A comparison of three methods for the measurement of progressive addition lenses,” Ophthalmic Physiol. Opt. 9(1), 81–85 (1989).
[CrossRef] [PubMed]

Thibos, L. N.

X. Cheng, A. Bradley, and L. N. Thibos, “Predicting subjective judgment of best focus with objective image quality metrics,” J. Vis. 4(4), 7–18 (2004).
[CrossRef] [PubMed]

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003).
[CrossRef] [PubMed]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Report from the VSIA taskforce on standards for reporting optical aberrations of the eye,” J. Refract. Surg. 16(5), S654–S655 (2000).
[PubMed]

L. N. Thibos and X. Hong, “Clinical applications of the Shack-Hartmann aberrometer,” Optom. Vis. Sci. 76(12), 817–825 (1999).
[CrossRef] [PubMed]

Tiribilli, B.

Tjon-Fo-Sang, M. J.

M. J. Tjon-Fo-Sang, J. T. de Faber, C. Kingma, and W. H. Beekhuis, “Cyclotorsion: a possible cause of residual astigmatism in refractive surgery,” J. Cataract Refract. Surg. 28(4), 599–602 (2002).
[CrossRef] [PubMed]

Unsbo, P.

Vilis, T.

D. Mok, A. Ro, W. Cadera, J. D. Crawford, and T. Vilis, “Rotation of Listing’s plane during vergence,” Vision Res. 32(11), 2055–2064 (1992).
[CrossRef] [PubMed]

Villegas, E. A.

R. Blendowske, E. A. Villegas, and P. Artal, “An analytical model describing aberrations in the progression corridor of progressive addition lenses,” Optom. Vis. Sci. 83(9), 666–671 (2006).
[CrossRef] [PubMed]

E. A. Villegas and P. Artal, “Comparison of aberrations in different types of progressive power lenses,” Ophthalmic Physiol. Opt. 24(5), 419–426 (2004).
[CrossRef] [PubMed]

E. A. Villegas and P. Artal, “Spatially resolved wavefront aberrations of ophthalmic progressive-power lenses in normal viewing conditions,” Optom. Vis. Sci. 80(2), 106–114 (2003).
[CrossRef] [PubMed]

Voetz, S. C.

M. J. Collins, T. Buehren, A. Bece, and S. C. Voetz, “Corneal optics after reading, microscopy and computer work,” Acta Ophthalmol. Scand. 84(2), 216–224 (2006).
[CrossRef] [PubMed]

Volk, D.

D. Volk and J. W. Weinberg, “The omnifocal lens for presbyopia,” Arch. Ophthalmol. 68, 776–784 (1962).
[PubMed]

Webb, R.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Report from the VSIA taskforce on standards for reporting optical aberrations of the eye,” J. Refract. Surg. 16(5), S654–S655 (2000).
[PubMed]

Weinberg, J. W.

D. Volk and J. W. Weinberg, “The omnifocal lens for presbyopia,” Arch. Ophthalmol. 68, 776–784 (1962).
[PubMed]

Williams, D. R.

Wood, J.

M. Collins, B. Davis, and J. Wood, “Microfluctuations of steady-state accommodation and the cardiopulmonary system,” Vision Res. 35(17), 2491–2502 (1995).
[PubMed]

Yi, A.

T. W. Raasch, L. Su, and A. Yi, “Whole-surface characterization of progressive addition lenses,” Optom. Vis. Sci. 88(2), E217–E226 (2011).
[CrossRef] [PubMed]

Young, G.

R. McIlraith, G. Young, and C. Hunt, “Toric lens orientation and visual acuity in non-standard conditions,” Cont. Lens Anterior Eye 33(1), 23–26 (2010).
[CrossRef] [PubMed]

Zhu, M.

D. R. Iskander, M. J. Collins, M. R. Morelande, and M. Zhu, “Analyzing the dynamic wavefront aberrations in the human eye,” IEEE Trans. Biomed. Eng. 51(11), 1969–1980 (2004).
[CrossRef] [PubMed]

Acta Ophthalmol. Scand.

M. J. Collins, T. Buehren, A. Bece, and S. C. Voetz, “Corneal optics after reading, microscopy and computer work,” Acta Ophthalmol. Scand. 84(2), 216–224 (2006).
[CrossRef] [PubMed]

Am. J. Ophthalmol.

M. G. Doane, “Interactions of eyelids and tears in corneal wetting and the dynamics of the normal human eyeblink,” Am. J. Ophthalmol. 89(4), 507–516 (1980).
[PubMed]

Appl. Opt.

Arch. Ophthalmol.

D. Volk and J. W. Weinberg, “The omnifocal lens for presbyopia,” Arch. Ophthalmol. 68, 776–784 (1962).
[PubMed]

Cont. Lens Anterior Eye

R. McIlraith, G. Young, and C. Hunt, “Toric lens orientation and visual acuity in non-standard conditions,” Cont. Lens Anterior Eye 33(1), 23–26 (2010).
[CrossRef] [PubMed]

Cornea

A. J. Shaw, M. J. Collins, B. A. Davis, and L. G. Carney, “Eyelid pressure: inferences from corneal topographic changes,” Cornea 28(2), 181–188 (2009).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng.

D. R. Iskander, M. J. Collins, M. R. Morelande, and M. Zhu, “Analyzing the dynamic wavefront aberrations in the human eye,” IEEE Trans. Biomed. Eng. 51(11), 1969–1980 (2004).
[CrossRef] [PubMed]

J. Cataract Refract. Surg.

A. J. Shaw, M. J. Collins, B. A. Davis, and L. G. Carney, “Corneal refractive changes due to short-term eyelid pressure in downward gaze,” J. Cataract Refract. Surg. 34(9), 1546–1553 (2008).
[CrossRef] [PubMed]

M. J. Tjon-Fo-Sang, J. T. de Faber, C. Kingma, and W. H. Beekhuis, “Cyclotorsion: a possible cause of residual astigmatism in refractive surgery,” J. Cataract Refract. Surg. 28(4), 599–602 (2002).
[CrossRef] [PubMed]

J. Mod. Opt.

H. Kasprzak and B. K. Pierscionek, “Modelling the gravitational sag of the cornea and the subsequent quality of the refracted image,” J. Mod. Opt. 49(13), 2153–2166 (2002).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Refract. Surg.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Report from the VSIA taskforce on standards for reporting optical aberrations of the eye,” J. Refract. Surg. 16(5), S654–S655 (2000).
[PubMed]

J. Vis.

X. Cheng, A. Bradley, and L. N. Thibos, “Predicting subjective judgment of best focus with objective image quality metrics,” J. Vis. 4(4), 7–18 (2004).
[CrossRef] [PubMed]

H. Radhakrishnan and W. N. Charman, “Refractive changes associated with oblique viewing and reading in myopes and emmetropes,” J. Vis. 7(8), 5–15 (2007).
[CrossRef] [PubMed]

Ophthalmic Physiol. Opt.

A. Mathur, D. A. Atchison, S. Kasthurirangan, N. A. Dietz, S. Luong, S. P. Chin, W. L. Lin, and S. W. Hoo, “The influence of oblique viewing on axial and peripheral refraction for emmetropes and myopes,” Ophthalmic Physiol. Opt. 29(2), 155–161 (2009).
[CrossRef] [PubMed]

P. Prado, J. Arines, S. Bará, S. Manzanera, A. Mira-Agudelo, and P. Artal, “Changes of ocular aberrations with gaze,” Ophthalmic Physiol. Opt. 29(3), 264–271 (2009).
[CrossRef] [PubMed]

E. A. Villegas and P. Artal, “Comparison of aberrations in different types of progressive power lenses,” Ophthalmic Physiol. Opt. 24(5), 419–426 (2004).
[CrossRef] [PubMed]

D. R. Iskander, B. A. Davis, M. J. Collins, and R. Franklin, “Objective refraction from monochromatic wavefront aberrations via Zernike power polynomials,” Ophthalmic Physiol. Opt. 27(3), 245–255 (2007).
[CrossRef] [PubMed]

C. W. Fowler and C. M. Sullivan, “A comparison of three methods for the measurement of progressive addition lenses,” Ophthalmic Physiol. Opt. 9(1), 81–85 (1989).
[CrossRef] [PubMed]

T. Spiers and C. C. Hull, “Optical Fourier filtering for whole lens assessment of progressive power lenses,” Ophthalmic Physiol. Opt. 20(4), 281–289 (2000).
[CrossRef] [PubMed]

Ophthalmology

A. Glasser and P. L. Kaufman, “The mechanism of accommodation in primates,” Ophthalmology 106(5), 863–872 (1999).
[CrossRef] [PubMed]

Opt. Acta (Lond.)

G. Minkwitz, “On the surface astigmatism of a fixed symmetrical aspheric surface,” Opt. Acta (Lond.) 10, 223–227 (1963).
[PubMed]

Optom. Vis. Sci.

R. Blendowske, E. A. Villegas, and P. Artal, “An analytical model describing aberrations in the progression corridor of progressive addition lenses,” Optom. Vis. Sci. 83(9), 666–671 (2006).
[CrossRef] [PubMed]

T. W. Raasch, L. Su, and A. Yi, “Whole-surface characterization of progressive addition lenses,” Optom. Vis. Sci. 88(2), E217–E226 (2011).
[CrossRef] [PubMed]

D. R. Iskander, “Computational aspects of the visual Strehl ratio,” Optom. Vis. Sci. 83(1), 57–59 (2006).
[CrossRef] [PubMed]

E. A. Villegas and P. Artal, “Spatially resolved wavefront aberrations of ophthalmic progressive-power lenses in normal viewing conditions,” Optom. Vis. Sci. 80(2), 106–114 (2003).
[CrossRef] [PubMed]

T. Buehren, M. J. Collins, and L. Carney, “Corneal aberrations and reading,” Optom. Vis. Sci. 80(2), 159–166 (2003).
[CrossRef] [PubMed]

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003).
[CrossRef] [PubMed]

L. N. Thibos and X. Hong, “Clinical applications of the Shack-Hartmann aberrometer,” Optom. Vis. Sci. 76(12), 817–825 (1999).
[CrossRef] [PubMed]

Vision Res.

D. Mok, A. Ro, W. Cadera, J. D. Crawford, and T. Vilis, “Rotation of Listing’s plane during vergence,” Vision Res. 32(11), 2055–2064 (1992).
[CrossRef] [PubMed]

M. Collins, B. Davis, and J. Wood, “Microfluctuations of steady-state accommodation and the cardiopulmonary system,” Vision Res. 35(17), 2491–2502 (1995).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram (A) and photographs (B and C) of COAS-HD relay system.

Fig. 2
Fig. 2

Flow chart of wavefront rotation technique to compensate for an inverted image through the COAS-HD relay system, eye rotation due to hot mirror tilt and a unique cyclotorsion of the eye associated with downward gaze.

Fig. 3
Fig. 3

Correlations between the refractive components obtained from the conventional aberrometer and from the COAS-HD relay system in primary gaze. Solid black lines represent the linear regression and dashed red lines represent the 95% confidence bounds.

Fig. 4
Fig. 4

Group mean ± SD (n = 9) changes of ocular aberrations in downward gaze (25 degrees) compared to primary gaze for 5.0 mm fixed pupil diameter. * = Paired t-test (<0.05).

Fig. 5
Fig. 5

Higher order wavefront maps and retinal image quality [point spread functions and three dimensional modulation transfer functions (MTFs)] at different optical zones of a progressive addition lens (lens only) across 5.0 mm fixed pupil diameter. Average VSOTF is shown at the top of each plot.

Tables (1)

Tables Icon

Table 1 Mean differences (MD), standard deviation (SD) and Pearson’s correlation (R2) of major refractive components of the model eye between primary and downward gaze (25 degrees) obtained through COAS-HD relay system

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

X = s ( x cos θ y sin θ ) Y = s ( x sin θ + y cos θ )
Δ W ( ρ , θ ) L e n s o n l y = W ( ρ , θ ) L e n s o n e y e W ( ρ , θ ) B a r e e y e

Metrics