Abstract

The impact of digestive diseases, which include disorders affecting the oropharynx and alimentary canal, ranges from the inconvenience of a transient diarrhoea to dreaded conditions such as pancreatic cancer, which are usually fatal. Currently, the major limitation for the diagnosis of such diseases is sampling error because, even in the cases of rigorous adherence to biopsy protocols, only a tiny fraction of the surface of the involved gastrointestinal tract is sampled. Optical coherence tomography (OCT), which is an interferometric imaging technique for the minimally invasive measurement of biological samples, could decrease sampling error, increase yield, and even eliminate the need for tissue sampling provided that an automated, quick and reproducible tissue classification system is developed. Segmentation and quantification of ophthalmologic pathologies using OCT traditionally rely on the extraction of thickness and size measures from the OCT images, but layers are often not observed in nonopthalmic OCT imaging. Distinct mathematical methods, namely Principal Component Analysis (PCA) and textural analyses including both spatial textural analysis derived from the two-dimensional discrete Fourier transform (DFT) and statistical texture analysis obtained independently from center-symmetric autocorrelation (CSAC) and spatial grey-level dependency matrices (SGLDM), have been previously reported to overcome this problem. We propose an alternative approach consisting of a region segmentation according to the intensity variation along the vertical axis and a pure statistical technique for feature quantification, i.e. morphological analysis. Qualitative and quantitative comparisons with traditional approaches are accomplished in the discrimination of freshly-excised specimens of gastrointestinal tissues to exhibit the feasibility of the proposed method for computer-aided diagnosis (CAD) in the clinical setting.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, H.R. Hee, F. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. J.A. Izatt, M.D. Kulkarni, H.W. Wang, K. Kobayashi, and M.V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron.2, 1017–1028 (1996).
    [CrossRef]
  3. X. Qi, M.V. Sivak, G. Isenberg, J.E. Willis, and A.M. Rollins, “Computer-aided diagnosis of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography,” J. Biomed. Opt.11, 044010 (2006).
    [CrossRef] [PubMed]
  4. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express11, 889–894 (2003).
    [CrossRef] [PubMed]
  5. M. Choma, M. Sarunic, C. Yang, and J.A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11, 2183–2189 (2003).
    [CrossRef] [PubMed]
  6. S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength,” Opt. Express11, 3598–3604 (2003).
    [CrossRef] [PubMed]
  7. G.J. Tearney, M.E. Brezinski, B.E. Bouma, S.A. Boppart, C. Pitvis, J.F. Southern, and J.G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography (OCT): a review,” Science276, 2037–2039 (1997).
    [CrossRef] [PubMed]
  8. A.M. Sergeev, V.M. Gelikonov, G.V. Gelikonov, F.I. Feldchtein, R.V. Kuranov, N.D. Gladkova, N.M. Shakhova, L.B. Suopova, A.V. Shakhov, I.A. Kuznetzova, A.N. Denisenko, V.V. Pochinko, Y.P. Chumakov, and O.S. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. ExpressI, 432–440 (1997).
    [CrossRef]
  9. J.M. Poneros, S. Brand, B.E. Bouma, G.J. Tearney, C.C. Compton, and N.S. Nishiosa, “Diagnosis of specialized intestinal metaplastia by optical coherence tomography,” Gastroenterology120, 7–12 (2001).
    [CrossRef] [PubMed]
  10. G. Isenberg, M.V. Sivak, A. Chak, R.C.K. Wong, J.E. Willis, B. Wolf, D.Y. Rowland, A. Das, and A. Rollins, “Accuracy of endoscopic optical coherence tomography in the detection of dysplasia in Barrett’s esophagus: a prospective, doubled-blinded study,” Gastrointest. Endosc.62, 825–831 (2005).
    [CrossRef] [PubMed]
  11. P.R. Pfau, M.V. Sivak, A. Chak, M. Kinnard, R.C. Wong, G.A. Isenberg, J.A. Izatt, A. Rollins, and V. Westphal, “Criteria for diagnosis of dysplasia by endoscopic optical coherence tomography,” Gastrointest. Endosc.58, 196–202 (2003).
    [CrossRef] [PubMed]
  12. K.W. Gossage, J.J. Rodriguez, and J.K. Barton, “Texture analysis of optical coherence tomography images: feasibility for tissue classification,” J. Biomed. Opt.8, 570–575 (2003).
    [CrossRef] [PubMed]
  13. K.W. Gossage, C.M. Smith, E.M. Kanter, L.P. Hariri, A.L. Stone, J.J. Rodriguez, S.K. Williams, and J.K. Barton, “Texture analysis of speckle in optical coherence tomography images of tissue phantoms,” Phys. Med. Biol.51, 1563–1575 (2006).
    [CrossRef] [PubMed]
  14. Y. Chen, A.D. Aguirre, P.L. Hsiung, S.W. Huang, H. Mashimo, J.M. Schmitt, and J.G. Fujimoto, “Effects of axial resolution improvement on optical coherence tomography (OCT) imaging of gastrointestinal tissues,” Opt. Express16, 2469–2485 (2008).
    [CrossRef] [PubMed]
  15. X. Qi, Y. Pan, S.V. Sivak, J.E. Willis, G. Isenberg, and A.M. Rollins, “Image analysis for classification of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography,” Biomedical Optics Express1, 825–847 (2010).
    [CrossRef]
  16. D. Harwood, T. Ojala, M. Pietikainen, S. Kelman, and L. Davis, “Texture classification by center-symmetric auto-correlation using Kullback discrimination of distributions,” Pattern Recognit. Lett.16, 1–10 (1995).
    [CrossRef]
  17. I.T. Jolliffe, Principal Component Analysis, 2nd ed. (Springer, 2002).
  18. F. Bazant-Hegemark and N. Stone, “Near real-time classifiation of optical coherence tomography data using principal component analysis fed linear discriminant analysis,” J. Biomed. Opt.13, 034002 (2008).
    [CrossRef] [PubMed]
  19. A. Barui, P. Banerjee, R. Patra, R.K. Das, S. Dhara, P.K. Dutta, and J. Chatterjee,“Swept-source optical coherence tomography of lower limb wound healing with histopathological correlation,” J. Biomed. Opt.16, 0260101–0260108 (2011).
    [CrossRef]
  20. A. Olivier, J. Freixenet, R. Marti, J. Pont, E. Pere, E.R.E. Denton, and R. Zwiggelaar, “A novel breast tisue density classification methodology,” IEEE T. Inf. Technol. Biomed.12, 55–64 (2008).
    [CrossRef]
  21. P.B. Garcia-Allende, V. Krishnaswamy, P.J. Hoopes, K.S. Samkoe, O.M. Conde, and B.W. Pogue, “Automated identification of tumor microscopic morphology based on macroscopically measured scatter signatures,” J. Biomed. Opt.14, 034034 (2009).
    [CrossRef] [PubMed]
  22. J. Rogowska, T. Hancewicz, and P. Kaplan, “Optical coherence tomography of skin for measurement of epidermal thickness by shapelet-based image analysis,” Opt. Express12, 5760–5769 (2004).
    [CrossRef]
  23. J. Rogowska, C.M. Bryant, and M.E. Breinski, “Cartilage thicknes measurements from optical coherence tomography,” J. Opt. Soc. Am. A20, 357–367 (2003).
    [CrossRef]
  24. R. Ghanadesikan, Methods for Statistical Data Analysis of Multivariate Observation (Wiley, New York, 1997).
    [CrossRef]
  25. P.A. Devijver and J. Kittler, Pattern Recognition: A Statistical Approach (Prentice Hall, London, 1982).
  26. D. Tikk and K.W. Wong, “A feature ranking technique based on interclass separability for fuzzy modeling,” in Proceedings of IEEE International Computational Cybernetics ICCC 2007 (Academic, Gammarth, Tunisia, 2007), pp. 251–256.
    [CrossRef]
  27. K. Fukunaga, Introduction to Statistical Pattern Recognition, 2nd ed. (Academic Press, New York, 1990).
  28. V. Vapnik, The nature of Statistical Learning Theory (Springer, New York, 1995).
  29. D. A. Burns and E.W. Ciurczak, Handbook of Near-Infrared Analysis, 3rd ed. (CRC Press, 2008), Chap. 15.
  30. H. Zhu and R. Rohwer, “No free lunch for cross-validation,” Neural Comput.8, 1421–1426 (1996).
    [CrossRef]
  31. C. Goutte, “Note on free lunches and cross validation,” Neural Comput.9, 1211–1215 (1997).
    [CrossRef]
  32. E.C. Cauberg, D.M. de Bruin, D.J. Faber, T.M. de Reijke, M. Visser, J.J. de la Rosette, and T.G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt.15, 066013 (2010).
    [CrossRef]
  33. K. Barwari, D.M. de Bruin, E.C. Cauberg, D.J. Faber, T.G. van Leeuwen, H. Wijkstra, J.J. de la Rosette, and M.P. Laguna, “Advanced diagnostics in renal mass using optical coherence tomography: A preliminary report,” J. Endourol.25, 311–315 (2011).
    [CrossRef] [PubMed]
  34. A.M. Laughney, V. Krishnaswamy, P.B. Garcia-Allende, O.M. Conde, W.A. Wells, K.D. Paulse, and B.W. Pogue, “Automated classification of breast pathology using local measures of broadband reflectance,” J. Biomed. Opt.15, 066019 (2010).
    [CrossRef]

2011 (2)

A. Barui, P. Banerjee, R. Patra, R.K. Das, S. Dhara, P.K. Dutta, and J. Chatterjee,“Swept-source optical coherence tomography of lower limb wound healing with histopathological correlation,” J. Biomed. Opt.16, 0260101–0260108 (2011).
[CrossRef]

K. Barwari, D.M. de Bruin, E.C. Cauberg, D.J. Faber, T.G. van Leeuwen, H. Wijkstra, J.J. de la Rosette, and M.P. Laguna, “Advanced diagnostics in renal mass using optical coherence tomography: A preliminary report,” J. Endourol.25, 311–315 (2011).
[CrossRef] [PubMed]

2010 (3)

A.M. Laughney, V. Krishnaswamy, P.B. Garcia-Allende, O.M. Conde, W.A. Wells, K.D. Paulse, and B.W. Pogue, “Automated classification of breast pathology using local measures of broadband reflectance,” J. Biomed. Opt.15, 066019 (2010).
[CrossRef]

E.C. Cauberg, D.M. de Bruin, D.J. Faber, T.M. de Reijke, M. Visser, J.J. de la Rosette, and T.G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt.15, 066013 (2010).
[CrossRef]

X. Qi, Y. Pan, S.V. Sivak, J.E. Willis, G. Isenberg, and A.M. Rollins, “Image analysis for classification of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography,” Biomedical Optics Express1, 825–847 (2010).
[CrossRef]

2009 (1)

P.B. Garcia-Allende, V. Krishnaswamy, P.J. Hoopes, K.S. Samkoe, O.M. Conde, and B.W. Pogue, “Automated identification of tumor microscopic morphology based on macroscopically measured scatter signatures,” J. Biomed. Opt.14, 034034 (2009).
[CrossRef] [PubMed]

2008 (3)

A. Olivier, J. Freixenet, R. Marti, J. Pont, E. Pere, E.R.E. Denton, and R. Zwiggelaar, “A novel breast tisue density classification methodology,” IEEE T. Inf. Technol. Biomed.12, 55–64 (2008).
[CrossRef]

F. Bazant-Hegemark and N. Stone, “Near real-time classifiation of optical coherence tomography data using principal component analysis fed linear discriminant analysis,” J. Biomed. Opt.13, 034002 (2008).
[CrossRef] [PubMed]

Y. Chen, A.D. Aguirre, P.L. Hsiung, S.W. Huang, H. Mashimo, J.M. Schmitt, and J.G. Fujimoto, “Effects of axial resolution improvement on optical coherence tomography (OCT) imaging of gastrointestinal tissues,” Opt. Express16, 2469–2485 (2008).
[CrossRef] [PubMed]

2006 (2)

X. Qi, M.V. Sivak, G. Isenberg, J.E. Willis, and A.M. Rollins, “Computer-aided diagnosis of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography,” J. Biomed. Opt.11, 044010 (2006).
[CrossRef] [PubMed]

K.W. Gossage, C.M. Smith, E.M. Kanter, L.P. Hariri, A.L. Stone, J.J. Rodriguez, S.K. Williams, and J.K. Barton, “Texture analysis of speckle in optical coherence tomography images of tissue phantoms,” Phys. Med. Biol.51, 1563–1575 (2006).
[CrossRef] [PubMed]

2005 (1)

G. Isenberg, M.V. Sivak, A. Chak, R.C.K. Wong, J.E. Willis, B. Wolf, D.Y. Rowland, A. Das, and A. Rollins, “Accuracy of endoscopic optical coherence tomography in the detection of dysplasia in Barrett’s esophagus: a prospective, doubled-blinded study,” Gastrointest. Endosc.62, 825–831 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (6)

2001 (1)

J.M. Poneros, S. Brand, B.E. Bouma, G.J. Tearney, C.C. Compton, and N.S. Nishiosa, “Diagnosis of specialized intestinal metaplastia by optical coherence tomography,” Gastroenterology120, 7–12 (2001).
[CrossRef] [PubMed]

1997 (3)

G.J. Tearney, M.E. Brezinski, B.E. Bouma, S.A. Boppart, C. Pitvis, J.F. Southern, and J.G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography (OCT): a review,” Science276, 2037–2039 (1997).
[CrossRef] [PubMed]

A.M. Sergeev, V.M. Gelikonov, G.V. Gelikonov, F.I. Feldchtein, R.V. Kuranov, N.D. Gladkova, N.M. Shakhova, L.B. Suopova, A.V. Shakhov, I.A. Kuznetzova, A.N. Denisenko, V.V. Pochinko, Y.P. Chumakov, and O.S. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. ExpressI, 432–440 (1997).
[CrossRef]

C. Goutte, “Note on free lunches and cross validation,” Neural Comput.9, 1211–1215 (1997).
[CrossRef]

1996 (2)

J.A. Izatt, M.D. Kulkarni, H.W. Wang, K. Kobayashi, and M.V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron.2, 1017–1028 (1996).
[CrossRef]

H. Zhu and R. Rohwer, “No free lunch for cross-validation,” Neural Comput.8, 1421–1426 (1996).
[CrossRef]

1995 (1)

D. Harwood, T. Ojala, M. Pietikainen, S. Kelman, and L. Davis, “Texture classification by center-symmetric auto-correlation using Kullback discrimination of distributions,” Pattern Recognit. Lett.16, 1–10 (1995).
[CrossRef]

1991 (1)

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, H.R. Hee, F. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Aguirre, A.D.

Banerjee, P.

A. Barui, P. Banerjee, R. Patra, R.K. Das, S. Dhara, P.K. Dutta, and J. Chatterjee,“Swept-source optical coherence tomography of lower limb wound healing with histopathological correlation,” J. Biomed. Opt.16, 0260101–0260108 (2011).
[CrossRef]

Barton, J.K.

K.W. Gossage, C.M. Smith, E.M. Kanter, L.P. Hariri, A.L. Stone, J.J. Rodriguez, S.K. Williams, and J.K. Barton, “Texture analysis of speckle in optical coherence tomography images of tissue phantoms,” Phys. Med. Biol.51, 1563–1575 (2006).
[CrossRef] [PubMed]

K.W. Gossage, J.J. Rodriguez, and J.K. Barton, “Texture analysis of optical coherence tomography images: feasibility for tissue classification,” J. Biomed. Opt.8, 570–575 (2003).
[CrossRef] [PubMed]

Barui, A.

A. Barui, P. Banerjee, R. Patra, R.K. Das, S. Dhara, P.K. Dutta, and J. Chatterjee,“Swept-source optical coherence tomography of lower limb wound healing with histopathological correlation,” J. Biomed. Opt.16, 0260101–0260108 (2011).
[CrossRef]

Barwari, K.

K. Barwari, D.M. de Bruin, E.C. Cauberg, D.J. Faber, T.G. van Leeuwen, H. Wijkstra, J.J. de la Rosette, and M.P. Laguna, “Advanced diagnostics in renal mass using optical coherence tomography: A preliminary report,” J. Endourol.25, 311–315 (2011).
[CrossRef] [PubMed]

Bazant-Hegemark, F.

F. Bazant-Hegemark and N. Stone, “Near real-time classifiation of optical coherence tomography data using principal component analysis fed linear discriminant analysis,” J. Biomed. Opt.13, 034002 (2008).
[CrossRef] [PubMed]

Boppart, S.A.

G.J. Tearney, M.E. Brezinski, B.E. Bouma, S.A. Boppart, C. Pitvis, J.F. Southern, and J.G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography (OCT): a review,” Science276, 2037–2039 (1997).
[CrossRef] [PubMed]

Bouma, B.

Bouma, B.E.

J.M. Poneros, S. Brand, B.E. Bouma, G.J. Tearney, C.C. Compton, and N.S. Nishiosa, “Diagnosis of specialized intestinal metaplastia by optical coherence tomography,” Gastroenterology120, 7–12 (2001).
[CrossRef] [PubMed]

G.J. Tearney, M.E. Brezinski, B.E. Bouma, S.A. Boppart, C. Pitvis, J.F. Southern, and J.G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography (OCT): a review,” Science276, 2037–2039 (1997).
[CrossRef] [PubMed]

Brand, S.

J.M. Poneros, S. Brand, B.E. Bouma, G.J. Tearney, C.C. Compton, and N.S. Nishiosa, “Diagnosis of specialized intestinal metaplastia by optical coherence tomography,” Gastroenterology120, 7–12 (2001).
[CrossRef] [PubMed]

Breinski, M.E.

Brezinski, M.E.

G.J. Tearney, M.E. Brezinski, B.E. Bouma, S.A. Boppart, C. Pitvis, J.F. Southern, and J.G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography (OCT): a review,” Science276, 2037–2039 (1997).
[CrossRef] [PubMed]

Bryant, C.M.

Burns, D. A.

D. A. Burns and E.W. Ciurczak, Handbook of Near-Infrared Analysis, 3rd ed. (CRC Press, 2008), Chap. 15.

Cauberg, E.C.

K. Barwari, D.M. de Bruin, E.C. Cauberg, D.J. Faber, T.G. van Leeuwen, H. Wijkstra, J.J. de la Rosette, and M.P. Laguna, “Advanced diagnostics in renal mass using optical coherence tomography: A preliminary report,” J. Endourol.25, 311–315 (2011).
[CrossRef] [PubMed]

E.C. Cauberg, D.M. de Bruin, D.J. Faber, T.M. de Reijke, M. Visser, J.J. de la Rosette, and T.G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt.15, 066013 (2010).
[CrossRef]

Chak, A.

G. Isenberg, M.V. Sivak, A. Chak, R.C.K. Wong, J.E. Willis, B. Wolf, D.Y. Rowland, A. Das, and A. Rollins, “Accuracy of endoscopic optical coherence tomography in the detection of dysplasia in Barrett’s esophagus: a prospective, doubled-blinded study,” Gastrointest. Endosc.62, 825–831 (2005).
[CrossRef] [PubMed]

P.R. Pfau, M.V. Sivak, A. Chak, M. Kinnard, R.C. Wong, G.A. Isenberg, J.A. Izatt, A. Rollins, and V. Westphal, “Criteria for diagnosis of dysplasia by endoscopic optical coherence tomography,” Gastrointest. Endosc.58, 196–202 (2003).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, H.R. Hee, F. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chatterjee, J.

A. Barui, P. Banerjee, R. Patra, R.K. Das, S. Dhara, P.K. Dutta, and J. Chatterjee,“Swept-source optical coherence tomography of lower limb wound healing with histopathological correlation,” J. Biomed. Opt.16, 0260101–0260108 (2011).
[CrossRef]

Chen, Y.

Choma, M.

Chumakov, Y.P.

A.M. Sergeev, V.M. Gelikonov, G.V. Gelikonov, F.I. Feldchtein, R.V. Kuranov, N.D. Gladkova, N.M. Shakhova, L.B. Suopova, A.V. Shakhov, I.A. Kuznetzova, A.N. Denisenko, V.V. Pochinko, Y.P. Chumakov, and O.S. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. ExpressI, 432–440 (1997).
[CrossRef]

Ciurczak, E.W.

D. A. Burns and E.W. Ciurczak, Handbook of Near-Infrared Analysis, 3rd ed. (CRC Press, 2008), Chap. 15.

Compton, C.C.

J.M. Poneros, S. Brand, B.E. Bouma, G.J. Tearney, C.C. Compton, and N.S. Nishiosa, “Diagnosis of specialized intestinal metaplastia by optical coherence tomography,” Gastroenterology120, 7–12 (2001).
[CrossRef] [PubMed]

Conde, O.M.

A.M. Laughney, V. Krishnaswamy, P.B. Garcia-Allende, O.M. Conde, W.A. Wells, K.D. Paulse, and B.W. Pogue, “Automated classification of breast pathology using local measures of broadband reflectance,” J. Biomed. Opt.15, 066019 (2010).
[CrossRef]

P.B. Garcia-Allende, V. Krishnaswamy, P.J. Hoopes, K.S. Samkoe, O.M. Conde, and B.W. Pogue, “Automated identification of tumor microscopic morphology based on macroscopically measured scatter signatures,” J. Biomed. Opt.14, 034034 (2009).
[CrossRef] [PubMed]

Das, A.

G. Isenberg, M.V. Sivak, A. Chak, R.C.K. Wong, J.E. Willis, B. Wolf, D.Y. Rowland, A. Das, and A. Rollins, “Accuracy of endoscopic optical coherence tomography in the detection of dysplasia in Barrett’s esophagus: a prospective, doubled-blinded study,” Gastrointest. Endosc.62, 825–831 (2005).
[CrossRef] [PubMed]

Das, R.K.

A. Barui, P. Banerjee, R. Patra, R.K. Das, S. Dhara, P.K. Dutta, and J. Chatterjee,“Swept-source optical coherence tomography of lower limb wound healing with histopathological correlation,” J. Biomed. Opt.16, 0260101–0260108 (2011).
[CrossRef]

Davis, L.

D. Harwood, T. Ojala, M. Pietikainen, S. Kelman, and L. Davis, “Texture classification by center-symmetric auto-correlation using Kullback discrimination of distributions,” Pattern Recognit. Lett.16, 1–10 (1995).
[CrossRef]

de Boer, J.

de Bruin, D.M.

K. Barwari, D.M. de Bruin, E.C. Cauberg, D.J. Faber, T.G. van Leeuwen, H. Wijkstra, J.J. de la Rosette, and M.P. Laguna, “Advanced diagnostics in renal mass using optical coherence tomography: A preliminary report,” J. Endourol.25, 311–315 (2011).
[CrossRef] [PubMed]

E.C. Cauberg, D.M. de Bruin, D.J. Faber, T.M. de Reijke, M. Visser, J.J. de la Rosette, and T.G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt.15, 066013 (2010).
[CrossRef]

de la Rosette, J.J.

K. Barwari, D.M. de Bruin, E.C. Cauberg, D.J. Faber, T.G. van Leeuwen, H. Wijkstra, J.J. de la Rosette, and M.P. Laguna, “Advanced diagnostics in renal mass using optical coherence tomography: A preliminary report,” J. Endourol.25, 311–315 (2011).
[CrossRef] [PubMed]

E.C. Cauberg, D.M. de Bruin, D.J. Faber, T.M. de Reijke, M. Visser, J.J. de la Rosette, and T.G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt.15, 066013 (2010).
[CrossRef]

de Reijke, T.M.

E.C. Cauberg, D.M. de Bruin, D.J. Faber, T.M. de Reijke, M. Visser, J.J. de la Rosette, and T.G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt.15, 066013 (2010).
[CrossRef]

Denisenko, A.N.

A.M. Sergeev, V.M. Gelikonov, G.V. Gelikonov, F.I. Feldchtein, R.V. Kuranov, N.D. Gladkova, N.M. Shakhova, L.B. Suopova, A.V. Shakhov, I.A. Kuznetzova, A.N. Denisenko, V.V. Pochinko, Y.P. Chumakov, and O.S. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. ExpressI, 432–440 (1997).
[CrossRef]

Denton, E.R.E.

A. Olivier, J. Freixenet, R. Marti, J. Pont, E. Pere, E.R.E. Denton, and R. Zwiggelaar, “A novel breast tisue density classification methodology,” IEEE T. Inf. Technol. Biomed.12, 55–64 (2008).
[CrossRef]

Devijver, P.A.

P.A. Devijver and J. Kittler, Pattern Recognition: A Statistical Approach (Prentice Hall, London, 1982).

Dhara, S.

A. Barui, P. Banerjee, R. Patra, R.K. Das, S. Dhara, P.K. Dutta, and J. Chatterjee,“Swept-source optical coherence tomography of lower limb wound healing with histopathological correlation,” J. Biomed. Opt.16, 0260101–0260108 (2011).
[CrossRef]

Dutta, P.K.

A. Barui, P. Banerjee, R. Patra, R.K. Das, S. Dhara, P.K. Dutta, and J. Chatterjee,“Swept-source optical coherence tomography of lower limb wound healing with histopathological correlation,” J. Biomed. Opt.16, 0260101–0260108 (2011).
[CrossRef]

Faber, D.J.

K. Barwari, D.M. de Bruin, E.C. Cauberg, D.J. Faber, T.G. van Leeuwen, H. Wijkstra, J.J. de la Rosette, and M.P. Laguna, “Advanced diagnostics in renal mass using optical coherence tomography: A preliminary report,” J. Endourol.25, 311–315 (2011).
[CrossRef] [PubMed]

E.C. Cauberg, D.M. de Bruin, D.J. Faber, T.M. de Reijke, M. Visser, J.J. de la Rosette, and T.G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt.15, 066013 (2010).
[CrossRef]

Feldchtein, F.I.

A.M. Sergeev, V.M. Gelikonov, G.V. Gelikonov, F.I. Feldchtein, R.V. Kuranov, N.D. Gladkova, N.M. Shakhova, L.B. Suopova, A.V. Shakhov, I.A. Kuznetzova, A.N. Denisenko, V.V. Pochinko, Y.P. Chumakov, and O.S. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. ExpressI, 432–440 (1997).
[CrossRef]

Fercher, A.

Flotte, F.

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, H.R. Hee, F. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Freixenet, J.

A. Olivier, J. Freixenet, R. Marti, J. Pont, E. Pere, E.R.E. Denton, and R. Zwiggelaar, “A novel breast tisue density classification methodology,” IEEE T. Inf. Technol. Biomed.12, 55–64 (2008).
[CrossRef]

Fujimoto, J.G.

Y. Chen, A.D. Aguirre, P.L. Hsiung, S.W. Huang, H. Mashimo, J.M. Schmitt, and J.G. Fujimoto, “Effects of axial resolution improvement on optical coherence tomography (OCT) imaging of gastrointestinal tissues,” Opt. Express16, 2469–2485 (2008).
[CrossRef] [PubMed]

G.J. Tearney, M.E. Brezinski, B.E. Bouma, S.A. Boppart, C. Pitvis, J.F. Southern, and J.G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography (OCT): a review,” Science276, 2037–2039 (1997).
[CrossRef] [PubMed]

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, H.R. Hee, F. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fukunaga, K.

K. Fukunaga, Introduction to Statistical Pattern Recognition, 2nd ed. (Academic Press, New York, 1990).

Garcia-Allende, P.B.

A.M. Laughney, V. Krishnaswamy, P.B. Garcia-Allende, O.M. Conde, W.A. Wells, K.D. Paulse, and B.W. Pogue, “Automated classification of breast pathology using local measures of broadband reflectance,” J. Biomed. Opt.15, 066019 (2010).
[CrossRef]

P.B. Garcia-Allende, V. Krishnaswamy, P.J. Hoopes, K.S. Samkoe, O.M. Conde, and B.W. Pogue, “Automated identification of tumor microscopic morphology based on macroscopically measured scatter signatures,” J. Biomed. Opt.14, 034034 (2009).
[CrossRef] [PubMed]

Gelikonov, G.V.

A.M. Sergeev, V.M. Gelikonov, G.V. Gelikonov, F.I. Feldchtein, R.V. Kuranov, N.D. Gladkova, N.M. Shakhova, L.B. Suopova, A.V. Shakhov, I.A. Kuznetzova, A.N. Denisenko, V.V. Pochinko, Y.P. Chumakov, and O.S. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. ExpressI, 432–440 (1997).
[CrossRef]

Gelikonov, V.M.

A.M. Sergeev, V.M. Gelikonov, G.V. Gelikonov, F.I. Feldchtein, R.V. Kuranov, N.D. Gladkova, N.M. Shakhova, L.B. Suopova, A.V. Shakhov, I.A. Kuznetzova, A.N. Denisenko, V.V. Pochinko, Y.P. Chumakov, and O.S. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. ExpressI, 432–440 (1997).
[CrossRef]

Ghanadesikan, R.

R. Ghanadesikan, Methods for Statistical Data Analysis of Multivariate Observation (Wiley, New York, 1997).
[CrossRef]

Gladkova, N.D.

A.M. Sergeev, V.M. Gelikonov, G.V. Gelikonov, F.I. Feldchtein, R.V. Kuranov, N.D. Gladkova, N.M. Shakhova, L.B. Suopova, A.V. Shakhov, I.A. Kuznetzova, A.N. Denisenko, V.V. Pochinko, Y.P. Chumakov, and O.S. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. ExpressI, 432–440 (1997).
[CrossRef]

Gossage, K.W.

K.W. Gossage, C.M. Smith, E.M. Kanter, L.P. Hariri, A.L. Stone, J.J. Rodriguez, S.K. Williams, and J.K. Barton, “Texture analysis of speckle in optical coherence tomography images of tissue phantoms,” Phys. Med. Biol.51, 1563–1575 (2006).
[CrossRef] [PubMed]

K.W. Gossage, J.J. Rodriguez, and J.K. Barton, “Texture analysis of optical coherence tomography images: feasibility for tissue classification,” J. Biomed. Opt.8, 570–575 (2003).
[CrossRef] [PubMed]

Goutte, C.

C. Goutte, “Note on free lunches and cross validation,” Neural Comput.9, 1211–1215 (1997).
[CrossRef]

Gregory, K.

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, H.R. Hee, F. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hancewicz, T.

Hariri, L.P.

K.W. Gossage, C.M. Smith, E.M. Kanter, L.P. Hariri, A.L. Stone, J.J. Rodriguez, S.K. Williams, and J.K. Barton, “Texture analysis of speckle in optical coherence tomography images of tissue phantoms,” Phys. Med. Biol.51, 1563–1575 (2006).
[CrossRef] [PubMed]

Harwood, D.

D. Harwood, T. Ojala, M. Pietikainen, S. Kelman, and L. Davis, “Texture classification by center-symmetric auto-correlation using Kullback discrimination of distributions,” Pattern Recognit. Lett.16, 1–10 (1995).
[CrossRef]

Hee, H.R.

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, H.R. Hee, F. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C.

Hoopes, P.J.

P.B. Garcia-Allende, V. Krishnaswamy, P.J. Hoopes, K.S. Samkoe, O.M. Conde, and B.W. Pogue, “Automated identification of tumor microscopic morphology based on macroscopically measured scatter signatures,” J. Biomed. Opt.14, 034034 (2009).
[CrossRef] [PubMed]

Hsiung, P.L.

Huang, D.

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, H.R. Hee, F. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, S.W.

Isenberg, G.

X. Qi, Y. Pan, S.V. Sivak, J.E. Willis, G. Isenberg, and A.M. Rollins, “Image analysis for classification of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography,” Biomedical Optics Express1, 825–847 (2010).
[CrossRef]

X. Qi, M.V. Sivak, G. Isenberg, J.E. Willis, and A.M. Rollins, “Computer-aided diagnosis of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography,” J. Biomed. Opt.11, 044010 (2006).
[CrossRef] [PubMed]

G. Isenberg, M.V. Sivak, A. Chak, R.C.K. Wong, J.E. Willis, B. Wolf, D.Y. Rowland, A. Das, and A. Rollins, “Accuracy of endoscopic optical coherence tomography in the detection of dysplasia in Barrett’s esophagus: a prospective, doubled-blinded study,” Gastrointest. Endosc.62, 825–831 (2005).
[CrossRef] [PubMed]

Isenberg, G.A.

P.R. Pfau, M.V. Sivak, A. Chak, M. Kinnard, R.C. Wong, G.A. Isenberg, J.A. Izatt, A. Rollins, and V. Westphal, “Criteria for diagnosis of dysplasia by endoscopic optical coherence tomography,” Gastrointest. Endosc.58, 196–202 (2003).
[CrossRef] [PubMed]

Izatt, J.A.

P.R. Pfau, M.V. Sivak, A. Chak, M. Kinnard, R.C. Wong, G.A. Isenberg, J.A. Izatt, A. Rollins, and V. Westphal, “Criteria for diagnosis of dysplasia by endoscopic optical coherence tomography,” Gastrointest. Endosc.58, 196–202 (2003).
[CrossRef] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J.A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11, 2183–2189 (2003).
[CrossRef] [PubMed]

J.A. Izatt, M.D. Kulkarni, H.W. Wang, K. Kobayashi, and M.V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron.2, 1017–1028 (1996).
[CrossRef]

Jolliffe, I.T.

I.T. Jolliffe, Principal Component Analysis, 2nd ed. (Springer, 2002).

Kanter, E.M.

K.W. Gossage, C.M. Smith, E.M. Kanter, L.P. Hariri, A.L. Stone, J.J. Rodriguez, S.K. Williams, and J.K. Barton, “Texture analysis of speckle in optical coherence tomography images of tissue phantoms,” Phys. Med. Biol.51, 1563–1575 (2006).
[CrossRef] [PubMed]

Kaplan, P.

Kelman, S.

D. Harwood, T. Ojala, M. Pietikainen, S. Kelman, and L. Davis, “Texture classification by center-symmetric auto-correlation using Kullback discrimination of distributions,” Pattern Recognit. Lett.16, 1–10 (1995).
[CrossRef]

Kinnard, M.

P.R. Pfau, M.V. Sivak, A. Chak, M. Kinnard, R.C. Wong, G.A. Isenberg, J.A. Izatt, A. Rollins, and V. Westphal, “Criteria for diagnosis of dysplasia by endoscopic optical coherence tomography,” Gastrointest. Endosc.58, 196–202 (2003).
[CrossRef] [PubMed]

Kittler, J.

P.A. Devijver and J. Kittler, Pattern Recognition: A Statistical Approach (Prentice Hall, London, 1982).

Kobayashi, K.

J.A. Izatt, M.D. Kulkarni, H.W. Wang, K. Kobayashi, and M.V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron.2, 1017–1028 (1996).
[CrossRef]

Krishnaswamy, V.

A.M. Laughney, V. Krishnaswamy, P.B. Garcia-Allende, O.M. Conde, W.A. Wells, K.D. Paulse, and B.W. Pogue, “Automated classification of breast pathology using local measures of broadband reflectance,” J. Biomed. Opt.15, 066019 (2010).
[CrossRef]

P.B. Garcia-Allende, V. Krishnaswamy, P.J. Hoopes, K.S. Samkoe, O.M. Conde, and B.W. Pogue, “Automated identification of tumor microscopic morphology based on macroscopically measured scatter signatures,” J. Biomed. Opt.14, 034034 (2009).
[CrossRef] [PubMed]

Kulkarni, M.D.

J.A. Izatt, M.D. Kulkarni, H.W. Wang, K. Kobayashi, and M.V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron.2, 1017–1028 (1996).
[CrossRef]

Kuranov, R.V.

A.M. Sergeev, V.M. Gelikonov, G.V. Gelikonov, F.I. Feldchtein, R.V. Kuranov, N.D. Gladkova, N.M. Shakhova, L.B. Suopova, A.V. Shakhov, I.A. Kuznetzova, A.N. Denisenko, V.V. Pochinko, Y.P. Chumakov, and O.S. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. ExpressI, 432–440 (1997).
[CrossRef]

Kuznetzova, I.A.

A.M. Sergeev, V.M. Gelikonov, G.V. Gelikonov, F.I. Feldchtein, R.V. Kuranov, N.D. Gladkova, N.M. Shakhova, L.B. Suopova, A.V. Shakhov, I.A. Kuznetzova, A.N. Denisenko, V.V. Pochinko, Y.P. Chumakov, and O.S. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. ExpressI, 432–440 (1997).
[CrossRef]

Laguna, M.P.

K. Barwari, D.M. de Bruin, E.C. Cauberg, D.J. Faber, T.G. van Leeuwen, H. Wijkstra, J.J. de la Rosette, and M.P. Laguna, “Advanced diagnostics in renal mass using optical coherence tomography: A preliminary report,” J. Endourol.25, 311–315 (2011).
[CrossRef] [PubMed]

Laughney, A.M.

A.M. Laughney, V. Krishnaswamy, P.B. Garcia-Allende, O.M. Conde, W.A. Wells, K.D. Paulse, and B.W. Pogue, “Automated classification of breast pathology using local measures of broadband reflectance,” J. Biomed. Opt.15, 066019 (2010).
[CrossRef]

Leitgeb, R.

Lin, C.P.

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, H.R. Hee, F. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Marti, R.

A. Olivier, J. Freixenet, R. Marti, J. Pont, E. Pere, E.R.E. Denton, and R. Zwiggelaar, “A novel breast tisue density classification methodology,” IEEE T. Inf. Technol. Biomed.12, 55–64 (2008).
[CrossRef]

Mashimo, H.

Nishiosa, N.S.

J.M. Poneros, S. Brand, B.E. Bouma, G.J. Tearney, C.C. Compton, and N.S. Nishiosa, “Diagnosis of specialized intestinal metaplastia by optical coherence tomography,” Gastroenterology120, 7–12 (2001).
[CrossRef] [PubMed]

Ojala, T.

D. Harwood, T. Ojala, M. Pietikainen, S. Kelman, and L. Davis, “Texture classification by center-symmetric auto-correlation using Kullback discrimination of distributions,” Pattern Recognit. Lett.16, 1–10 (1995).
[CrossRef]

Olivier, A.

A. Olivier, J. Freixenet, R. Marti, J. Pont, E. Pere, E.R.E. Denton, and R. Zwiggelaar, “A novel breast tisue density classification methodology,” IEEE T. Inf. Technol. Biomed.12, 55–64 (2008).
[CrossRef]

Pan, Y.

X. Qi, Y. Pan, S.V. Sivak, J.E. Willis, G. Isenberg, and A.M. Rollins, “Image analysis for classification of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography,” Biomedical Optics Express1, 825–847 (2010).
[CrossRef]

Park, B.

Patra, R.

A. Barui, P. Banerjee, R. Patra, R.K. Das, S. Dhara, P.K. Dutta, and J. Chatterjee,“Swept-source optical coherence tomography of lower limb wound healing with histopathological correlation,” J. Biomed. Opt.16, 0260101–0260108 (2011).
[CrossRef]

Paulse, K.D.

A.M. Laughney, V. Krishnaswamy, P.B. Garcia-Allende, O.M. Conde, W.A. Wells, K.D. Paulse, and B.W. Pogue, “Automated classification of breast pathology using local measures of broadband reflectance,” J. Biomed. Opt.15, 066019 (2010).
[CrossRef]

Pere, E.

A. Olivier, J. Freixenet, R. Marti, J. Pont, E. Pere, E.R.E. Denton, and R. Zwiggelaar, “A novel breast tisue density classification methodology,” IEEE T. Inf. Technol. Biomed.12, 55–64 (2008).
[CrossRef]

Pfau, P.R.

P.R. Pfau, M.V. Sivak, A. Chak, M. Kinnard, R.C. Wong, G.A. Isenberg, J.A. Izatt, A. Rollins, and V. Westphal, “Criteria for diagnosis of dysplasia by endoscopic optical coherence tomography,” Gastrointest. Endosc.58, 196–202 (2003).
[CrossRef] [PubMed]

Pietikainen, M.

D. Harwood, T. Ojala, M. Pietikainen, S. Kelman, and L. Davis, “Texture classification by center-symmetric auto-correlation using Kullback discrimination of distributions,” Pattern Recognit. Lett.16, 1–10 (1995).
[CrossRef]

Pitvis, C.

G.J. Tearney, M.E. Brezinski, B.E. Bouma, S.A. Boppart, C. Pitvis, J.F. Southern, and J.G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography (OCT): a review,” Science276, 2037–2039 (1997).
[CrossRef] [PubMed]

Pochinko, V.V.

A.M. Sergeev, V.M. Gelikonov, G.V. Gelikonov, F.I. Feldchtein, R.V. Kuranov, N.D. Gladkova, N.M. Shakhova, L.B. Suopova, A.V. Shakhov, I.A. Kuznetzova, A.N. Denisenko, V.V. Pochinko, Y.P. Chumakov, and O.S. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. ExpressI, 432–440 (1997).
[CrossRef]

Pogue, B.W.

A.M. Laughney, V. Krishnaswamy, P.B. Garcia-Allende, O.M. Conde, W.A. Wells, K.D. Paulse, and B.W. Pogue, “Automated classification of breast pathology using local measures of broadband reflectance,” J. Biomed. Opt.15, 066019 (2010).
[CrossRef]

P.B. Garcia-Allende, V. Krishnaswamy, P.J. Hoopes, K.S. Samkoe, O.M. Conde, and B.W. Pogue, “Automated identification of tumor microscopic morphology based on macroscopically measured scatter signatures,” J. Biomed. Opt.14, 034034 (2009).
[CrossRef] [PubMed]

Poneros, J.M.

J.M. Poneros, S. Brand, B.E. Bouma, G.J. Tearney, C.C. Compton, and N.S. Nishiosa, “Diagnosis of specialized intestinal metaplastia by optical coherence tomography,” Gastroenterology120, 7–12 (2001).
[CrossRef] [PubMed]

Pont, J.

A. Olivier, J. Freixenet, R. Marti, J. Pont, E. Pere, E.R.E. Denton, and R. Zwiggelaar, “A novel breast tisue density classification methodology,” IEEE T. Inf. Technol. Biomed.12, 55–64 (2008).
[CrossRef]

Puliafito, C.A.

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, H.R. Hee, F. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Qi, X.

X. Qi, Y. Pan, S.V. Sivak, J.E. Willis, G. Isenberg, and A.M. Rollins, “Image analysis for classification of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography,” Biomedical Optics Express1, 825–847 (2010).
[CrossRef]

X. Qi, M.V. Sivak, G. Isenberg, J.E. Willis, and A.M. Rollins, “Computer-aided diagnosis of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography,” J. Biomed. Opt.11, 044010 (2006).
[CrossRef] [PubMed]

Rodriguez, J.J.

K.W. Gossage, C.M. Smith, E.M. Kanter, L.P. Hariri, A.L. Stone, J.J. Rodriguez, S.K. Williams, and J.K. Barton, “Texture analysis of speckle in optical coherence tomography images of tissue phantoms,” Phys. Med. Biol.51, 1563–1575 (2006).
[CrossRef] [PubMed]

K.W. Gossage, J.J. Rodriguez, and J.K. Barton, “Texture analysis of optical coherence tomography images: feasibility for tissue classification,” J. Biomed. Opt.8, 570–575 (2003).
[CrossRef] [PubMed]

Rogowska, J.

Rohwer, R.

H. Zhu and R. Rohwer, “No free lunch for cross-validation,” Neural Comput.8, 1421–1426 (1996).
[CrossRef]

Rollins, A.

G. Isenberg, M.V. Sivak, A. Chak, R.C.K. Wong, J.E. Willis, B. Wolf, D.Y. Rowland, A. Das, and A. Rollins, “Accuracy of endoscopic optical coherence tomography in the detection of dysplasia in Barrett’s esophagus: a prospective, doubled-blinded study,” Gastrointest. Endosc.62, 825–831 (2005).
[CrossRef] [PubMed]

P.R. Pfau, M.V. Sivak, A. Chak, M. Kinnard, R.C. Wong, G.A. Isenberg, J.A. Izatt, A. Rollins, and V. Westphal, “Criteria for diagnosis of dysplasia by endoscopic optical coherence tomography,” Gastrointest. Endosc.58, 196–202 (2003).
[CrossRef] [PubMed]

Rollins, A.M.

X. Qi, Y. Pan, S.V. Sivak, J.E. Willis, G. Isenberg, and A.M. Rollins, “Image analysis for classification of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography,” Biomedical Optics Express1, 825–847 (2010).
[CrossRef]

X. Qi, M.V. Sivak, G. Isenberg, J.E. Willis, and A.M. Rollins, “Computer-aided diagnosis of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography,” J. Biomed. Opt.11, 044010 (2006).
[CrossRef] [PubMed]

Rowland, D.Y.

G. Isenberg, M.V. Sivak, A. Chak, R.C.K. Wong, J.E. Willis, B. Wolf, D.Y. Rowland, A. Das, and A. Rollins, “Accuracy of endoscopic optical coherence tomography in the detection of dysplasia in Barrett’s esophagus: a prospective, doubled-blinded study,” Gastrointest. Endosc.62, 825–831 (2005).
[CrossRef] [PubMed]

Samkoe, K.S.

P.B. Garcia-Allende, V. Krishnaswamy, P.J. Hoopes, K.S. Samkoe, O.M. Conde, and B.W. Pogue, “Automated identification of tumor microscopic morphology based on macroscopically measured scatter signatures,” J. Biomed. Opt.14, 034034 (2009).
[CrossRef] [PubMed]

Sarunic, M.

Schmitt, J.M.

Schuman, J.S.

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, H.R. Hee, F. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Sergeev, A.M.

A.M. Sergeev, V.M. Gelikonov, G.V. Gelikonov, F.I. Feldchtein, R.V. Kuranov, N.D. Gladkova, N.M. Shakhova, L.B. Suopova, A.V. Shakhov, I.A. Kuznetzova, A.N. Denisenko, V.V. Pochinko, Y.P. Chumakov, and O.S. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. ExpressI, 432–440 (1997).
[CrossRef]

Shakhov, A.V.

A.M. Sergeev, V.M. Gelikonov, G.V. Gelikonov, F.I. Feldchtein, R.V. Kuranov, N.D. Gladkova, N.M. Shakhova, L.B. Suopova, A.V. Shakhov, I.A. Kuznetzova, A.N. Denisenko, V.V. Pochinko, Y.P. Chumakov, and O.S. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. ExpressI, 432–440 (1997).
[CrossRef]

Shakhova, N.M.

A.M. Sergeev, V.M. Gelikonov, G.V. Gelikonov, F.I. Feldchtein, R.V. Kuranov, N.D. Gladkova, N.M. Shakhova, L.B. Suopova, A.V. Shakhov, I.A. Kuznetzova, A.N. Denisenko, V.V. Pochinko, Y.P. Chumakov, and O.S. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. ExpressI, 432–440 (1997).
[CrossRef]

Sivak, M.V.

X. Qi, M.V. Sivak, G. Isenberg, J.E. Willis, and A.M. Rollins, “Computer-aided diagnosis of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography,” J. Biomed. Opt.11, 044010 (2006).
[CrossRef] [PubMed]

G. Isenberg, M.V. Sivak, A. Chak, R.C.K. Wong, J.E. Willis, B. Wolf, D.Y. Rowland, A. Das, and A. Rollins, “Accuracy of endoscopic optical coherence tomography in the detection of dysplasia in Barrett’s esophagus: a prospective, doubled-blinded study,” Gastrointest. Endosc.62, 825–831 (2005).
[CrossRef] [PubMed]

P.R. Pfau, M.V. Sivak, A. Chak, M. Kinnard, R.C. Wong, G.A. Isenberg, J.A. Izatt, A. Rollins, and V. Westphal, “Criteria for diagnosis of dysplasia by endoscopic optical coherence tomography,” Gastrointest. Endosc.58, 196–202 (2003).
[CrossRef] [PubMed]

J.A. Izatt, M.D. Kulkarni, H.W. Wang, K. Kobayashi, and M.V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron.2, 1017–1028 (1996).
[CrossRef]

Sivak, S.V.

X. Qi, Y. Pan, S.V. Sivak, J.E. Willis, G. Isenberg, and A.M. Rollins, “Image analysis for classification of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography,” Biomedical Optics Express1, 825–847 (2010).
[CrossRef]

Smith, C.M.

K.W. Gossage, C.M. Smith, E.M. Kanter, L.P. Hariri, A.L. Stone, J.J. Rodriguez, S.K. Williams, and J.K. Barton, “Texture analysis of speckle in optical coherence tomography images of tissue phantoms,” Phys. Med. Biol.51, 1563–1575 (2006).
[CrossRef] [PubMed]

Southern, J.F.

G.J. Tearney, M.E. Brezinski, B.E. Bouma, S.A. Boppart, C. Pitvis, J.F. Southern, and J.G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography (OCT): a review,” Science276, 2037–2039 (1997).
[CrossRef] [PubMed]

Stinson, W.G.

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, H.R. Hee, F. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Stone, A.L.

K.W. Gossage, C.M. Smith, E.M. Kanter, L.P. Hariri, A.L. Stone, J.J. Rodriguez, S.K. Williams, and J.K. Barton, “Texture analysis of speckle in optical coherence tomography images of tissue phantoms,” Phys. Med. Biol.51, 1563–1575 (2006).
[CrossRef] [PubMed]

Stone, N.

F. Bazant-Hegemark and N. Stone, “Near real-time classifiation of optical coherence tomography data using principal component analysis fed linear discriminant analysis,” J. Biomed. Opt.13, 034002 (2008).
[CrossRef] [PubMed]

Streltzova, O.S.

A.M. Sergeev, V.M. Gelikonov, G.V. Gelikonov, F.I. Feldchtein, R.V. Kuranov, N.D. Gladkova, N.M. Shakhova, L.B. Suopova, A.V. Shakhov, I.A. Kuznetzova, A.N. Denisenko, V.V. Pochinko, Y.P. Chumakov, and O.S. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. ExpressI, 432–440 (1997).
[CrossRef]

Suopova, L.B.

A.M. Sergeev, V.M. Gelikonov, G.V. Gelikonov, F.I. Feldchtein, R.V. Kuranov, N.D. Gladkova, N.M. Shakhova, L.B. Suopova, A.V. Shakhov, I.A. Kuznetzova, A.N. Denisenko, V.V. Pochinko, Y.P. Chumakov, and O.S. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. ExpressI, 432–440 (1997).
[CrossRef]

Swanson, E.A.

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, H.R. Hee, F. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G.

Tearney, G.J.

J.M. Poneros, S. Brand, B.E. Bouma, G.J. Tearney, C.C. Compton, and N.S. Nishiosa, “Diagnosis of specialized intestinal metaplastia by optical coherence tomography,” Gastroenterology120, 7–12 (2001).
[CrossRef] [PubMed]

G.J. Tearney, M.E. Brezinski, B.E. Bouma, S.A. Boppart, C. Pitvis, J.F. Southern, and J.G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography (OCT): a review,” Science276, 2037–2039 (1997).
[CrossRef] [PubMed]

Tikk, D.

D. Tikk and K.W. Wong, “A feature ranking technique based on interclass separability for fuzzy modeling,” in Proceedings of IEEE International Computational Cybernetics ICCC 2007 (Academic, Gammarth, Tunisia, 2007), pp. 251–256.
[CrossRef]

van Leeuwen, T.G.

K. Barwari, D.M. de Bruin, E.C. Cauberg, D.J. Faber, T.G. van Leeuwen, H. Wijkstra, J.J. de la Rosette, and M.P. Laguna, “Advanced diagnostics in renal mass using optical coherence tomography: A preliminary report,” J. Endourol.25, 311–315 (2011).
[CrossRef] [PubMed]

E.C. Cauberg, D.M. de Bruin, D.J. Faber, T.M. de Reijke, M. Visser, J.J. de la Rosette, and T.G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt.15, 066013 (2010).
[CrossRef]

Vapnik, V.

V. Vapnik, The nature of Statistical Learning Theory (Springer, New York, 1995).

Visser, M.

E.C. Cauberg, D.M. de Bruin, D.J. Faber, T.M. de Reijke, M. Visser, J.J. de la Rosette, and T.G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt.15, 066013 (2010).
[CrossRef]

Wang, H.W.

J.A. Izatt, M.D. Kulkarni, H.W. Wang, K. Kobayashi, and M.V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron.2, 1017–1028 (1996).
[CrossRef]

Wells, W.A.

A.M. Laughney, V. Krishnaswamy, P.B. Garcia-Allende, O.M. Conde, W.A. Wells, K.D. Paulse, and B.W. Pogue, “Automated classification of breast pathology using local measures of broadband reflectance,” J. Biomed. Opt.15, 066019 (2010).
[CrossRef]

Westphal, V.

P.R. Pfau, M.V. Sivak, A. Chak, M. Kinnard, R.C. Wong, G.A. Isenberg, J.A. Izatt, A. Rollins, and V. Westphal, “Criteria for diagnosis of dysplasia by endoscopic optical coherence tomography,” Gastrointest. Endosc.58, 196–202 (2003).
[CrossRef] [PubMed]

Wijkstra, H.

K. Barwari, D.M. de Bruin, E.C. Cauberg, D.J. Faber, T.G. van Leeuwen, H. Wijkstra, J.J. de la Rosette, and M.P. Laguna, “Advanced diagnostics in renal mass using optical coherence tomography: A preliminary report,” J. Endourol.25, 311–315 (2011).
[CrossRef] [PubMed]

Williams, S.K.

K.W. Gossage, C.M. Smith, E.M. Kanter, L.P. Hariri, A.L. Stone, J.J. Rodriguez, S.K. Williams, and J.K. Barton, “Texture analysis of speckle in optical coherence tomography images of tissue phantoms,” Phys. Med. Biol.51, 1563–1575 (2006).
[CrossRef] [PubMed]

Willis, J.E.

X. Qi, Y. Pan, S.V. Sivak, J.E. Willis, G. Isenberg, and A.M. Rollins, “Image analysis for classification of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography,” Biomedical Optics Express1, 825–847 (2010).
[CrossRef]

X. Qi, M.V. Sivak, G. Isenberg, J.E. Willis, and A.M. Rollins, “Computer-aided diagnosis of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography,” J. Biomed. Opt.11, 044010 (2006).
[CrossRef] [PubMed]

G. Isenberg, M.V. Sivak, A. Chak, R.C.K. Wong, J.E. Willis, B. Wolf, D.Y. Rowland, A. Das, and A. Rollins, “Accuracy of endoscopic optical coherence tomography in the detection of dysplasia in Barrett’s esophagus: a prospective, doubled-blinded study,” Gastrointest. Endosc.62, 825–831 (2005).
[CrossRef] [PubMed]

Wolf, B.

G. Isenberg, M.V. Sivak, A. Chak, R.C.K. Wong, J.E. Willis, B. Wolf, D.Y. Rowland, A. Das, and A. Rollins, “Accuracy of endoscopic optical coherence tomography in the detection of dysplasia in Barrett’s esophagus: a prospective, doubled-blinded study,” Gastrointest. Endosc.62, 825–831 (2005).
[CrossRef] [PubMed]

Wong, K.W.

D. Tikk and K.W. Wong, “A feature ranking technique based on interclass separability for fuzzy modeling,” in Proceedings of IEEE International Computational Cybernetics ICCC 2007 (Academic, Gammarth, Tunisia, 2007), pp. 251–256.
[CrossRef]

Wong, R.C.

P.R. Pfau, M.V. Sivak, A. Chak, M. Kinnard, R.C. Wong, G.A. Isenberg, J.A. Izatt, A. Rollins, and V. Westphal, “Criteria for diagnosis of dysplasia by endoscopic optical coherence tomography,” Gastrointest. Endosc.58, 196–202 (2003).
[CrossRef] [PubMed]

Wong, R.C.K.

G. Isenberg, M.V. Sivak, A. Chak, R.C.K. Wong, J.E. Willis, B. Wolf, D.Y. Rowland, A. Das, and A. Rollins, “Accuracy of endoscopic optical coherence tomography in the detection of dysplasia in Barrett’s esophagus: a prospective, doubled-blinded study,” Gastrointest. Endosc.62, 825–831 (2005).
[CrossRef] [PubMed]

Yang, C.

Yun, S.

Zhu, H.

H. Zhu and R. Rohwer, “No free lunch for cross-validation,” Neural Comput.8, 1421–1426 (1996).
[CrossRef]

Zwiggelaar, R.

A. Olivier, J. Freixenet, R. Marti, J. Pont, E. Pere, E.R.E. Denton, and R. Zwiggelaar, “A novel breast tisue density classification methodology,” IEEE T. Inf. Technol. Biomed.12, 55–64 (2008).
[CrossRef]

Biomedical Optics Express (1)

X. Qi, Y. Pan, S.V. Sivak, J.E. Willis, G. Isenberg, and A.M. Rollins, “Image analysis for classification of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography,” Biomedical Optics Express1, 825–847 (2010).
[CrossRef]

Gastroenterology (1)

J.M. Poneros, S. Brand, B.E. Bouma, G.J. Tearney, C.C. Compton, and N.S. Nishiosa, “Diagnosis of specialized intestinal metaplastia by optical coherence tomography,” Gastroenterology120, 7–12 (2001).
[CrossRef] [PubMed]

Gastrointest. Endosc. (2)

G. Isenberg, M.V. Sivak, A. Chak, R.C.K. Wong, J.E. Willis, B. Wolf, D.Y. Rowland, A. Das, and A. Rollins, “Accuracy of endoscopic optical coherence tomography in the detection of dysplasia in Barrett’s esophagus: a prospective, doubled-blinded study,” Gastrointest. Endosc.62, 825–831 (2005).
[CrossRef] [PubMed]

P.R. Pfau, M.V. Sivak, A. Chak, M. Kinnard, R.C. Wong, G.A. Isenberg, J.A. Izatt, A. Rollins, and V. Westphal, “Criteria for diagnosis of dysplasia by endoscopic optical coherence tomography,” Gastrointest. Endosc.58, 196–202 (2003).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

J.A. Izatt, M.D. Kulkarni, H.W. Wang, K. Kobayashi, and M.V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron.2, 1017–1028 (1996).
[CrossRef]

IEEE T. Inf. Technol. Biomed. (1)

A. Olivier, J. Freixenet, R. Marti, J. Pont, E. Pere, E.R.E. Denton, and R. Zwiggelaar, “A novel breast tisue density classification methodology,” IEEE T. Inf. Technol. Biomed.12, 55–64 (2008).
[CrossRef]

J. Biomed. Opt. (7)

P.B. Garcia-Allende, V. Krishnaswamy, P.J. Hoopes, K.S. Samkoe, O.M. Conde, and B.W. Pogue, “Automated identification of tumor microscopic morphology based on macroscopically measured scatter signatures,” J. Biomed. Opt.14, 034034 (2009).
[CrossRef] [PubMed]

K.W. Gossage, J.J. Rodriguez, and J.K. Barton, “Texture analysis of optical coherence tomography images: feasibility for tissue classification,” J. Biomed. Opt.8, 570–575 (2003).
[CrossRef] [PubMed]

X. Qi, M.V. Sivak, G. Isenberg, J.E. Willis, and A.M. Rollins, “Computer-aided diagnosis of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography,” J. Biomed. Opt.11, 044010 (2006).
[CrossRef] [PubMed]

F. Bazant-Hegemark and N. Stone, “Near real-time classifiation of optical coherence tomography data using principal component analysis fed linear discriminant analysis,” J. Biomed. Opt.13, 034002 (2008).
[CrossRef] [PubMed]

A. Barui, P. Banerjee, R. Patra, R.K. Das, S. Dhara, P.K. Dutta, and J. Chatterjee,“Swept-source optical coherence tomography of lower limb wound healing with histopathological correlation,” J. Biomed. Opt.16, 0260101–0260108 (2011).
[CrossRef]

E.C. Cauberg, D.M. de Bruin, D.J. Faber, T.M. de Reijke, M. Visser, J.J. de la Rosette, and T.G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt.15, 066013 (2010).
[CrossRef]

A.M. Laughney, V. Krishnaswamy, P.B. Garcia-Allende, O.M. Conde, W.A. Wells, K.D. Paulse, and B.W. Pogue, “Automated classification of breast pathology using local measures of broadband reflectance,” J. Biomed. Opt.15, 066019 (2010).
[CrossRef]

J. Endourol. (1)

K. Barwari, D.M. de Bruin, E.C. Cauberg, D.J. Faber, T.G. van Leeuwen, H. Wijkstra, J.J. de la Rosette, and M.P. Laguna, “Advanced diagnostics in renal mass using optical coherence tomography: A preliminary report,” J. Endourol.25, 311–315 (2011).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Neural Comput. (2)

H. Zhu and R. Rohwer, “No free lunch for cross-validation,” Neural Comput.8, 1421–1426 (1996).
[CrossRef]

C. Goutte, “Note on free lunches and cross validation,” Neural Comput.9, 1211–1215 (1997).
[CrossRef]

Opt. Express (6)

Pattern Recognit. Lett. (1)

D. Harwood, T. Ojala, M. Pietikainen, S. Kelman, and L. Davis, “Texture classification by center-symmetric auto-correlation using Kullback discrimination of distributions,” Pattern Recognit. Lett.16, 1–10 (1995).
[CrossRef]

Phys. Med. Biol. (1)

K.W. Gossage, C.M. Smith, E.M. Kanter, L.P. Hariri, A.L. Stone, J.J. Rodriguez, S.K. Williams, and J.K. Barton, “Texture analysis of speckle in optical coherence tomography images of tissue phantoms,” Phys. Med. Biol.51, 1563–1575 (2006).
[CrossRef] [PubMed]

Science (2)

G.J. Tearney, M.E. Brezinski, B.E. Bouma, S.A. Boppart, C. Pitvis, J.F. Southern, and J.G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography (OCT): a review,” Science276, 2037–2039 (1997).
[CrossRef] [PubMed]

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, H.R. Hee, F. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other (7)

I.T. Jolliffe, Principal Component Analysis, 2nd ed. (Springer, 2002).

R. Ghanadesikan, Methods for Statistical Data Analysis of Multivariate Observation (Wiley, New York, 1997).
[CrossRef]

P.A. Devijver and J. Kittler, Pattern Recognition: A Statistical Approach (Prentice Hall, London, 1982).

D. Tikk and K.W. Wong, “A feature ranking technique based on interclass separability for fuzzy modeling,” in Proceedings of IEEE International Computational Cybernetics ICCC 2007 (Academic, Gammarth, Tunisia, 2007), pp. 251–256.
[CrossRef]

K. Fukunaga, Introduction to Statistical Pattern Recognition, 2nd ed. (Academic Press, New York, 1990).

V. Vapnik, The nature of Statistical Learning Theory (Springer, New York, 1995).

D. A. Burns and E.W. Ciurczak, Handbook of Near-Infrared Analysis, 3rd ed. (CRC Press, 2008), Chap. 15.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Flow diagram of OCT image preprocessing stages and visualization of the full process on a sample image.

Fig. 2
Fig. 2

Schematic of the proposed two-step methodology for feature quantification of OCT images.

Fig. 3
Fig. 3

Grouped scatter plots and interclass separabilities (J) for the distinct gastrointestinal tissues depending on the number of segmented regions (only B-scans comprising all C-scans from a sample patient are included).

Fig. 4
Fig. 4

Grouped scatter plots and interclass separabilities J for the distinct gastrointestinal tissues depending on the approach employed for image feature quantification (The map is populated with all data points from a sample patient).

Fig. 5
Fig. 5

3D feature space assembled with the PCA-processed morphological features (3 segmented regions) from all B-scans that comprise the whole data set and its corresponding interclass separability (J).

Fig. 6
Fig. 6

Specificity and sensitivity values per tissue type as a function of the number of segmented regions.

Fig. 7
Fig. 7

Comparison of morphological and textural prediction in terms of their sensitivity and specificity values in the discrimination of each tissue type.

Tables (2)

Tables Icon

Table 1 Summary of the quantitative comparison between morphological and textural approaches for feature quantification of OCT images in the classification of gastrointestinal tissues.

Tables Icon

Table 2 Summary of the efficacy of the KNN classifier (K = 1) to understand the relationship between the image features, and to predict new data. Reported measures are the sensitivity:specificity values in the discrimination of a given gastrointestinal tissue type from all other evaluated types.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

1 st statistical moment ( mean ) I ¯ = 1 N i = 1 N I i , 2 nd statistical moment ( standard deviation ) σ I = ( 1 N i = 1 N ( I i I ¯ ) 2 ) 1 2 , 3 rd statistical moment ( skewness ) S I = 1 N i = 1 N ( I i I ¯ ) 3 σ I 3 , 4 th statistical moment ( kurtosis ) K I = 1 N i = 1 N ( I i I ¯ ) 4 σ I 4 ,
J = tr ( Q b ) tr ( Q w ) ,
Q b = i = 1 C P i ( v i v ) ( v i v ) T , Q w = i = 1 C P i 1 n i k = 1 n i ( x ik v i ) ( x i k v i ) T ,
D ( x , y ) 2 = ( y x ) T M ( y x ) ,

Metrics