Abstract

We report on femtosecond nanosurgery of fluorescently labeled structures in cells with a spatially superresolved laser beam. The focal spot width is reduced using phase filtering applied with a programmable phase modulator. A comprehensive statistical analysis of the resulting cuts demonstrates an achievable average resolution enhancement of 30 %.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  2. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [CrossRef] [PubMed]
  3. K. König, I. Riemann, and W. Fritzsche, “Nanodissection of human chromosomes with near-infrared femtosecond laser pulses,” Opt. Lett. 26(11), 819–821 (2001).
    [CrossRef] [PubMed]
  4. T. Shimada, W. Watanabe, S. Matsunaga, T. Higashi, H. Ishii, K. Fukui, K. Isobe, and K. Itoh, “Intracellular disruption of mitochondria in a living HeLa cell with a 76-MHz femtosecond laser oscillator,” Opt. Express 13(24), 9869–9880 (2005).
    [CrossRef] [PubMed]
  5. L. Sacconi, I. M. Tolić-Nørrelykke, R. Antolini, and F. S. Pavone, “Combined intracellular three-dimensional imaging and selective nanosurgery by a nonlinear microscope,” J. Biomed. Opt. 10(1), 014002 (2005).
    [CrossRef]
  6. A. Heisterkamp, I. Z. Maxwell, E. Mazur, J. M. Underwood, J. A. Nickerson, S. Kumar, and D. E. Ingber, “Pulse energy dependence of subcellular dissection by femtosecond laser pulses,” Opt. Express 13(10), 3690–3696 (2005).
    [CrossRef] [PubMed]
  7. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005), doi:.
    [CrossRef]
  8. K. Kuetemeyer, R. Rezgui, H. Lubatschowski, and A. Heisterkamp, “Influence of laser parameters and staining on femtosecond laser-based intracellular nanosurgery,” Biomed. Opt. Express 1(2), 587–597 (2010).
    [CrossRef]
  9. T. R. M. Sales and G. M. Morris, “Fundamental limits of optical superresolution,” Opt. Lett. 22(9), 582–584 (1997).
    [CrossRef] [PubMed]
  10. G. Boyer, “New class of axially apodizing filters for confocal scanning microscopy,” J. Opt. Soc. Am. A 19(3), 584–589 (2002).
    [CrossRef] [PubMed]
  11. D. M. de Juana, J. E. Oti, V. E. Canales, and M. P. Cagigal, “Transverse or axial superresolution in a 4Pi-confocal microscope by phase-only filters,” J. Opt. Soc. Am. A 20(11), 2172–2178 (2003).
    [CrossRef] [PubMed]
  12. P. N. Gundu, E. Hack, and P. Rastogi, “Apodized superresolution - concept and simulations,” Opt. Commun. 249(1-3), 101–107 (2005).
    [CrossRef]
  13. I. J. Cox, “Increasing the bit packing densities of optical disk systems,” Appl. Opt. 23(19), 3260–3261 (1984).
    [CrossRef] [PubMed]
  14. M. Shinoda and K. Kime, “Focusing characteristics of an optical head with superresolution using a high-aspectratio red laser diode,” Jpn. J. Appl. Phys. 35(Part 1, No. 1B), 380–383 (1996).
    [CrossRef]
  15. M. R. Wang and X. G. Huang, “Subwavelength-resolvable focused non-gaussian beam shaped with a binary diffractive optical element,” Appl. Opt. 38(11), 2171–2176 (1999).
    [CrossRef] [PubMed]
  16. H. Ando, “Phase-shifting apodizer of three or more portions,” Jpn. J. Appl. Phys. 31(Part 1, No. 2B), 557–567 (1992).
    [CrossRef]
  17. H. Wang and F. Gan, “High focal depth with a pure-phase apodizer,” Appl. Opt. 40(31), 5658–5662 (2001).
    [CrossRef] [PubMed]
  18. D. M. de Juana, V. F. Canales, P. J. Valle, and M. P. Cagigal, “ “Focusing properties of annular binary phase filters,” Opt. Commun. 229(1-6), 71–77 (2004).
    [CrossRef]
  19. H. Liu, Y. Yan, and G. Jin, “Design and experimental test of diffractive superresolution elements,” Appl. Opt. 45(1), 95–99 (2006).
    [CrossRef] [PubMed]
  20. L. Liu, F. Diaz, L. Wang, B. Loiseaux, J.-P. Huignard, C. J. R. Sheppard, and N. Chen, “Superresolution along extended depth of focus with binary-phase filters for the Gaussian beam,” J. Opt. Soc. Am. A 25(8), 2095–2101 (2008).
    [CrossRef] [PubMed]
  21. P. A. Quinto-Su, and V. Venugopalan, “Mechanisms of laser cellular microsurgery,” in “Laser Manipulation of Cells and Tissues,”, vol. 82 of Methods in Cell Biology, M. W. Berns and K. O. Greulich, eds. (Academic Press, 2007), pp. 111, 113 – 151.

2010 (1)

2008 (1)

2006 (1)

2005 (5)

A. Heisterkamp, I. Z. Maxwell, E. Mazur, J. M. Underwood, J. A. Nickerson, S. Kumar, and D. E. Ingber, “Pulse energy dependence of subcellular dissection by femtosecond laser pulses,” Opt. Express 13(10), 3690–3696 (2005).
[CrossRef] [PubMed]

T. Shimada, W. Watanabe, S. Matsunaga, T. Higashi, H. Ishii, K. Fukui, K. Isobe, and K. Itoh, “Intracellular disruption of mitochondria in a living HeLa cell with a 76-MHz femtosecond laser oscillator,” Opt. Express 13(24), 9869–9880 (2005).
[CrossRef] [PubMed]

L. Sacconi, I. M. Tolić-Nørrelykke, R. Antolini, and F. S. Pavone, “Combined intracellular three-dimensional imaging and selective nanosurgery by a nonlinear microscope,” J. Biomed. Opt. 10(1), 014002 (2005).
[CrossRef]

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005), doi:.
[CrossRef]

P. N. Gundu, E. Hack, and P. Rastogi, “Apodized superresolution - concept and simulations,” Opt. Commun. 249(1-3), 101–107 (2005).
[CrossRef]

2004 (1)

D. M. de Juana, V. F. Canales, P. J. Valle, and M. P. Cagigal, “ “Focusing properties of annular binary phase filters,” Opt. Commun. 229(1-6), 71–77 (2004).
[CrossRef]

2003 (2)

2002 (1)

2001 (2)

1999 (1)

1997 (1)

1996 (1)

M. Shinoda and K. Kime, “Focusing characteristics of an optical head with superresolution using a high-aspectratio red laser diode,” Jpn. J. Appl. Phys. 35(Part 1, No. 1B), 380–383 (1996).
[CrossRef]

1992 (1)

H. Ando, “Phase-shifting apodizer of three or more portions,” Jpn. J. Appl. Phys. 31(Part 1, No. 2B), 557–567 (1992).
[CrossRef]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

1984 (1)

Ando, H.

H. Ando, “Phase-shifting apodizer of three or more portions,” Jpn. J. Appl. Phys. 31(Part 1, No. 2B), 557–567 (1992).
[CrossRef]

Antolini, R.

L. Sacconi, I. M. Tolić-Nørrelykke, R. Antolini, and F. S. Pavone, “Combined intracellular three-dimensional imaging and selective nanosurgery by a nonlinear microscope,” J. Biomed. Opt. 10(1), 014002 (2005).
[CrossRef]

Boyer, G.

Cagigal, M. P.

D. M. de Juana, V. F. Canales, P. J. Valle, and M. P. Cagigal, “ “Focusing properties of annular binary phase filters,” Opt. Commun. 229(1-6), 71–77 (2004).
[CrossRef]

D. M. de Juana, J. E. Oti, V. E. Canales, and M. P. Cagigal, “Transverse or axial superresolution in a 4Pi-confocal microscope by phase-only filters,” J. Opt. Soc. Am. A 20(11), 2172–2178 (2003).
[CrossRef] [PubMed]

Canales, V. E.

Canales, V. F.

D. M. de Juana, V. F. Canales, P. J. Valle, and M. P. Cagigal, “ “Focusing properties of annular binary phase filters,” Opt. Commun. 229(1-6), 71–77 (2004).
[CrossRef]

Chen, N.

Cox, I. J.

de Juana, D. M.

D. M. de Juana, V. F. Canales, P. J. Valle, and M. P. Cagigal, “ “Focusing properties of annular binary phase filters,” Opt. Commun. 229(1-6), 71–77 (2004).
[CrossRef]

D. M. de Juana, J. E. Oti, V. E. Canales, and M. P. Cagigal, “Transverse or axial superresolution in a 4Pi-confocal microscope by phase-only filters,” J. Opt. Soc. Am. A 20(11), 2172–2178 (2003).
[CrossRef] [PubMed]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Diaz, F.

Fritzsche, W.

Fukui, K.

Gan, F.

Gundu, P. N.

P. N. Gundu, E. Hack, and P. Rastogi, “Apodized superresolution - concept and simulations,” Opt. Commun. 249(1-3), 101–107 (2005).
[CrossRef]

Hack, E.

P. N. Gundu, E. Hack, and P. Rastogi, “Apodized superresolution - concept and simulations,” Opt. Commun. 249(1-3), 101–107 (2005).
[CrossRef]

Heisterkamp, A.

Higashi, T.

Huang, X. G.

Huignard, J.-P.

Hüttman, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005), doi:.
[CrossRef]

Ingber, D. E.

Ishii, H.

Isobe, K.

Itoh, K.

Jin, G.

Kime, K.

M. Shinoda and K. Kime, “Focusing characteristics of an optical head with superresolution using a high-aspectratio red laser diode,” Jpn. J. Appl. Phys. 35(Part 1, No. 1B), 380–383 (1996).
[CrossRef]

König, K.

Kuetemeyer, K.

Kumar, S.

Liu, H.

Liu, L.

Loiseaux, B.

Lubatschowski, H.

Matsunaga, S.

Maxwell, I. Z.

Mazur, E.

Morris, G. M.

Nickerson, J. A.

Noack, J.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005), doi:.
[CrossRef]

Oti, J. E.

Paltauf, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005), doi:.
[CrossRef]

Pavone, F. S.

L. Sacconi, I. M. Tolić-Nørrelykke, R. Antolini, and F. S. Pavone, “Combined intracellular three-dimensional imaging and selective nanosurgery by a nonlinear microscope,” J. Biomed. Opt. 10(1), 014002 (2005).
[CrossRef]

Rastogi, P.

P. N. Gundu, E. Hack, and P. Rastogi, “Apodized superresolution - concept and simulations,” Opt. Commun. 249(1-3), 101–107 (2005).
[CrossRef]

Rezgui, R.

Riemann, I.

Sacconi, L.

L. Sacconi, I. M. Tolić-Nørrelykke, R. Antolini, and F. S. Pavone, “Combined intracellular three-dimensional imaging and selective nanosurgery by a nonlinear microscope,” J. Biomed. Opt. 10(1), 014002 (2005).
[CrossRef]

Sales, T. R. M.

Sheppard, C. J. R.

Shimada, T.

Shinoda, M.

M. Shinoda and K. Kime, “Focusing characteristics of an optical head with superresolution using a high-aspectratio red laser diode,” Jpn. J. Appl. Phys. 35(Part 1, No. 1B), 380–383 (1996).
[CrossRef]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Tolic-Nørrelykke, I. M.

L. Sacconi, I. M. Tolić-Nørrelykke, R. Antolini, and F. S. Pavone, “Combined intracellular three-dimensional imaging and selective nanosurgery by a nonlinear microscope,” J. Biomed. Opt. 10(1), 014002 (2005).
[CrossRef]

Underwood, J. M.

Valle, P. J.

D. M. de Juana, V. F. Canales, P. J. Valle, and M. P. Cagigal, “ “Focusing properties of annular binary phase filters,” Opt. Commun. 229(1-6), 71–77 (2004).
[CrossRef]

Vogel, A.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005), doi:.
[CrossRef]

Wang, H.

Wang, L.

Wang, M. R.

Watanabe, W.

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Yan, Y.

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Appl. Opt. (4)

Appl. Phys. B (1)

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005), doi:.
[CrossRef]

Biomed. Opt. Express (1)

J. Biomed. Opt. (1)

L. Sacconi, I. M. Tolić-Nørrelykke, R. Antolini, and F. S. Pavone, “Combined intracellular three-dimensional imaging and selective nanosurgery by a nonlinear microscope,” J. Biomed. Opt. 10(1), 014002 (2005).
[CrossRef]

J. Opt. Soc. Am. A (3)

Jpn. J. Appl. Phys. (2)

M. Shinoda and K. Kime, “Focusing characteristics of an optical head with superresolution using a high-aspectratio red laser diode,” Jpn. J. Appl. Phys. 35(Part 1, No. 1B), 380–383 (1996).
[CrossRef]

H. Ando, “Phase-shifting apodizer of three or more portions,” Jpn. J. Appl. Phys. 31(Part 1, No. 2B), 557–567 (1992).
[CrossRef]

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Opt. Commun. (2)

D. M. de Juana, V. F. Canales, P. J. Valle, and M. P. Cagigal, “ “Focusing properties of annular binary phase filters,” Opt. Commun. 229(1-6), 71–77 (2004).
[CrossRef]

P. N. Gundu, E. Hack, and P. Rastogi, “Apodized superresolution - concept and simulations,” Opt. Commun. 249(1-3), 101–107 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Other (1)

P. A. Quinto-Su, and V. Venugopalan, “Mechanisms of laser cellular microsurgery,” in “Laser Manipulation of Cells and Tissues,”, vol. 82 of Methods in Cell Biology, M. W. Berns and K. O. Greulich, eds. (Academic Press, 2007), pp. 111, 113 – 151.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Beam propagation through filter and focusing lens.

Fig. 2.
Fig. 2.

(a) Definition of phase filter radii. (b) Example point spread function of an unmodified beam and of a superresolved beam.

Fig. 3.
Fig. 3.

Left: Evolution of the point spread function with increasing phase ring width Δr for ra = 0.16. Right: Corresponding superresolution performance factors.

Fig. 4.
Fig. 4.

Experimental setup for generation of superresolved beams and subsequent use in nanosurgery of biological probes.

Fig. 5.
Fig. 5.

Normalized camera images in the focal plane of a 500mm lens showing an Gaussian beam (a) and a superresolved beam (b) with a phase ring width of Δr = 0.2. (c) Calculated superresolved beam with the same parameters as (b).

Fig. 6.
Fig. 6.

Reduction in spot width (G) over phase radius Δr (a) and Strehl ratio (S) over phase radius Δr (b) for ra = 0.16. The dashed blue lines show the linear regression.

Fig. 7.
Fig. 7.

Examples of line cuts in cells with an unshaped laser beam (a-b) and a superresolved laser beam (c-d) at Δr = 0.16. The images a-d were obtained using a scanning multiphoton fluorescence microscope with a 100x/1.3 NA objective. The corresponding line widths are derived as (a,1.) 1.09±0.18µm at 1.1 nJ, (a,2.) 1.09±0.33µm at 1.1 nJ, (b) 0.87±0.22µm at 1.1 nJ, (c) 0.76±0.25µm at 4.5 nJ. (d,1.) 0.86±0.15µm at 4.3 nJ. (d,2.) 1.07±0.30µm at 4.3 nJ.

Fig. 8.
Fig. 8.

Results of the statistical analysis of 105 cell cuts, divided into three sections: cell cuts with the reference beam (blue dashed line), cuts with Δr = 0.10 (green solid line), and with Δr = 0.16 (red solid line). The error bars represent the standard deviation of the analyzed width data. The pulse energy of the superresolved beams is normalized to the unshaped Strehl ratio.

Metrics