Abstract

In both photoacoustic (PA) and ultrasonic (US) imaging, overall image quality is influenced by the optical and acoustical properties of the medium. Consequently, with the increased use of combined PA and US (PAUS) imaging in preclinical and clinical applications, the ability to provide phantoms that are capable of mimicking desired properties of soft tissues is critical. To this end, gelatin-based phantoms were constructed with various additives to provide realistic acoustic and optical properties. Forty-micron, spherical silica particles were used to induce acoustic scattering, Intralipid® 20% IV fat emulsion was employed to enhance optical scattering and ultrasonic attenuation, while India Ink, Direct Red 81, and Evans blue dyes were utilized to achieve optical absorption typical of soft tissues. The following parameters were then measured in each phantom formulation: speed of sound, acoustic attenuation (from 6 to 22 MHz), acoustic backscatter coefficient (from 6 to 22 MHz), optical absorption (from 400 nm to 1300 nm), and optical scattering (from 400 nm to 1300 nm). Results from these measurements were then compared to similar measurements, which are offered by the literature, for various soft tissue types. Based on these comparisons, it was shown that a reasonably accurate tissue-mimicking phantom could be constructed using a gelatin base with the aforementioned additives. Thus, it is possible to construct a phantom that mimics specific tissue acoustical and/or optical properties for the purpose of PAUS imaging studies.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Prince and J. M. Links, Medical Imaging Signals and Systems (Pearson Prentice Hall, 2006).
  2. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006).
    [CrossRef]
  3. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
    [CrossRef] [PubMed]
  4. G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt.12(4), 044020 (2007).
    [CrossRef] [PubMed]
  5. A. Agarwal, S. Huang, M. O’Donnell, K. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys.102(6), 064701 (2007).
    [CrossRef]
  6. S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett.9(8), 2825–2831 (2009).
    [CrossRef] [PubMed]
  7. A. Needles, A. Heinmiller, P. Ephrat, C. Bilan-Tracey, A. Trujillo, C. Theodoropoulos, D. Hirson, and F. Foster, “Development of a combined photoacoustic micro-ultrasound system for estimating blood oxygenation,” in 2010 IEEE Ultrasonics Symposium (IUS) (IEEE, 2010). pp. 390–393.
  8. J. L. Su, R. R. Bouchard, A. B. Karpiouk, J. D. Hazle, and S. Y. Emelianov, “Photoacoustic imaging of prostate brachytherapy seeds,” Biomed. Opt. Express2(8), 2243–2254 (2011).
    [CrossRef] [PubMed]
  9. J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging24(4), 436–440 (2005).
    [CrossRef] [PubMed]
  10. C. Haisch, K. Eilert-Zell, M. M. Vogel, P. Menzenbach, and R. Niessner, “Combined optoacoustic/ultrasound system for tomographic absorption measurements: possibilities and limitations,” Anal. Bioanal. Chem.397(4), 1503–1510 (2010).
    [CrossRef] [PubMed]
  11. B. Wang, E. Yantsen, T. Larson, A. B. Karpiouk, S. Sethuraman, J. L. Su, K. Sokolov, and S. Y. Emelianov, “Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques,” Nano Lett.9(6), 2212–2217 (2009).
    [CrossRef] [PubMed]
  12. E. L. Madsen, J. A. Zagzebski, R. A. Banjavie, and R. E. Jutila, “Tissue mimicking materials for ultrasound phantoms,” Med. Phys.5(5), 391–394 (1978).
    [CrossRef] [PubMed]
  13. F. T. D’Astous and F. S. Foster, “Frequency dependence of ultrasound attenuation and backscatter in breast tissue,” Ultrasound Med. Biol.12(10), 795–808 (1986).
    [CrossRef] [PubMed]
  14. Z. F. Lu, J. A. Zagzebski, and F. T. Lee, “Ultrasound backscatter and attenuation in human liver with diffuse disease,” Ultrasound Med. Biol.25(7), 1047–1054 (1999).
    [CrossRef] [PubMed]
  15. D. Nicholas, “Evaluation of backscattering coefficients for excised human tissues: results, interpretation and associated measurements,” Ultrasound Med. Biol.8(1), 17–28 (1982).
    [CrossRef]
  16. K. K. Shung, R. A. Sigelmann, and J. M. Reid, “Scattering of ultrasound by blood,” IEEE Trans. Biomed. Eng.BME-23(6), 460–467 (1976).
    [CrossRef] [PubMed]
  17. K. A. Topp and W. D. O’Brien., “Anisotropy of ultrasonic propagation and scattering properties in fresh rat skeletal muscle in vitro,” J. Acoust. Soc. Am.107(2), 1027–1033 (2000).
    [CrossRef] [PubMed]
  18. T. J. Hall, M. Bilgen, M. F. Insana, and T. A. Krouskop, “Phantom materials for elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control44(6), 1355–1365 (1997).
    [CrossRef]
  19. L. K. Ryan and F. S. Foster, “Tissue equivalent vessel phantoms for intravascular ultrasound,” Ultrasound Med. Biol.23(2), 261–273 (1997).
    [CrossRef] [PubMed]
  20. B. Fay, K. Brendel, and G. Ludwig, “Studies of inhomogeneous substances by ultrasonic back-scattering,” Ultrasound Med. Biol.2(3), 195–198 (1976).
    [CrossRef] [PubMed]
  21. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26(12), 2166–2185 (1990).
    [CrossRef]
  22. E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11(6), 064026 (2006).
    [CrossRef] [PubMed]
  23. S. Watanabe, T. J. Flotte, D. J. McAuliffe, and S. L. Jacques, “Putative photoacoustic damage in skin induced by pulsed ArF excimer laser,” J. Invest. Dermatol.90(5), 761–766 (1988).
    [CrossRef] [PubMed]
  24. A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt.4(1), 36 (1999).
    [CrossRef]
  25. C. J. M. Moes, M. J. C. van Gemert, W. M. Star, J. P. Marijnissen, and S. A. Prahl, “Measurements and calculations of the energy fluence rate in a scattering and absorbing phantom at 633 nm,” Appl. Opt.28(12), 2292–2296 (1989).
    [CrossRef] [PubMed]
  26. A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, “Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons,” J. Biomed. Opt.11(1), 014007 (2006).
    [CrossRef] [PubMed]
  27. E. L. Madsen, M. A. Hobson, H. Shi, T. Varghese, and G. R. Frank, “Stability of heterogeneous elastography phantoms made from oil dispersions in aqueous gels,” Ultrasound Med. Biol.32(2), 261–270 (2006).
    [CrossRef] [PubMed]
  28. M. Greenspan, “Tables of the speed of sound in water,” J. Acoust. Soc. Am.31(1), 75 (1959).
    [CrossRef]
  29. R. C. Chivers and C. R. Hill, “Ultrasonic attenuation in human tissue,” Ultrasound Med. Biol.2(1), 25–29 (1975).
    [CrossRef] [PubMed]
  30. S. Chaffaı̈, V. Roberjot, F. Peyrin, G. Berger, and P. Laugier, “Frequency dependence of ultrasonic backscattering in cancellous bone: autocorrelation model and experimental results,” J. Acoust. Soc. Am.108(5), 2403–2411 (2000).
    [CrossRef] [PubMed]
  31. R. L. Romijn, J. M. Thijssen, J. L. van Delft, D. de Wolff-Rouendaal, J. van Best, and J. A. Oosterhuis, “In vivo ultrasound backscattering estimation for tumour diagnosis: an animal study,” Ultrasound Med. Biol.15(5), 471–479 (1989).
    [CrossRef] [PubMed]
  32. V. Roberjot, S. L. Bridal, P. Laugier, and G. Berger, “Absolute backscatter coefficient over a wide range of frequencies in a tissue-mimicking phantom containing two populations of scatterers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control43(5), 970–978 (1996).
    [CrossRef]
  33. A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol.48(3), 357–370 (2003).
    [CrossRef] [PubMed]
  34. T. Moffitt, Y. C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt.11(4), 041103 (2006).
    [CrossRef] [PubMed]
  35. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding-doubling method,” Appl. Opt.32(4), 559–568 (1993).
    [CrossRef] [PubMed]
  36. S. A. Prahl, “Inverse adding-doubling program,” Oregon Medical Laser Center, St. Vincent Hospital (2011).
  37. K. F. Palmer and D. Williams, “Optical properties of water in the near infrared,” J. Opt. Soc. Am.64(8), 1107–1110 (1974).
    [CrossRef]
  38. H. Maaß and U. Kühnapfel, “Noninvasive measurement of elastic properties of living tissue,” in CARS '99—Computer Assisted Radiology and Surgery, 13th Internat.Symp.and Exhibition (1999), pp. 865–870
  39. E. L. Madsen, J. A. Zagzebski, R. A. Banjavic, and M. M. Burlew, “Phantom material and method,” U.S. patent 4277367 (July 7, 1981).
  40. H. Buiteveld, J. Hakvoort, and M. Donze, “Optical properties of pure water,” Proc. SPIE2258, 174–183 (1994).
    [CrossRef]
  41. L. Marrucci, D. Paparo, M. Vetrano, M. Colicchio, E. Santamato, and G. Viscardi, “Role of dye structure in photoinduced reorientation of dye-doped liquid crystals,” J. Chem. Phys.113(22), 10361 (2000).
    [CrossRef]
  42. I. Jones, W. R. Jackson, and A. M. Halpern, “Medium effects on fluorescence quantum yields and lifetimes for coumarin laser dyes,” Chem. Phys. Lett.72(2), 391–395 (1980).
    [CrossRef]
  43. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
    [CrossRef] [PubMed]
  44. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991).
    [CrossRef] [PubMed]
  45. S. Prahl, “Everything I think you should know about inverse adding-doubling,” Oregon Medical Laser Center, St. Vincent Hospital (2011).

2011 (1)

2010 (1)

C. Haisch, K. Eilert-Zell, M. M. Vogel, P. Menzenbach, and R. Niessner, “Combined optoacoustic/ultrasound system for tomographic absorption measurements: possibilities and limitations,” Anal. Bioanal. Chem.397(4), 1503–1510 (2010).
[CrossRef] [PubMed]

2009 (2)

B. Wang, E. Yantsen, T. Larson, A. B. Karpiouk, S. Sethuraman, J. L. Su, K. Sokolov, and S. Y. Emelianov, “Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques,” Nano Lett.9(6), 2212–2217 (2009).
[CrossRef] [PubMed]

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett.9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

2008 (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

2007 (2)

G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt.12(4), 044020 (2007).
[CrossRef] [PubMed]

A. Agarwal, S. Huang, M. O’Donnell, K. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys.102(6), 064701 (2007).
[CrossRef]

2006 (5)

T. Moffitt, Y. C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt.11(4), 041103 (2006).
[CrossRef] [PubMed]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006).
[CrossRef]

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11(6), 064026 (2006).
[CrossRef] [PubMed]

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, “Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons,” J. Biomed. Opt.11(1), 014007 (2006).
[CrossRef] [PubMed]

E. L. Madsen, M. A. Hobson, H. Shi, T. Varghese, and G. R. Frank, “Stability of heterogeneous elastography phantoms made from oil dispersions in aqueous gels,” Ultrasound Med. Biol.32(2), 261–270 (2006).
[CrossRef] [PubMed]

2005 (1)

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging24(4), 436–440 (2005).
[CrossRef] [PubMed]

2003 (1)

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol.48(3), 357–370 (2003).
[CrossRef] [PubMed]

2000 (3)

L. Marrucci, D. Paparo, M. Vetrano, M. Colicchio, E. Santamato, and G. Viscardi, “Role of dye structure in photoinduced reorientation of dye-doped liquid crystals,” J. Chem. Phys.113(22), 10361 (2000).
[CrossRef]

S. Chaffaı̈, V. Roberjot, F. Peyrin, G. Berger, and P. Laugier, “Frequency dependence of ultrasonic backscattering in cancellous bone: autocorrelation model and experimental results,” J. Acoust. Soc. Am.108(5), 2403–2411 (2000).
[CrossRef] [PubMed]

K. A. Topp and W. D. O’Brien., “Anisotropy of ultrasonic propagation and scattering properties in fresh rat skeletal muscle in vitro,” J. Acoust. Soc. Am.107(2), 1027–1033 (2000).
[CrossRef] [PubMed]

1999 (2)

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt.4(1), 36 (1999).
[CrossRef]

Z. F. Lu, J. A. Zagzebski, and F. T. Lee, “Ultrasound backscatter and attenuation in human liver with diffuse disease,” Ultrasound Med. Biol.25(7), 1047–1054 (1999).
[CrossRef] [PubMed]

1997 (2)

T. J. Hall, M. Bilgen, M. F. Insana, and T. A. Krouskop, “Phantom materials for elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control44(6), 1355–1365 (1997).
[CrossRef]

L. K. Ryan and F. S. Foster, “Tissue equivalent vessel phantoms for intravascular ultrasound,” Ultrasound Med. Biol.23(2), 261–273 (1997).
[CrossRef] [PubMed]

1996 (1)

V. Roberjot, S. L. Bridal, P. Laugier, and G. Berger, “Absolute backscatter coefficient over a wide range of frequencies in a tissue-mimicking phantom containing two populations of scatterers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control43(5), 970–978 (1996).
[CrossRef]

1994 (1)

H. Buiteveld, J. Hakvoort, and M. Donze, “Optical properties of pure water,” Proc. SPIE2258, 174–183 (1994).
[CrossRef]

1993 (1)

1992 (1)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

1991 (1)

1990 (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26(12), 2166–2185 (1990).
[CrossRef]

1989 (2)

C. J. M. Moes, M. J. C. van Gemert, W. M. Star, J. P. Marijnissen, and S. A. Prahl, “Measurements and calculations of the energy fluence rate in a scattering and absorbing phantom at 633 nm,” Appl. Opt.28(12), 2292–2296 (1989).
[CrossRef] [PubMed]

R. L. Romijn, J. M. Thijssen, J. L. van Delft, D. de Wolff-Rouendaal, J. van Best, and J. A. Oosterhuis, “In vivo ultrasound backscattering estimation for tumour diagnosis: an animal study,” Ultrasound Med. Biol.15(5), 471–479 (1989).
[CrossRef] [PubMed]

1988 (1)

S. Watanabe, T. J. Flotte, D. J. McAuliffe, and S. L. Jacques, “Putative photoacoustic damage in skin induced by pulsed ArF excimer laser,” J. Invest. Dermatol.90(5), 761–766 (1988).
[CrossRef] [PubMed]

1986 (1)

F. T. D’Astous and F. S. Foster, “Frequency dependence of ultrasound attenuation and backscatter in breast tissue,” Ultrasound Med. Biol.12(10), 795–808 (1986).
[CrossRef] [PubMed]

1982 (1)

D. Nicholas, “Evaluation of backscattering coefficients for excised human tissues: results, interpretation and associated measurements,” Ultrasound Med. Biol.8(1), 17–28 (1982).
[CrossRef]

1980 (1)

I. Jones, W. R. Jackson, and A. M. Halpern, “Medium effects on fluorescence quantum yields and lifetimes for coumarin laser dyes,” Chem. Phys. Lett.72(2), 391–395 (1980).
[CrossRef]

1978 (1)

E. L. Madsen, J. A. Zagzebski, R. A. Banjavie, and R. E. Jutila, “Tissue mimicking materials for ultrasound phantoms,” Med. Phys.5(5), 391–394 (1978).
[CrossRef] [PubMed]

1976 (2)

B. Fay, K. Brendel, and G. Ludwig, “Studies of inhomogeneous substances by ultrasonic back-scattering,” Ultrasound Med. Biol.2(3), 195–198 (1976).
[CrossRef] [PubMed]

K. K. Shung, R. A. Sigelmann, and J. M. Reid, “Scattering of ultrasound by blood,” IEEE Trans. Biomed. Eng.BME-23(6), 460–467 (1976).
[CrossRef] [PubMed]

1975 (1)

R. C. Chivers and C. R. Hill, “Ultrasonic attenuation in human tissue,” Ultrasound Med. Biol.2(1), 25–29 (1975).
[CrossRef] [PubMed]

1974 (1)

1959 (1)

M. Greenspan, “Tables of the speed of sound in water,” J. Acoust. Soc. Am.31(1), 75 (1959).
[CrossRef]

Agarwal, A.

A. Agarwal, S. Huang, M. O’Donnell, K. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys.102(6), 064701 (2007).
[CrossRef]

Agayan, R. R.

G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt.12(4), 044020 (2007).
[CrossRef] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Ashkenazi, S.

G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt.12(4), 044020 (2007).
[CrossRef] [PubMed]

A. Agarwal, S. Huang, M. O’Donnell, K. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys.102(6), 064701 (2007).
[CrossRef]

Banjavie, R. A.

E. L. Madsen, J. A. Zagzebski, R. A. Banjavie, and R. E. Jutila, “Tissue mimicking materials for ultrasound phantoms,” Med. Phys.5(5), 391–394 (1978).
[CrossRef] [PubMed]

Berger, G.

S. Chaffaı̈, V. Roberjot, F. Peyrin, G. Berger, and P. Laugier, “Frequency dependence of ultrasonic backscattering in cancellous bone: autocorrelation model and experimental results,” J. Acoust. Soc. Am.108(5), 2403–2411 (2000).
[CrossRef] [PubMed]

V. Roberjot, S. L. Bridal, P. Laugier, and G. Berger, “Absolute backscatter coefficient over a wide range of frequencies in a tissue-mimicking phantom containing two populations of scatterers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control43(5), 970–978 (1996).
[CrossRef]

Bilgen, M.

T. J. Hall, M. Bilgen, M. F. Insana, and T. A. Krouskop, “Phantom materials for elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control44(6), 1355–1365 (1997).
[CrossRef]

Bolt, R. A.

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol.48(3), 357–370 (2003).
[CrossRef] [PubMed]

Bouchard, R. R.

Brendel, K.

B. Fay, K. Brendel, and G. Ludwig, “Studies of inhomogeneous substances by ultrasonic back-scattering,” Ultrasound Med. Biol.2(3), 195–198 (1976).
[CrossRef] [PubMed]

Bridal, S. L.

V. Roberjot, S. L. Bridal, P. Laugier, and G. Berger, “Absolute backscatter coefficient over a wide range of frequencies in a tissue-mimicking phantom containing two populations of scatterers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control43(5), 970–978 (1996).
[CrossRef]

Buiteveld, H.

H. Buiteveld, J. Hakvoort, and M. Donze, “Optical properties of pure water,” Proc. SPIE2258, 174–183 (1994).
[CrossRef]

Chaffai¨, S.

S. Chaffaı̈, V. Roberjot, F. Peyrin, G. Berger, and P. Laugier, “Frequency dependence of ultrasonic backscattering in cancellous bone: autocorrelation model and experimental results,” J. Acoust. Soc. Am.108(5), 2403–2411 (2000).
[CrossRef] [PubMed]

Chen, Y. C.

T. Moffitt, Y. C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt.11(4), 041103 (2006).
[CrossRef] [PubMed]

Cheong, W. F.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26(12), 2166–2185 (1990).
[CrossRef]

Chivers, R. C.

R. C. Chivers and C. R. Hill, “Ultrasonic attenuation in human tissue,” Ultrasound Med. Biol.2(1), 25–29 (1975).
[CrossRef] [PubMed]

Colicchio, M.

L. Marrucci, D. Paparo, M. Vetrano, M. Colicchio, E. Santamato, and G. Viscardi, “Role of dye structure in photoinduced reorientation of dye-doped liquid crystals,” J. Chem. Phys.113(22), 10361 (2000).
[CrossRef]

D’Astous, F. T.

F. T. D’Astous and F. S. Foster, “Frequency dependence of ultrasound attenuation and backscatter in breast tissue,” Ultrasound Med. Biol.12(10), 795–808 (1986).
[CrossRef] [PubMed]

Day, K.

A. Agarwal, S. Huang, M. O’Donnell, K. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys.102(6), 064701 (2007).
[CrossRef]

Day, K. C.

G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt.12(4), 044020 (2007).
[CrossRef] [PubMed]

Day, M.

A. Agarwal, S. Huang, M. O’Donnell, K. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys.102(6), 064701 (2007).
[CrossRef]

Day, M. A.

G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt.12(4), 044020 (2007).
[CrossRef] [PubMed]

De Grand, A. M.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, “Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons,” J. Biomed. Opt.11(1), 014007 (2006).
[CrossRef] [PubMed]

de Mul, F. F.

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol.48(3), 357–370 (2003).
[CrossRef] [PubMed]

de Wolff-Rouendaal, D.

R. L. Romijn, J. M. Thijssen, J. L. van Delft, D. de Wolff-Rouendaal, J. van Best, and J. A. Oosterhuis, “In vivo ultrasound backscattering estimation for tumour diagnosis: an animal study,” Ultrasound Med. Biol.15(5), 471–479 (1989).
[CrossRef] [PubMed]

Donze, M.

H. Buiteveld, J. Hakvoort, and M. Donze, “Optical properties of pure water,” Proc. SPIE2258, 174–183 (1994).
[CrossRef]

Dörschel, K.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt.4(1), 36 (1999).
[CrossRef]

Eilert-Zell, K.

C. Haisch, K. Eilert-Zell, M. M. Vogel, P. Menzenbach, and R. Niessner, “Combined optoacoustic/ultrasound system for tomographic absorption measurements: possibilities and limitations,” Anal. Bioanal. Chem.397(4), 1503–1510 (2010).
[CrossRef] [PubMed]

Emelianov, S.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett.9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

Emelianov, S. Y.

J. L. Su, R. R. Bouchard, A. B. Karpiouk, J. D. Hazle, and S. Y. Emelianov, “Photoacoustic imaging of prostate brachytherapy seeds,” Biomed. Opt. Express2(8), 2243–2254 (2011).
[CrossRef] [PubMed]

B. Wang, E. Yantsen, T. Larson, A. B. Karpiouk, S. Sethuraman, J. L. Su, K. Sokolov, and S. Y. Emelianov, “Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques,” Nano Lett.9(6), 2212–2217 (2009).
[CrossRef] [PubMed]

Fay, B.

B. Fay, K. Brendel, and G. Ludwig, “Studies of inhomogeneous substances by ultrasonic back-scattering,” Ultrasound Med. Biol.2(3), 195–198 (1976).
[CrossRef] [PubMed]

Flock, S. T.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

Flotte, T. J.

S. Watanabe, T. J. Flotte, D. J. McAuliffe, and S. L. Jacques, “Putative photoacoustic damage in skin induced by pulsed ArF excimer laser,” J. Invest. Dermatol.90(5), 761–766 (1988).
[CrossRef] [PubMed]

Foster, F. S.

L. K. Ryan and F. S. Foster, “Tissue equivalent vessel phantoms for intravascular ultrasound,” Ultrasound Med. Biol.23(2), 261–273 (1997).
[CrossRef] [PubMed]

F. T. D’Astous and F. S. Foster, “Frequency dependence of ultrasound attenuation and backscatter in breast tissue,” Ultrasound Med. Biol.12(10), 795–808 (1986).
[CrossRef] [PubMed]

Frangioni, J. V.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, “Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons,” J. Biomed. Opt.11(1), 014007 (2006).
[CrossRef] [PubMed]

Frank, G. R.

E. L. Madsen, M. A. Hobson, H. Shi, T. Varghese, and G. R. Frank, “Stability of heterogeneous elastography phantoms made from oil dispersions in aqueous gels,” Ultrasound Med. Biol.32(2), 261–270 (2006).
[CrossRef] [PubMed]

Frenz, M.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging24(4), 436–440 (2005).
[CrossRef] [PubMed]

Friebel, M.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt.4(1), 36 (1999).
[CrossRef]

Gogbashian, A.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, “Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons,” J. Biomed. Opt.11(1), 014007 (2006).
[CrossRef] [PubMed]

Greenspan, M.

M. Greenspan, “Tables of the speed of sound in water,” J. Acoust. Soc. Am.31(1), 75 (1959).
[CrossRef]

Hahn, A.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt.4(1), 36 (1999).
[CrossRef]

Haisch, C.

C. Haisch, K. Eilert-Zell, M. M. Vogel, P. Menzenbach, and R. Niessner, “Combined optoacoustic/ultrasound system for tomographic absorption measurements: possibilities and limitations,” Anal. Bioanal. Chem.397(4), 1503–1510 (2010).
[CrossRef] [PubMed]

Hakvoort, J.

H. Buiteveld, J. Hakvoort, and M. Donze, “Optical properties of pure water,” Proc. SPIE2258, 174–183 (1994).
[CrossRef]

Hall, T. J.

T. J. Hall, M. Bilgen, M. F. Insana, and T. A. Krouskop, “Phantom materials for elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control44(6), 1355–1365 (1997).
[CrossRef]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Halpern, A. M.

I. Jones, W. R. Jackson, and A. M. Halpern, “Medium effects on fluorescence quantum yields and lifetimes for coumarin laser dyes,” Chem. Phys. Lett.72(2), 391–395 (1980).
[CrossRef]

Hazle, J. D.

Hill, C. R.

R. C. Chivers and C. R. Hill, “Ultrasonic attenuation in human tissue,” Ultrasound Med. Biol.2(1), 25–29 (1975).
[CrossRef] [PubMed]

Hobson, M. A.

E. L. Madsen, M. A. Hobson, H. Shi, T. Varghese, and G. R. Frank, “Stability of heterogeneous elastography phantoms made from oil dispersions in aqueous gels,” Ultrasound Med. Biol.32(2), 261–270 (2006).
[CrossRef] [PubMed]

Huang, S.

A. Agarwal, S. Huang, M. O’Donnell, K. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys.102(6), 064701 (2007).
[CrossRef]

Huang, S. W.

G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt.12(4), 044020 (2007).
[CrossRef] [PubMed]

Insana, M. F.

T. J. Hall, M. Bilgen, M. F. Insana, and T. A. Krouskop, “Phantom materials for elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control44(6), 1355–1365 (1997).
[CrossRef]

Jackson, W. R.

I. Jones, W. R. Jackson, and A. M. Halpern, “Medium effects on fluorescence quantum yields and lifetimes for coumarin laser dyes,” Chem. Phys. Lett.72(2), 391–395 (1980).
[CrossRef]

Jacques, S. L.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

S. Watanabe, T. J. Flotte, D. J. McAuliffe, and S. L. Jacques, “Putative photoacoustic damage in skin induced by pulsed ArF excimer laser,” J. Invest. Dermatol.90(5), 761–766 (1988).
[CrossRef] [PubMed]

Jaeger, M.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging24(4), 436–440 (2005).
[CrossRef] [PubMed]

Jiang, B.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11(6), 064026 (2006).
[CrossRef] [PubMed]

Jones, I.

I. Jones, W. R. Jackson, and A. M. Halpern, “Medium effects on fluorescence quantum yields and lifetimes for coumarin laser dyes,” Chem. Phys. Lett.72(2), 391–395 (1980).
[CrossRef]

Joshi, P. P.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett.9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

Jutila, R. E.

E. L. Madsen, J. A. Zagzebski, R. A. Banjavie, and R. E. Jutila, “Tissue mimicking materials for ultrasound phantoms,” Med. Phys.5(5), 391–394 (1978).
[CrossRef] [PubMed]

Karpiouk, A.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett.9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

Karpiouk, A. B.

J. L. Su, R. R. Bouchard, A. B. Karpiouk, J. D. Hazle, and S. Y. Emelianov, “Photoacoustic imaging of prostate brachytherapy seeds,” Biomed. Opt. Express2(8), 2243–2254 (2011).
[CrossRef] [PubMed]

B. Wang, E. Yantsen, T. Larson, A. B. Karpiouk, S. Sethuraman, J. L. Su, K. Sokolov, and S. Y. Emelianov, “Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques,” Nano Lett.9(6), 2212–2217 (2009).
[CrossRef] [PubMed]

Kharine, A.

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol.48(3), 357–370 (2003).
[CrossRef] [PubMed]

Kim, G.

G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt.12(4), 044020 (2007).
[CrossRef] [PubMed]

Kolkman, R. G. M.

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol.48(3), 357–370 (2003).
[CrossRef] [PubMed]

Kopelman, R.

G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt.12(4), 044020 (2007).
[CrossRef] [PubMed]

Kotov, N.

A. Agarwal, S. Huang, M. O’Donnell, K. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys.102(6), 064701 (2007).
[CrossRef]

Krouskop, T. A.

T. J. Hall, M. Bilgen, M. F. Insana, and T. A. Krouskop, “Phantom materials for elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control44(6), 1355–1365 (1997).
[CrossRef]

Larson, T.

B. Wang, E. Yantsen, T. Larson, A. B. Karpiouk, S. Sethuraman, J. L. Su, K. Sokolov, and S. Y. Emelianov, “Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques,” Nano Lett.9(6), 2212–2217 (2009).
[CrossRef] [PubMed]

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett.9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

Laugier, P.

S. Chaffaı̈, V. Roberjot, F. Peyrin, G. Berger, and P. Laugier, “Frequency dependence of ultrasonic backscattering in cancellous bone: autocorrelation model and experimental results,” J. Acoust. Soc. Am.108(5), 2403–2411 (2000).
[CrossRef] [PubMed]

V. Roberjot, S. L. Bridal, P. Laugier, and G. Berger, “Absolute backscatter coefficient over a wide range of frequencies in a tissue-mimicking phantom containing two populations of scatterers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control43(5), 970–978 (1996).
[CrossRef]

Laurence, R. G.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, “Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons,” J. Biomed. Opt.11(1), 014007 (2006).
[CrossRef] [PubMed]

Lee, D. S.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, “Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons,” J. Biomed. Opt.11(1), 014007 (2006).
[CrossRef] [PubMed]

Lee, F. T.

Z. F. Lu, J. A. Zagzebski, and F. T. Lee, “Ultrasound backscatter and attenuation in human liver with diffuse disease,” Ultrasound Med. Biol.25(7), 1047–1054 (1999).
[CrossRef] [PubMed]

Lemor, R.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging24(4), 436–440 (2005).
[CrossRef] [PubMed]

Lomnes, S. J.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, “Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons,” J. Biomed. Opt.11(1), 014007 (2006).
[CrossRef] [PubMed]

Lu, Z. F.

Z. F. Lu, J. A. Zagzebski, and F. T. Lee, “Ultrasound backscatter and attenuation in human liver with diffuse disease,” Ultrasound Med. Biol.25(7), 1047–1054 (1999).
[CrossRef] [PubMed]

Ludwig, G.

B. Fay, K. Brendel, and G. Ludwig, “Studies of inhomogeneous substances by ultrasonic back-scattering,” Ultrasound Med. Biol.2(3), 195–198 (1976).
[CrossRef] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Madsen, E. L.

E. L. Madsen, M. A. Hobson, H. Shi, T. Varghese, and G. R. Frank, “Stability of heterogeneous elastography phantoms made from oil dispersions in aqueous gels,” Ultrasound Med. Biol.32(2), 261–270 (2006).
[CrossRef] [PubMed]

E. L. Madsen, J. A. Zagzebski, R. A. Banjavie, and R. E. Jutila, “Tissue mimicking materials for ultrasound phantoms,” Med. Phys.5(5), 391–394 (1978).
[CrossRef] [PubMed]

Mallidi, S.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett.9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

Manohar, S.

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol.48(3), 357–370 (2003).
[CrossRef] [PubMed]

Marijnissen, J. P.

Marrucci, L.

L. Marrucci, D. Paparo, M. Vetrano, M. Colicchio, E. Santamato, and G. Viscardi, “Role of dye structure in photoinduced reorientation of dye-doped liquid crystals,” J. Chem. Phys.113(22), 10361 (2000).
[CrossRef]

McAuliffe, D. J.

S. Watanabe, T. J. Flotte, D. J. McAuliffe, and S. L. Jacques, “Putative photoacoustic damage in skin induced by pulsed ArF excimer laser,” J. Invest. Dermatol.90(5), 761–766 (1988).
[CrossRef] [PubMed]

Menzenbach, P.

C. Haisch, K. Eilert-Zell, M. M. Vogel, P. Menzenbach, and R. Niessner, “Combined optoacoustic/ultrasound system for tomographic absorption measurements: possibilities and limitations,” Anal. Bioanal. Chem.397(4), 1503–1510 (2010).
[CrossRef] [PubMed]

Moes, C. J. M.

Moffitt, T.

T. Moffitt, Y. C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt.11(4), 041103 (2006).
[CrossRef] [PubMed]

Morgan, T. G.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, “Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons,” J. Biomed. Opt.11(1), 014007 (2006).
[CrossRef] [PubMed]

Müller, G.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt.4(1), 36 (1999).
[CrossRef]

Nicholas, D.

D. Nicholas, “Evaluation of backscattering coefficients for excised human tissues: results, interpretation and associated measurements,” Ultrasound Med. Biol.8(1), 17–28 (1982).
[CrossRef]

Niederhauser, J. J.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging24(4), 436–440 (2005).
[CrossRef] [PubMed]

Niessner, R.

C. Haisch, K. Eilert-Zell, M. M. Vogel, P. Menzenbach, and R. Niessner, “Combined optoacoustic/ultrasound system for tomographic absorption measurements: possibilities and limitations,” Anal. Bioanal. Chem.397(4), 1503–1510 (2010).
[CrossRef] [PubMed]

Novak, J.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11(6), 064026 (2006).
[CrossRef] [PubMed]

O’Brien, W. D.

K. A. Topp and W. D. O’Brien., “Anisotropy of ultrasonic propagation and scattering properties in fresh rat skeletal muscle in vitro,” J. Acoust. Soc. Am.107(2), 1027–1033 (2000).
[CrossRef] [PubMed]

O’Donnell, M.

A. Agarwal, S. Huang, M. O’Donnell, K. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys.102(6), 064701 (2007).
[CrossRef]

G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt.12(4), 044020 (2007).
[CrossRef] [PubMed]

Ohnishi, S.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, “Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons,” J. Biomed. Opt.11(1), 014007 (2006).
[CrossRef] [PubMed]

Oosterhuis, J. A.

R. L. Romijn, J. M. Thijssen, J. L. van Delft, D. de Wolff-Rouendaal, J. van Best, and J. A. Oosterhuis, “In vivo ultrasound backscattering estimation for tumour diagnosis: an animal study,” Ultrasound Med. Biol.15(5), 471–479 (1989).
[CrossRef] [PubMed]

Palmer, K. F.

Paparo, D.

L. Marrucci, D. Paparo, M. Vetrano, M. Colicchio, E. Santamato, and G. Viscardi, “Role of dye structure in photoinduced reorientation of dye-doped liquid crystals,” J. Chem. Phys.113(22), 10361 (2000).
[CrossRef]

Peyrin, F.

S. Chaffaı̈, V. Roberjot, F. Peyrin, G. Berger, and P. Laugier, “Frequency dependence of ultrasonic backscattering in cancellous bone: autocorrelation model and experimental results,” J. Acoust. Soc. Am.108(5), 2403–2411 (2000).
[CrossRef] [PubMed]

Pietrzykowski, M.

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, “Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons,” J. Biomed. Opt.11(1), 014007 (2006).
[CrossRef] [PubMed]

Prahl, S. A.

Reid, J. M.

K. K. Shung, R. A. Sigelmann, and J. M. Reid, “Scattering of ultrasound by blood,” IEEE Trans. Biomed. Eng.BME-23(6), 460–467 (1976).
[CrossRef] [PubMed]

Roberjot, V.

S. Chaffaı̈, V. Roberjot, F. Peyrin, G. Berger, and P. Laugier, “Frequency dependence of ultrasonic backscattering in cancellous bone: autocorrelation model and experimental results,” J. Acoust. Soc. Am.108(5), 2403–2411 (2000).
[CrossRef] [PubMed]

V. Roberjot, S. L. Bridal, P. Laugier, and G. Berger, “Absolute backscatter coefficient over a wide range of frequencies in a tissue-mimicking phantom containing two populations of scatterers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control43(5), 970–978 (1996).
[CrossRef]

Roggan, A.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt.4(1), 36 (1999).
[CrossRef]

Romijn, R. L.

R. L. Romijn, J. M. Thijssen, J. L. van Delft, D. de Wolff-Rouendaal, J. van Best, and J. A. Oosterhuis, “In vivo ultrasound backscattering estimation for tumour diagnosis: an animal study,” Ultrasound Med. Biol.15(5), 471–479 (1989).
[CrossRef] [PubMed]

Ryan, L. K.

L. K. Ryan and F. S. Foster, “Tissue equivalent vessel phantoms for intravascular ultrasound,” Ultrasound Med. Biol.23(2), 261–273 (1997).
[CrossRef] [PubMed]

Salomatina, E.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11(6), 064026 (2006).
[CrossRef] [PubMed]

Santamato, E.

L. Marrucci, D. Paparo, M. Vetrano, M. Colicchio, E. Santamato, and G. Viscardi, “Role of dye structure in photoinduced reorientation of dye-doped liquid crystals,” J. Chem. Phys.113(22), 10361 (2000).
[CrossRef]

Seeton, R.

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol.48(3), 357–370 (2003).
[CrossRef] [PubMed]

Sethuraman, S.

B. Wang, E. Yantsen, T. Larson, A. B. Karpiouk, S. Sethuraman, J. L. Su, K. Sokolov, and S. Y. Emelianov, “Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques,” Nano Lett.9(6), 2212–2217 (2009).
[CrossRef] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Shi, H.

E. L. Madsen, M. A. Hobson, H. Shi, T. Varghese, and G. R. Frank, “Stability of heterogeneous elastography phantoms made from oil dispersions in aqueous gels,” Ultrasound Med. Biol.32(2), 261–270 (2006).
[CrossRef] [PubMed]

Shung, K. K.

K. K. Shung, R. A. Sigelmann, and J. M. Reid, “Scattering of ultrasound by blood,” IEEE Trans. Biomed. Eng.BME-23(6), 460–467 (1976).
[CrossRef] [PubMed]

Sigelmann, R. A.

K. K. Shung, R. A. Sigelmann, and J. M. Reid, “Scattering of ultrasound by blood,” IEEE Trans. Biomed. Eng.BME-23(6), 460–467 (1976).
[CrossRef] [PubMed]

Sokolov, K.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett.9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

B. Wang, E. Yantsen, T. Larson, A. B. Karpiouk, S. Sethuraman, J. L. Su, K. Sokolov, and S. Y. Emelianov, “Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques,” Nano Lett.9(6), 2212–2217 (2009).
[CrossRef] [PubMed]

Star, W. M.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

C. J. M. Moes, M. J. C. van Gemert, W. M. Star, J. P. Marijnissen, and S. A. Prahl, “Measurements and calculations of the energy fluence rate in a scattering and absorbing phantom at 633 nm,” Appl. Opt.28(12), 2292–2296 (1989).
[CrossRef] [PubMed]

Steenbergen, W.

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol.48(3), 357–370 (2003).
[CrossRef] [PubMed]

Su, J. L.

J. L. Su, R. R. Bouchard, A. B. Karpiouk, J. D. Hazle, and S. Y. Emelianov, “Photoacoustic imaging of prostate brachytherapy seeds,” Biomed. Opt. Express2(8), 2243–2254 (2011).
[CrossRef] [PubMed]

B. Wang, E. Yantsen, T. Larson, A. B. Karpiouk, S. Sethuraman, J. L. Su, K. Sokolov, and S. Y. Emelianov, “Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques,” Nano Lett.9(6), 2212–2217 (2009).
[CrossRef] [PubMed]

Tam, J.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett.9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

Thijssen, J. M.

R. L. Romijn, J. M. Thijssen, J. L. van Delft, D. de Wolff-Rouendaal, J. van Best, and J. A. Oosterhuis, “In vivo ultrasound backscattering estimation for tumour diagnosis: an animal study,” Ultrasound Med. Biol.15(5), 471–479 (1989).
[CrossRef] [PubMed]

Topp, K. A.

K. A. Topp and W. D. O’Brien., “Anisotropy of ultrasonic propagation and scattering properties in fresh rat skeletal muscle in vitro,” J. Acoust. Soc. Am.107(2), 1027–1033 (2000).
[CrossRef] [PubMed]

van Best, J.

R. L. Romijn, J. M. Thijssen, J. L. van Delft, D. de Wolff-Rouendaal, J. van Best, and J. A. Oosterhuis, “In vivo ultrasound backscattering estimation for tumour diagnosis: an animal study,” Ultrasound Med. Biol.15(5), 471–479 (1989).
[CrossRef] [PubMed]

van Delft, J. L.

R. L. Romijn, J. M. Thijssen, J. L. van Delft, D. de Wolff-Rouendaal, J. van Best, and J. A. Oosterhuis, “In vivo ultrasound backscattering estimation for tumour diagnosis: an animal study,” Ultrasound Med. Biol.15(5), 471–479 (1989).
[CrossRef] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

van Gemert, M. J. C.

van Marie, J.

van Staveren, H. J.

Varghese, T.

E. L. Madsen, M. A. Hobson, H. Shi, T. Varghese, and G. R. Frank, “Stability of heterogeneous elastography phantoms made from oil dispersions in aqueous gels,” Ultrasound Med. Biol.32(2), 261–270 (2006).
[CrossRef] [PubMed]

Vetrano, M.

L. Marrucci, D. Paparo, M. Vetrano, M. Colicchio, E. Santamato, and G. Viscardi, “Role of dye structure in photoinduced reorientation of dye-doped liquid crystals,” J. Chem. Phys.113(22), 10361 (2000).
[CrossRef]

Viscardi, G.

L. Marrucci, D. Paparo, M. Vetrano, M. Colicchio, E. Santamato, and G. Viscardi, “Role of dye structure in photoinduced reorientation of dye-doped liquid crystals,” J. Chem. Phys.113(22), 10361 (2000).
[CrossRef]

Vogel, M. M.

C. Haisch, K. Eilert-Zell, M. M. Vogel, P. Menzenbach, and R. Niessner, “Combined optoacoustic/ultrasound system for tomographic absorption measurements: possibilities and limitations,” Anal. Bioanal. Chem.397(4), 1503–1510 (2010).
[CrossRef] [PubMed]

Wang, B.

B. Wang, E. Yantsen, T. Larson, A. B. Karpiouk, S. Sethuraman, J. L. Su, K. Sokolov, and S. Y. Emelianov, “Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques,” Nano Lett.9(6), 2212–2217 (2009).
[CrossRef] [PubMed]

Wang, L. V.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006).
[CrossRef]

Watanabe, S.

S. Watanabe, T. J. Flotte, D. J. McAuliffe, and S. L. Jacques, “Putative photoacoustic damage in skin induced by pulsed ArF excimer laser,” J. Invest. Dermatol.90(5), 761–766 (1988).
[CrossRef] [PubMed]

Weber, P.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging24(4), 436–440 (2005).
[CrossRef] [PubMed]

Welch, A. J.

S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding-doubling method,” Appl. Opt.32(4), 559–568 (1993).
[CrossRef] [PubMed]

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26(12), 2166–2185 (1990).
[CrossRef]

Williams, D.

Wilson, B. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

Xu, M.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006).
[CrossRef]

Yantsen, E.

B. Wang, E. Yantsen, T. Larson, A. B. Karpiouk, S. Sethuraman, J. L. Su, K. Sokolov, and S. Y. Emelianov, “Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques,” Nano Lett.9(6), 2212–2217 (2009).
[CrossRef] [PubMed]

Yaroslavsky, A. N.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11(6), 064026 (2006).
[CrossRef] [PubMed]

Zagzebski, J. A.

Z. F. Lu, J. A. Zagzebski, and F. T. Lee, “Ultrasound backscatter and attenuation in human liver with diffuse disease,” Ultrasound Med. Biol.25(7), 1047–1054 (1999).
[CrossRef] [PubMed]

E. L. Madsen, J. A. Zagzebski, R. A. Banjavie, and R. E. Jutila, “Tissue mimicking materials for ultrasound phantoms,” Med. Phys.5(5), 391–394 (1978).
[CrossRef] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Anal. Bioanal. Chem. (1)

C. Haisch, K. Eilert-Zell, M. M. Vogel, P. Menzenbach, and R. Niessner, “Combined optoacoustic/ultrasound system for tomographic absorption measurements: possibilities and limitations,” Anal. Bioanal. Chem.397(4), 1503–1510 (2010).
[CrossRef] [PubMed]

Appl. Opt. (3)

Biomed. Opt. Express (1)

Chem. Phys. Lett. (1)

I. Jones, W. R. Jackson, and A. M. Halpern, “Medium effects on fluorescence quantum yields and lifetimes for coumarin laser dyes,” Chem. Phys. Lett.72(2), 391–395 (1980).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26(12), 2166–2185 (1990).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

K. K. Shung, R. A. Sigelmann, and J. M. Reid, “Scattering of ultrasound by blood,” IEEE Trans. Biomed. Eng.BME-23(6), 460–467 (1976).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (1)

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging24(4), 436–440 (2005).
[CrossRef] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2)

T. J. Hall, M. Bilgen, M. F. Insana, and T. A. Krouskop, “Phantom materials for elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control44(6), 1355–1365 (1997).
[CrossRef]

V. Roberjot, S. L. Bridal, P. Laugier, and G. Berger, “Absolute backscatter coefficient over a wide range of frequencies in a tissue-mimicking phantom containing two populations of scatterers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control43(5), 970–978 (1996).
[CrossRef]

J. Acoust. Soc. Am. (3)

S. Chaffaı̈, V. Roberjot, F. Peyrin, G. Berger, and P. Laugier, “Frequency dependence of ultrasonic backscattering in cancellous bone: autocorrelation model and experimental results,” J. Acoust. Soc. Am.108(5), 2403–2411 (2000).
[CrossRef] [PubMed]

M. Greenspan, “Tables of the speed of sound in water,” J. Acoust. Soc. Am.31(1), 75 (1959).
[CrossRef]

K. A. Topp and W. D. O’Brien., “Anisotropy of ultrasonic propagation and scattering properties in fresh rat skeletal muscle in vitro,” J. Acoust. Soc. Am.107(2), 1027–1033 (2000).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

A. Agarwal, S. Huang, M. O’Donnell, K. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys.102(6), 064701 (2007).
[CrossRef]

J. Biomed. Opt. (5)

G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt.12(4), 044020 (2007).
[CrossRef] [PubMed]

A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, “Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons,” J. Biomed. Opt.11(1), 014007 (2006).
[CrossRef] [PubMed]

T. Moffitt, Y. C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt.11(4), 041103 (2006).
[CrossRef] [PubMed]

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11(6), 064026 (2006).
[CrossRef] [PubMed]

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt.4(1), 36 (1999).
[CrossRef]

J. Chem. Phys. (1)

L. Marrucci, D. Paparo, M. Vetrano, M. Colicchio, E. Santamato, and G. Viscardi, “Role of dye structure in photoinduced reorientation of dye-doped liquid crystals,” J. Chem. Phys.113(22), 10361 (2000).
[CrossRef]

J. Invest. Dermatol. (1)

S. Watanabe, T. J. Flotte, D. J. McAuliffe, and S. L. Jacques, “Putative photoacoustic damage in skin induced by pulsed ArF excimer laser,” J. Invest. Dermatol.90(5), 761–766 (1988).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

Lasers Surg. Med. (1)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

Med. Phys. (1)

E. L. Madsen, J. A. Zagzebski, R. A. Banjavie, and R. E. Jutila, “Tissue mimicking materials for ultrasound phantoms,” Med. Phys.5(5), 391–394 (1978).
[CrossRef] [PubMed]

Nano Lett. (2)

B. Wang, E. Yantsen, T. Larson, A. B. Karpiouk, S. Sethuraman, J. L. Su, K. Sokolov, and S. Y. Emelianov, “Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques,” Nano Lett.9(6), 2212–2217 (2009).
[CrossRef] [PubMed]

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett.9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol.48(3), 357–370 (2003).
[CrossRef] [PubMed]

Proc. SPIE (1)

H. Buiteveld, J. Hakvoort, and M. Donze, “Optical properties of pure water,” Proc. SPIE2258, 174–183 (1994).
[CrossRef]

Rev. Sci. Instrum. (1)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006).
[CrossRef]

Ultrasound Med. Biol. (8)

L. K. Ryan and F. S. Foster, “Tissue equivalent vessel phantoms for intravascular ultrasound,” Ultrasound Med. Biol.23(2), 261–273 (1997).
[CrossRef] [PubMed]

B. Fay, K. Brendel, and G. Ludwig, “Studies of inhomogeneous substances by ultrasonic back-scattering,” Ultrasound Med. Biol.2(3), 195–198 (1976).
[CrossRef] [PubMed]

F. T. D’Astous and F. S. Foster, “Frequency dependence of ultrasound attenuation and backscatter in breast tissue,” Ultrasound Med. Biol.12(10), 795–808 (1986).
[CrossRef] [PubMed]

Z. F. Lu, J. A. Zagzebski, and F. T. Lee, “Ultrasound backscatter and attenuation in human liver with diffuse disease,” Ultrasound Med. Biol.25(7), 1047–1054 (1999).
[CrossRef] [PubMed]

D. Nicholas, “Evaluation of backscattering coefficients for excised human tissues: results, interpretation and associated measurements,” Ultrasound Med. Biol.8(1), 17–28 (1982).
[CrossRef]

R. L. Romijn, J. M. Thijssen, J. L. van Delft, D. de Wolff-Rouendaal, J. van Best, and J. A. Oosterhuis, “In vivo ultrasound backscattering estimation for tumour diagnosis: an animal study,” Ultrasound Med. Biol.15(5), 471–479 (1989).
[CrossRef] [PubMed]

E. L. Madsen, M. A. Hobson, H. Shi, T. Varghese, and G. R. Frank, “Stability of heterogeneous elastography phantoms made from oil dispersions in aqueous gels,” Ultrasound Med. Biol.32(2), 261–270 (2006).
[CrossRef] [PubMed]

R. C. Chivers and C. R. Hill, “Ultrasonic attenuation in human tissue,” Ultrasound Med. Biol.2(1), 25–29 (1975).
[CrossRef] [PubMed]

Other (6)

A. Needles, A. Heinmiller, P. Ephrat, C. Bilan-Tracey, A. Trujillo, C. Theodoropoulos, D. Hirson, and F. Foster, “Development of a combined photoacoustic micro-ultrasound system for estimating blood oxygenation,” in 2010 IEEE Ultrasonics Symposium (IUS) (IEEE, 2010). pp. 390–393.

H. Maaß and U. Kühnapfel, “Noninvasive measurement of elastic properties of living tissue,” in CARS '99—Computer Assisted Radiology and Surgery, 13th Internat.Symp.and Exhibition (1999), pp. 865–870

E. L. Madsen, J. A. Zagzebski, R. A. Banjavic, and M. M. Burlew, “Phantom material and method,” U.S. patent 4277367 (July 7, 1981).

J. L. Prince and J. M. Links, Medical Imaging Signals and Systems (Pearson Prentice Hall, 2006).

S. A. Prahl, “Inverse adding-doubling program,” Oregon Medical Laser Center, St. Vincent Hospital (2011).

S. Prahl, “Everything I think you should know about inverse adding-doubling,” Oregon Medical Laser Center, St. Vincent Hospital (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup for the speed of sound and ultrasound attenuation measurements.

Fig. 2
Fig. 2

Setup for the ultrasound backscatter coefficient measurement. The reference measurement was performed with the focus 1 mm in the phantom background at an aluminum plate (left image). The phantom measurement (right image) was performed without the aluminum plate.

Fig. 3
Fig. 3

Setup to measure the optical extinction coefficient of samples containing different concentrations of gelatin and India Ink, Evans Blue, or Direct Red 81. The dashed lines indicate scattered photons; S is the light source; and D is the light detector.

Fig. 4
Fig. 4

Setup to measure the total diffuse reflectance (a-c) and transmittance (d-f) of gelatin samples containing Intralipid® solution.

Fig. 5
Fig. 5

The speed of sound dependence on gelatin concentration (a) and the change in the speed of sound with Intralipid® solution concentration (b). Unless otherwise specified, error bars are calculated from 5 different positions on 3 samples in all plots.

Fig. 6
Fig. 6

The dependence of ultrasound attenuation on gelatin concentration (a), silica concentration (b), and Intralipid® concentration (c) for the phantoms listed in Table 1. The contribution of ultrasound attenuation from the gelatin was removed from the graphs for silica and Intralipid® formulations.

Fig. 7
Fig. 7

The dependence of the ultrasound backscatter coefficient with increasing silica concentration for phantoms listed in Table 1. Error bars were calculated from 2500 positions on 3 samples.

Fig. 8
Fig. 8

Optical absorption spectrum of gelatin (a) and a magnified view between 400 nm and 950 nm (b).

Fig. 9
Fig. 9

Optical absorption spectrum of India Ink (a), Evans Blue (b), and Direct Red 81 (c) with error bars; the solid cyan line is the same molarity of dyes in water (i.e., not gelatin).

Fig. 10
Fig. 10

Optical scattering spectrum of 20% Intralipid® in various concentrations of gelatin.

Tables (5)

Tables Icon

Table 1 Samples for ultrasound characterization

Tables Icon

Table 2 Samples for optical absorption characterization

Tables Icon

Table 3 Samples for optical scattering characterization

Tables Icon

Table 4 Constants for ultrasonic attenuation of phantoms

Tables Icon

Table 5 Constants for ultrasonic backscatter coefficient of phantoms

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

c s = z 1 + z 2 + z 3 z 2 c m z 1 + z 3 z 2 c w ,
α s ( f )= 10 z 2 log 10 [ V s ( f,z ) V r ( f,z ) 10 z 2 10 α w ( f ) ],
η( f )= S s ( f,F ) S r ( f,F ) × R 2 k 2 a 2 8πd[ 1+ ( k a 2 4F ) 2 ] ,
μ t = 1 z ln[ I I 0 ],
r sample = r std P sample P 0 P std P 0 ,
t sample = t std P sample P 0 P std P 0 ,
α( f )=A f n ,
η( f )=A f n ,

Metrics