Abstract

We demonstrate that sample induced aberrations can be measured in a nonlinear microscope. This uses the fact that two-photon excited fluorescence naturally produces a localized point source inside the sample: the nonlinear guide-star (NL-GS). The wavefront emitted from the NL-GS can then be recorded using a Shack-Hartmann sensor. Compensation of the recorded sample aberrations is performed by the deformable mirror in a single-step. This technique is applied to fixed and in vivo biological samples, showing, in some cases, more than one order of magnitude improvement in the total collected signal intensity.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  2. P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng.2(1), 399–429 (2000).
    [CrossRef] [PubMed]
  3. M. J. Booth and T. Wilson, “Refractive-index-mismatch induced aberrations in single-photon and two-photon microscopy and the use of aberration correction,” J. Biomed. Opt.6(3), 266–272 (2001).
    [CrossRef] [PubMed]
  4. D. Ganic, X. S. Gan, and M. Gu, “Reduced effects of spherical aberration on penetration depth under two-photon excitation,” Appl. Opt.39(22), 3945–3947 (2000).
    [CrossRef] [PubMed]
  5. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005).
    [CrossRef] [PubMed]
  6. M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc.200(2), 105–108 (2000).
    [CrossRef] [PubMed]
  7. D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett.34(16), 2495–2497 (2009).
    [CrossRef] [PubMed]
  8. J. M. Bueno, E. J. Gualda, and P. Artal, “Adaptive optics multiphoton microscopy to study ex vivo ocular tissues,” J. Biomed. Opt.15(6), 066004 (2010).
    [CrossRef] [PubMed]
  9. Z. Kam, P. Kner, D. Agard, and J. W. Sedat, “Modelling the application of adaptive optics to wide-field microscope live imaging,” J. Microsc.226(1), 33–42 (2007).
    [CrossRef] [PubMed]
  10. M. J. Booth, M. Schwertner, and T. Wilson, “Specimen-induced aberrations and adaptive optics for microscopy,” Proc. SPIE5894, 26–34 (2005).
  11. J. W. Cha, J. Ballesta, and P. T. C. So, “Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy,” J. Biomed. Opt.15(4), 046022 (2010).
    [CrossRef] [PubMed]
  12. D. Debarre, M. J. Booth, and T. Wilson, “Image based adaptive optics through optimisation of low spatial frequencies,” Opt. Express15(13), 8176–8190 (2007).
    [CrossRef] [PubMed]
  13. M. J. Booth, “Wave front sensor-less adaptive optics: a model-based approach using sphere packings,” Opt. Express14(4), 1339–1352 (2006).
    [CrossRef] [PubMed]
  14. P. N. Marsh, D. Burns, and J. M. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express11(10), 1123–1130 (2003).
    [CrossRef] [PubMed]
  15. W. Lubeigt, S. P. Poland, G. J. Valentine, A. J. Wright, J. M. Girkin, and D. Burns, “Search-based active optic systems for aberration correction in time-independent applications,” Appl. Opt.49(3), 307–314 (2010).
    [CrossRef] [PubMed]
  16. J. M. Girkin, J. Vijverberg, M. Orazio, S. Poland, and A. J. Wright, “Adaptive optics in confocal and two-photon microscopy of rat brain: a single correction per optical section,” Proc. SPIE6442, 64420T, 64420T-7 (2007).
    [CrossRef]
  17. A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy,” Microsc. Res. Tech.67(1), 36–44 (2005).
    [CrossRef] [PubMed]
  18. P. Kner and Z. Kam, “Adaptive optics takes tissue imaging to the next level,” BioOpt. World1, 32–34 (2008).
  19. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17137–17142 (2006).
    [CrossRef] [PubMed]
  20. M. J. Booth, “Adaptive optics in microscopy,” Philos. Transact. A Math. Phys. Eng. Sci.365(1861), 2829–2843 (2007).
    [CrossRef] [PubMed]
  21. F. Roddier, Adaptive Optics in Astronomy (Cambridge University Press, 1999), Chap. 2.
  22. O. Azucena, J. Crest, J. A. Cao, W. Sullivan, P. Kner, D. Gavel, D. Dillon, S. Olivier, and J. Kubby, “Wavefront aberration measurements and corrections through thick tissue using fluorescent microsphere reference beacons,” Opt. Express18(16), 17521–17532 (2010).
    [CrossRef] [PubMed]
  23. G. Cormack, P. Loza-Alvarez, L. Sarrado, S. Tomas, I. Amat-Roldan, L. Torner, D. Artigas, J. Guitart, J. Pera, and J. Ros, “Lost writing uncovered by laser two-photon fluorescence provides a terminus post quem for Roman colonization of Hispania Citerior,” J. Archaeol. Sci.34(10), 1594–1600 (2007).
    [CrossRef]
  24. R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Biomed. Opt. Express2(4), 739–747 (2011).
    [CrossRef] [PubMed]
  25. R. Kerr, V. Lev-Ram, G. Baird, P. Vincent, R. Y. Tsien, and W. R. Schafer, “Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans,” Neuron26(3), 583–594 (2000).
    [CrossRef] [PubMed]
  26. H. Tabata and K. Nakajima, “Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex,” Neuroscience103(4), 865–872 (2001).
    [CrossRef] [PubMed]
  27. O. Azucena, J. Crest, S. Kotadia, W. Sullivan, X. Tao, M. Reinig, D. Gavel, S. Olivier, and J. Kubby, “Adaptive optics wide-field microscopy using direct wavefront sensing,” Opt. Lett.36(6), 825–827 (2011).
    [CrossRef] [PubMed]
  28. M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc.192(2), 90–98 (1998).
    [CrossRef]
  29. V. A. Hovhannisyan, P. J. Su, and C. Y. Dong, “Characterization of optical-aberration-induced lateral and axial image inhomogeneity in multiphoton microscopy,” J. Biomed. Opt.13(4), 044023 (2008).
    [CrossRef] [PubMed]
  30. E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun.236(1-3), 145–150 (2004).
    [CrossRef]
  31. C. Y. Dong, B. Yu, P. D. Kaplan, and P. T. C. So, “Performances of high numerical aperture water and oil immersion objective in deep-tissue, multi-photon microscopic imaging of excised human skin,” Microsc. Res. Tech.63(1), 81–86 (2004).
    [CrossRef] [PubMed]
  32. X. Tao, B. Fernandez, O. Azucena, M. Fu, D. Garcia, Y. Zuo, D. C. Chen, and J. Kubby, “Adaptive optics confocal microscopy using direct wavefront sensing,” Opt. Lett.36(7), 1062–1064 (2011).
    [CrossRef] [PubMed]

2011 (3)

2010 (4)

2009 (1)

2008 (2)

P. Kner and Z. Kam, “Adaptive optics takes tissue imaging to the next level,” BioOpt. World1, 32–34 (2008).

V. A. Hovhannisyan, P. J. Su, and C. Y. Dong, “Characterization of optical-aberration-induced lateral and axial image inhomogeneity in multiphoton microscopy,” J. Biomed. Opt.13(4), 044023 (2008).
[CrossRef] [PubMed]

2007 (5)

M. J. Booth, “Adaptive optics in microscopy,” Philos. Transact. A Math. Phys. Eng. Sci.365(1861), 2829–2843 (2007).
[CrossRef] [PubMed]

G. Cormack, P. Loza-Alvarez, L. Sarrado, S. Tomas, I. Amat-Roldan, L. Torner, D. Artigas, J. Guitart, J. Pera, and J. Ros, “Lost writing uncovered by laser two-photon fluorescence provides a terminus post quem for Roman colonization of Hispania Citerior,” J. Archaeol. Sci.34(10), 1594–1600 (2007).
[CrossRef]

J. M. Girkin, J. Vijverberg, M. Orazio, S. Poland, and A. J. Wright, “Adaptive optics in confocal and two-photon microscopy of rat brain: a single correction per optical section,” Proc. SPIE6442, 64420T, 64420T-7 (2007).
[CrossRef]

Z. Kam, P. Kner, D. Agard, and J. W. Sedat, “Modelling the application of adaptive optics to wide-field microscope live imaging,” J. Microsc.226(1), 33–42 (2007).
[CrossRef] [PubMed]

D. Debarre, M. J. Booth, and T. Wilson, “Image based adaptive optics through optimisation of low spatial frequencies,” Opt. Express15(13), 8176–8190 (2007).
[CrossRef] [PubMed]

2006 (2)

M. J. Booth, “Wave front sensor-less adaptive optics: a model-based approach using sphere packings,” Opt. Express14(4), 1339–1352 (2006).
[CrossRef] [PubMed]

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17137–17142 (2006).
[CrossRef] [PubMed]

2005 (3)

M. J. Booth, M. Schwertner, and T. Wilson, “Specimen-induced aberrations and adaptive optics for microscopy,” Proc. SPIE5894, 26–34 (2005).

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy,” Microsc. Res. Tech.67(1), 36–44 (2005).
[CrossRef] [PubMed]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005).
[CrossRef] [PubMed]

2004 (2)

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun.236(1-3), 145–150 (2004).
[CrossRef]

C. Y. Dong, B. Yu, P. D. Kaplan, and P. T. C. So, “Performances of high numerical aperture water and oil immersion objective in deep-tissue, multi-photon microscopic imaging of excised human skin,” Microsc. Res. Tech.63(1), 81–86 (2004).
[CrossRef] [PubMed]

2003 (1)

2001 (2)

M. J. Booth and T. Wilson, “Refractive-index-mismatch induced aberrations in single-photon and two-photon microscopy and the use of aberration correction,” J. Biomed. Opt.6(3), 266–272 (2001).
[CrossRef] [PubMed]

H. Tabata and K. Nakajima, “Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex,” Neuroscience103(4), 865–872 (2001).
[CrossRef] [PubMed]

2000 (4)

D. Ganic, X. S. Gan, and M. Gu, “Reduced effects of spherical aberration on penetration depth under two-photon excitation,” Appl. Opt.39(22), 3945–3947 (2000).
[CrossRef] [PubMed]

R. Kerr, V. Lev-Ram, G. Baird, P. Vincent, R. Y. Tsien, and W. R. Schafer, “Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans,” Neuron26(3), 583–594 (2000).
[CrossRef] [PubMed]

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc.200(2), 105–108 (2000).
[CrossRef] [PubMed]

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng.2(1), 399–429 (2000).
[CrossRef] [PubMed]

1998 (1)

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc.192(2), 90–98 (1998).
[CrossRef]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Agard, D.

Z. Kam, P. Kner, D. Agard, and J. W. Sedat, “Modelling the application of adaptive optics to wide-field microscope live imaging,” J. Microsc.226(1), 33–42 (2007).
[CrossRef] [PubMed]

Amat-Roldan, I.

G. Cormack, P. Loza-Alvarez, L. Sarrado, S. Tomas, I. Amat-Roldan, L. Torner, D. Artigas, J. Guitart, J. Pera, and J. Ros, “Lost writing uncovered by laser two-photon fluorescence provides a terminus post quem for Roman colonization of Hispania Citerior,” J. Archaeol. Sci.34(10), 1594–1600 (2007).
[CrossRef]

Arlt, J.

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun.236(1-3), 145–150 (2004).
[CrossRef]

Artal, P.

J. M. Bueno, E. J. Gualda, and P. Artal, “Adaptive optics multiphoton microscopy to study ex vivo ocular tissues,” J. Biomed. Opt.15(6), 066004 (2010).
[CrossRef] [PubMed]

Artigas, D.

R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Biomed. Opt. Express2(4), 739–747 (2011).
[CrossRef] [PubMed]

G. Cormack, P. Loza-Alvarez, L. Sarrado, S. Tomas, I. Amat-Roldan, L. Torner, D. Artigas, J. Guitart, J. Pera, and J. Ros, “Lost writing uncovered by laser two-photon fluorescence provides a terminus post quem for Roman colonization of Hispania Citerior,” J. Archaeol. Sci.34(10), 1594–1600 (2007).
[CrossRef]

Aviles-Espinosa, R.

Azucena, O.

Baird, G.

R. Kerr, V. Lev-Ram, G. Baird, P. Vincent, R. Y. Tsien, and W. R. Schafer, “Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans,” Neuron26(3), 583–594 (2000).
[CrossRef] [PubMed]

Ballesta, J.

J. W. Cha, J. Ballesta, and P. T. C. So, “Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy,” J. Biomed. Opt.15(4), 046022 (2010).
[CrossRef] [PubMed]

Barbarin, Y.

Berland, K. M.

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng.2(1), 399–429 (2000).
[CrossRef] [PubMed]

Booth, M. J.

D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett.34(16), 2495–2497 (2009).
[CrossRef] [PubMed]

M. J. Booth, “Adaptive optics in microscopy,” Philos. Transact. A Math. Phys. Eng. Sci.365(1861), 2829–2843 (2007).
[CrossRef] [PubMed]

D. Debarre, M. J. Booth, and T. Wilson, “Image based adaptive optics through optimisation of low spatial frequencies,” Opt. Express15(13), 8176–8190 (2007).
[CrossRef] [PubMed]

M. J. Booth, “Wave front sensor-less adaptive optics: a model-based approach using sphere packings,” Opt. Express14(4), 1339–1352 (2006).
[CrossRef] [PubMed]

M. J. Booth, M. Schwertner, and T. Wilson, “Specimen-induced aberrations and adaptive optics for microscopy,” Proc. SPIE5894, 26–34 (2005).

M. J. Booth and T. Wilson, “Refractive-index-mismatch induced aberrations in single-photon and two-photon microscopy and the use of aberration correction,” J. Biomed. Opt.6(3), 266–272 (2001).
[CrossRef] [PubMed]

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc.200(2), 105–108 (2000).
[CrossRef] [PubMed]

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc.192(2), 90–98 (1998).
[CrossRef]

Botcherby, E. J.

Bueno, J. M.

J. M. Bueno, E. J. Gualda, and P. Artal, “Adaptive optics multiphoton microscopy to study ex vivo ocular tissues,” J. Biomed. Opt.15(6), 066004 (2010).
[CrossRef] [PubMed]

Burns, D.

Cao, J. A.

Cha, J. W.

J. W. Cha, J. Ballesta, and P. T. C. So, “Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy,” J. Biomed. Opt.15(4), 046022 (2010).
[CrossRef] [PubMed]

Chen, D. C.

Cormack, G.

G. Cormack, P. Loza-Alvarez, L. Sarrado, S. Tomas, I. Amat-Roldan, L. Torner, D. Artigas, J. Guitart, J. Pera, and J. Ros, “Lost writing uncovered by laser two-photon fluorescence provides a terminus post quem for Roman colonization of Hispania Citerior,” J. Archaeol. Sci.34(10), 1594–1600 (2007).
[CrossRef]

Crest, J.

Debarre, D.

Débarre, D.

Denk, W.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17137–17142 (2006).
[CrossRef] [PubMed]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Dillon, D.

Dong, C. Y.

V. A. Hovhannisyan, P. J. Su, and C. Y. Dong, “Characterization of optical-aberration-induced lateral and axial image inhomogeneity in multiphoton microscopy,” J. Biomed. Opt.13(4), 044023 (2008).
[CrossRef] [PubMed]

C. Y. Dong, B. Yu, P. D. Kaplan, and P. T. C. So, “Performances of high numerical aperture water and oil immersion objective in deep-tissue, multi-photon microscopic imaging of excised human skin,” Microsc. Res. Tech.63(1), 81–86 (2004).
[CrossRef] [PubMed]

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng.2(1), 399–429 (2000).
[CrossRef] [PubMed]

Fernandez, B.

Filippidis, G.

Fu, M.

Gan, X. S.

Ganic, D.

Garcia, D.

Gavel, D.

Girkin, J. M.

W. Lubeigt, S. P. Poland, G. J. Valentine, A. J. Wright, J. M. Girkin, and D. Burns, “Search-based active optic systems for aberration correction in time-independent applications,” Appl. Opt.49(3), 307–314 (2010).
[CrossRef] [PubMed]

J. M. Girkin, J. Vijverberg, M. Orazio, S. Poland, and A. J. Wright, “Adaptive optics in confocal and two-photon microscopy of rat brain: a single correction per optical section,” Proc. SPIE6442, 64420T, 64420T-7 (2007).
[CrossRef]

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy,” Microsc. Res. Tech.67(1), 36–44 (2005).
[CrossRef] [PubMed]

P. N. Marsh, D. Burns, and J. M. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express11(10), 1123–1130 (2003).
[CrossRef] [PubMed]

Gu, M.

Gualda, E. J.

J. M. Bueno, E. J. Gualda, and P. Artal, “Adaptive optics multiphoton microscopy to study ex vivo ocular tissues,” J. Biomed. Opt.15(6), 066004 (2010).
[CrossRef] [PubMed]

Guitart, J.

G. Cormack, P. Loza-Alvarez, L. Sarrado, S. Tomas, I. Amat-Roldan, L. Torner, D. Artigas, J. Guitart, J. Pera, and J. Ros, “Lost writing uncovered by laser two-photon fluorescence provides a terminus post quem for Roman colonization of Hispania Citerior,” J. Archaeol. Sci.34(10), 1594–1600 (2007).
[CrossRef]

Hamilton, C.

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005).
[CrossRef] [PubMed]

Hossack, W. J.

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun.236(1-3), 145–150 (2004).
[CrossRef]

Hovhannisyan, V. A.

V. A. Hovhannisyan, P. J. Su, and C. Y. Dong, “Characterization of optical-aberration-induced lateral and axial image inhomogeneity in multiphoton microscopy,” J. Biomed. Opt.13(4), 044023 (2008).
[CrossRef] [PubMed]

Juskaitis, R.

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc.200(2), 105–108 (2000).
[CrossRef] [PubMed]

Kam, Z.

P. Kner and Z. Kam, “Adaptive optics takes tissue imaging to the next level,” BioOpt. World1, 32–34 (2008).

Z. Kam, P. Kner, D. Agard, and J. W. Sedat, “Modelling the application of adaptive optics to wide-field microscope live imaging,” J. Microsc.226(1), 33–42 (2007).
[CrossRef] [PubMed]

Kaplan, P. D.

C. Y. Dong, B. Yu, P. D. Kaplan, and P. T. C. So, “Performances of high numerical aperture water and oil immersion objective in deep-tissue, multi-photon microscopic imaging of excised human skin,” Microsc. Res. Tech.63(1), 81–86 (2004).
[CrossRef] [PubMed]

Kawata, S.

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc.200(2), 105–108 (2000).
[CrossRef] [PubMed]

Keller, U.

Kerr, R.

R. Kerr, V. Lev-Ram, G. Baird, P. Vincent, R. Y. Tsien, and W. R. Schafer, “Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans,” Neuron26(3), 583–594 (2000).
[CrossRef] [PubMed]

Kner, P.

O. Azucena, J. Crest, J. A. Cao, W. Sullivan, P. Kner, D. Gavel, D. Dillon, S. Olivier, and J. Kubby, “Wavefront aberration measurements and corrections through thick tissue using fluorescent microsphere reference beacons,” Opt. Express18(16), 17521–17532 (2010).
[CrossRef] [PubMed]

P. Kner and Z. Kam, “Adaptive optics takes tissue imaging to the next level,” BioOpt. World1, 32–34 (2008).

Z. Kam, P. Kner, D. Agard, and J. W. Sedat, “Modelling the application of adaptive optics to wide-field microscope live imaging,” J. Microsc.226(1), 33–42 (2007).
[CrossRef] [PubMed]

Kotadia, S.

Kubby, J.

Lev-Ram, V.

R. Kerr, V. Lev-Ram, G. Baird, P. Vincent, R. Y. Tsien, and W. R. Schafer, “Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans,” Neuron26(3), 583–594 (2000).
[CrossRef] [PubMed]

Loza-Alvarez, P.

R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Biomed. Opt. Express2(4), 739–747 (2011).
[CrossRef] [PubMed]

G. Cormack, P. Loza-Alvarez, L. Sarrado, S. Tomas, I. Amat-Roldan, L. Torner, D. Artigas, J. Guitart, J. Pera, and J. Ros, “Lost writing uncovered by laser two-photon fluorescence provides a terminus post quem for Roman colonization of Hispania Citerior,” J. Archaeol. Sci.34(10), 1594–1600 (2007).
[CrossRef]

Lubeigt, W.

Mack-Bucher, J. A.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17137–17142 (2006).
[CrossRef] [PubMed]

Malcolm, G.

Marsh, P. N.

Masters, B. R.

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng.2(1), 399–429 (2000).
[CrossRef] [PubMed]

Nakajima, K.

H. Tabata and K. Nakajima, “Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex,” Neuroscience103(4), 865–872 (2001).
[CrossRef] [PubMed]

Neil, M. A. A.

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc.200(2), 105–108 (2000).
[CrossRef] [PubMed]

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc.192(2), 90–98 (1998).
[CrossRef]

Olivier, S.

Orazio, M.

J. M. Girkin, J. Vijverberg, M. Orazio, S. Poland, and A. J. Wright, “Adaptive optics in confocal and two-photon microscopy of rat brain: a single correction per optical section,” Proc. SPIE6442, 64420T, 64420T-7 (2007).
[CrossRef]

Patterson, B. A.

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy,” Microsc. Res. Tech.67(1), 36–44 (2005).
[CrossRef] [PubMed]

Pera, J.

G. Cormack, P. Loza-Alvarez, L. Sarrado, S. Tomas, I. Amat-Roldan, L. Torner, D. Artigas, J. Guitart, J. Pera, and J. Ros, “Lost writing uncovered by laser two-photon fluorescence provides a terminus post quem for Roman colonization of Hispania Citerior,” J. Archaeol. Sci.34(10), 1594–1600 (2007).
[CrossRef]

Poland, S.

J. M. Girkin, J. Vijverberg, M. Orazio, S. Poland, and A. J. Wright, “Adaptive optics in confocal and two-photon microscopy of rat brain: a single correction per optical section,” Proc. SPIE6442, 64420T, 64420T-7 (2007).
[CrossRef]

Poland, S. P.

W. Lubeigt, S. P. Poland, G. J. Valentine, A. J. Wright, J. M. Girkin, and D. Burns, “Search-based active optic systems for aberration correction in time-independent applications,” Appl. Opt.49(3), 307–314 (2010).
[CrossRef] [PubMed]

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy,” Microsc. Res. Tech.67(1), 36–44 (2005).
[CrossRef] [PubMed]

Reinig, M.

Ros, J.

G. Cormack, P. Loza-Alvarez, L. Sarrado, S. Tomas, I. Amat-Roldan, L. Torner, D. Artigas, J. Guitart, J. Pera, and J. Ros, “Lost writing uncovered by laser two-photon fluorescence provides a terminus post quem for Roman colonization of Hispania Citerior,” J. Archaeol. Sci.34(10), 1594–1600 (2007).
[CrossRef]

Rueckel, M.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17137–17142 (2006).
[CrossRef] [PubMed]

Santos, S. I. C. O.

Sarrado, L.

G. Cormack, P. Loza-Alvarez, L. Sarrado, S. Tomas, I. Amat-Roldan, L. Torner, D. Artigas, J. Guitart, J. Pera, and J. Ros, “Lost writing uncovered by laser two-photon fluorescence provides a terminus post quem for Roman colonization of Hispania Citerior,” J. Archaeol. Sci.34(10), 1594–1600 (2007).
[CrossRef]

Schafer, W. R.

R. Kerr, V. Lev-Ram, G. Baird, P. Vincent, R. Y. Tsien, and W. R. Schafer, “Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans,” Neuron26(3), 583–594 (2000).
[CrossRef] [PubMed]

Schwertner, M.

M. J. Booth, M. Schwertner, and T. Wilson, “Specimen-induced aberrations and adaptive optics for microscopy,” Proc. SPIE5894, 26–34 (2005).

Sedat, J. W.

Z. Kam, P. Kner, D. Agard, and J. W. Sedat, “Modelling the application of adaptive optics to wide-field microscope live imaging,” J. Microsc.226(1), 33–42 (2007).
[CrossRef] [PubMed]

So, P. T. C.

J. W. Cha, J. Ballesta, and P. T. C. So, “Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy,” J. Biomed. Opt.15(4), 046022 (2010).
[CrossRef] [PubMed]

C. Y. Dong, B. Yu, P. D. Kaplan, and P. T. C. So, “Performances of high numerical aperture water and oil immersion objective in deep-tissue, multi-photon microscopic imaging of excised human skin,” Microsc. Res. Tech.63(1), 81–86 (2004).
[CrossRef] [PubMed]

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng.2(1), 399–429 (2000).
[CrossRef] [PubMed]

Srinivas, S.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Su, P. J.

V. A. Hovhannisyan, P. J. Su, and C. Y. Dong, “Characterization of optical-aberration-induced lateral and axial image inhomogeneity in multiphoton microscopy,” J. Biomed. Opt.13(4), 044023 (2008).
[CrossRef] [PubMed]

Südmeyer, T.

Sullivan, W.

Tabata, H.

H. Tabata and K. Nakajima, “Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex,” Neuroscience103(4), 865–872 (2001).
[CrossRef] [PubMed]

Tanaka, T.

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc.200(2), 105–108 (2000).
[CrossRef] [PubMed]

Tao, X.

Theofanidou, E.

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun.236(1-3), 145–150 (2004).
[CrossRef]

Tomas, S.

G. Cormack, P. Loza-Alvarez, L. Sarrado, S. Tomas, I. Amat-Roldan, L. Torner, D. Artigas, J. Guitart, J. Pera, and J. Ros, “Lost writing uncovered by laser two-photon fluorescence provides a terminus post quem for Roman colonization of Hispania Citerior,” J. Archaeol. Sci.34(10), 1594–1600 (2007).
[CrossRef]

Torner, L.

G. Cormack, P. Loza-Alvarez, L. Sarrado, S. Tomas, I. Amat-Roldan, L. Torner, D. Artigas, J. Guitart, J. Pera, and J. Ros, “Lost writing uncovered by laser two-photon fluorescence provides a terminus post quem for Roman colonization of Hispania Citerior,” J. Archaeol. Sci.34(10), 1594–1600 (2007).
[CrossRef]

Tsien, R. Y.

R. Kerr, V. Lev-Ram, G. Baird, P. Vincent, R. Y. Tsien, and W. R. Schafer, “Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans,” Neuron26(3), 583–594 (2000).
[CrossRef] [PubMed]

Valentine, G. J.

W. Lubeigt, S. P. Poland, G. J. Valentine, A. J. Wright, J. M. Girkin, and D. Burns, “Search-based active optic systems for aberration correction in time-independent applications,” Appl. Opt.49(3), 307–314 (2010).
[CrossRef] [PubMed]

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy,” Microsc. Res. Tech.67(1), 36–44 (2005).
[CrossRef] [PubMed]

Vijverberg, J.

J. M. Girkin, J. Vijverberg, M. Orazio, S. Poland, and A. J. Wright, “Adaptive optics in confocal and two-photon microscopy of rat brain: a single correction per optical section,” Proc. SPIE6442, 64420T, 64420T-7 (2007).
[CrossRef]

Vincent, P.

R. Kerr, V. Lev-Ram, G. Baird, P. Vincent, R. Y. Tsien, and W. R. Schafer, “Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans,” Neuron26(3), 583–594 (2000).
[CrossRef] [PubMed]

Watanabe, T.

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Weingarten, K. J.

Wilson, L.

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun.236(1-3), 145–150 (2004).
[CrossRef]

Wilson, T.

D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett.34(16), 2495–2497 (2009).
[CrossRef] [PubMed]

D. Debarre, M. J. Booth, and T. Wilson, “Image based adaptive optics through optimisation of low spatial frequencies,” Opt. Express15(13), 8176–8190 (2007).
[CrossRef] [PubMed]

M. J. Booth, M. Schwertner, and T. Wilson, “Specimen-induced aberrations and adaptive optics for microscopy,” Proc. SPIE5894, 26–34 (2005).

M. J. Booth and T. Wilson, “Refractive-index-mismatch induced aberrations in single-photon and two-photon microscopy and the use of aberration correction,” J. Biomed. Opt.6(3), 266–272 (2001).
[CrossRef] [PubMed]

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc.200(2), 105–108 (2000).
[CrossRef] [PubMed]

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc.192(2), 90–98 (1998).
[CrossRef]

Wright, A. J.

W. Lubeigt, S. P. Poland, G. J. Valentine, A. J. Wright, J. M. Girkin, and D. Burns, “Search-based active optic systems for aberration correction in time-independent applications,” Appl. Opt.49(3), 307–314 (2010).
[CrossRef] [PubMed]

J. M. Girkin, J. Vijverberg, M. Orazio, S. Poland, and A. J. Wright, “Adaptive optics in confocal and two-photon microscopy of rat brain: a single correction per optical section,” Proc. SPIE6442, 64420T, 64420T-7 (2007).
[CrossRef]

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy,” Microsc. Res. Tech.67(1), 36–44 (2005).
[CrossRef] [PubMed]

Yu, B.

C. Y. Dong, B. Yu, P. D. Kaplan, and P. T. C. So, “Performances of high numerical aperture water and oil immersion objective in deep-tissue, multi-photon microscopic imaging of excised human skin,” Microsc. Res. Tech.63(1), 81–86 (2004).
[CrossRef] [PubMed]

Zuo, Y.

Annu. Rev. Biomed. Eng. (1)

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng.2(1), 399–429 (2000).
[CrossRef] [PubMed]

Appl. Opt. (2)

Biomed. Opt. Express (1)

BioOpt. World (1)

P. Kner and Z. Kam, “Adaptive optics takes tissue imaging to the next level,” BioOpt. World1, 32–34 (2008).

J. Archaeol. Sci. (1)

G. Cormack, P. Loza-Alvarez, L. Sarrado, S. Tomas, I. Amat-Roldan, L. Torner, D. Artigas, J. Guitart, J. Pera, and J. Ros, “Lost writing uncovered by laser two-photon fluorescence provides a terminus post quem for Roman colonization of Hispania Citerior,” J. Archaeol. Sci.34(10), 1594–1600 (2007).
[CrossRef]

J. Biomed. Opt. (4)

M. J. Booth and T. Wilson, “Refractive-index-mismatch induced aberrations in single-photon and two-photon microscopy and the use of aberration correction,” J. Biomed. Opt.6(3), 266–272 (2001).
[CrossRef] [PubMed]

J. M. Bueno, E. J. Gualda, and P. Artal, “Adaptive optics multiphoton microscopy to study ex vivo ocular tissues,” J. Biomed. Opt.15(6), 066004 (2010).
[CrossRef] [PubMed]

J. W. Cha, J. Ballesta, and P. T. C. So, “Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy,” J. Biomed. Opt.15(4), 046022 (2010).
[CrossRef] [PubMed]

V. A. Hovhannisyan, P. J. Su, and C. Y. Dong, “Characterization of optical-aberration-induced lateral and axial image inhomogeneity in multiphoton microscopy,” J. Biomed. Opt.13(4), 044023 (2008).
[CrossRef] [PubMed]

J. Microsc. (3)

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc.192(2), 90–98 (1998).
[CrossRef]

M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc.200(2), 105–108 (2000).
[CrossRef] [PubMed]

Z. Kam, P. Kner, D. Agard, and J. W. Sedat, “Modelling the application of adaptive optics to wide-field microscope live imaging,” J. Microsc.226(1), 33–42 (2007).
[CrossRef] [PubMed]

Microsc. Res. Tech. (2)

A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy,” Microsc. Res. Tech.67(1), 36–44 (2005).
[CrossRef] [PubMed]

C. Y. Dong, B. Yu, P. D. Kaplan, and P. T. C. So, “Performances of high numerical aperture water and oil immersion objective in deep-tissue, multi-photon microscopic imaging of excised human skin,” Microsc. Res. Tech.63(1), 81–86 (2004).
[CrossRef] [PubMed]

Nat. Methods (1)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005).
[CrossRef] [PubMed]

Neuron (1)

R. Kerr, V. Lev-Ram, G. Baird, P. Vincent, R. Y. Tsien, and W. R. Schafer, “Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans,” Neuron26(3), 583–594 (2000).
[CrossRef] [PubMed]

Neuroscience (1)

H. Tabata and K. Nakajima, “Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex,” Neuroscience103(4), 865–872 (2001).
[CrossRef] [PubMed]

Opt. Commun. (1)

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun.236(1-3), 145–150 (2004).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Philos. Transact. A Math. Phys. Eng. Sci. (1)

M. J. Booth, “Adaptive optics in microscopy,” Philos. Transact. A Math. Phys. Eng. Sci.365(1861), 2829–2843 (2007).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17137–17142 (2006).
[CrossRef] [PubMed]

Proc. SPIE (2)

J. M. Girkin, J. Vijverberg, M. Orazio, S. Poland, and A. J. Wright, “Adaptive optics in confocal and two-photon microscopy of rat brain: a single correction per optical section,” Proc. SPIE6442, 64420T, 64420T-7 (2007).
[CrossRef]

M. J. Booth, M. Schwertner, and T. Wilson, “Specimen-induced aberrations and adaptive optics for microscopy,” Proc. SPIE5894, 26–34 (2005).

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Other (1)

F. Roddier, Adaptive Optics in Astronomy (Cambridge University Press, 1999), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic experimental setup used for aberration measurements and wavefront correction. Ti:S is the Ti:sapphire laser, GM are the galvanometric mirrors, L#, lenses; DM is the deformable mirror, M#, mirror, HM is a dichroic filter, TL is the microscope tube lens, F is BG39 filter, NL-GS is the nonlinear guide-star, WFS is the wavefront sensor, and PMT is the photo multiplier tube. The microscope output port is manually selected either for the PMT or for the WF sensor. For optimum usage of the DM, it was placed as close to normal incidence as the optics mounts allow it.

Fig. 2
Fig. 2

(a, b, c) three different WFs of the excitation beam showing an RMS variation of up to 70% and (d, e, f) their corresponding generated WFs measured using the SH WFS. The measured NL-GS WF is similar in all three cases, with a maximum WF error variation of 7% (from 0.252µm to 0.271µm RMS). RMS: root mean square; PV: peak to valley. The planes (tilts) and spherical (focus) components of the WFs have been removed.

Fig. 3
Fig. 3

Recorded wavefront maps of three different WFs generated from i) NL-GS produced inside the red-paint test-sample, ii) from 1 µm radii fluorescent beads, and iii) 0.28 µm. radii fluorescent beads. The RMS values are 0.042, 0.040, and 0.037 µm, respectively. The planes (tilts) and spherical (focus) components of the WFs have been removed.

Fig. 4
Fig. 4

Recorded off-axis NL-GS at 8 equidistant locations from the on-axis position (average RMS WFE is ~0.120 µm). The 8 recorded positions were ~17.9 µm apart from the center (RMS WFE is ~0.114 µm). The FOV for this experiment was ~44.8µm. The planes (tilts) and spherical (focus) components of the WFs have been removed.

Fig. 5
Fig. 5

Resulting system calibration correction applied to the excitation beam. Left panel excitation beam and right panel corrected beam using a closed loop configuration. The initial WFE was 1.31 µm. After the system was calibrated for coupling aberrations, the residual wavefront error was 0.007 µm. The planes (tilts) and spherical (focus) components of the WFs have been removed.

Fig. 6
Fig. 6

Single frame images taken from an in vivo C. elegans sample. The imaged depths are 25 µm, 35 µm and 45 µm for the first, second and third rows respectively. The improvement factors with respect to the uncorrected case are 1.75 for (b) and 3.61 for (c); 1.90 (e) and 2.35 (f); 1.62 (h) and 2.02 (i). The gained improvement factor with respect to the coupling aberrations are 2.06 (c), 1.24 (f), and 1.24 (i). The plot profiles on the last column correspond to green line in each image. The red spot corresponds to the position where the NL-GS was measured. The WFS integration time was set to 800 ms for all the cases.

Fig. 7
Fig. 7

Single frame images taken from an in vivo C. elegans sample. The imaged depths are 115 µm, 125 µm and 135 µm for the first, second and third rows respectively. The improvement factors with respect to the uncorrected case are 1.89 for (b) and 5.32 for (c); 1.58 (e) and 4.78 (f); 1.29 (h) and 9.1 (i). The gained improvement factor with respect to the coupling aberrations are 2.82 (c), 3.03 (f), and 7.08 (i). The plot profiles on the last column correspond to the green line in each image. The red spot corresponds to the position where the NL-GS was measured. The WFS integration time was set to 800 ms for all the cases.

Fig. 8
Fig. 8

Single frame images taken from an in vivo C. elegans sample. The imaged depths are 105 µm, 115 µm, and 127 µm for the first, second, and third rows, respectively. The improvement factors with respect to the uncorrected case are 1.70 for (b) and 17.04 for (c); 2.15 (e) and 11.24 (f); 1.94 (h) and 22.59 (i). The gained improvement factor with respect to the coupling aberrations are 10 (c), 5.23 (f), and 11.66 (i). The plot profiles on the last column correspond to the green line in each image. The red spot corresponds to the position where the NL-GS was measured. The WFS integration time was set to 800 ms for all the cases.

Fig. 9
Fig. 9

Single frame images taken from mouse brain slices expressing GFP in sparsely distributed neurons. The imaged depths are 10 µm and 40 µm for the first and second rows, respectively. The improvement factors with respect to the uncorrected case are 2.74 for (b) and 5.69 for (c); 1.98 (e) and 3.91 (f). The gained improvement factor with respect to the coupling aberrations are 2.08 (c) and 1.98 (i). The plot profiles on the last column correspond to the green line in each image. The red spot corresponds to the position where the NL-GS was measured. The WFS integration time was set to 1000 ms for all the cases.

Metrics