Abstract

The performance of femtosecond (fs) laser intrastromal ablation was evaluated with backscattering-mode adaptive-optics multiphoton microscopy in ex vivo chicken corneas. The pulse energy of the fs source used for ablation was set to generate two different ablation patterns within the corneal stroma at a certain depth. Intrastromal patterns were imaged with a custom adaptive-optics multiphoton microscope to determine the accuracy of the procedure and verify the outcomes. This study demonstrates the potential of using fs pulses as surgical and monitoring techniques to systematically investigate intratissue ablation. Further refinement of the experimental system by combining both functions into a single fs laser system would be the basis to establish new techniques capable of monitoring corneal surgery without labeling in real-time. Since the backscattering configuration has also been optimized, future in vivo implementations would also be of interest in clinical environments involving corneal ablation procedures.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Krasnov, “Q-switched laser goniopuncture,” Arch. Ophthalmol. 92(1), 37–41 (1974).
    [PubMed]
  2. D. Aron-Rosa, J. J. Aron, M. Griesemann, and R. Thyzel, “Use of the neodymium-YAG laser to open the posterior capsule after lens implant surgery: a preliminary report,” J. Am. Intraocul. Implant Soc. 6(4), 352–354 (1980).
    [PubMed]
  3. R. M. Klapper, “Q-switched neodymium:YAG laser iridotomy,” Ophthalmology 91(9), 1017–1021 (1984).
    [PubMed]
  4. A. Vogel, “Nonlinear absorption: intraocular microsurgery and laser lithotripsy,” Phys. Med. Biol. 42(5), 895–912 (1997).
    [CrossRef] [PubMed]
  5. A. Vogel, A. Noack, K. Nahen, D. Theisen, R. Birngruber, D. X. Hammer, G. D. Noojin, and B. A. Rockwell, “Laser-induced breakdown in the eye at pulse durations from 80 ns to 100 fs,” Proc. SPIE 3255, 43–49 (1998).
  6. R. R. Krueger, S. L. Trokel, and H. D. Schubert, “Interaction of ultraviolet laser light with the cornea,” Invest. Ophthalmol. Vis. Sci. 26(11), 1455–1464 (1985).
    [PubMed]
  7. I. G. Pallikaris, M. E. Papatzanaki, E. Z. Stathi, O. Frenschock, and A. Georgiadis, “Laser in situ keratomileusis,” Lasers Surg. Med. 10(5), 463–468 (1990).
    [CrossRef] [PubMed]
  8. I. G. Pallikaris and D. S. Siganos, “Excimer laser in situ keratomileusis and photorefractive keratectomy for correction of high myopia,” J. Refract. Corneal Surg. 10(5), 498–510 (1994).
    [PubMed]
  9. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanism of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
    [CrossRef]
  10. H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,” Graefes Arch. Clin. Exp. Ophthalmol. 238(1), 33–39 (2000).
    [CrossRef] [PubMed]
  11. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  12. P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6(3), 277–286 (2001).
    [CrossRef] [PubMed]
  13. L. T. Nordan, S. G. Slade, R. N. Baker, C. Suárez, T. Juhasz, and R. Kurtz, “Femtosecond laser flap creation for laser in situ keratomileusis: six-month follow-up of initial U.S. clinical series,” J. Refract. Surg. 19(1), 8–14 (2003).
    [PubMed]
  14. R. M. Kurtz, C. Horvath, H. H. Liu, R. R. Krueger, and T. Juhasz, “Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes,” J. Refract. Surg. 14(5), 541–548 (1998).
    [PubMed]
  15. D. Giguère, G. Olivié, F. Vidal, S. Toetsch, G. Girard, T. Ozaki, J.-C. Kieffer, O. Nada, and I. Brunette, “Laser ablation threshold dependence on pulse duration for fused silica and corneal tissues: experiments and modeling,” J. Opt. Soc. Am. A 24(6), 1562–1568 (2007).
    [CrossRef] [PubMed]
  16. M. Han, G. Giese, L. Zickler, H. Sun, and J. F. Bille, “Mini-invasive corneal surgery and imaging with femtosecond lasers,” Opt. Express 12(18), 4275–4281 (2004).
    [CrossRef] [PubMed]
  17. K. Koenig, O. Krauss, and I. Riemann, “Intratissue surgery with 80 MHz nanojoule femtosecond laser pulses in the near infrared,” Opt. Express 10(3), 171–176 (2002).
    [PubMed]
  18. G. Olivié, D. Giguère, F. Vidal, T. Ozaki, J. C. Kieffer, O. Nada, and I. Brunette, “Wavelength dependence of femtosecond laser ablation threshold of corneal stroma,” Opt. Express 16(6), 4121–4129 (2008).
    [CrossRef] [PubMed]
  19. R. M. Kurtz, X. Liu, V. M. Elner, J. A. Squier, D. Du, and G. A. Mourou, “Photodisruption in the human cornea as a function of laser pulse width,” J. Refract. Surg. 13(7), 653–658 (1997).
    [PubMed]
  20. H. Sun, M. Han, M. H. Niemz, and J. F. Bille, “Femtosecond laser corneal ablation threshold: dependence on tissue depth and laser pulse width,” Lasers Surg. Med. 39(8), 654–658 (2007).
    [CrossRef] [PubMed]
  21. H. K. Soong, S. Mian, O. Abbasi, and T. Juhasz, “Femtosecond laser-assisted posterior lamellar keratoplasty: initial studies of surgical technique in eye bank eyes,” Ophthalmology 112(1), 44–49 (2005).
    [CrossRef] [PubMed]
  22. V. Nuzzo, K. Plamann, M. Savoldelli, M. Merano, D. Donate, O. Albert, P. F. Gardeazábal Rodríguez, G. Mourou, and J. M. Legeais, “In situ monitoring of second-harmonic generation in human corneas to compensate for femtosecond laser pulse attenuation in keratoplasty,” J. Biomed. Opt. 12(6), 064032 (2007).
    [CrossRef] [PubMed]
  23. T. Ripken, U. Oberheide, M. Fromm, S. Schumacher, G. Gerten, and H. Lubatschowski, “fs-Laser induced elasticity changes to improve presbyopic lens accommodation,” Graefes Arch. Clin. Exp. Ophthalmol. 246(6), 897–906 (2008).
    [CrossRef] [PubMed]
  24. L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci. 49(12), 5332–5339 (2008).
    [CrossRef] [PubMed]
  25. H. Nakamura, Y. Liu, T. E. Witt, R. J. Gordon, and D. P. Edward, “Femtosecond laser photodisruption of primate trabecular meshwork: an ex vivo study,” Invest. Ophthalmol. Vis. Sci. 50(3), 1198–1204 (2009).
    [CrossRef] [PubMed]
  26. U. Vossmerbaeumer and J. B. Jonas, “Structure of intracorneal femtosecond laser pulse effects in conical incision profiles,” Graefes Arch. Clin. Exp. Ophthalmol. 246(7), 1017–1020 (2008).
    [CrossRef] [PubMed]
  27. M. Han, L. Zickler, G. Giese, M. Walter, F. H. Loesel, and J. F. Bille, “Second-harmonic imaging of cornea after intrastromal femtosecond laser ablation,” J. Biomed. Opt. 9(4), 760–766 (2004).
    [CrossRef] [PubMed]
  28. B. G. Wang, I. Riemann, H. Schubert, D. Schweitzer, K. König, and K. J. Halbhuber, “Multiphoton microscopy for monitoring intratissue femtosecond laser surgery effects,” Lasers Surg. Med. 39(6), 527–533 (2007).
    [CrossRef] [PubMed]
  29. E. J. Gualda, J. M. Bueno, and P. Artal, “Wavefront optimized nonlinear microscopy of ex vivo human retinas,” J. Biomed. Opt. 15(2), 026007 (2010).
    [CrossRef] [PubMed]
  30. J. M. Bueno, E. J. Gualda, and P. Artal, “Adaptive optics multiphoton microscopy to study ex vivo ocular tissues,” J. Biomed. Opt. 15(6), 066004 (2010).
    [CrossRef] [PubMed]
  31. J. M. Bueno, A. Giakoumaki, E. J. Gualda, F. Schaeffel, and P. Artal, “Analysis of the chicken retina with an adaptive optics multiphoton microscope,” Biomed. Opt. Express 2(6), 1637–1648 (2011).
    [CrossRef] [PubMed]
  32. L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of femtosecond laser intratissue refractive index shaping (IRIS) in the living cornea with sodium fluorescein,” Invest. Ophthalmol. Vis. Sci. 51(2), 850–856 (2010).
    [CrossRef] [PubMed]
  33. L. Jay, A. Brocas, K. Singh, J. C. Kieffer, I. Brunette, and T. Ozaki, “Determination of porcine corneal layers with high spatial resolution by simultaneous second and third harmonic generation microscopy,” Opt. Express 16(21), 16284–16293 (2008).
    [CrossRef] [PubMed]
  34. S.-Y. Chen, H.-C. Yu, I.-J. Wang, and C.-K. Sun, “Infrared-based third and second harmonic generation imaging of cornea,” J. Biomed. Opt. 14(4), 044012 (2009).
    [CrossRef] [PubMed]
  35. B. G. Wang, I. Riemann, H. Schubert, K. J. Halbhuber, and K. Koenig, “In-vivo intratissue ablation by nanojoule near-infrared femtosecond laser pulses,” Cell Tissue Res. 328(3), 515–520 (2007).
    [CrossRef] [PubMed]
  36. N. Morishige, A. Kesler-Diaz, A. J. Wahlert, R. M. Kurtz, T. Juhasz, M. Sarayba, and J. V. Jester, “Corneal response to femtosecond laser photodisruption in the rabbit,” Exp. Eye Res. 86(5), 835–843 (2008).
    [CrossRef] [PubMed]
  37. M. Han, G. Giese, and J. F. Bille, “Second harmonic generation imaging of collagen fibrils in cornea and sclera,” Opt. Express 13(15), 5791–5797 (2005).
    [CrossRef] [PubMed]
  38. J. M. Bueno, E. J. Gualda, and P. Artal, “Analysis of corneal stroma organization with wavefront optimized nonlinear microscopy,” Cornea 30(6), 692–701 (2011).
    [CrossRef] [PubMed]
  39. J. M. Bueno, E. J. Gualda, A. Giakoumaki, P. Pérez-Merino, S. Marcos, and P. Artal, “Multiphoton microscopy of ex vivo corneas after collagen cross-linking,” Invest. Ophthalmol. Vis. Sci. 52(8), 5325–5331 (2011).
    [CrossRef] [PubMed]
  40. V. Hovhannisyan, W. Lo, C. Hu, S. J. Chen, and C. Y. Dong, “Dynamics of femtosecond laser photo-modification of collagen fibers,” Opt. Express 16(11), 7958–7968 (2008).
    [CrossRef] [PubMed]
  41. V. Hovhannisyan, A. Ghazaryan, Y. F. Chen, S. J. Chen, and C. Y. Dong, “Photophysical mechanisms of collagen modification by 80 MHz femtosecond laser,” Opt. Express 18(23), 24037–24047 (2010).
    [CrossRef] [PubMed]
  42. T. J. Wang, W. Lo, C. M. Hsueh, M. S. Hsieh, C. Y. Dong, and F. R. Hu, “Ex vivo multiphoton analysis of rabbit corneal wound healing following conductive keratoplasty,” J. Biomed. Opt. 13(3), 034019 (2008).
    [CrossRef] [PubMed]
  43. B.-G. Wang and K.-J. Halbhuber, “Corneal multiphoton microscopy and intratissue optical nanosurgery by nanojoule femtosecond near-infrared pulsed lasers,” Ann. Anat. 188(5), 395–409 (2006).
    [CrossRef] [PubMed]
  44. M. Hao, K. Flynn, C. Nien-Shy, B. E. Jester, M. Winkler, D. J. Brown, O. La Schiazza, J. F. Bille, and J. V. Jester, “In vivo non-linear optical (NLO) imaging in live rabbit eyes using the Heidelberg Two-Photon Laser Ophthalmoscope,” Exp. Eye Res. 91(2), 308–314 (2010).
    [CrossRef] [PubMed]

2011

J. M. Bueno, E. J. Gualda, and P. Artal, “Analysis of corneal stroma organization with wavefront optimized nonlinear microscopy,” Cornea 30(6), 692–701 (2011).
[CrossRef] [PubMed]

J. M. Bueno, E. J. Gualda, A. Giakoumaki, P. Pérez-Merino, S. Marcos, and P. Artal, “Multiphoton microscopy of ex vivo corneas after collagen cross-linking,” Invest. Ophthalmol. Vis. Sci. 52(8), 5325–5331 (2011).
[CrossRef] [PubMed]

J. M. Bueno, A. Giakoumaki, E. J. Gualda, F. Schaeffel, and P. Artal, “Analysis of the chicken retina with an adaptive optics multiphoton microscope,” Biomed. Opt. Express 2(6), 1637–1648 (2011).
[CrossRef] [PubMed]

2010

V. Hovhannisyan, A. Ghazaryan, Y. F. Chen, S. J. Chen, and C. Y. Dong, “Photophysical mechanisms of collagen modification by 80 MHz femtosecond laser,” Opt. Express 18(23), 24037–24047 (2010).
[CrossRef] [PubMed]

M. Hao, K. Flynn, C. Nien-Shy, B. E. Jester, M. Winkler, D. J. Brown, O. La Schiazza, J. F. Bille, and J. V. Jester, “In vivo non-linear optical (NLO) imaging in live rabbit eyes using the Heidelberg Two-Photon Laser Ophthalmoscope,” Exp. Eye Res. 91(2), 308–314 (2010).
[CrossRef] [PubMed]

E. J. Gualda, J. M. Bueno, and P. Artal, “Wavefront optimized nonlinear microscopy of ex vivo human retinas,” J. Biomed. Opt. 15(2), 026007 (2010).
[CrossRef] [PubMed]

J. M. Bueno, E. J. Gualda, and P. Artal, “Adaptive optics multiphoton microscopy to study ex vivo ocular tissues,” J. Biomed. Opt. 15(6), 066004 (2010).
[CrossRef] [PubMed]

L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of femtosecond laser intratissue refractive index shaping (IRIS) in the living cornea with sodium fluorescein,” Invest. Ophthalmol. Vis. Sci. 51(2), 850–856 (2010).
[CrossRef] [PubMed]

2009

S.-Y. Chen, H.-C. Yu, I.-J. Wang, and C.-K. Sun, “Infrared-based third and second harmonic generation imaging of cornea,” J. Biomed. Opt. 14(4), 044012 (2009).
[CrossRef] [PubMed]

H. Nakamura, Y. Liu, T. E. Witt, R. J. Gordon, and D. P. Edward, “Femtosecond laser photodisruption of primate trabecular meshwork: an ex vivo study,” Invest. Ophthalmol. Vis. Sci. 50(3), 1198–1204 (2009).
[CrossRef] [PubMed]

2008

U. Vossmerbaeumer and J. B. Jonas, “Structure of intracorneal femtosecond laser pulse effects in conical incision profiles,” Graefes Arch. Clin. Exp. Ophthalmol. 246(7), 1017–1020 (2008).
[CrossRef] [PubMed]

T. Ripken, U. Oberheide, M. Fromm, S. Schumacher, G. Gerten, and H. Lubatschowski, “fs-Laser induced elasticity changes to improve presbyopic lens accommodation,” Graefes Arch. Clin. Exp. Ophthalmol. 246(6), 897–906 (2008).
[CrossRef] [PubMed]

L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci. 49(12), 5332–5339 (2008).
[CrossRef] [PubMed]

N. Morishige, A. Kesler-Diaz, A. J. Wahlert, R. M. Kurtz, T. Juhasz, M. Sarayba, and J. V. Jester, “Corneal response to femtosecond laser photodisruption in the rabbit,” Exp. Eye Res. 86(5), 835–843 (2008).
[CrossRef] [PubMed]

T. J. Wang, W. Lo, C. M. Hsueh, M. S. Hsieh, C. Y. Dong, and F. R. Hu, “Ex vivo multiphoton analysis of rabbit corneal wound healing following conductive keratoplasty,” J. Biomed. Opt. 13(3), 034019 (2008).
[CrossRef] [PubMed]

G. Olivié, D. Giguère, F. Vidal, T. Ozaki, J. C. Kieffer, O. Nada, and I. Brunette, “Wavelength dependence of femtosecond laser ablation threshold of corneal stroma,” Opt. Express 16(6), 4121–4129 (2008).
[CrossRef] [PubMed]

V. Hovhannisyan, W. Lo, C. Hu, S. J. Chen, and C. Y. Dong, “Dynamics of femtosecond laser photo-modification of collagen fibers,” Opt. Express 16(11), 7958–7968 (2008).
[CrossRef] [PubMed]

L. Jay, A. Brocas, K. Singh, J. C. Kieffer, I. Brunette, and T. Ozaki, “Determination of porcine corneal layers with high spatial resolution by simultaneous second and third harmonic generation microscopy,” Opt. Express 16(21), 16284–16293 (2008).
[CrossRef] [PubMed]

2007

D. Giguère, G. Olivié, F. Vidal, S. Toetsch, G. Girard, T. Ozaki, J.-C. Kieffer, O. Nada, and I. Brunette, “Laser ablation threshold dependence on pulse duration for fused silica and corneal tissues: experiments and modeling,” J. Opt. Soc. Am. A 24(6), 1562–1568 (2007).
[CrossRef] [PubMed]

B. G. Wang, I. Riemann, H. Schubert, D. Schweitzer, K. König, and K. J. Halbhuber, “Multiphoton microscopy for monitoring intratissue femtosecond laser surgery effects,” Lasers Surg. Med. 39(6), 527–533 (2007).
[CrossRef] [PubMed]

B. G. Wang, I. Riemann, H. Schubert, K. J. Halbhuber, and K. Koenig, “In-vivo intratissue ablation by nanojoule near-infrared femtosecond laser pulses,” Cell Tissue Res. 328(3), 515–520 (2007).
[CrossRef] [PubMed]

H. Sun, M. Han, M. H. Niemz, and J. F. Bille, “Femtosecond laser corneal ablation threshold: dependence on tissue depth and laser pulse width,” Lasers Surg. Med. 39(8), 654–658 (2007).
[CrossRef] [PubMed]

V. Nuzzo, K. Plamann, M. Savoldelli, M. Merano, D. Donate, O. Albert, P. F. Gardeazábal Rodríguez, G. Mourou, and J. M. Legeais, “In situ monitoring of second-harmonic generation in human corneas to compensate for femtosecond laser pulse attenuation in keratoplasty,” J. Biomed. Opt. 12(6), 064032 (2007).
[CrossRef] [PubMed]

2006

B.-G. Wang and K.-J. Halbhuber, “Corneal multiphoton microscopy and intratissue optical nanosurgery by nanojoule femtosecond near-infrared pulsed lasers,” Ann. Anat. 188(5), 395–409 (2006).
[CrossRef] [PubMed]

2005

H. K. Soong, S. Mian, O. Abbasi, and T. Juhasz, “Femtosecond laser-assisted posterior lamellar keratoplasty: initial studies of surgical technique in eye bank eyes,” Ophthalmology 112(1), 44–49 (2005).
[CrossRef] [PubMed]

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanism of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

M. Han, G. Giese, and J. F. Bille, “Second harmonic generation imaging of collagen fibrils in cornea and sclera,” Opt. Express 13(15), 5791–5797 (2005).
[CrossRef] [PubMed]

2004

M. Han, G. Giese, L. Zickler, H. Sun, and J. F. Bille, “Mini-invasive corneal surgery and imaging with femtosecond lasers,” Opt. Express 12(18), 4275–4281 (2004).
[CrossRef] [PubMed]

M. Han, L. Zickler, G. Giese, M. Walter, F. H. Loesel, and J. F. Bille, “Second-harmonic imaging of cornea after intrastromal femtosecond laser ablation,” J. Biomed. Opt. 9(4), 760–766 (2004).
[CrossRef] [PubMed]

2003

L. T. Nordan, S. G. Slade, R. N. Baker, C. Suárez, T. Juhasz, and R. Kurtz, “Femtosecond laser flap creation for laser in situ keratomileusis: six-month follow-up of initial U.S. clinical series,” J. Refract. Surg. 19(1), 8–14 (2003).
[PubMed]

2002

2001

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6(3), 277–286 (2001).
[CrossRef] [PubMed]

2000

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,” Graefes Arch. Clin. Exp. Ophthalmol. 238(1), 33–39 (2000).
[CrossRef] [PubMed]

1998

R. M. Kurtz, C. Horvath, H. H. Liu, R. R. Krueger, and T. Juhasz, “Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes,” J. Refract. Surg. 14(5), 541–548 (1998).
[PubMed]

A. Vogel, A. Noack, K. Nahen, D. Theisen, R. Birngruber, D. X. Hammer, G. D. Noojin, and B. A. Rockwell, “Laser-induced breakdown in the eye at pulse durations from 80 ns to 100 fs,” Proc. SPIE 3255, 43–49 (1998).

1997

A. Vogel, “Nonlinear absorption: intraocular microsurgery and laser lithotripsy,” Phys. Med. Biol. 42(5), 895–912 (1997).
[CrossRef] [PubMed]

R. M. Kurtz, X. Liu, V. M. Elner, J. A. Squier, D. Du, and G. A. Mourou, “Photodisruption in the human cornea as a function of laser pulse width,” J. Refract. Surg. 13(7), 653–658 (1997).
[PubMed]

1994

I. G. Pallikaris and D. S. Siganos, “Excimer laser in situ keratomileusis and photorefractive keratectomy for correction of high myopia,” J. Refract. Corneal Surg. 10(5), 498–510 (1994).
[PubMed]

1990

I. G. Pallikaris, M. E. Papatzanaki, E. Z. Stathi, O. Frenschock, and A. Georgiadis, “Laser in situ keratomileusis,” Lasers Surg. Med. 10(5), 463–468 (1990).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

1985

R. R. Krueger, S. L. Trokel, and H. D. Schubert, “Interaction of ultraviolet laser light with the cornea,” Invest. Ophthalmol. Vis. Sci. 26(11), 1455–1464 (1985).
[PubMed]

1984

R. M. Klapper, “Q-switched neodymium:YAG laser iridotomy,” Ophthalmology 91(9), 1017–1021 (1984).
[PubMed]

1980

D. Aron-Rosa, J. J. Aron, M. Griesemann, and R. Thyzel, “Use of the neodymium-YAG laser to open the posterior capsule after lens implant surgery: a preliminary report,” J. Am. Intraocul. Implant Soc. 6(4), 352–354 (1980).
[PubMed]

1974

M. M. Krasnov, “Q-switched laser goniopuncture,” Arch. Ophthalmol. 92(1), 37–41 (1974).
[PubMed]

Abbasi, O.

H. K. Soong, S. Mian, O. Abbasi, and T. Juhasz, “Femtosecond laser-assisted posterior lamellar keratoplasty: initial studies of surgical technique in eye bank eyes,” Ophthalmology 112(1), 44–49 (2005).
[CrossRef] [PubMed]

Albert, O.

V. Nuzzo, K. Plamann, M. Savoldelli, M. Merano, D. Donate, O. Albert, P. F. Gardeazábal Rodríguez, G. Mourou, and J. M. Legeais, “In situ monitoring of second-harmonic generation in human corneas to compensate for femtosecond laser pulse attenuation in keratoplasty,” J. Biomed. Opt. 12(6), 064032 (2007).
[CrossRef] [PubMed]

Aron, J. J.

D. Aron-Rosa, J. J. Aron, M. Griesemann, and R. Thyzel, “Use of the neodymium-YAG laser to open the posterior capsule after lens implant surgery: a preliminary report,” J. Am. Intraocul. Implant Soc. 6(4), 352–354 (1980).
[PubMed]

Aron-Rosa, D.

D. Aron-Rosa, J. J. Aron, M. Griesemann, and R. Thyzel, “Use of the neodymium-YAG laser to open the posterior capsule after lens implant surgery: a preliminary report,” J. Am. Intraocul. Implant Soc. 6(4), 352–354 (1980).
[PubMed]

Artal, P.

J. M. Bueno, E. J. Gualda, and P. Artal, “Analysis of corneal stroma organization with wavefront optimized nonlinear microscopy,” Cornea 30(6), 692–701 (2011).
[CrossRef] [PubMed]

J. M. Bueno, A. Giakoumaki, E. J. Gualda, F. Schaeffel, and P. Artal, “Analysis of the chicken retina with an adaptive optics multiphoton microscope,” Biomed. Opt. Express 2(6), 1637–1648 (2011).
[CrossRef] [PubMed]

J. M. Bueno, E. J. Gualda, A. Giakoumaki, P. Pérez-Merino, S. Marcos, and P. Artal, “Multiphoton microscopy of ex vivo corneas after collagen cross-linking,” Invest. Ophthalmol. Vis. Sci. 52(8), 5325–5331 (2011).
[CrossRef] [PubMed]

E. J. Gualda, J. M. Bueno, and P. Artal, “Wavefront optimized nonlinear microscopy of ex vivo human retinas,” J. Biomed. Opt. 15(2), 026007 (2010).
[CrossRef] [PubMed]

J. M. Bueno, E. J. Gualda, and P. Artal, “Adaptive optics multiphoton microscopy to study ex vivo ocular tissues,” J. Biomed. Opt. 15(6), 066004 (2010).
[CrossRef] [PubMed]

Baker, R. N.

L. T. Nordan, S. G. Slade, R. N. Baker, C. Suárez, T. Juhasz, and R. Kurtz, “Femtosecond laser flap creation for laser in situ keratomileusis: six-month follow-up of initial U.S. clinical series,” J. Refract. Surg. 19(1), 8–14 (2003).
[PubMed]

Bille, J. F.

M. Hao, K. Flynn, C. Nien-Shy, B. E. Jester, M. Winkler, D. J. Brown, O. La Schiazza, J. F. Bille, and J. V. Jester, “In vivo non-linear optical (NLO) imaging in live rabbit eyes using the Heidelberg Two-Photon Laser Ophthalmoscope,” Exp. Eye Res. 91(2), 308–314 (2010).
[CrossRef] [PubMed]

H. Sun, M. Han, M. H. Niemz, and J. F. Bille, “Femtosecond laser corneal ablation threshold: dependence on tissue depth and laser pulse width,” Lasers Surg. Med. 39(8), 654–658 (2007).
[CrossRef] [PubMed]

M. Han, G. Giese, and J. F. Bille, “Second harmonic generation imaging of collagen fibrils in cornea and sclera,” Opt. Express 13(15), 5791–5797 (2005).
[CrossRef] [PubMed]

M. Han, L. Zickler, G. Giese, M. Walter, F. H. Loesel, and J. F. Bille, “Second-harmonic imaging of cornea after intrastromal femtosecond laser ablation,” J. Biomed. Opt. 9(4), 760–766 (2004).
[CrossRef] [PubMed]

M. Han, G. Giese, L. Zickler, H. Sun, and J. F. Bille, “Mini-invasive corneal surgery and imaging with femtosecond lasers,” Opt. Express 12(18), 4275–4281 (2004).
[CrossRef] [PubMed]

Birngruber, R.

A. Vogel, A. Noack, K. Nahen, D. Theisen, R. Birngruber, D. X. Hammer, G. D. Noojin, and B. A. Rockwell, “Laser-induced breakdown in the eye at pulse durations from 80 ns to 100 fs,” Proc. SPIE 3255, 43–49 (1998).

Brocas, A.

Brown, D. J.

M. Hao, K. Flynn, C. Nien-Shy, B. E. Jester, M. Winkler, D. J. Brown, O. La Schiazza, J. F. Bille, and J. V. Jester, “In vivo non-linear optical (NLO) imaging in live rabbit eyes using the Heidelberg Two-Photon Laser Ophthalmoscope,” Exp. Eye Res. 91(2), 308–314 (2010).
[CrossRef] [PubMed]

Brunette, I.

Bueno, J. M.

J. M. Bueno, E. J. Gualda, and P. Artal, “Analysis of corneal stroma organization with wavefront optimized nonlinear microscopy,” Cornea 30(6), 692–701 (2011).
[CrossRef] [PubMed]

J. M. Bueno, A. Giakoumaki, E. J. Gualda, F. Schaeffel, and P. Artal, “Analysis of the chicken retina with an adaptive optics multiphoton microscope,” Biomed. Opt. Express 2(6), 1637–1648 (2011).
[CrossRef] [PubMed]

J. M. Bueno, E. J. Gualda, A. Giakoumaki, P. Pérez-Merino, S. Marcos, and P. Artal, “Multiphoton microscopy of ex vivo corneas after collagen cross-linking,” Invest. Ophthalmol. Vis. Sci. 52(8), 5325–5331 (2011).
[CrossRef] [PubMed]

E. J. Gualda, J. M. Bueno, and P. Artal, “Wavefront optimized nonlinear microscopy of ex vivo human retinas,” J. Biomed. Opt. 15(2), 026007 (2010).
[CrossRef] [PubMed]

J. M. Bueno, E. J. Gualda, and P. Artal, “Adaptive optics multiphoton microscopy to study ex vivo ocular tissues,” J. Biomed. Opt. 15(6), 066004 (2010).
[CrossRef] [PubMed]

Bühren, J.

L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci. 49(12), 5332–5339 (2008).
[CrossRef] [PubMed]

Campagnola, P. J.

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6(3), 277–286 (2001).
[CrossRef] [PubMed]

Chen, S. J.

Chen, S.-Y.

S.-Y. Chen, H.-C. Yu, I.-J. Wang, and C.-K. Sun, “Infrared-based third and second harmonic generation imaging of cornea,” J. Biomed. Opt. 14(4), 044012 (2009).
[CrossRef] [PubMed]

Chen, Y. F.

Clark, H. A.

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6(3), 277–286 (2001).
[CrossRef] [PubMed]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Ding, L.

L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of femtosecond laser intratissue refractive index shaping (IRIS) in the living cornea with sodium fluorescein,” Invest. Ophthalmol. Vis. Sci. 51(2), 850–856 (2010).
[CrossRef] [PubMed]

L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci. 49(12), 5332–5339 (2008).
[CrossRef] [PubMed]

Donate, D.

V. Nuzzo, K. Plamann, M. Savoldelli, M. Merano, D. Donate, O. Albert, P. F. Gardeazábal Rodríguez, G. Mourou, and J. M. Legeais, “In situ monitoring of second-harmonic generation in human corneas to compensate for femtosecond laser pulse attenuation in keratoplasty,” J. Biomed. Opt. 12(6), 064032 (2007).
[CrossRef] [PubMed]

Dong, C. Y.

Drommer, W.

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,” Graefes Arch. Clin. Exp. Ophthalmol. 238(1), 33–39 (2000).
[CrossRef] [PubMed]

Du, D.

R. M. Kurtz, X. Liu, V. M. Elner, J. A. Squier, D. Du, and G. A. Mourou, “Photodisruption in the human cornea as a function of laser pulse width,” J. Refract. Surg. 13(7), 653–658 (1997).
[PubMed]

Edward, D. P.

H. Nakamura, Y. Liu, T. E. Witt, R. J. Gordon, and D. P. Edward, “Femtosecond laser photodisruption of primate trabecular meshwork: an ex vivo study,” Invest. Ophthalmol. Vis. Sci. 50(3), 1198–1204 (2009).
[CrossRef] [PubMed]

Elner, V. M.

R. M. Kurtz, X. Liu, V. M. Elner, J. A. Squier, D. Du, and G. A. Mourou, “Photodisruption in the human cornea as a function of laser pulse width,” J. Refract. Surg. 13(7), 653–658 (1997).
[PubMed]

Ertmer, W.

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,” Graefes Arch. Clin. Exp. Ophthalmol. 238(1), 33–39 (2000).
[CrossRef] [PubMed]

Flynn, K.

M. Hao, K. Flynn, C. Nien-Shy, B. E. Jester, M. Winkler, D. J. Brown, O. La Schiazza, J. F. Bille, and J. V. Jester, “In vivo non-linear optical (NLO) imaging in live rabbit eyes using the Heidelberg Two-Photon Laser Ophthalmoscope,” Exp. Eye Res. 91(2), 308–314 (2010).
[CrossRef] [PubMed]

Frenschock, O.

I. G. Pallikaris, M. E. Papatzanaki, E. Z. Stathi, O. Frenschock, and A. Georgiadis, “Laser in situ keratomileusis,” Lasers Surg. Med. 10(5), 463–468 (1990).
[CrossRef] [PubMed]

Fromm, M.

T. Ripken, U. Oberheide, M. Fromm, S. Schumacher, G. Gerten, and H. Lubatschowski, “fs-Laser induced elasticity changes to improve presbyopic lens accommodation,” Graefes Arch. Clin. Exp. Ophthalmol. 246(6), 897–906 (2008).
[CrossRef] [PubMed]

Gardeazábal Rodríguez, P. F.

V. Nuzzo, K. Plamann, M. Savoldelli, M. Merano, D. Donate, O. Albert, P. F. Gardeazábal Rodríguez, G. Mourou, and J. M. Legeais, “In situ monitoring of second-harmonic generation in human corneas to compensate for femtosecond laser pulse attenuation in keratoplasty,” J. Biomed. Opt. 12(6), 064032 (2007).
[CrossRef] [PubMed]

Georgiadis, A.

I. G. Pallikaris, M. E. Papatzanaki, E. Z. Stathi, O. Frenschock, and A. Georgiadis, “Laser in situ keratomileusis,” Lasers Surg. Med. 10(5), 463–468 (1990).
[CrossRef] [PubMed]

Gerten, G.

T. Ripken, U. Oberheide, M. Fromm, S. Schumacher, G. Gerten, and H. Lubatschowski, “fs-Laser induced elasticity changes to improve presbyopic lens accommodation,” Graefes Arch. Clin. Exp. Ophthalmol. 246(6), 897–906 (2008).
[CrossRef] [PubMed]

Ghazaryan, A.

Giakoumaki, A.

J. M. Bueno, E. J. Gualda, A. Giakoumaki, P. Pérez-Merino, S. Marcos, and P. Artal, “Multiphoton microscopy of ex vivo corneas after collagen cross-linking,” Invest. Ophthalmol. Vis. Sci. 52(8), 5325–5331 (2011).
[CrossRef] [PubMed]

J. M. Bueno, A. Giakoumaki, E. J. Gualda, F. Schaeffel, and P. Artal, “Analysis of the chicken retina with an adaptive optics multiphoton microscope,” Biomed. Opt. Express 2(6), 1637–1648 (2011).
[CrossRef] [PubMed]

Giese, G.

Giguère, D.

Girard, G.

Gordon, R. J.

H. Nakamura, Y. Liu, T. E. Witt, R. J. Gordon, and D. P. Edward, “Femtosecond laser photodisruption of primate trabecular meshwork: an ex vivo study,” Invest. Ophthalmol. Vis. Sci. 50(3), 1198–1204 (2009).
[CrossRef] [PubMed]

Griesemann, M.

D. Aron-Rosa, J. J. Aron, M. Griesemann, and R. Thyzel, “Use of the neodymium-YAG laser to open the posterior capsule after lens implant surgery: a preliminary report,” J. Am. Intraocul. Implant Soc. 6(4), 352–354 (1980).
[PubMed]

Gualda, E. J.

J. M. Bueno, E. J. Gualda, and P. Artal, “Analysis of corneal stroma organization with wavefront optimized nonlinear microscopy,” Cornea 30(6), 692–701 (2011).
[CrossRef] [PubMed]

J. M. Bueno, E. J. Gualda, A. Giakoumaki, P. Pérez-Merino, S. Marcos, and P. Artal, “Multiphoton microscopy of ex vivo corneas after collagen cross-linking,” Invest. Ophthalmol. Vis. Sci. 52(8), 5325–5331 (2011).
[CrossRef] [PubMed]

J. M. Bueno, A. Giakoumaki, E. J. Gualda, F. Schaeffel, and P. Artal, “Analysis of the chicken retina with an adaptive optics multiphoton microscope,” Biomed. Opt. Express 2(6), 1637–1648 (2011).
[CrossRef] [PubMed]

E. J. Gualda, J. M. Bueno, and P. Artal, “Wavefront optimized nonlinear microscopy of ex vivo human retinas,” J. Biomed. Opt. 15(2), 026007 (2010).
[CrossRef] [PubMed]

J. M. Bueno, E. J. Gualda, and P. Artal, “Adaptive optics multiphoton microscopy to study ex vivo ocular tissues,” J. Biomed. Opt. 15(6), 066004 (2010).
[CrossRef] [PubMed]

Halbhuber, K. J.

B. G. Wang, I. Riemann, H. Schubert, K. J. Halbhuber, and K. Koenig, “In-vivo intratissue ablation by nanojoule near-infrared femtosecond laser pulses,” Cell Tissue Res. 328(3), 515–520 (2007).
[CrossRef] [PubMed]

B. G. Wang, I. Riemann, H. Schubert, D. Schweitzer, K. König, and K. J. Halbhuber, “Multiphoton microscopy for monitoring intratissue femtosecond laser surgery effects,” Lasers Surg. Med. 39(6), 527–533 (2007).
[CrossRef] [PubMed]

Halbhuber, K.-J.

B.-G. Wang and K.-J. Halbhuber, “Corneal multiphoton microscopy and intratissue optical nanosurgery by nanojoule femtosecond near-infrared pulsed lasers,” Ann. Anat. 188(5), 395–409 (2006).
[CrossRef] [PubMed]

Hammer, D. X.

A. Vogel, A. Noack, K. Nahen, D. Theisen, R. Birngruber, D. X. Hammer, G. D. Noojin, and B. A. Rockwell, “Laser-induced breakdown in the eye at pulse durations from 80 ns to 100 fs,” Proc. SPIE 3255, 43–49 (1998).

Han, M.

H. Sun, M. Han, M. H. Niemz, and J. F. Bille, “Femtosecond laser corneal ablation threshold: dependence on tissue depth and laser pulse width,” Lasers Surg. Med. 39(8), 654–658 (2007).
[CrossRef] [PubMed]

M. Han, G. Giese, and J. F. Bille, “Second harmonic generation imaging of collagen fibrils in cornea and sclera,” Opt. Express 13(15), 5791–5797 (2005).
[CrossRef] [PubMed]

M. Han, L. Zickler, G. Giese, M. Walter, F. H. Loesel, and J. F. Bille, “Second-harmonic imaging of cornea after intrastromal femtosecond laser ablation,” J. Biomed. Opt. 9(4), 760–766 (2004).
[CrossRef] [PubMed]

M. Han, G. Giese, L. Zickler, H. Sun, and J. F. Bille, “Mini-invasive corneal surgery and imaging with femtosecond lasers,” Opt. Express 12(18), 4275–4281 (2004).
[CrossRef] [PubMed]

Hao, M.

M. Hao, K. Flynn, C. Nien-Shy, B. E. Jester, M. Winkler, D. J. Brown, O. La Schiazza, J. F. Bille, and J. V. Jester, “In vivo non-linear optical (NLO) imaging in live rabbit eyes using the Heidelberg Two-Photon Laser Ophthalmoscope,” Exp. Eye Res. 91(2), 308–314 (2010).
[CrossRef] [PubMed]

Heisterkamp, A.

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,” Graefes Arch. Clin. Exp. Ophthalmol. 238(1), 33–39 (2000).
[CrossRef] [PubMed]

Hetzel, U.

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,” Graefes Arch. Clin. Exp. Ophthalmol. 238(1), 33–39 (2000).
[CrossRef] [PubMed]

Horvath, C.

R. M. Kurtz, C. Horvath, H. H. Liu, R. R. Krueger, and T. Juhasz, “Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes,” J. Refract. Surg. 14(5), 541–548 (1998).
[PubMed]

Hovhannisyan, V.

Hsieh, M. S.

T. J. Wang, W. Lo, C. M. Hsueh, M. S. Hsieh, C. Y. Dong, and F. R. Hu, “Ex vivo multiphoton analysis of rabbit corneal wound healing following conductive keratoplasty,” J. Biomed. Opt. 13(3), 034019 (2008).
[CrossRef] [PubMed]

Hsueh, C. M.

T. J. Wang, W. Lo, C. M. Hsueh, M. S. Hsieh, C. Y. Dong, and F. R. Hu, “Ex vivo multiphoton analysis of rabbit corneal wound healing following conductive keratoplasty,” J. Biomed. Opt. 13(3), 034019 (2008).
[CrossRef] [PubMed]

Hu, C.

Hu, F. R.

T. J. Wang, W. Lo, C. M. Hsueh, M. S. Hsieh, C. Y. Dong, and F. R. Hu, “Ex vivo multiphoton analysis of rabbit corneal wound healing following conductive keratoplasty,” J. Biomed. Opt. 13(3), 034019 (2008).
[CrossRef] [PubMed]

Hüttman, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanism of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Huxlin, K. R.

L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of femtosecond laser intratissue refractive index shaping (IRIS) in the living cornea with sodium fluorescein,” Invest. Ophthalmol. Vis. Sci. 51(2), 850–856 (2010).
[CrossRef] [PubMed]

L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci. 49(12), 5332–5339 (2008).
[CrossRef] [PubMed]

Jay, L.

Jester, B. E.

M. Hao, K. Flynn, C. Nien-Shy, B. E. Jester, M. Winkler, D. J. Brown, O. La Schiazza, J. F. Bille, and J. V. Jester, “In vivo non-linear optical (NLO) imaging in live rabbit eyes using the Heidelberg Two-Photon Laser Ophthalmoscope,” Exp. Eye Res. 91(2), 308–314 (2010).
[CrossRef] [PubMed]

Jester, J. V.

M. Hao, K. Flynn, C. Nien-Shy, B. E. Jester, M. Winkler, D. J. Brown, O. La Schiazza, J. F. Bille, and J. V. Jester, “In vivo non-linear optical (NLO) imaging in live rabbit eyes using the Heidelberg Two-Photon Laser Ophthalmoscope,” Exp. Eye Res. 91(2), 308–314 (2010).
[CrossRef] [PubMed]

N. Morishige, A. Kesler-Diaz, A. J. Wahlert, R. M. Kurtz, T. Juhasz, M. Sarayba, and J. V. Jester, “Corneal response to femtosecond laser photodisruption in the rabbit,” Exp. Eye Res. 86(5), 835–843 (2008).
[CrossRef] [PubMed]

Jonas, J. B.

U. Vossmerbaeumer and J. B. Jonas, “Structure of intracorneal femtosecond laser pulse effects in conical incision profiles,” Graefes Arch. Clin. Exp. Ophthalmol. 246(7), 1017–1020 (2008).
[CrossRef] [PubMed]

Juhasz, T.

N. Morishige, A. Kesler-Diaz, A. J. Wahlert, R. M. Kurtz, T. Juhasz, M. Sarayba, and J. V. Jester, “Corneal response to femtosecond laser photodisruption in the rabbit,” Exp. Eye Res. 86(5), 835–843 (2008).
[CrossRef] [PubMed]

H. K. Soong, S. Mian, O. Abbasi, and T. Juhasz, “Femtosecond laser-assisted posterior lamellar keratoplasty: initial studies of surgical technique in eye bank eyes,” Ophthalmology 112(1), 44–49 (2005).
[CrossRef] [PubMed]

L. T. Nordan, S. G. Slade, R. N. Baker, C. Suárez, T. Juhasz, and R. Kurtz, “Femtosecond laser flap creation for laser in situ keratomileusis: six-month follow-up of initial U.S. clinical series,” J. Refract. Surg. 19(1), 8–14 (2003).
[PubMed]

R. M. Kurtz, C. Horvath, H. H. Liu, R. R. Krueger, and T. Juhasz, “Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes,” J. Refract. Surg. 14(5), 541–548 (1998).
[PubMed]

Kesler-Diaz, A.

N. Morishige, A. Kesler-Diaz, A. J. Wahlert, R. M. Kurtz, T. Juhasz, M. Sarayba, and J. V. Jester, “Corneal response to femtosecond laser photodisruption in the rabbit,” Exp. Eye Res. 86(5), 835–843 (2008).
[CrossRef] [PubMed]

Kieffer, J. C.

Kieffer, J.-C.

Klapper, R. M.

R. M. Klapper, “Q-switched neodymium:YAG laser iridotomy,” Ophthalmology 91(9), 1017–1021 (1984).
[PubMed]

Knox, W. H.

L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of femtosecond laser intratissue refractive index shaping (IRIS) in the living cornea with sodium fluorescein,” Invest. Ophthalmol. Vis. Sci. 51(2), 850–856 (2010).
[CrossRef] [PubMed]

L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci. 49(12), 5332–5339 (2008).
[CrossRef] [PubMed]

Koenig, K.

B. G. Wang, I. Riemann, H. Schubert, K. J. Halbhuber, and K. Koenig, “In-vivo intratissue ablation by nanojoule near-infrared femtosecond laser pulses,” Cell Tissue Res. 328(3), 515–520 (2007).
[CrossRef] [PubMed]

K. Koenig, O. Krauss, and I. Riemann, “Intratissue surgery with 80 MHz nanojoule femtosecond laser pulses in the near infrared,” Opt. Express 10(3), 171–176 (2002).
[PubMed]

König, K.

B. G. Wang, I. Riemann, H. Schubert, D. Schweitzer, K. König, and K. J. Halbhuber, “Multiphoton microscopy for monitoring intratissue femtosecond laser surgery effects,” Lasers Surg. Med. 39(6), 527–533 (2007).
[CrossRef] [PubMed]

Krasnov, M. M.

M. M. Krasnov, “Q-switched laser goniopuncture,” Arch. Ophthalmol. 92(1), 37–41 (1974).
[PubMed]

Krauss, O.

Krueger, R. R.

R. M. Kurtz, C. Horvath, H. H. Liu, R. R. Krueger, and T. Juhasz, “Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes,” J. Refract. Surg. 14(5), 541–548 (1998).
[PubMed]

R. R. Krueger, S. L. Trokel, and H. D. Schubert, “Interaction of ultraviolet laser light with the cornea,” Invest. Ophthalmol. Vis. Sci. 26(11), 1455–1464 (1985).
[PubMed]

Kurtz, R.

L. T. Nordan, S. G. Slade, R. N. Baker, C. Suárez, T. Juhasz, and R. Kurtz, “Femtosecond laser flap creation for laser in situ keratomileusis: six-month follow-up of initial U.S. clinical series,” J. Refract. Surg. 19(1), 8–14 (2003).
[PubMed]

Kurtz, R. M.

N. Morishige, A. Kesler-Diaz, A. J. Wahlert, R. M. Kurtz, T. Juhasz, M. Sarayba, and J. V. Jester, “Corneal response to femtosecond laser photodisruption in the rabbit,” Exp. Eye Res. 86(5), 835–843 (2008).
[CrossRef] [PubMed]

R. M. Kurtz, C. Horvath, H. H. Liu, R. R. Krueger, and T. Juhasz, “Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes,” J. Refract. Surg. 14(5), 541–548 (1998).
[PubMed]

R. M. Kurtz, X. Liu, V. M. Elner, J. A. Squier, D. Du, and G. A. Mourou, “Photodisruption in the human cornea as a function of laser pulse width,” J. Refract. Surg. 13(7), 653–658 (1997).
[PubMed]

La Schiazza, O.

M. Hao, K. Flynn, C. Nien-Shy, B. E. Jester, M. Winkler, D. J. Brown, O. La Schiazza, J. F. Bille, and J. V. Jester, “In vivo non-linear optical (NLO) imaging in live rabbit eyes using the Heidelberg Two-Photon Laser Ophthalmoscope,” Exp. Eye Res. 91(2), 308–314 (2010).
[CrossRef] [PubMed]

Legeais, J. M.

V. Nuzzo, K. Plamann, M. Savoldelli, M. Merano, D. Donate, O. Albert, P. F. Gardeazábal Rodríguez, G. Mourou, and J. M. Legeais, “In situ monitoring of second-harmonic generation in human corneas to compensate for femtosecond laser pulse attenuation in keratoplasty,” J. Biomed. Opt. 12(6), 064032 (2007).
[CrossRef] [PubMed]

Lewis, A.

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6(3), 277–286 (2001).
[CrossRef] [PubMed]

Liu, H. H.

R. M. Kurtz, C. Horvath, H. H. Liu, R. R. Krueger, and T. Juhasz, “Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes,” J. Refract. Surg. 14(5), 541–548 (1998).
[PubMed]

Liu, X.

R. M. Kurtz, X. Liu, V. M. Elner, J. A. Squier, D. Du, and G. A. Mourou, “Photodisruption in the human cornea as a function of laser pulse width,” J. Refract. Surg. 13(7), 653–658 (1997).
[PubMed]

Liu, Y.

H. Nakamura, Y. Liu, T. E. Witt, R. J. Gordon, and D. P. Edward, “Femtosecond laser photodisruption of primate trabecular meshwork: an ex vivo study,” Invest. Ophthalmol. Vis. Sci. 50(3), 1198–1204 (2009).
[CrossRef] [PubMed]

Lo, W.

T. J. Wang, W. Lo, C. M. Hsueh, M. S. Hsieh, C. Y. Dong, and F. R. Hu, “Ex vivo multiphoton analysis of rabbit corneal wound healing following conductive keratoplasty,” J. Biomed. Opt. 13(3), 034019 (2008).
[CrossRef] [PubMed]

V. Hovhannisyan, W. Lo, C. Hu, S. J. Chen, and C. Y. Dong, “Dynamics of femtosecond laser photo-modification of collagen fibers,” Opt. Express 16(11), 7958–7968 (2008).
[CrossRef] [PubMed]

Loesel, F. H.

M. Han, L. Zickler, G. Giese, M. Walter, F. H. Loesel, and J. F. Bille, “Second-harmonic imaging of cornea after intrastromal femtosecond laser ablation,” J. Biomed. Opt. 9(4), 760–766 (2004).
[CrossRef] [PubMed]

Loew, L. M.

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6(3), 277–286 (2001).
[CrossRef] [PubMed]

Lubatschowski, H.

T. Ripken, U. Oberheide, M. Fromm, S. Schumacher, G. Gerten, and H. Lubatschowski, “fs-Laser induced elasticity changes to improve presbyopic lens accommodation,” Graefes Arch. Clin. Exp. Ophthalmol. 246(6), 897–906 (2008).
[CrossRef] [PubMed]

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,” Graefes Arch. Clin. Exp. Ophthalmol. 238(1), 33–39 (2000).
[CrossRef] [PubMed]

Maatz, G.

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,” Graefes Arch. Clin. Exp. Ophthalmol. 238(1), 33–39 (2000).
[CrossRef] [PubMed]

Marcos, S.

J. M. Bueno, E. J. Gualda, A. Giakoumaki, P. Pérez-Merino, S. Marcos, and P. Artal, “Multiphoton microscopy of ex vivo corneas after collagen cross-linking,” Invest. Ophthalmol. Vis. Sci. 52(8), 5325–5331 (2011).
[CrossRef] [PubMed]

Merano, M.

V. Nuzzo, K. Plamann, M. Savoldelli, M. Merano, D. Donate, O. Albert, P. F. Gardeazábal Rodríguez, G. Mourou, and J. M. Legeais, “In situ monitoring of second-harmonic generation in human corneas to compensate for femtosecond laser pulse attenuation in keratoplasty,” J. Biomed. Opt. 12(6), 064032 (2007).
[CrossRef] [PubMed]

Mian, S.

H. K. Soong, S. Mian, O. Abbasi, and T. Juhasz, “Femtosecond laser-assisted posterior lamellar keratoplasty: initial studies of surgical technique in eye bank eyes,” Ophthalmology 112(1), 44–49 (2005).
[CrossRef] [PubMed]

Mohler, W. A.

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6(3), 277–286 (2001).
[CrossRef] [PubMed]

Morishige, N.

N. Morishige, A. Kesler-Diaz, A. J. Wahlert, R. M. Kurtz, T. Juhasz, M. Sarayba, and J. V. Jester, “Corneal response to femtosecond laser photodisruption in the rabbit,” Exp. Eye Res. 86(5), 835–843 (2008).
[CrossRef] [PubMed]

Mourou, G.

V. Nuzzo, K. Plamann, M. Savoldelli, M. Merano, D. Donate, O. Albert, P. F. Gardeazábal Rodríguez, G. Mourou, and J. M. Legeais, “In situ monitoring of second-harmonic generation in human corneas to compensate for femtosecond laser pulse attenuation in keratoplasty,” J. Biomed. Opt. 12(6), 064032 (2007).
[CrossRef] [PubMed]

Mourou, G. A.

R. M. Kurtz, X. Liu, V. M. Elner, J. A. Squier, D. Du, and G. A. Mourou, “Photodisruption in the human cornea as a function of laser pulse width,” J. Refract. Surg. 13(7), 653–658 (1997).
[PubMed]

Nada, O.

Nagy, L. J.

L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of femtosecond laser intratissue refractive index shaping (IRIS) in the living cornea with sodium fluorescein,” Invest. Ophthalmol. Vis. Sci. 51(2), 850–856 (2010).
[CrossRef] [PubMed]

L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci. 49(12), 5332–5339 (2008).
[CrossRef] [PubMed]

Nahen, K.

A. Vogel, A. Noack, K. Nahen, D. Theisen, R. Birngruber, D. X. Hammer, G. D. Noojin, and B. A. Rockwell, “Laser-induced breakdown in the eye at pulse durations from 80 ns to 100 fs,” Proc. SPIE 3255, 43–49 (1998).

Nakamura, H.

H. Nakamura, Y. Liu, T. E. Witt, R. J. Gordon, and D. P. Edward, “Femtosecond laser photodisruption of primate trabecular meshwork: an ex vivo study,” Invest. Ophthalmol. Vis. Sci. 50(3), 1198–1204 (2009).
[CrossRef] [PubMed]

Niemz, M. H.

H. Sun, M. Han, M. H. Niemz, and J. F. Bille, “Femtosecond laser corneal ablation threshold: dependence on tissue depth and laser pulse width,” Lasers Surg. Med. 39(8), 654–658 (2007).
[CrossRef] [PubMed]

Nien-Shy, C.

M. Hao, K. Flynn, C. Nien-Shy, B. E. Jester, M. Winkler, D. J. Brown, O. La Schiazza, J. F. Bille, and J. V. Jester, “In vivo non-linear optical (NLO) imaging in live rabbit eyes using the Heidelberg Two-Photon Laser Ophthalmoscope,” Exp. Eye Res. 91(2), 308–314 (2010).
[CrossRef] [PubMed]

Noack, A.

A. Vogel, A. Noack, K. Nahen, D. Theisen, R. Birngruber, D. X. Hammer, G. D. Noojin, and B. A. Rockwell, “Laser-induced breakdown in the eye at pulse durations from 80 ns to 100 fs,” Proc. SPIE 3255, 43–49 (1998).

Noack, J.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanism of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Noojin, G. D.

A. Vogel, A. Noack, K. Nahen, D. Theisen, R. Birngruber, D. X. Hammer, G. D. Noojin, and B. A. Rockwell, “Laser-induced breakdown in the eye at pulse durations from 80 ns to 100 fs,” Proc. SPIE 3255, 43–49 (1998).

Nordan, L. T.

L. T. Nordan, S. G. Slade, R. N. Baker, C. Suárez, T. Juhasz, and R. Kurtz, “Femtosecond laser flap creation for laser in situ keratomileusis: six-month follow-up of initial U.S. clinical series,” J. Refract. Surg. 19(1), 8–14 (2003).
[PubMed]

Nuzzo, V.

V. Nuzzo, K. Plamann, M. Savoldelli, M. Merano, D. Donate, O. Albert, P. F. Gardeazábal Rodríguez, G. Mourou, and J. M. Legeais, “In situ monitoring of second-harmonic generation in human corneas to compensate for femtosecond laser pulse attenuation in keratoplasty,” J. Biomed. Opt. 12(6), 064032 (2007).
[CrossRef] [PubMed]

Oberheide, U.

T. Ripken, U. Oberheide, M. Fromm, S. Schumacher, G. Gerten, and H. Lubatschowski, “fs-Laser induced elasticity changes to improve presbyopic lens accommodation,” Graefes Arch. Clin. Exp. Ophthalmol. 246(6), 897–906 (2008).
[CrossRef] [PubMed]

Olivié, G.

Ozaki, T.

Pallikaris, I. G.

I. G. Pallikaris and D. S. Siganos, “Excimer laser in situ keratomileusis and photorefractive keratectomy for correction of high myopia,” J. Refract. Corneal Surg. 10(5), 498–510 (1994).
[PubMed]

I. G. Pallikaris, M. E. Papatzanaki, E. Z. Stathi, O. Frenschock, and A. Georgiadis, “Laser in situ keratomileusis,” Lasers Surg. Med. 10(5), 463–468 (1990).
[CrossRef] [PubMed]

Paltauf, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanism of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Papatzanaki, M. E.

I. G. Pallikaris, M. E. Papatzanaki, E. Z. Stathi, O. Frenschock, and A. Georgiadis, “Laser in situ keratomileusis,” Lasers Surg. Med. 10(5), 463–468 (1990).
[CrossRef] [PubMed]

Pérez-Merino, P.

J. M. Bueno, E. J. Gualda, A. Giakoumaki, P. Pérez-Merino, S. Marcos, and P. Artal, “Multiphoton microscopy of ex vivo corneas after collagen cross-linking,” Invest. Ophthalmol. Vis. Sci. 52(8), 5325–5331 (2011).
[CrossRef] [PubMed]

Plamann, K.

V. Nuzzo, K. Plamann, M. Savoldelli, M. Merano, D. Donate, O. Albert, P. F. Gardeazábal Rodríguez, G. Mourou, and J. M. Legeais, “In situ monitoring of second-harmonic generation in human corneas to compensate for femtosecond laser pulse attenuation in keratoplasty,” J. Biomed. Opt. 12(6), 064032 (2007).
[CrossRef] [PubMed]

Riemann, I.

B. G. Wang, I. Riemann, H. Schubert, K. J. Halbhuber, and K. Koenig, “In-vivo intratissue ablation by nanojoule near-infrared femtosecond laser pulses,” Cell Tissue Res. 328(3), 515–520 (2007).
[CrossRef] [PubMed]

B. G. Wang, I. Riemann, H. Schubert, D. Schweitzer, K. König, and K. J. Halbhuber, “Multiphoton microscopy for monitoring intratissue femtosecond laser surgery effects,” Lasers Surg. Med. 39(6), 527–533 (2007).
[CrossRef] [PubMed]

K. Koenig, O. Krauss, and I. Riemann, “Intratissue surgery with 80 MHz nanojoule femtosecond laser pulses in the near infrared,” Opt. Express 10(3), 171–176 (2002).
[PubMed]

Ripken, T.

T. Ripken, U. Oberheide, M. Fromm, S. Schumacher, G. Gerten, and H. Lubatschowski, “fs-Laser induced elasticity changes to improve presbyopic lens accommodation,” Graefes Arch. Clin. Exp. Ophthalmol. 246(6), 897–906 (2008).
[CrossRef] [PubMed]

Rockwell, B. A.

A. Vogel, A. Noack, K. Nahen, D. Theisen, R. Birngruber, D. X. Hammer, G. D. Noojin, and B. A. Rockwell, “Laser-induced breakdown in the eye at pulse durations from 80 ns to 100 fs,” Proc. SPIE 3255, 43–49 (1998).

Sarayba, M.

N. Morishige, A. Kesler-Diaz, A. J. Wahlert, R. M. Kurtz, T. Juhasz, M. Sarayba, and J. V. Jester, “Corneal response to femtosecond laser photodisruption in the rabbit,” Exp. Eye Res. 86(5), 835–843 (2008).
[CrossRef] [PubMed]

Savoldelli, M.

V. Nuzzo, K. Plamann, M. Savoldelli, M. Merano, D. Donate, O. Albert, P. F. Gardeazábal Rodríguez, G. Mourou, and J. M. Legeais, “In situ monitoring of second-harmonic generation in human corneas to compensate for femtosecond laser pulse attenuation in keratoplasty,” J. Biomed. Opt. 12(6), 064032 (2007).
[CrossRef] [PubMed]

Schaeffel, F.

Schubert, H.

B. G. Wang, I. Riemann, H. Schubert, K. J. Halbhuber, and K. Koenig, “In-vivo intratissue ablation by nanojoule near-infrared femtosecond laser pulses,” Cell Tissue Res. 328(3), 515–520 (2007).
[CrossRef] [PubMed]

B. G. Wang, I. Riemann, H. Schubert, D. Schweitzer, K. König, and K. J. Halbhuber, “Multiphoton microscopy for monitoring intratissue femtosecond laser surgery effects,” Lasers Surg. Med. 39(6), 527–533 (2007).
[CrossRef] [PubMed]

Schubert, H. D.

R. R. Krueger, S. L. Trokel, and H. D. Schubert, “Interaction of ultraviolet laser light with the cornea,” Invest. Ophthalmol. Vis. Sci. 26(11), 1455–1464 (1985).
[PubMed]

Schumacher, S.

T. Ripken, U. Oberheide, M. Fromm, S. Schumacher, G. Gerten, and H. Lubatschowski, “fs-Laser induced elasticity changes to improve presbyopic lens accommodation,” Graefes Arch. Clin. Exp. Ophthalmol. 246(6), 897–906 (2008).
[CrossRef] [PubMed]

Schweitzer, D.

B. G. Wang, I. Riemann, H. Schubert, D. Schweitzer, K. König, and K. J. Halbhuber, “Multiphoton microscopy for monitoring intratissue femtosecond laser surgery effects,” Lasers Surg. Med. 39(6), 527–533 (2007).
[CrossRef] [PubMed]

Siganos, D. S.

I. G. Pallikaris and D. S. Siganos, “Excimer laser in situ keratomileusis and photorefractive keratectomy for correction of high myopia,” J. Refract. Corneal Surg. 10(5), 498–510 (1994).
[PubMed]

Singh, K.

Slade, S. G.

L. T. Nordan, S. G. Slade, R. N. Baker, C. Suárez, T. Juhasz, and R. Kurtz, “Femtosecond laser flap creation for laser in situ keratomileusis: six-month follow-up of initial U.S. clinical series,” J. Refract. Surg. 19(1), 8–14 (2003).
[PubMed]

Soong, H. K.

H. K. Soong, S. Mian, O. Abbasi, and T. Juhasz, “Femtosecond laser-assisted posterior lamellar keratoplasty: initial studies of surgical technique in eye bank eyes,” Ophthalmology 112(1), 44–49 (2005).
[CrossRef] [PubMed]

Squier, J. A.

R. M. Kurtz, X. Liu, V. M. Elner, J. A. Squier, D. Du, and G. A. Mourou, “Photodisruption in the human cornea as a function of laser pulse width,” J. Refract. Surg. 13(7), 653–658 (1997).
[PubMed]

Stathi, E. Z.

I. G. Pallikaris, M. E. Papatzanaki, E. Z. Stathi, O. Frenschock, and A. Georgiadis, “Laser in situ keratomileusis,” Lasers Surg. Med. 10(5), 463–468 (1990).
[CrossRef] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Suárez, C.

L. T. Nordan, S. G. Slade, R. N. Baker, C. Suárez, T. Juhasz, and R. Kurtz, “Femtosecond laser flap creation for laser in situ keratomileusis: six-month follow-up of initial U.S. clinical series,” J. Refract. Surg. 19(1), 8–14 (2003).
[PubMed]

Sun, C.-K.

S.-Y. Chen, H.-C. Yu, I.-J. Wang, and C.-K. Sun, “Infrared-based third and second harmonic generation imaging of cornea,” J. Biomed. Opt. 14(4), 044012 (2009).
[CrossRef] [PubMed]

Sun, H.

H. Sun, M. Han, M. H. Niemz, and J. F. Bille, “Femtosecond laser corneal ablation threshold: dependence on tissue depth and laser pulse width,” Lasers Surg. Med. 39(8), 654–658 (2007).
[CrossRef] [PubMed]

M. Han, G. Giese, L. Zickler, H. Sun, and J. F. Bille, “Mini-invasive corneal surgery and imaging with femtosecond lasers,” Opt. Express 12(18), 4275–4281 (2004).
[CrossRef] [PubMed]

Theisen, D.

A. Vogel, A. Noack, K. Nahen, D. Theisen, R. Birngruber, D. X. Hammer, G. D. Noojin, and B. A. Rockwell, “Laser-induced breakdown in the eye at pulse durations from 80 ns to 100 fs,” Proc. SPIE 3255, 43–49 (1998).

Thyzel, R.

D. Aron-Rosa, J. J. Aron, M. Griesemann, and R. Thyzel, “Use of the neodymium-YAG laser to open the posterior capsule after lens implant surgery: a preliminary report,” J. Am. Intraocul. Implant Soc. 6(4), 352–354 (1980).
[PubMed]

Toetsch, S.

Trokel, S. L.

R. R. Krueger, S. L. Trokel, and H. D. Schubert, “Interaction of ultraviolet laser light with the cornea,” Invest. Ophthalmol. Vis. Sci. 26(11), 1455–1464 (1985).
[PubMed]

Vidal, F.

Vogel, A.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanism of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

A. Vogel, A. Noack, K. Nahen, D. Theisen, R. Birngruber, D. X. Hammer, G. D. Noojin, and B. A. Rockwell, “Laser-induced breakdown in the eye at pulse durations from 80 ns to 100 fs,” Proc. SPIE 3255, 43–49 (1998).

A. Vogel, “Nonlinear absorption: intraocular microsurgery and laser lithotripsy,” Phys. Med. Biol. 42(5), 895–912 (1997).
[CrossRef] [PubMed]

Vossmerbaeumer, U.

U. Vossmerbaeumer and J. B. Jonas, “Structure of intracorneal femtosecond laser pulse effects in conical incision profiles,” Graefes Arch. Clin. Exp. Ophthalmol. 246(7), 1017–1020 (2008).
[CrossRef] [PubMed]

Wahlert, A. J.

N. Morishige, A. Kesler-Diaz, A. J. Wahlert, R. M. Kurtz, T. Juhasz, M. Sarayba, and J. V. Jester, “Corneal response to femtosecond laser photodisruption in the rabbit,” Exp. Eye Res. 86(5), 835–843 (2008).
[CrossRef] [PubMed]

Walter, M.

M. Han, L. Zickler, G. Giese, M. Walter, F. H. Loesel, and J. F. Bille, “Second-harmonic imaging of cornea after intrastromal femtosecond laser ablation,” J. Biomed. Opt. 9(4), 760–766 (2004).
[CrossRef] [PubMed]

Wang, B. G.

B. G. Wang, I. Riemann, H. Schubert, K. J. Halbhuber, and K. Koenig, “In-vivo intratissue ablation by nanojoule near-infrared femtosecond laser pulses,” Cell Tissue Res. 328(3), 515–520 (2007).
[CrossRef] [PubMed]

B. G. Wang, I. Riemann, H. Schubert, D. Schweitzer, K. König, and K. J. Halbhuber, “Multiphoton microscopy for monitoring intratissue femtosecond laser surgery effects,” Lasers Surg. Med. 39(6), 527–533 (2007).
[CrossRef] [PubMed]

Wang, B.-G.

B.-G. Wang and K.-J. Halbhuber, “Corneal multiphoton microscopy and intratissue optical nanosurgery by nanojoule femtosecond near-infrared pulsed lasers,” Ann. Anat. 188(5), 395–409 (2006).
[CrossRef] [PubMed]

Wang, I.-J.

S.-Y. Chen, H.-C. Yu, I.-J. Wang, and C.-K. Sun, “Infrared-based third and second harmonic generation imaging of cornea,” J. Biomed. Opt. 14(4), 044012 (2009).
[CrossRef] [PubMed]

Wang, T. J.

T. J. Wang, W. Lo, C. M. Hsueh, M. S. Hsieh, C. Y. Dong, and F. R. Hu, “Ex vivo multiphoton analysis of rabbit corneal wound healing following conductive keratoplasty,” J. Biomed. Opt. 13(3), 034019 (2008).
[CrossRef] [PubMed]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Welling, H.

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,” Graefes Arch. Clin. Exp. Ophthalmol. 238(1), 33–39 (2000).
[CrossRef] [PubMed]

Winkler, M.

M. Hao, K. Flynn, C. Nien-Shy, B. E. Jester, M. Winkler, D. J. Brown, O. La Schiazza, J. F. Bille, and J. V. Jester, “In vivo non-linear optical (NLO) imaging in live rabbit eyes using the Heidelberg Two-Photon Laser Ophthalmoscope,” Exp. Eye Res. 91(2), 308–314 (2010).
[CrossRef] [PubMed]

Witt, T. E.

H. Nakamura, Y. Liu, T. E. Witt, R. J. Gordon, and D. P. Edward, “Femtosecond laser photodisruption of primate trabecular meshwork: an ex vivo study,” Invest. Ophthalmol. Vis. Sci. 50(3), 1198–1204 (2009).
[CrossRef] [PubMed]

Xu, L.

L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of femtosecond laser intratissue refractive index shaping (IRIS) in the living cornea with sodium fluorescein,” Invest. Ophthalmol. Vis. Sci. 51(2), 850–856 (2010).
[CrossRef] [PubMed]

Yu, H.-C.

S.-Y. Chen, H.-C. Yu, I.-J. Wang, and C.-K. Sun, “Infrared-based third and second harmonic generation imaging of cornea,” J. Biomed. Opt. 14(4), 044012 (2009).
[CrossRef] [PubMed]

Zickler, L.

M. Han, L. Zickler, G. Giese, M. Walter, F. H. Loesel, and J. F. Bille, “Second-harmonic imaging of cornea after intrastromal femtosecond laser ablation,” J. Biomed. Opt. 9(4), 760–766 (2004).
[CrossRef] [PubMed]

M. Han, G. Giese, L. Zickler, H. Sun, and J. F. Bille, “Mini-invasive corneal surgery and imaging with femtosecond lasers,” Opt. Express 12(18), 4275–4281 (2004).
[CrossRef] [PubMed]

Ann. Anat.

B.-G. Wang and K.-J. Halbhuber, “Corneal multiphoton microscopy and intratissue optical nanosurgery by nanojoule femtosecond near-infrared pulsed lasers,” Ann. Anat. 188(5), 395–409 (2006).
[CrossRef] [PubMed]

Appl. Phys. B

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanism of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Arch. Ophthalmol.

M. M. Krasnov, “Q-switched laser goniopuncture,” Arch. Ophthalmol. 92(1), 37–41 (1974).
[PubMed]

Biomed. Opt. Express

Cell Tissue Res.

B. G. Wang, I. Riemann, H. Schubert, K. J. Halbhuber, and K. Koenig, “In-vivo intratissue ablation by nanojoule near-infrared femtosecond laser pulses,” Cell Tissue Res. 328(3), 515–520 (2007).
[CrossRef] [PubMed]

Cornea

J. M. Bueno, E. J. Gualda, and P. Artal, “Analysis of corneal stroma organization with wavefront optimized nonlinear microscopy,” Cornea 30(6), 692–701 (2011).
[CrossRef] [PubMed]

Exp. Eye Res.

N. Morishige, A. Kesler-Diaz, A. J. Wahlert, R. M. Kurtz, T. Juhasz, M. Sarayba, and J. V. Jester, “Corneal response to femtosecond laser photodisruption in the rabbit,” Exp. Eye Res. 86(5), 835–843 (2008).
[CrossRef] [PubMed]

M. Hao, K. Flynn, C. Nien-Shy, B. E. Jester, M. Winkler, D. J. Brown, O. La Schiazza, J. F. Bille, and J. V. Jester, “In vivo non-linear optical (NLO) imaging in live rabbit eyes using the Heidelberg Two-Photon Laser Ophthalmoscope,” Exp. Eye Res. 91(2), 308–314 (2010).
[CrossRef] [PubMed]

Graefes Arch. Clin. Exp. Ophthalmol.

U. Vossmerbaeumer and J. B. Jonas, “Structure of intracorneal femtosecond laser pulse effects in conical incision profiles,” Graefes Arch. Clin. Exp. Ophthalmol. 246(7), 1017–1020 (2008).
[CrossRef] [PubMed]

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,” Graefes Arch. Clin. Exp. Ophthalmol. 238(1), 33–39 (2000).
[CrossRef] [PubMed]

T. Ripken, U. Oberheide, M. Fromm, S. Schumacher, G. Gerten, and H. Lubatschowski, “fs-Laser induced elasticity changes to improve presbyopic lens accommodation,” Graefes Arch. Clin. Exp. Ophthalmol. 246(6), 897–906 (2008).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci.

L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci. 49(12), 5332–5339 (2008).
[CrossRef] [PubMed]

H. Nakamura, Y. Liu, T. E. Witt, R. J. Gordon, and D. P. Edward, “Femtosecond laser photodisruption of primate trabecular meshwork: an ex vivo study,” Invest. Ophthalmol. Vis. Sci. 50(3), 1198–1204 (2009).
[CrossRef] [PubMed]

R. R. Krueger, S. L. Trokel, and H. D. Schubert, “Interaction of ultraviolet laser light with the cornea,” Invest. Ophthalmol. Vis. Sci. 26(11), 1455–1464 (1985).
[PubMed]

L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of femtosecond laser intratissue refractive index shaping (IRIS) in the living cornea with sodium fluorescein,” Invest. Ophthalmol. Vis. Sci. 51(2), 850–856 (2010).
[CrossRef] [PubMed]

J. M. Bueno, E. J. Gualda, A. Giakoumaki, P. Pérez-Merino, S. Marcos, and P. Artal, “Multiphoton microscopy of ex vivo corneas after collagen cross-linking,” Invest. Ophthalmol. Vis. Sci. 52(8), 5325–5331 (2011).
[CrossRef] [PubMed]

J. Am. Intraocul. Implant Soc.

D. Aron-Rosa, J. J. Aron, M. Griesemann, and R. Thyzel, “Use of the neodymium-YAG laser to open the posterior capsule after lens implant surgery: a preliminary report,” J. Am. Intraocul. Implant Soc. 6(4), 352–354 (1980).
[PubMed]

J. Biomed. Opt.

V. Nuzzo, K. Plamann, M. Savoldelli, M. Merano, D. Donate, O. Albert, P. F. Gardeazábal Rodríguez, G. Mourou, and J. M. Legeais, “In situ monitoring of second-harmonic generation in human corneas to compensate for femtosecond laser pulse attenuation in keratoplasty,” J. Biomed. Opt. 12(6), 064032 (2007).
[CrossRef] [PubMed]

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6(3), 277–286 (2001).
[CrossRef] [PubMed]

S.-Y. Chen, H.-C. Yu, I.-J. Wang, and C.-K. Sun, “Infrared-based third and second harmonic generation imaging of cornea,” J. Biomed. Opt. 14(4), 044012 (2009).
[CrossRef] [PubMed]

M. Han, L. Zickler, G. Giese, M. Walter, F. H. Loesel, and J. F. Bille, “Second-harmonic imaging of cornea after intrastromal femtosecond laser ablation,” J. Biomed. Opt. 9(4), 760–766 (2004).
[CrossRef] [PubMed]

E. J. Gualda, J. M. Bueno, and P. Artal, “Wavefront optimized nonlinear microscopy of ex vivo human retinas,” J. Biomed. Opt. 15(2), 026007 (2010).
[CrossRef] [PubMed]

J. M. Bueno, E. J. Gualda, and P. Artal, “Adaptive optics multiphoton microscopy to study ex vivo ocular tissues,” J. Biomed. Opt. 15(6), 066004 (2010).
[CrossRef] [PubMed]

T. J. Wang, W. Lo, C. M. Hsueh, M. S. Hsieh, C. Y. Dong, and F. R. Hu, “Ex vivo multiphoton analysis of rabbit corneal wound healing following conductive keratoplasty,” J. Biomed. Opt. 13(3), 034019 (2008).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Refract. Corneal Surg.

I. G. Pallikaris and D. S. Siganos, “Excimer laser in situ keratomileusis and photorefractive keratectomy for correction of high myopia,” J. Refract. Corneal Surg. 10(5), 498–510 (1994).
[PubMed]

J. Refract. Surg.

L. T. Nordan, S. G. Slade, R. N. Baker, C. Suárez, T. Juhasz, and R. Kurtz, “Femtosecond laser flap creation for laser in situ keratomileusis: six-month follow-up of initial U.S. clinical series,” J. Refract. Surg. 19(1), 8–14 (2003).
[PubMed]

R. M. Kurtz, C. Horvath, H. H. Liu, R. R. Krueger, and T. Juhasz, “Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes,” J. Refract. Surg. 14(5), 541–548 (1998).
[PubMed]

R. M. Kurtz, X. Liu, V. M. Elner, J. A. Squier, D. Du, and G. A. Mourou, “Photodisruption in the human cornea as a function of laser pulse width,” J. Refract. Surg. 13(7), 653–658 (1997).
[PubMed]

Lasers Surg. Med.

H. Sun, M. Han, M. H. Niemz, and J. F. Bille, “Femtosecond laser corneal ablation threshold: dependence on tissue depth and laser pulse width,” Lasers Surg. Med. 39(8), 654–658 (2007).
[CrossRef] [PubMed]

I. G. Pallikaris, M. E. Papatzanaki, E. Z. Stathi, O. Frenschock, and A. Georgiadis, “Laser in situ keratomileusis,” Lasers Surg. Med. 10(5), 463–468 (1990).
[CrossRef] [PubMed]

B. G. Wang, I. Riemann, H. Schubert, D. Schweitzer, K. König, and K. J. Halbhuber, “Multiphoton microscopy for monitoring intratissue femtosecond laser surgery effects,” Lasers Surg. Med. 39(6), 527–533 (2007).
[CrossRef] [PubMed]

Ophthalmology

R. M. Klapper, “Q-switched neodymium:YAG laser iridotomy,” Ophthalmology 91(9), 1017–1021 (1984).
[PubMed]

H. K. Soong, S. Mian, O. Abbasi, and T. Juhasz, “Femtosecond laser-assisted posterior lamellar keratoplasty: initial studies of surgical technique in eye bank eyes,” Ophthalmology 112(1), 44–49 (2005).
[CrossRef] [PubMed]

Opt. Express

Phys. Med. Biol.

A. Vogel, “Nonlinear absorption: intraocular microsurgery and laser lithotripsy,” Phys. Med. Biol. 42(5), 895–912 (1997).
[CrossRef] [PubMed]

Proc. SPIE

A. Vogel, A. Noack, K. Nahen, D. Theisen, R. Birngruber, D. X. Hammer, G. D. Noojin, and B. A. Rockwell, “Laser-induced breakdown in the eye at pulse durations from 80 ns to 100 fs,” Proc. SPIE 3255, 43–49 (1998).

Science

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Supplementary Material (1)

» Media 1: AVI (3413 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Transversal histological section of a chicken cornea. (b)-(f) TPEF images of the different layers within the epithelium: superficial cells (b), wing cells (c-d), basal cells (e-f). The three types of epithelial cells can be observed together in (g) (see stars). Bar length: 50 μm.

Fig. 2
Fig. 2

SHG signal from the collagen of the chicken corneal stroma at different depths (spaced ~30 µm). Bar length: 50 μm.

Fig. 3
Fig. 3

Histological sections of chicken corneas showing the intrastromal ablation patterns #1 (a) and #2 (b). Bar length: 200 μm.

Fig. 4
Fig. 4

Microscopy imaging illustrating the intrastromal laser surgery: bright-field (a, c) and nonlinear images (b, d). Upper and bottom rows correspond to ablation patterns #1 and #2 respectively. Each square sets the size of the adjacent image. The size of images (b) and (d) is 840x840 μm2.

Fig. 5
Fig. 5

3D representation of the intrastromal ablated area. 20 individual SHG images of planes 2-μm apart were used for the reconstruction. Blue color has been used for a better visualization of the cavities of pattern #1. Image size corresponds to the square inset in Fig. 3(b).

Fig. 6
Fig. 6

3D (nonlinear microscopy) images of chicken corneas showing the two different ablation patterns: (a) #1 and (b) #2.

Fig. 7
Fig. 7

Nonlinear microscopy images of an ablated chicken cornea (pattern #1) at different depths (spaced 40 μm). The imaged area was 840x840 μm2.

Fig. 8
Fig. 8

(Media 1) Movie showing the stack of nonlinear images at different depths in an ablated cornea.

Fig. 9
Fig. 9

Nonlinear microscopy images of an ablated chicken cornea (pattern #2) corresponding to planes 30 μm apart. Image dimensions are the same as for Fig. 6.

Fig. 10
Fig. 10

(a) Examples of locations across the nonlinear microscopy image of an ablated chicken cornea (pattern #1) where the intensity profile was computed. (b) Intensity along two different sections crossing the location of three cavities of the intrastromal pattern.

Metrics