Abstract

We report on a non-contact method to quantitatively determine blood volume fractions in turbid media by reflectance spectroscopy in the VIS/NIR spectral wavelength range. This method will be used for spectral analysis of tissue with large absorption coefficients and assist in age determination of bruises and bloodstains. First, a phantom set was constructed to determine the effective photon path length as a function of μa and μs′ on phantoms with an albedo range: 0.02-0.99. Based on these measurements, an empirical model of the path length was established for phantoms with an albedo > 0.1. Next, this model was validated on whole blood mimicking phantoms, to determine the blood volume fractions ρ = 0.12-0.84 within the phantoms (r = 0.993; error < 10%). Finally, the model was proved applicable on cotton fabric phantoms.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Marrone and J. Ballantyne, “Changes in dry state hemoglobin over time do not increase the potential for oxidative DNA damage in dried blood,” PLoS ONE 4(4), e5110 (2009).
    [CrossRef] [PubMed]
  2. M. Bauer, S. Polzin, and D. Patzelt, “Quantification of RNA degradation by semi-quantitative duplex and competitive RT-PCR: a possible indicator of the age of bloodstains?” Forensic Sci. Int. 138(1-3), 94–103 (2003).
    [CrossRef] [PubMed]
  3. Y. Fujita, K. Tsuchiya, S. Abe, Y. Takiguchi, S. Kubo, and H. Sakurai, “Estimation of the age of human bloodstains by electron paramagnetic resonance spectroscopy: long-term controlled experiment on the effects of environmental factors,” Forensic Sci. Int. 152(1), 39–43 (2005).
    [CrossRef] [PubMed]
  4. S. Strasser, A. Zink, G. Kada, P. Hinterdorfer, O. Peschel, W. M. Heckl, A. G. Nerlich, and S. Thalhammer, “Age determination of blood spots in forensic medicine by force spectroscopy,” Forensic Sci. Int. 170(1), 8–14 (2007).
    [CrossRef] [PubMed]
  5. R. H. Bremmer, A. Nadort, T. G. van Leeuwen, M. J. van Gemert, and M. C. Aalders, “Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy,” Forensic Sci. Int. (to be published).
    [PubMed]
  6. K. Virkler and I. K. Lednev, “Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene,” Forensic Sci. Int. 188(1-3), 1–17 (2009).
    [CrossRef] [PubMed]
  7. T. Otto, V. Stock, W.-D. Schmidt, K. Liebold, D. Fassler, U. Wollina, U. Fritzsch, and T. Gessner, “Medical applications of VIS/NIR spectroscopy of human tissue surfaces by a novel portable instrumentation,” Proc. SPIE 4491, 203–214 (2001).
    [CrossRef]
  8. I. Charamisinau, K. Keymel, W. Potter, and A. R. Oseroff, “Handheld dual fluorescence and reflection spectroscopy system for monitoring topical low dose ALA-PDT of actinic keratoses (AK),” Proc. SPIE 6139, 61391E, 61391E-10 (2006).
    [CrossRef]
  9. C. S. Mulvey, C. A. Sherwood, and I. J. Bigio, “Wavelength-dependent backscattering measurements for quantitative real-time monitoring of apoptosis in living cells,” J. Biomed. Opt. 14(6), 064013 (2009).
    [CrossRef] [PubMed]
  10. Y. S. Fawzy, M. Petek, M. Tercelj, and H. S. Zeng, “In vivo assessment and evaluation of lung tissue morphologic and physiological changes from non-contact endoscopic reflectance spectroscopy for improving lung cancer detection,” J. Biomed. Opt. 11(4), 044003 (2006).
    [CrossRef] [PubMed]
  11. C. C. Yu, C. Lau, G. O’Donoghue, J. Mirkovic, S. McGee, L. Galindo, A. Elackattu, E. Stier, G. Grillone, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative spectroscopic imaging for non-invasive early cancer detection,” Opt. Express 16(20), 16227–16239 (2008).
    [CrossRef] [PubMed]
  12. R. B. Saager, D. J. Cuccia, and A. J. Durkin, “Determination of optical properties of turbid media spanning visible and near-infrared regimes via spatially modulated quantitative spectroscopy,” J. Biomed. Opt. 15(1), 017012 (2010).
    [CrossRef] [PubMed]
  13. S. C. Gebhart, S. K. Majumder, and A. Mahadevan-Jansen, “Comparison of spectral variation from spectroscopy to spectral imaging,” Appl. Opt. 46(8), 1343–1360 (2007).
    [CrossRef] [PubMed]
  14. L. L. Randeberg, O. A. Haugen, R. Haaverstad, and L. O. Svaasand, “A novel approach to age determination of traumatic injuries by reflectance spectroscopy,” Lasers Surg. Med. 38(4), 277–289 (2006).
    [CrossRef] [PubMed]
  15. W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37(9), 1633–1638 (1991).
    [PubMed]
  16. G. Zonios, L. T. Perelman, V. M. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999).
    [CrossRef] [PubMed]
  17. R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46(29), 7317–7328 (2007).
    [CrossRef] [PubMed]
  18. G. Zonios, I. Bassukas, and A. Dimou, “Comparative evaluation of two simple diffuse reflectance models for biological tissue applications,” Appl. Opt. 47(27), 4965–4973 (2008).
    [CrossRef] [PubMed]
  19. J. E. Phelps, K. Vishwanath, V. T. C. Chang, and N. Ramanujam, “Rapid ratiometric determination of hemoglobin concentration using UV-VIS diffuse reflectance at isosbestic wavelengths,” Opt. Express 18(18), 18779–18792 (2010).
    [CrossRef] [PubMed]
  20. N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501–050503 (2008).
    [CrossRef] [PubMed]
  21. S. C. Kanick, H. J. Sterenborg, and A. Amelink, “Empirical model of the photon path length for a single fiber reflectance spectroscopy device,” Opt. Express 17(2), 860–871 (2009).
    [CrossRef] [PubMed]
  22. S. C. Kanick, H. J. Sterenborg, and A. Amelink, “Empirical model description of photon path length for differential path length spectroscopy: combined effect of scattering and absorption,” J. Biomed. Opt. 13(6), 064042 (2008).
    [CrossRef] [PubMed]
  23. S. E. Hernández, V. D. Rodríguez, J. Pérez, F. A. Martín, M. A. Castellano, and J. L. Gonzalez-Mora, “Diffuse reflectance spectroscopy characterization of hemoglobin and intralipid solutions: in vitro measurements with continuous variation of absorption and scattering,” J. Biomed. Opt. 14(3), 034026 (2009).
    [CrossRef] [PubMed]
  24. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30(31), 4507–4514 (1991).
    [CrossRef] [PubMed]
  25. G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high-density media,” Appl. Opt. 42(19), 4023–4030 (2003).
    [CrossRef] [PubMed]
  26. M. C. P. Van Beekvelt, W. N. J. M. Colier, R. A. Wevers, and B. G. M. Van Engelen, “Performance of near-infrared spectroscopy in measuring local O(2) consumption and blood flow in skeletal muscle,” J. Appl. Physiol. 90(2), 511–519 (2001).
    [PubMed]
  27. M. Friebel, J. Helfmann, U. Netz, and M. Meinke, “Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2,000 nm,” J. Biomed. Opt. 14(3), 034001 (2009).
    [CrossRef] [PubMed]
  28. A. Amelink, D. J. Robinson, and H. J. Sterenborg, “Confidence intervals on fit parameters derived from optical reflectance spectroscopy measurements,” J. Biomed. Opt. 13(5), 054044 (2008).
    [CrossRef] [PubMed]
  29. D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
    [CrossRef] [PubMed]
  30. R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008).
    [CrossRef] [PubMed]

2010 (3)

R. B. Saager, D. J. Cuccia, and A. J. Durkin, “Determination of optical properties of turbid media spanning visible and near-infrared regimes via spatially modulated quantitative spectroscopy,” J. Biomed. Opt. 15(1), 017012 (2010).
[CrossRef] [PubMed]

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[CrossRef] [PubMed]

J. E. Phelps, K. Vishwanath, V. T. C. Chang, and N. Ramanujam, “Rapid ratiometric determination of hemoglobin concentration using UV-VIS diffuse reflectance at isosbestic wavelengths,” Opt. Express 18(18), 18779–18792 (2010).
[CrossRef] [PubMed]

2009 (6)

S. C. Kanick, H. J. Sterenborg, and A. Amelink, “Empirical model of the photon path length for a single fiber reflectance spectroscopy device,” Opt. Express 17(2), 860–871 (2009).
[CrossRef] [PubMed]

K. Virkler and I. K. Lednev, “Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene,” Forensic Sci. Int. 188(1-3), 1–17 (2009).
[CrossRef] [PubMed]

S. E. Hernández, V. D. Rodríguez, J. Pérez, F. A. Martín, M. A. Castellano, and J. L. Gonzalez-Mora, “Diffuse reflectance spectroscopy characterization of hemoglobin and intralipid solutions: in vitro measurements with continuous variation of absorption and scattering,” J. Biomed. Opt. 14(3), 034026 (2009).
[CrossRef] [PubMed]

M. Friebel, J. Helfmann, U. Netz, and M. Meinke, “Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2,000 nm,” J. Biomed. Opt. 14(3), 034001 (2009).
[CrossRef] [PubMed]

A. Marrone and J. Ballantyne, “Changes in dry state hemoglobin over time do not increase the potential for oxidative DNA damage in dried blood,” PLoS ONE 4(4), e5110 (2009).
[CrossRef] [PubMed]

C. S. Mulvey, C. A. Sherwood, and I. J. Bigio, “Wavelength-dependent backscattering measurements for quantitative real-time monitoring of apoptosis in living cells,” J. Biomed. Opt. 14(6), 064013 (2009).
[CrossRef] [PubMed]

2008 (6)

A. Amelink, D. J. Robinson, and H. J. Sterenborg, “Confidence intervals on fit parameters derived from optical reflectance spectroscopy measurements,” J. Biomed. Opt. 13(5), 054044 (2008).
[CrossRef] [PubMed]

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501–050503 (2008).
[CrossRef] [PubMed]

S. C. Kanick, H. J. Sterenborg, and A. Amelink, “Empirical model description of photon path length for differential path length spectroscopy: combined effect of scattering and absorption,” J. Biomed. Opt. 13(6), 064042 (2008).
[CrossRef] [PubMed]

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008).
[CrossRef] [PubMed]

G. Zonios, I. Bassukas, and A. Dimou, “Comparative evaluation of two simple diffuse reflectance models for biological tissue applications,” Appl. Opt. 47(27), 4965–4973 (2008).
[CrossRef] [PubMed]

C. C. Yu, C. Lau, G. O’Donoghue, J. Mirkovic, S. McGee, L. Galindo, A. Elackattu, E. Stier, G. Grillone, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative spectroscopic imaging for non-invasive early cancer detection,” Opt. Express 16(20), 16227–16239 (2008).
[CrossRef] [PubMed]

2007 (3)

2006 (3)

Y. S. Fawzy, M. Petek, M. Tercelj, and H. S. Zeng, “In vivo assessment and evaluation of lung tissue morphologic and physiological changes from non-contact endoscopic reflectance spectroscopy for improving lung cancer detection,” J. Biomed. Opt. 11(4), 044003 (2006).
[CrossRef] [PubMed]

L. L. Randeberg, O. A. Haugen, R. Haaverstad, and L. O. Svaasand, “A novel approach to age determination of traumatic injuries by reflectance spectroscopy,” Lasers Surg. Med. 38(4), 277–289 (2006).
[CrossRef] [PubMed]

I. Charamisinau, K. Keymel, W. Potter, and A. R. Oseroff, “Handheld dual fluorescence and reflection spectroscopy system for monitoring topical low dose ALA-PDT of actinic keratoses (AK),” Proc. SPIE 6139, 61391E, 61391E-10 (2006).
[CrossRef]

2005 (1)

Y. Fujita, K. Tsuchiya, S. Abe, Y. Takiguchi, S. Kubo, and H. Sakurai, “Estimation of the age of human bloodstains by electron paramagnetic resonance spectroscopy: long-term controlled experiment on the effects of environmental factors,” Forensic Sci. Int. 152(1), 39–43 (2005).
[CrossRef] [PubMed]

2003 (2)

M. Bauer, S. Polzin, and D. Patzelt, “Quantification of RNA degradation by semi-quantitative duplex and competitive RT-PCR: a possible indicator of the age of bloodstains?” Forensic Sci. Int. 138(1-3), 94–103 (2003).
[CrossRef] [PubMed]

G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high-density media,” Appl. Opt. 42(19), 4023–4030 (2003).
[CrossRef] [PubMed]

2001 (2)

T. Otto, V. Stock, W.-D. Schmidt, K. Liebold, D. Fassler, U. Wollina, U. Fritzsch, and T. Gessner, “Medical applications of VIS/NIR spectroscopy of human tissue surfaces by a novel portable instrumentation,” Proc. SPIE 4491, 203–214 (2001).
[CrossRef]

M. C. P. Van Beekvelt, W. N. J. M. Colier, R. A. Wevers, and B. G. M. Van Engelen, “Performance of near-infrared spectroscopy in measuring local O(2) consumption and blood flow in skeletal muscle,” J. Appl. Physiol. 90(2), 511–519 (2001).
[PubMed]

1999 (1)

1991 (2)

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30(31), 4507–4514 (1991).
[CrossRef] [PubMed]

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37(9), 1633–1638 (1991).
[PubMed]

A’Amar, O.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008).
[CrossRef] [PubMed]

R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46(29), 7317–7328 (2007).
[CrossRef] [PubMed]

Aalders, M. C.

R. H. Bremmer, A. Nadort, T. G. van Leeuwen, M. J. van Gemert, and M. C. Aalders, “Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy,” Forensic Sci. Int. (to be published).
[PubMed]

Abe, S.

Y. Fujita, K. Tsuchiya, S. Abe, Y. Takiguchi, S. Kubo, and H. Sakurai, “Estimation of the age of human bloodstains by electron paramagnetic resonance spectroscopy: long-term controlled experiment on the effects of environmental factors,” Forensic Sci. Int. 152(1), 39–43 (2005).
[CrossRef] [PubMed]

Amelink, A.

S. C. Kanick, H. J. Sterenborg, and A. Amelink, “Empirical model of the photon path length for a single fiber reflectance spectroscopy device,” Opt. Express 17(2), 860–871 (2009).
[CrossRef] [PubMed]

A. Amelink, D. J. Robinson, and H. J. Sterenborg, “Confidence intervals on fit parameters derived from optical reflectance spectroscopy measurements,” J. Biomed. Opt. 13(5), 054044 (2008).
[CrossRef] [PubMed]

S. C. Kanick, H. J. Sterenborg, and A. Amelink, “Empirical model description of photon path length for differential path length spectroscopy: combined effect of scattering and absorption,” J. Biomed. Opt. 13(6), 064042 (2008).
[CrossRef] [PubMed]

Amorosino, M. S.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008).
[CrossRef] [PubMed]

Backman, V. M.

Badizadegan, K.

Ballantyne, J.

A. Marrone and J. Ballantyne, “Changes in dry state hemoglobin over time do not increase the potential for oxidative DNA damage in dried blood,” PLoS ONE 4(4), e5110 (2009).
[CrossRef] [PubMed]

Bassukas, I.

Bauer, M.

M. Bauer, S. Polzin, and D. Patzelt, “Quantification of RNA degradation by semi-quantitative duplex and competitive RT-PCR: a possible indicator of the age of bloodstains?” Forensic Sci. Int. 138(1-3), 94–103 (2003).
[CrossRef] [PubMed]

Bigio, I. J.

C. S. Mulvey, C. A. Sherwood, and I. J. Bigio, “Wavelength-dependent backscattering measurements for quantitative real-time monitoring of apoptosis in living cells,” J. Biomed. Opt. 14(6), 064013 (2009).
[CrossRef] [PubMed]

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008).
[CrossRef] [PubMed]

R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46(29), 7317–7328 (2007).
[CrossRef] [PubMed]

Bremmer, R. H.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[CrossRef] [PubMed]

R. H. Bremmer, A. Nadort, T. G. van Leeuwen, M. J. van Gemert, and M. C. Aalders, “Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy,” Forensic Sci. Int. (to be published).
[PubMed]

Buursma, A.

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37(9), 1633–1638 (1991).
[PubMed]

Calabro, K. W.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008).
[CrossRef] [PubMed]

Castellano, M. A.

S. E. Hernández, V. D. Rodríguez, J. Pérez, F. A. Martín, M. A. Castellano, and J. L. Gonzalez-Mora, “Diffuse reflectance spectroscopy characterization of hemoglobin and intralipid solutions: in vitro measurements with continuous variation of absorption and scattering,” J. Biomed. Opt. 14(3), 034026 (2009).
[CrossRef] [PubMed]

Chang, V. T. C.

Charamisinau, I.

I. Charamisinau, K. Keymel, W. Potter, and A. R. Oseroff, “Handheld dual fluorescence and reflection spectroscopy system for monitoring topical low dose ALA-PDT of actinic keratoses (AK),” Proc. SPIE 6139, 61391E, 61391E-10 (2006).
[CrossRef]

Colier, W. N. J. M.

M. C. P. Van Beekvelt, W. N. J. M. Colier, R. A. Wevers, and B. G. M. Van Engelen, “Performance of near-infrared spectroscopy in measuring local O(2) consumption and blood flow in skeletal muscle,” J. Appl. Physiol. 90(2), 511–519 (2001).
[PubMed]

Cuccia, D. J.

R. B. Saager, D. J. Cuccia, and A. J. Durkin, “Determination of optical properties of turbid media spanning visible and near-infrared regimes via spatially modulated quantitative spectroscopy,” J. Biomed. Opt. 15(1), 017012 (2010).
[CrossRef] [PubMed]

Dasari, R. R.

de Bruin, D. M.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[CrossRef] [PubMed]

de Kinkelder, R.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[CrossRef] [PubMed]

Del Bianco, S.

Dimou, A.

Durkin, A. J.

R. B. Saager, D. J. Cuccia, and A. J. Durkin, “Determination of optical properties of turbid media spanning visible and near-infrared regimes via spatially modulated quantitative spectroscopy,” J. Biomed. Opt. 15(1), 017012 (2010).
[CrossRef] [PubMed]

Elackattu, A.

Faber, D. J.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[CrossRef] [PubMed]

Fassler, D.

T. Otto, V. Stock, W.-D. Schmidt, K. Liebold, D. Fassler, U. Wollina, U. Fritzsch, and T. Gessner, “Medical applications of VIS/NIR spectroscopy of human tissue surfaces by a novel portable instrumentation,” Proc. SPIE 4491, 203–214 (2001).
[CrossRef]

Fawzy, Y. S.

Y. S. Fawzy, M. Petek, M. Tercelj, and H. S. Zeng, “In vivo assessment and evaluation of lung tissue morphologic and physiological changes from non-contact endoscopic reflectance spectroscopy for improving lung cancer detection,” J. Biomed. Opt. 11(4), 044003 (2006).
[CrossRef] [PubMed]

Feld, M. S.

Fitzmaurice, M.

Friebel, M.

M. Friebel, J. Helfmann, U. Netz, and M. Meinke, “Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2,000 nm,” J. Biomed. Opt. 14(3), 034001 (2009).
[CrossRef] [PubMed]

Fritzsch, U.

T. Otto, V. Stock, W.-D. Schmidt, K. Liebold, D. Fassler, U. Wollina, U. Fritzsch, and T. Gessner, “Medical applications of VIS/NIR spectroscopy of human tissue surfaces by a novel portable instrumentation,” Proc. SPIE 4491, 203–214 (2001).
[CrossRef]

Fujita, Y.

Y. Fujita, K. Tsuchiya, S. Abe, Y. Takiguchi, S. Kubo, and H. Sakurai, “Estimation of the age of human bloodstains by electron paramagnetic resonance spectroscopy: long-term controlled experiment on the effects of environmental factors,” Forensic Sci. Int. 152(1), 39–43 (2005).
[CrossRef] [PubMed]

Galindo, L.

Gebhart, S. C.

Gessner, T.

T. Otto, V. Stock, W.-D. Schmidt, K. Liebold, D. Fassler, U. Wollina, U. Fritzsch, and T. Gessner, “Medical applications of VIS/NIR spectroscopy of human tissue surfaces by a novel portable instrumentation,” Proc. SPIE 4491, 203–214 (2001).
[CrossRef]

Gonzalez-Mora, J. L.

S. E. Hernández, V. D. Rodríguez, J. Pérez, F. A. Martín, M. A. Castellano, and J. L. Gonzalez-Mora, “Diffuse reflectance spectroscopy characterization of hemoglobin and intralipid solutions: in vitro measurements with continuous variation of absorption and scattering,” J. Biomed. Opt. 14(3), 034026 (2009).
[CrossRef] [PubMed]

Grillone, G.

Haaverstad, R.

L. L. Randeberg, O. A. Haugen, R. Haaverstad, and L. O. Svaasand, “A novel approach to age determination of traumatic injuries by reflectance spectroscopy,” Lasers Surg. Med. 38(4), 277–289 (2006).
[CrossRef] [PubMed]

Haugen, O. A.

L. L. Randeberg, O. A. Haugen, R. Haaverstad, and L. O. Svaasand, “A novel approach to age determination of traumatic injuries by reflectance spectroscopy,” Lasers Surg. Med. 38(4), 277–289 (2006).
[CrossRef] [PubMed]

Heckl, W. M.

S. Strasser, A. Zink, G. Kada, P. Hinterdorfer, O. Peschel, W. M. Heckl, A. G. Nerlich, and S. Thalhammer, “Age determination of blood spots in forensic medicine by force spectroscopy,” Forensic Sci. Int. 170(1), 8–14 (2007).
[CrossRef] [PubMed]

Helfmann, J.

M. Friebel, J. Helfmann, U. Netz, and M. Meinke, “Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2,000 nm,” J. Biomed. Opt. 14(3), 034001 (2009).
[CrossRef] [PubMed]

Hernández, S. E.

S. E. Hernández, V. D. Rodríguez, J. Pérez, F. A. Martín, M. A. Castellano, and J. L. Gonzalez-Mora, “Diffuse reflectance spectroscopy characterization of hemoglobin and intralipid solutions: in vitro measurements with continuous variation of absorption and scattering,” J. Biomed. Opt. 14(3), 034026 (2009).
[CrossRef] [PubMed]

Hinterdorfer, P.

S. Strasser, A. Zink, G. Kada, P. Hinterdorfer, O. Peschel, W. M. Heckl, A. G. Nerlich, and S. Thalhammer, “Age determination of blood spots in forensic medicine by force spectroscopy,” Forensic Sci. Int. 170(1), 8–14 (2007).
[CrossRef] [PubMed]

Kada, G.

S. Strasser, A. Zink, G. Kada, P. Hinterdorfer, O. Peschel, W. M. Heckl, A. G. Nerlich, and S. Thalhammer, “Age determination of blood spots in forensic medicine by force spectroscopy,” Forensic Sci. Int. 170(1), 8–14 (2007).
[CrossRef] [PubMed]

Kanick, S. C.

S. C. Kanick, H. J. Sterenborg, and A. Amelink, “Empirical model of the photon path length for a single fiber reflectance spectroscopy device,” Opt. Express 17(2), 860–871 (2009).
[CrossRef] [PubMed]

S. C. Kanick, H. J. Sterenborg, and A. Amelink, “Empirical model description of photon path length for differential path length spectroscopy: combined effect of scattering and absorption,” J. Biomed. Opt. 13(6), 064042 (2008).
[CrossRef] [PubMed]

Keymel, K.

I. Charamisinau, K. Keymel, W. Potter, and A. R. Oseroff, “Handheld dual fluorescence and reflection spectroscopy system for monitoring topical low dose ALA-PDT of actinic keratoses (AK),” Proc. SPIE 6139, 61391E, 61391E-10 (2006).
[CrossRef]

Kodach, V. M.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[CrossRef] [PubMed]

Kubo, S.

Y. Fujita, K. Tsuchiya, S. Abe, Y. Takiguchi, S. Kubo, and H. Sakurai, “Estimation of the age of human bloodstains by electron paramagnetic resonance spectroscopy: long-term controlled experiment on the effects of environmental factors,” Forensic Sci. Int. 152(1), 39–43 (2005).
[CrossRef] [PubMed]

Lau, C.

Lednev, I. K.

K. Virkler and I. K. Lednev, “Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene,” Forensic Sci. Int. 188(1-3), 1–17 (2009).
[CrossRef] [PubMed]

Liebold, K.

T. Otto, V. Stock, W.-D. Schmidt, K. Liebold, D. Fassler, U. Wollina, U. Fritzsch, and T. Gessner, “Medical applications of VIS/NIR spectroscopy of human tissue surfaces by a novel portable instrumentation,” Proc. SPIE 4491, 203–214 (2001).
[CrossRef]

Mahadevan-Jansen, A.

Majumder, S. K.

Manoharan, R.

Marrone, A.

A. Marrone and J. Ballantyne, “Changes in dry state hemoglobin over time do not increase the potential for oxidative DNA damage in dried blood,” PLoS ONE 4(4), e5110 (2009).
[CrossRef] [PubMed]

Martelli, F.

Martín, F. A.

S. E. Hernández, V. D. Rodríguez, J. Pérez, F. A. Martín, M. A. Castellano, and J. L. Gonzalez-Mora, “Diffuse reflectance spectroscopy characterization of hemoglobin and intralipid solutions: in vitro measurements with continuous variation of absorption and scattering,” J. Biomed. Opt. 14(3), 034026 (2009).
[CrossRef] [PubMed]

McGee, S.

Meeuwsen-van der Roest, W. P.

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37(9), 1633–1638 (1991).
[PubMed]

Meinke, M.

M. Friebel, J. Helfmann, U. Netz, and M. Meinke, “Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2,000 nm,” J. Biomed. Opt. 14(3), 034001 (2009).
[CrossRef] [PubMed]

Mirkovic, J.

Moes, C. J. M.

Mulvey, C. S.

C. S. Mulvey, C. A. Sherwood, and I. J. Bigio, “Wavelength-dependent backscattering measurements for quantitative real-time monitoring of apoptosis in living cells,” J. Biomed. Opt. 14(6), 064013 (2009).
[CrossRef] [PubMed]

Nadort, A.

R. H. Bremmer, A. Nadort, T. G. van Leeuwen, M. J. van Gemert, and M. C. Aalders, “Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy,” Forensic Sci. Int. (to be published).
[PubMed]

Nerlich, A. G.

S. Strasser, A. Zink, G. Kada, P. Hinterdorfer, O. Peschel, W. M. Heckl, A. G. Nerlich, and S. Thalhammer, “Age determination of blood spots in forensic medicine by force spectroscopy,” Forensic Sci. Int. 170(1), 8–14 (2007).
[CrossRef] [PubMed]

Netz, U.

M. Friebel, J. Helfmann, U. Netz, and M. Meinke, “Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2,000 nm,” J. Biomed. Opt. 14(3), 034001 (2009).
[CrossRef] [PubMed]

Nguyen, T. H.

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501–050503 (2008).
[CrossRef] [PubMed]

O’Donoghue, G.

Oseroff, A. R.

I. Charamisinau, K. Keymel, W. Potter, and A. R. Oseroff, “Handheld dual fluorescence and reflection spectroscopy system for monitoring topical low dose ALA-PDT of actinic keratoses (AK),” Proc. SPIE 6139, 61391E, 61391E-10 (2006).
[CrossRef]

Otto, T.

T. Otto, V. Stock, W.-D. Schmidt, K. Liebold, D. Fassler, U. Wollina, U. Fritzsch, and T. Gessner, “Medical applications of VIS/NIR spectroscopy of human tissue surfaces by a novel portable instrumentation,” Proc. SPIE 4491, 203–214 (2001).
[CrossRef]

Patzelt, D.

M. Bauer, S. Polzin, and D. Patzelt, “Quantification of RNA degradation by semi-quantitative duplex and competitive RT-PCR: a possible indicator of the age of bloodstains?” Forensic Sci. Int. 138(1-3), 94–103 (2003).
[CrossRef] [PubMed]

Perelman, L. T.

Pérez, J.

S. E. Hernández, V. D. Rodríguez, J. Pérez, F. A. Martín, M. A. Castellano, and J. L. Gonzalez-Mora, “Diffuse reflectance spectroscopy characterization of hemoglobin and intralipid solutions: in vitro measurements with continuous variation of absorption and scattering,” J. Biomed. Opt. 14(3), 034026 (2009).
[CrossRef] [PubMed]

Peschel, O.

S. Strasser, A. Zink, G. Kada, P. Hinterdorfer, O. Peschel, W. M. Heckl, A. G. Nerlich, and S. Thalhammer, “Age determination of blood spots in forensic medicine by force spectroscopy,” Forensic Sci. Int. 170(1), 8–14 (2007).
[CrossRef] [PubMed]

Petek, M.

Y. S. Fawzy, M. Petek, M. Tercelj, and H. S. Zeng, “In vivo assessment and evaluation of lung tissue morphologic and physiological changes from non-contact endoscopic reflectance spectroscopy for improving lung cancer detection,” J. Biomed. Opt. 11(4), 044003 (2006).
[CrossRef] [PubMed]

Phelps, J. E.

Polzin, S.

M. Bauer, S. Polzin, and D. Patzelt, “Quantification of RNA degradation by semi-quantitative duplex and competitive RT-PCR: a possible indicator of the age of bloodstains?” Forensic Sci. Int. 138(1-3), 94–103 (2003).
[CrossRef] [PubMed]

Potter, W.

I. Charamisinau, K. Keymel, W. Potter, and A. R. Oseroff, “Handheld dual fluorescence and reflection spectroscopy system for monitoring topical low dose ALA-PDT of actinic keratoses (AK),” Proc. SPIE 6139, 61391E, 61391E-10 (2006).
[CrossRef]

Prahl, S. A.

Rajaram, N.

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501–050503 (2008).
[CrossRef] [PubMed]

Ramanujam, N.

Randeberg, L. L.

L. L. Randeberg, O. A. Haugen, R. Haaverstad, and L. O. Svaasand, “A novel approach to age determination of traumatic injuries by reflectance spectroscopy,” Lasers Surg. Med. 38(4), 277–289 (2006).
[CrossRef] [PubMed]

Reif, R.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008).
[CrossRef] [PubMed]

R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46(29), 7317–7328 (2007).
[CrossRef] [PubMed]

Robinson, D. J.

A. Amelink, D. J. Robinson, and H. J. Sterenborg, “Confidence intervals on fit parameters derived from optical reflectance spectroscopy measurements,” J. Biomed. Opt. 13(5), 054044 (2008).
[CrossRef] [PubMed]

Rodríguez, V. D.

S. E. Hernández, V. D. Rodríguez, J. Pérez, F. A. Martín, M. A. Castellano, and J. L. Gonzalez-Mora, “Diffuse reflectance spectroscopy characterization of hemoglobin and intralipid solutions: in vitro measurements with continuous variation of absorption and scattering,” J. Biomed. Opt. 14(3), 034026 (2009).
[CrossRef] [PubMed]

Saager, R. B.

R. B. Saager, D. J. Cuccia, and A. J. Durkin, “Determination of optical properties of turbid media spanning visible and near-infrared regimes via spatially modulated quantitative spectroscopy,” J. Biomed. Opt. 15(1), 017012 (2010).
[CrossRef] [PubMed]

Sakurai, H.

Y. Fujita, K. Tsuchiya, S. Abe, Y. Takiguchi, S. Kubo, and H. Sakurai, “Estimation of the age of human bloodstains by electron paramagnetic resonance spectroscopy: long-term controlled experiment on the effects of environmental factors,” Forensic Sci. Int. 152(1), 39–43 (2005).
[CrossRef] [PubMed]

Schmidt, W.-D.

T. Otto, V. Stock, W.-D. Schmidt, K. Liebold, D. Fassler, U. Wollina, U. Fritzsch, and T. Gessner, “Medical applications of VIS/NIR spectroscopy of human tissue surfaces by a novel portable instrumentation,” Proc. SPIE 4491, 203–214 (2001).
[CrossRef]

Sherwood, C. A.

C. S. Mulvey, C. A. Sherwood, and I. J. Bigio, “Wavelength-dependent backscattering measurements for quantitative real-time monitoring of apoptosis in living cells,” J. Biomed. Opt. 14(6), 064013 (2009).
[CrossRef] [PubMed]

Singh, S. K.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008).
[CrossRef] [PubMed]

Sterenborg, H. J.

S. C. Kanick, H. J. Sterenborg, and A. Amelink, “Empirical model of the photon path length for a single fiber reflectance spectroscopy device,” Opt. Express 17(2), 860–871 (2009).
[CrossRef] [PubMed]

A. Amelink, D. J. Robinson, and H. J. Sterenborg, “Confidence intervals on fit parameters derived from optical reflectance spectroscopy measurements,” J. Biomed. Opt. 13(5), 054044 (2008).
[CrossRef] [PubMed]

S. C. Kanick, H. J. Sterenborg, and A. Amelink, “Empirical model description of photon path length for differential path length spectroscopy: combined effect of scattering and absorption,” J. Biomed. Opt. 13(6), 064042 (2008).
[CrossRef] [PubMed]

Stier, E.

Stock, V.

T. Otto, V. Stock, W.-D. Schmidt, K. Liebold, D. Fassler, U. Wollina, U. Fritzsch, and T. Gessner, “Medical applications of VIS/NIR spectroscopy of human tissue surfaces by a novel portable instrumentation,” Proc. SPIE 4491, 203–214 (2001).
[CrossRef]

Strasser, S.

S. Strasser, A. Zink, G. Kada, P. Hinterdorfer, O. Peschel, W. M. Heckl, A. G. Nerlich, and S. Thalhammer, “Age determination of blood spots in forensic medicine by force spectroscopy,” Forensic Sci. Int. 170(1), 8–14 (2007).
[CrossRef] [PubMed]

Svaasand, L. O.

L. L. Randeberg, O. A. Haugen, R. Haaverstad, and L. O. Svaasand, “A novel approach to age determination of traumatic injuries by reflectance spectroscopy,” Lasers Surg. Med. 38(4), 277–289 (2006).
[CrossRef] [PubMed]

Takiguchi, Y.

Y. Fujita, K. Tsuchiya, S. Abe, Y. Takiguchi, S. Kubo, and H. Sakurai, “Estimation of the age of human bloodstains by electron paramagnetic resonance spectroscopy: long-term controlled experiment on the effects of environmental factors,” Forensic Sci. Int. 152(1), 39–43 (2005).
[CrossRef] [PubMed]

Tercelj, M.

Y. S. Fawzy, M. Petek, M. Tercelj, and H. S. Zeng, “In vivo assessment and evaluation of lung tissue morphologic and physiological changes from non-contact endoscopic reflectance spectroscopy for improving lung cancer detection,” J. Biomed. Opt. 11(4), 044003 (2006).
[CrossRef] [PubMed]

Thalhammer, S.

S. Strasser, A. Zink, G. Kada, P. Hinterdorfer, O. Peschel, W. M. Heckl, A. G. Nerlich, and S. Thalhammer, “Age determination of blood spots in forensic medicine by force spectroscopy,” Forensic Sci. Int. 170(1), 8–14 (2007).
[CrossRef] [PubMed]

Tsuchiya, K.

Y. Fujita, K. Tsuchiya, S. Abe, Y. Takiguchi, S. Kubo, and H. Sakurai, “Estimation of the age of human bloodstains by electron paramagnetic resonance spectroscopy: long-term controlled experiment on the effects of environmental factors,” Forensic Sci. Int. 152(1), 39–43 (2005).
[CrossRef] [PubMed]

Tunnell, J. W.

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501–050503 (2008).
[CrossRef] [PubMed]

Van Beekvelt, M. C. P.

M. C. P. Van Beekvelt, W. N. J. M. Colier, R. A. Wevers, and B. G. M. Van Engelen, “Performance of near-infrared spectroscopy in measuring local O(2) consumption and blood flow in skeletal muscle,” J. Appl. Physiol. 90(2), 511–519 (2001).
[PubMed]

Van Dam, J.

Van Engelen, B. G. M.

M. C. P. Van Beekvelt, W. N. J. M. Colier, R. A. Wevers, and B. G. M. Van Engelen, “Performance of near-infrared spectroscopy in measuring local O(2) consumption and blood flow in skeletal muscle,” J. Appl. Physiol. 90(2), 511–519 (2001).
[PubMed]

van Gemert, M. J.

R. H. Bremmer, A. Nadort, T. G. van Leeuwen, M. J. van Gemert, and M. C. Aalders, “Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy,” Forensic Sci. Int. (to be published).
[PubMed]

van Gemert, M. J. C.

van Leeuwen, T. G.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[CrossRef] [PubMed]

R. H. Bremmer, A. Nadort, T. G. van Leeuwen, M. J. van Gemert, and M. C. Aalders, “Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy,” Forensic Sci. Int. (to be published).
[PubMed]

van Marie, J.

van Marle, J.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[CrossRef] [PubMed]

van Staveren, H. J.

Virkler, K.

K. Virkler and I. K. Lednev, “Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene,” Forensic Sci. Int. 188(1-3), 1–17 (2009).
[CrossRef] [PubMed]

Vishwanath, K.

Wevers, R. A.

M. C. P. Van Beekvelt, W. N. J. M. Colier, R. A. Wevers, and B. G. M. Van Engelen, “Performance of near-infrared spectroscopy in measuring local O(2) consumption and blood flow in skeletal muscle,” J. Appl. Physiol. 90(2), 511–519 (2001).
[PubMed]

Wollina, U.

T. Otto, V. Stock, W.-D. Schmidt, K. Liebold, D. Fassler, U. Wollina, U. Fritzsch, and T. Gessner, “Medical applications of VIS/NIR spectroscopy of human tissue surfaces by a novel portable instrumentation,” Proc. SPIE 4491, 203–214 (2001).
[CrossRef]

Yu, C. C.

Zaccanti, G.

Zeng, H. S.

Y. S. Fawzy, M. Petek, M. Tercelj, and H. S. Zeng, “In vivo assessment and evaluation of lung tissue morphologic and physiological changes from non-contact endoscopic reflectance spectroscopy for improving lung cancer detection,” J. Biomed. Opt. 11(4), 044003 (2006).
[CrossRef] [PubMed]

Zijlstra, W. G.

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37(9), 1633–1638 (1991).
[PubMed]

Zink, A.

S. Strasser, A. Zink, G. Kada, P. Hinterdorfer, O. Peschel, W. M. Heckl, A. G. Nerlich, and S. Thalhammer, “Age determination of blood spots in forensic medicine by force spectroscopy,” Forensic Sci. Int. 170(1), 8–14 (2007).
[CrossRef] [PubMed]

Zonios, G.

Appl. Opt. (6)

Clin. Chem. (1)

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37(9), 1633–1638 (1991).
[PubMed]

Forensic Sci. Int. (5)

M. Bauer, S. Polzin, and D. Patzelt, “Quantification of RNA degradation by semi-quantitative duplex and competitive RT-PCR: a possible indicator of the age of bloodstains?” Forensic Sci. Int. 138(1-3), 94–103 (2003).
[CrossRef] [PubMed]

Y. Fujita, K. Tsuchiya, S. Abe, Y. Takiguchi, S. Kubo, and H. Sakurai, “Estimation of the age of human bloodstains by electron paramagnetic resonance spectroscopy: long-term controlled experiment on the effects of environmental factors,” Forensic Sci. Int. 152(1), 39–43 (2005).
[CrossRef] [PubMed]

S. Strasser, A. Zink, G. Kada, P. Hinterdorfer, O. Peschel, W. M. Heckl, A. G. Nerlich, and S. Thalhammer, “Age determination of blood spots in forensic medicine by force spectroscopy,” Forensic Sci. Int. 170(1), 8–14 (2007).
[CrossRef] [PubMed]

R. H. Bremmer, A. Nadort, T. G. van Leeuwen, M. J. van Gemert, and M. C. Aalders, “Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy,” Forensic Sci. Int. (to be published).
[PubMed]

K. Virkler and I. K. Lednev, “Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene,” Forensic Sci. Int. 188(1-3), 1–17 (2009).
[CrossRef] [PubMed]

J. Appl. Physiol. (1)

M. C. P. Van Beekvelt, W. N. J. M. Colier, R. A. Wevers, and B. G. M. Van Engelen, “Performance of near-infrared spectroscopy in measuring local O(2) consumption and blood flow in skeletal muscle,” J. Appl. Physiol. 90(2), 511–519 (2001).
[PubMed]

J. Biomed. Opt. (10)

M. Friebel, J. Helfmann, U. Netz, and M. Meinke, “Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2,000 nm,” J. Biomed. Opt. 14(3), 034001 (2009).
[CrossRef] [PubMed]

A. Amelink, D. J. Robinson, and H. J. Sterenborg, “Confidence intervals on fit parameters derived from optical reflectance spectroscopy measurements,” J. Biomed. Opt. 13(5), 054044 (2008).
[CrossRef] [PubMed]

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010).
[CrossRef] [PubMed]

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008).
[CrossRef] [PubMed]

C. S. Mulvey, C. A. Sherwood, and I. J. Bigio, “Wavelength-dependent backscattering measurements for quantitative real-time monitoring of apoptosis in living cells,” J. Biomed. Opt. 14(6), 064013 (2009).
[CrossRef] [PubMed]

Y. S. Fawzy, M. Petek, M. Tercelj, and H. S. Zeng, “In vivo assessment and evaluation of lung tissue morphologic and physiological changes from non-contact endoscopic reflectance spectroscopy for improving lung cancer detection,” J. Biomed. Opt. 11(4), 044003 (2006).
[CrossRef] [PubMed]

R. B. Saager, D. J. Cuccia, and A. J. Durkin, “Determination of optical properties of turbid media spanning visible and near-infrared regimes via spatially modulated quantitative spectroscopy,” J. Biomed. Opt. 15(1), 017012 (2010).
[CrossRef] [PubMed]

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501–050503 (2008).
[CrossRef] [PubMed]

S. C. Kanick, H. J. Sterenborg, and A. Amelink, “Empirical model description of photon path length for differential path length spectroscopy: combined effect of scattering and absorption,” J. Biomed. Opt. 13(6), 064042 (2008).
[CrossRef] [PubMed]

S. E. Hernández, V. D. Rodríguez, J. Pérez, F. A. Martín, M. A. Castellano, and J. L. Gonzalez-Mora, “Diffuse reflectance spectroscopy characterization of hemoglobin and intralipid solutions: in vitro measurements with continuous variation of absorption and scattering,” J. Biomed. Opt. 14(3), 034026 (2009).
[CrossRef] [PubMed]

Lasers Surg. Med. (1)

L. L. Randeberg, O. A. Haugen, R. Haaverstad, and L. O. Svaasand, “A novel approach to age determination of traumatic injuries by reflectance spectroscopy,” Lasers Surg. Med. 38(4), 277–289 (2006).
[CrossRef] [PubMed]

Opt. Express (3)

PLoS ONE (1)

A. Marrone and J. Ballantyne, “Changes in dry state hemoglobin over time do not increase the potential for oxidative DNA damage in dried blood,” PLoS ONE 4(4), e5110 (2009).
[CrossRef] [PubMed]

Proc. SPIE (2)

T. Otto, V. Stock, W.-D. Schmidt, K. Liebold, D. Fassler, U. Wollina, U. Fritzsch, and T. Gessner, “Medical applications of VIS/NIR spectroscopy of human tissue surfaces by a novel portable instrumentation,” Proc. SPIE 4491, 203–214 (2001).
[CrossRef]

I. Charamisinau, K. Keymel, W. Potter, and A. R. Oseroff, “Handheld dual fluorescence and reflection spectroscopy system for monitoring topical low dose ALA-PDT of actinic keratoses (AK),” Proc. SPIE 6139, 61391E, 61391E-10 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the non-contact reflection spectroscopy probe. The probe tip shows six delivery fibers, circulated around a central collection fiber. The delivery fiber is connected to the light source and the collection fibers are connected to the spectrograph.

Fig. 7
Fig. 7

Effective photon path length vs absorption in white cotton fabric. The dots show the measured effective photon path length through Evans Blue and cotton. The blue line is the fit of the empirical path length. The inset is a photograph of the Evans blue on cotton showing the inner and outer radius of the stain, with and without Evans Blue.

Fig. 2
Fig. 2

Reflectance ratio of phantom containing Evans Blue + IL and Intralipid without absorber. Only the reflectance ratio at λ = 611 nm is used of the path length analysis. Here at λ = 611 nm, μa = 2.5 mm−1 and μs’ = 11.5 mm−1. The error margin represents SD.

Fig. 3
Fig. 3

Effective photon path length vs absorption, the absorption coefficients was varied from μa = 0.1-20 mm−1; measured at a reduced scattering coefficient of μs’ = 1 mm−1 (crosses) and μs’ = 11.5 mm−1 (open circles). The black line shows the path length model; dotted black line show model predictions for excluded data points

Fig. 4
Fig. 4

Effective photon path length vs reduced scattering. The reduced scattering coefficient varies from μs’ = 0.2- 15.3 mm−1. Measured at an absorption coefficient of μa = 1 mm−1 (crosses) and μa = 10 mm−1 (open circles). The solid line shows the path length model; dotted black line shows model predictions for excluded data points.

Fig. 5
Fig. 5

Typical reflectance measurements of an optical phantom containing of μs’ = 10 mm−1 at λ = 611 nm. The measured ratio is the ratio of the reflectance of an optical phantom with and without hemoglobin as absorber. Solid line is the spectral fit of the reflectance with HbO2; ρ = 0.28. The right hand axis shows the corresponding effective photon path through the phantom.

Fig. 6
Fig. 6

Optically estimated BVF, based on the spectral fits plotted against input BVF based on the phantom preparation for all twelve Hb phantoms at various reduced scattering coefficients.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R ( λ ) = R 0 ( λ ) exp [ μ a i ( λ ) c i τ ( μ s ' , μ a ) ]
τ 611 = ln [ R ( 611 ) / R 0 ( 611 ) ] μ a i ( 611 ) c i
τ mod ( μ s ' , μ a ) = p 1 ( d μ s ' ) p 2 p 3 + ( d μ a ) p 4
μ a = x 1 μ a H b + x 2 μ a H b O 2 + x 3 μ a m e t H b
R ( λ ) R 0 ( λ ) = x 4 exp { μ a τ mod }

Metrics