Abstract

UV-C exposure is an effective disinfectant for a range of bacteria and viruses. As such, UV-C treatment, in combination with a chemical wipe, is a common cleaning protocol in medical facilities. Given the increase in severe bacterial and viral agents in society, having access to environmentally friendly disinfectant methods is of increasing interest. In response, we designed, constructed, and validated a UV-C disinfection system from readily accessible components. To improve the UV-C intensity, the enclosure interior was coated with chrome paint. The system is validated using Bacillus cereus, a gram-positive endospore-forming bacteria.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Centers for Disease Control and Prevention (U.S.), Antibiotic Resistance Threats in the United States, 2019 (Centers for Disease Control and Prevention (U.S.), 2019).
  2. W. Rutala and D. Weber, “Uses of inorganic hypochlorite (bleach) in health-care facilities,” Clin. Microbiol. Rev. 10(4), 597–610 (1997).
    [Crossref]
  3. W. Cochran, G. McFeters, and P. Stewart, “Reduced susceptibility of thin Pseudomonas aeruginosa biofilms to hydrogen peroxide and monochloramine,” J. Appl. Microbiol. 88(1), 22–30 (2001).
    [Crossref]
  4. J. Koivunen and H. Heinonen-Tanski, “Inactivation of enteric microorganisms with chemical disinfectants, UV irradiation and combined chemical/UV treatments,” Water Res. 39(8), 1519–1526 (2005).
    [Crossref]
  5. M. Berney, H. Weilenmann, J. Ihssen, C. Bassin, and T. Egli, “Specific growth rate determines the sensitivity of Escherichia coli to thermal, UVA, and solar disinfection,” Appl. Environ. Microbiol. 72(4), 2586–2593 (2006).
    [Crossref]
  6. A. Kramer, I. Schwebke, and G. Kampf, “How long do nosocomial pathogens persist on inanimate surfaces? A systematic review,” BMC Infect. Dis. 6(1), 130 (2006).
    [Crossref]
  7. P. Setlow, “Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals,” J. Appl. Microbiol. 101(3), 514–525 (2006).
    [Crossref]
  8. K. Bergmann, “UV-C Irradiation: A New Viral Inactivation Method for Biopharmaceuticals,” American Pharmaceutical Review (2014).
  9. W. Hijnen, E. Beerendonk, and G. Medema, “Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review,” Water Res. 40(1), 3–22 (2006).
    [Crossref]
  10. R. Sinha and D. Hader, “UV-induced DNA damage and repair: a review,” Photochem. Photobiol. Sci. 1(4), 225–236 (2002).
    [Crossref]
  11. FDA, CFR - Code of Federal Regulations Title 21, Code of Federal Regulations Title 21 (US Government, 2019), Vol. 8.
  12. K. J. Card, D. Crozier, A. Dhawan, M. Dinh, E. Dolson, N. Farrokhian, V. Gopalakrishnan, E. Ho, E. S. King, N. Krishnan, G. Kuzmin, J. Maltas, J. Pelesko, J. A. Scarborough, J. G. Scott, G. Sedor, and D. T. Weaver, “UV Sterilization of Personal Protective Equipment with Idle Laboratory Biosafety Cabinets During the Covid-19 Pandemic,” medRxiv (2020).
  13. A. Soni, I. Oey, P. Silcock, and P. Bremer, “Bacillus Spores in the Food Industry: A Review on Resistance and Response to Novel Inactivation Technologies,” Compr. Rev. Food Sci. Food Saf. 15(6), 1139–1148 (2016).
    [Crossref]
  14. P. Setlow, “Resistance of spores of Bacillus species to ultraviolet light,” Environ. Mol. Mutagen. 38(2-3), 97–104 (2001).
    [Crossref]
  15. M. Clauß, “Higher effectiveness of photoinactivation of bacterial spores, UV resistant vegetative bacteria and mold spores with 222 nm compared to 254 nm wavelength,” Acta Hydrochim. Hydrobiol. 34(6), 525–532 (2006).
    [Crossref]
  16. B. Ernest R., M. Anne, A. Arthur I., and B. Lindsay, “Inactivation of Bacillus Spores by Ultraviolet or Gamma Radiation,” J. Environ. Eng. 131(9), 1245–1252 (2005).
    [Crossref]
  17. W. L. Nicholson and B. Galeano, “UV Resistance of Bacillus anthracis Spores Revisited: Validation of Bacillus subtilis Spores as UV Surrogates for Spores of B. anthracis Sterne,” Appl. Environ. Microbiol. 69(2), 1327–1330 (2003).
    [Crossref]
  18. G. D. Harris, V. D. Adams, D. L. Sorensen, and M. S. Curtis, “Ultraviolet inactivation of selected bacteria and viruses with photoreactivation of the bacteria,” Water Res. 21(6), 687–692 (1987).
    [Crossref]
  19. N. Nwachuku, C. P. Gerba, A. Oswald, and F. D. Mashadi, “Comparative inactivation of adenovirus serotypes by UV light disinfection,” Appl. Environ. Microbiol. 71(9), 5633–5636 (2005).
    [Crossref]
  20. J. Lee, K. Zoh, and G. Ko, “Inactivation and UV disinfection of murine norovirus with TiO2 under various environmental conditions,” Appl. Environ. Microbiol. 74(7), 2111–2117 (2008).
    [Crossref]
  21. J. Edmends, C. Maldé, and S. Corrigan, “Measurements of the far ultraviolet reflectivity of evaporated aluminum films under exposure to O2, H2O, CO and CO2,” Vacuum 40(5), 471–475 (1990).
    [Crossref]
  22. A. M. Armani, D. E. Hurt, D. Hwang, M. C. McCarthy, and A. Scholtz, “Low-tech solutions for the COVID-19 supply chain crisis,” Nat. Rev. Mater. 5(6), 403–406 (2020).
    [Crossref]

2020 (1)

A. M. Armani, D. E. Hurt, D. Hwang, M. C. McCarthy, and A. Scholtz, “Low-tech solutions for the COVID-19 supply chain crisis,” Nat. Rev. Mater. 5(6), 403–406 (2020).
[Crossref]

2016 (1)

A. Soni, I. Oey, P. Silcock, and P. Bremer, “Bacillus Spores in the Food Industry: A Review on Resistance and Response to Novel Inactivation Technologies,” Compr. Rev. Food Sci. Food Saf. 15(6), 1139–1148 (2016).
[Crossref]

2008 (1)

J. Lee, K. Zoh, and G. Ko, “Inactivation and UV disinfection of murine norovirus with TiO2 under various environmental conditions,” Appl. Environ. Microbiol. 74(7), 2111–2117 (2008).
[Crossref]

2006 (5)

M. Clauß, “Higher effectiveness of photoinactivation of bacterial spores, UV resistant vegetative bacteria and mold spores with 222 nm compared to 254 nm wavelength,” Acta Hydrochim. Hydrobiol. 34(6), 525–532 (2006).
[Crossref]

M. Berney, H. Weilenmann, J. Ihssen, C. Bassin, and T. Egli, “Specific growth rate determines the sensitivity of Escherichia coli to thermal, UVA, and solar disinfection,” Appl. Environ. Microbiol. 72(4), 2586–2593 (2006).
[Crossref]

A. Kramer, I. Schwebke, and G. Kampf, “How long do nosocomial pathogens persist on inanimate surfaces? A systematic review,” BMC Infect. Dis. 6(1), 130 (2006).
[Crossref]

P. Setlow, “Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals,” J. Appl. Microbiol. 101(3), 514–525 (2006).
[Crossref]

W. Hijnen, E. Beerendonk, and G. Medema, “Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review,” Water Res. 40(1), 3–22 (2006).
[Crossref]

2005 (3)

B. Ernest R., M. Anne, A. Arthur I., and B. Lindsay, “Inactivation of Bacillus Spores by Ultraviolet or Gamma Radiation,” J. Environ. Eng. 131(9), 1245–1252 (2005).
[Crossref]

J. Koivunen and H. Heinonen-Tanski, “Inactivation of enteric microorganisms with chemical disinfectants, UV irradiation and combined chemical/UV treatments,” Water Res. 39(8), 1519–1526 (2005).
[Crossref]

N. Nwachuku, C. P. Gerba, A. Oswald, and F. D. Mashadi, “Comparative inactivation of adenovirus serotypes by UV light disinfection,” Appl. Environ. Microbiol. 71(9), 5633–5636 (2005).
[Crossref]

2003 (1)

W. L. Nicholson and B. Galeano, “UV Resistance of Bacillus anthracis Spores Revisited: Validation of Bacillus subtilis Spores as UV Surrogates for Spores of B. anthracis Sterne,” Appl. Environ. Microbiol. 69(2), 1327–1330 (2003).
[Crossref]

2002 (1)

R. Sinha and D. Hader, “UV-induced DNA damage and repair: a review,” Photochem. Photobiol. Sci. 1(4), 225–236 (2002).
[Crossref]

2001 (2)

P. Setlow, “Resistance of spores of Bacillus species to ultraviolet light,” Environ. Mol. Mutagen. 38(2-3), 97–104 (2001).
[Crossref]

W. Cochran, G. McFeters, and P. Stewart, “Reduced susceptibility of thin Pseudomonas aeruginosa biofilms to hydrogen peroxide and monochloramine,” J. Appl. Microbiol. 88(1), 22–30 (2001).
[Crossref]

1997 (1)

W. Rutala and D. Weber, “Uses of inorganic hypochlorite (bleach) in health-care facilities,” Clin. Microbiol. Rev. 10(4), 597–610 (1997).
[Crossref]

1990 (1)

J. Edmends, C. Maldé, and S. Corrigan, “Measurements of the far ultraviolet reflectivity of evaporated aluminum films under exposure to O2, H2O, CO and CO2,” Vacuum 40(5), 471–475 (1990).
[Crossref]

1987 (1)

G. D. Harris, V. D. Adams, D. L. Sorensen, and M. S. Curtis, “Ultraviolet inactivation of selected bacteria and viruses with photoreactivation of the bacteria,” Water Res. 21(6), 687–692 (1987).
[Crossref]

Adams, V. D.

G. D. Harris, V. D. Adams, D. L. Sorensen, and M. S. Curtis, “Ultraviolet inactivation of selected bacteria and viruses with photoreactivation of the bacteria,” Water Res. 21(6), 687–692 (1987).
[Crossref]

Anne, M.

B. Ernest R., M. Anne, A. Arthur I., and B. Lindsay, “Inactivation of Bacillus Spores by Ultraviolet or Gamma Radiation,” J. Environ. Eng. 131(9), 1245–1252 (2005).
[Crossref]

Armani, A. M.

A. M. Armani, D. E. Hurt, D. Hwang, M. C. McCarthy, and A. Scholtz, “Low-tech solutions for the COVID-19 supply chain crisis,” Nat. Rev. Mater. 5(6), 403–406 (2020).
[Crossref]

Arthur I., A.

B. Ernest R., M. Anne, A. Arthur I., and B. Lindsay, “Inactivation of Bacillus Spores by Ultraviolet or Gamma Radiation,” J. Environ. Eng. 131(9), 1245–1252 (2005).
[Crossref]

Bassin, C.

M. Berney, H. Weilenmann, J. Ihssen, C. Bassin, and T. Egli, “Specific growth rate determines the sensitivity of Escherichia coli to thermal, UVA, and solar disinfection,” Appl. Environ. Microbiol. 72(4), 2586–2593 (2006).
[Crossref]

Beerendonk, E.

W. Hijnen, E. Beerendonk, and G. Medema, “Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review,” Water Res. 40(1), 3–22 (2006).
[Crossref]

Bergmann, K.

K. Bergmann, “UV-C Irradiation: A New Viral Inactivation Method for Biopharmaceuticals,” American Pharmaceutical Review (2014).

Berney, M.

M. Berney, H. Weilenmann, J. Ihssen, C. Bassin, and T. Egli, “Specific growth rate determines the sensitivity of Escherichia coli to thermal, UVA, and solar disinfection,” Appl. Environ. Microbiol. 72(4), 2586–2593 (2006).
[Crossref]

Bremer, P.

A. Soni, I. Oey, P. Silcock, and P. Bremer, “Bacillus Spores in the Food Industry: A Review on Resistance and Response to Novel Inactivation Technologies,” Compr. Rev. Food Sci. Food Saf. 15(6), 1139–1148 (2016).
[Crossref]

Card, K. J.

K. J. Card, D. Crozier, A. Dhawan, M. Dinh, E. Dolson, N. Farrokhian, V. Gopalakrishnan, E. Ho, E. S. King, N. Krishnan, G. Kuzmin, J. Maltas, J. Pelesko, J. A. Scarborough, J. G. Scott, G. Sedor, and D. T. Weaver, “UV Sterilization of Personal Protective Equipment with Idle Laboratory Biosafety Cabinets During the Covid-19 Pandemic,” medRxiv (2020).

Clauß, M.

M. Clauß, “Higher effectiveness of photoinactivation of bacterial spores, UV resistant vegetative bacteria and mold spores with 222 nm compared to 254 nm wavelength,” Acta Hydrochim. Hydrobiol. 34(6), 525–532 (2006).
[Crossref]

Cochran, W.

W. Cochran, G. McFeters, and P. Stewart, “Reduced susceptibility of thin Pseudomonas aeruginosa biofilms to hydrogen peroxide and monochloramine,” J. Appl. Microbiol. 88(1), 22–30 (2001).
[Crossref]

Corrigan, S.

J. Edmends, C. Maldé, and S. Corrigan, “Measurements of the far ultraviolet reflectivity of evaporated aluminum films under exposure to O2, H2O, CO and CO2,” Vacuum 40(5), 471–475 (1990).
[Crossref]

Crozier, D.

K. J. Card, D. Crozier, A. Dhawan, M. Dinh, E. Dolson, N. Farrokhian, V. Gopalakrishnan, E. Ho, E. S. King, N. Krishnan, G. Kuzmin, J. Maltas, J. Pelesko, J. A. Scarborough, J. G. Scott, G. Sedor, and D. T. Weaver, “UV Sterilization of Personal Protective Equipment with Idle Laboratory Biosafety Cabinets During the Covid-19 Pandemic,” medRxiv (2020).

Curtis, M. S.

G. D. Harris, V. D. Adams, D. L. Sorensen, and M. S. Curtis, “Ultraviolet inactivation of selected bacteria and viruses with photoreactivation of the bacteria,” Water Res. 21(6), 687–692 (1987).
[Crossref]

Dhawan, A.

K. J. Card, D. Crozier, A. Dhawan, M. Dinh, E. Dolson, N. Farrokhian, V. Gopalakrishnan, E. Ho, E. S. King, N. Krishnan, G. Kuzmin, J. Maltas, J. Pelesko, J. A. Scarborough, J. G. Scott, G. Sedor, and D. T. Weaver, “UV Sterilization of Personal Protective Equipment with Idle Laboratory Biosafety Cabinets During the Covid-19 Pandemic,” medRxiv (2020).

Dinh, M.

K. J. Card, D. Crozier, A. Dhawan, M. Dinh, E. Dolson, N. Farrokhian, V. Gopalakrishnan, E. Ho, E. S. King, N. Krishnan, G. Kuzmin, J. Maltas, J. Pelesko, J. A. Scarborough, J. G. Scott, G. Sedor, and D. T. Weaver, “UV Sterilization of Personal Protective Equipment with Idle Laboratory Biosafety Cabinets During the Covid-19 Pandemic,” medRxiv (2020).

Dolson, E.

K. J. Card, D. Crozier, A. Dhawan, M. Dinh, E. Dolson, N. Farrokhian, V. Gopalakrishnan, E. Ho, E. S. King, N. Krishnan, G. Kuzmin, J. Maltas, J. Pelesko, J. A. Scarborough, J. G. Scott, G. Sedor, and D. T. Weaver, “UV Sterilization of Personal Protective Equipment with Idle Laboratory Biosafety Cabinets During the Covid-19 Pandemic,” medRxiv (2020).

Edmends, J.

J. Edmends, C. Maldé, and S. Corrigan, “Measurements of the far ultraviolet reflectivity of evaporated aluminum films under exposure to O2, H2O, CO and CO2,” Vacuum 40(5), 471–475 (1990).
[Crossref]

Egli, T.

M. Berney, H. Weilenmann, J. Ihssen, C. Bassin, and T. Egli, “Specific growth rate determines the sensitivity of Escherichia coli to thermal, UVA, and solar disinfection,” Appl. Environ. Microbiol. 72(4), 2586–2593 (2006).
[Crossref]

Ernest R., B.

B. Ernest R., M. Anne, A. Arthur I., and B. Lindsay, “Inactivation of Bacillus Spores by Ultraviolet or Gamma Radiation,” J. Environ. Eng. 131(9), 1245–1252 (2005).
[Crossref]

Farrokhian, N.

K. J. Card, D. Crozier, A. Dhawan, M. Dinh, E. Dolson, N. Farrokhian, V. Gopalakrishnan, E. Ho, E. S. King, N. Krishnan, G. Kuzmin, J. Maltas, J. Pelesko, J. A. Scarborough, J. G. Scott, G. Sedor, and D. T. Weaver, “UV Sterilization of Personal Protective Equipment with Idle Laboratory Biosafety Cabinets During the Covid-19 Pandemic,” medRxiv (2020).

Galeano, B.

W. L. Nicholson and B. Galeano, “UV Resistance of Bacillus anthracis Spores Revisited: Validation of Bacillus subtilis Spores as UV Surrogates for Spores of B. anthracis Sterne,” Appl. Environ. Microbiol. 69(2), 1327–1330 (2003).
[Crossref]

Gerba, C. P.

N. Nwachuku, C. P. Gerba, A. Oswald, and F. D. Mashadi, “Comparative inactivation of adenovirus serotypes by UV light disinfection,” Appl. Environ. Microbiol. 71(9), 5633–5636 (2005).
[Crossref]

Gopalakrishnan, V.

K. J. Card, D. Crozier, A. Dhawan, M. Dinh, E. Dolson, N. Farrokhian, V. Gopalakrishnan, E. Ho, E. S. King, N. Krishnan, G. Kuzmin, J. Maltas, J. Pelesko, J. A. Scarborough, J. G. Scott, G. Sedor, and D. T. Weaver, “UV Sterilization of Personal Protective Equipment with Idle Laboratory Biosafety Cabinets During the Covid-19 Pandemic,” medRxiv (2020).

Hader, D.

R. Sinha and D. Hader, “UV-induced DNA damage and repair: a review,” Photochem. Photobiol. Sci. 1(4), 225–236 (2002).
[Crossref]

Harris, G. D.

G. D. Harris, V. D. Adams, D. L. Sorensen, and M. S. Curtis, “Ultraviolet inactivation of selected bacteria and viruses with photoreactivation of the bacteria,” Water Res. 21(6), 687–692 (1987).
[Crossref]

Heinonen-Tanski, H.

J. Koivunen and H. Heinonen-Tanski, “Inactivation of enteric microorganisms with chemical disinfectants, UV irradiation and combined chemical/UV treatments,” Water Res. 39(8), 1519–1526 (2005).
[Crossref]

Hijnen, W.

W. Hijnen, E. Beerendonk, and G. Medema, “Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review,” Water Res. 40(1), 3–22 (2006).
[Crossref]

Ho, E.

K. J. Card, D. Crozier, A. Dhawan, M. Dinh, E. Dolson, N. Farrokhian, V. Gopalakrishnan, E. Ho, E. S. King, N. Krishnan, G. Kuzmin, J. Maltas, J. Pelesko, J. A. Scarborough, J. G. Scott, G. Sedor, and D. T. Weaver, “UV Sterilization of Personal Protective Equipment with Idle Laboratory Biosafety Cabinets During the Covid-19 Pandemic,” medRxiv (2020).

Hurt, D. E.

A. M. Armani, D. E. Hurt, D. Hwang, M. C. McCarthy, and A. Scholtz, “Low-tech solutions for the COVID-19 supply chain crisis,” Nat. Rev. Mater. 5(6), 403–406 (2020).
[Crossref]

Hwang, D.

A. M. Armani, D. E. Hurt, D. Hwang, M. C. McCarthy, and A. Scholtz, “Low-tech solutions for the COVID-19 supply chain crisis,” Nat. Rev. Mater. 5(6), 403–406 (2020).
[Crossref]

Ihssen, J.

M. Berney, H. Weilenmann, J. Ihssen, C. Bassin, and T. Egli, “Specific growth rate determines the sensitivity of Escherichia coli to thermal, UVA, and solar disinfection,” Appl. Environ. Microbiol. 72(4), 2586–2593 (2006).
[Crossref]

Kampf, G.

A. Kramer, I. Schwebke, and G. Kampf, “How long do nosocomial pathogens persist on inanimate surfaces? A systematic review,” BMC Infect. Dis. 6(1), 130 (2006).
[Crossref]

King, E. S.

K. J. Card, D. Crozier, A. Dhawan, M. Dinh, E. Dolson, N. Farrokhian, V. Gopalakrishnan, E. Ho, E. S. King, N. Krishnan, G. Kuzmin, J. Maltas, J. Pelesko, J. A. Scarborough, J. G. Scott, G. Sedor, and D. T. Weaver, “UV Sterilization of Personal Protective Equipment with Idle Laboratory Biosafety Cabinets During the Covid-19 Pandemic,” medRxiv (2020).

Ko, G.

J. Lee, K. Zoh, and G. Ko, “Inactivation and UV disinfection of murine norovirus with TiO2 under various environmental conditions,” Appl. Environ. Microbiol. 74(7), 2111–2117 (2008).
[Crossref]

Koivunen, J.

J. Koivunen and H. Heinonen-Tanski, “Inactivation of enteric microorganisms with chemical disinfectants, UV irradiation and combined chemical/UV treatments,” Water Res. 39(8), 1519–1526 (2005).
[Crossref]

Kramer, A.

A. Kramer, I. Schwebke, and G. Kampf, “How long do nosocomial pathogens persist on inanimate surfaces? A systematic review,” BMC Infect. Dis. 6(1), 130 (2006).
[Crossref]

Krishnan, N.

K. J. Card, D. Crozier, A. Dhawan, M. Dinh, E. Dolson, N. Farrokhian, V. Gopalakrishnan, E. Ho, E. S. King, N. Krishnan, G. Kuzmin, J. Maltas, J. Pelesko, J. A. Scarborough, J. G. Scott, G. Sedor, and D. T. Weaver, “UV Sterilization of Personal Protective Equipment with Idle Laboratory Biosafety Cabinets During the Covid-19 Pandemic,” medRxiv (2020).

Kuzmin, G.

K. J. Card, D. Crozier, A. Dhawan, M. Dinh, E. Dolson, N. Farrokhian, V. Gopalakrishnan, E. Ho, E. S. King, N. Krishnan, G. Kuzmin, J. Maltas, J. Pelesko, J. A. Scarborough, J. G. Scott, G. Sedor, and D. T. Weaver, “UV Sterilization of Personal Protective Equipment with Idle Laboratory Biosafety Cabinets During the Covid-19 Pandemic,” medRxiv (2020).

Lee, J.

J. Lee, K. Zoh, and G. Ko, “Inactivation and UV disinfection of murine norovirus with TiO2 under various environmental conditions,” Appl. Environ. Microbiol. 74(7), 2111–2117 (2008).
[Crossref]

Lindsay, B.

B. Ernest R., M. Anne, A. Arthur I., and B. Lindsay, “Inactivation of Bacillus Spores by Ultraviolet or Gamma Radiation,” J. Environ. Eng. 131(9), 1245–1252 (2005).
[Crossref]

Maldé, C.

J. Edmends, C. Maldé, and S. Corrigan, “Measurements of the far ultraviolet reflectivity of evaporated aluminum films under exposure to O2, H2O, CO and CO2,” Vacuum 40(5), 471–475 (1990).
[Crossref]

Maltas, J.

K. J. Card, D. Crozier, A. Dhawan, M. Dinh, E. Dolson, N. Farrokhian, V. Gopalakrishnan, E. Ho, E. S. King, N. Krishnan, G. Kuzmin, J. Maltas, J. Pelesko, J. A. Scarborough, J. G. Scott, G. Sedor, and D. T. Weaver, “UV Sterilization of Personal Protective Equipment with Idle Laboratory Biosafety Cabinets During the Covid-19 Pandemic,” medRxiv (2020).

Mashadi, F. D.

N. Nwachuku, C. P. Gerba, A. Oswald, and F. D. Mashadi, “Comparative inactivation of adenovirus serotypes by UV light disinfection,” Appl. Environ. Microbiol. 71(9), 5633–5636 (2005).
[Crossref]

McCarthy, M. C.

A. M. Armani, D. E. Hurt, D. Hwang, M. C. McCarthy, and A. Scholtz, “Low-tech solutions for the COVID-19 supply chain crisis,” Nat. Rev. Mater. 5(6), 403–406 (2020).
[Crossref]

McFeters, G.

W. Cochran, G. McFeters, and P. Stewart, “Reduced susceptibility of thin Pseudomonas aeruginosa biofilms to hydrogen peroxide and monochloramine,” J. Appl. Microbiol. 88(1), 22–30 (2001).
[Crossref]

Medema, G.

W. Hijnen, E. Beerendonk, and G. Medema, “Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review,” Water Res. 40(1), 3–22 (2006).
[Crossref]

Nicholson, W. L.

W. L. Nicholson and B. Galeano, “UV Resistance of Bacillus anthracis Spores Revisited: Validation of Bacillus subtilis Spores as UV Surrogates for Spores of B. anthracis Sterne,” Appl. Environ. Microbiol. 69(2), 1327–1330 (2003).
[Crossref]

Nwachuku, N.

N. Nwachuku, C. P. Gerba, A. Oswald, and F. D. Mashadi, “Comparative inactivation of adenovirus serotypes by UV light disinfection,” Appl. Environ. Microbiol. 71(9), 5633–5636 (2005).
[Crossref]

Oey, I.

A. Soni, I. Oey, P. Silcock, and P. Bremer, “Bacillus Spores in the Food Industry: A Review on Resistance and Response to Novel Inactivation Technologies,” Compr. Rev. Food Sci. Food Saf. 15(6), 1139–1148 (2016).
[Crossref]

Oswald, A.

N. Nwachuku, C. P. Gerba, A. Oswald, and F. D. Mashadi, “Comparative inactivation of adenovirus serotypes by UV light disinfection,” Appl. Environ. Microbiol. 71(9), 5633–5636 (2005).
[Crossref]

Pelesko, J.

K. J. Card, D. Crozier, A. Dhawan, M. Dinh, E. Dolson, N. Farrokhian, V. Gopalakrishnan, E. Ho, E. S. King, N. Krishnan, G. Kuzmin, J. Maltas, J. Pelesko, J. A. Scarborough, J. G. Scott, G. Sedor, and D. T. Weaver, “UV Sterilization of Personal Protective Equipment with Idle Laboratory Biosafety Cabinets During the Covid-19 Pandemic,” medRxiv (2020).

Rutala, W.

W. Rutala and D. Weber, “Uses of inorganic hypochlorite (bleach) in health-care facilities,” Clin. Microbiol. Rev. 10(4), 597–610 (1997).
[Crossref]

Scarborough, J. A.

K. J. Card, D. Crozier, A. Dhawan, M. Dinh, E. Dolson, N. Farrokhian, V. Gopalakrishnan, E. Ho, E. S. King, N. Krishnan, G. Kuzmin, J. Maltas, J. Pelesko, J. A. Scarborough, J. G. Scott, G. Sedor, and D. T. Weaver, “UV Sterilization of Personal Protective Equipment with Idle Laboratory Biosafety Cabinets During the Covid-19 Pandemic,” medRxiv (2020).

Scholtz, A.

A. M. Armani, D. E. Hurt, D. Hwang, M. C. McCarthy, and A. Scholtz, “Low-tech solutions for the COVID-19 supply chain crisis,” Nat. Rev. Mater. 5(6), 403–406 (2020).
[Crossref]

Schwebke, I.

A. Kramer, I. Schwebke, and G. Kampf, “How long do nosocomial pathogens persist on inanimate surfaces? A systematic review,” BMC Infect. Dis. 6(1), 130 (2006).
[Crossref]

Scott, J. G.

K. J. Card, D. Crozier, A. Dhawan, M. Dinh, E. Dolson, N. Farrokhian, V. Gopalakrishnan, E. Ho, E. S. King, N. Krishnan, G. Kuzmin, J. Maltas, J. Pelesko, J. A. Scarborough, J. G. Scott, G. Sedor, and D. T. Weaver, “UV Sterilization of Personal Protective Equipment with Idle Laboratory Biosafety Cabinets During the Covid-19 Pandemic,” medRxiv (2020).

Sedor, G.

K. J. Card, D. Crozier, A. Dhawan, M. Dinh, E. Dolson, N. Farrokhian, V. Gopalakrishnan, E. Ho, E. S. King, N. Krishnan, G. Kuzmin, J. Maltas, J. Pelesko, J. A. Scarborough, J. G. Scott, G. Sedor, and D. T. Weaver, “UV Sterilization of Personal Protective Equipment with Idle Laboratory Biosafety Cabinets During the Covid-19 Pandemic,” medRxiv (2020).

Setlow, P.

P. Setlow, “Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals,” J. Appl. Microbiol. 101(3), 514–525 (2006).
[Crossref]

P. Setlow, “Resistance of spores of Bacillus species to ultraviolet light,” Environ. Mol. Mutagen. 38(2-3), 97–104 (2001).
[Crossref]

Silcock, P.

A. Soni, I. Oey, P. Silcock, and P. Bremer, “Bacillus Spores in the Food Industry: A Review on Resistance and Response to Novel Inactivation Technologies,” Compr. Rev. Food Sci. Food Saf. 15(6), 1139–1148 (2016).
[Crossref]

Sinha, R.

R. Sinha and D. Hader, “UV-induced DNA damage and repair: a review,” Photochem. Photobiol. Sci. 1(4), 225–236 (2002).
[Crossref]

Soni, A.

A. Soni, I. Oey, P. Silcock, and P. Bremer, “Bacillus Spores in the Food Industry: A Review on Resistance and Response to Novel Inactivation Technologies,” Compr. Rev. Food Sci. Food Saf. 15(6), 1139–1148 (2016).
[Crossref]

Sorensen, D. L.

G. D. Harris, V. D. Adams, D. L. Sorensen, and M. S. Curtis, “Ultraviolet inactivation of selected bacteria and viruses with photoreactivation of the bacteria,” Water Res. 21(6), 687–692 (1987).
[Crossref]

Stewart, P.

W. Cochran, G. McFeters, and P. Stewart, “Reduced susceptibility of thin Pseudomonas aeruginosa biofilms to hydrogen peroxide and monochloramine,” J. Appl. Microbiol. 88(1), 22–30 (2001).
[Crossref]

Weaver, D. T.

K. J. Card, D. Crozier, A. Dhawan, M. Dinh, E. Dolson, N. Farrokhian, V. Gopalakrishnan, E. Ho, E. S. King, N. Krishnan, G. Kuzmin, J. Maltas, J. Pelesko, J. A. Scarborough, J. G. Scott, G. Sedor, and D. T. Weaver, “UV Sterilization of Personal Protective Equipment with Idle Laboratory Biosafety Cabinets During the Covid-19 Pandemic,” medRxiv (2020).

Weber, D.

W. Rutala and D. Weber, “Uses of inorganic hypochlorite (bleach) in health-care facilities,” Clin. Microbiol. Rev. 10(4), 597–610 (1997).
[Crossref]

Weilenmann, H.

M. Berney, H. Weilenmann, J. Ihssen, C. Bassin, and T. Egli, “Specific growth rate determines the sensitivity of Escherichia coli to thermal, UVA, and solar disinfection,” Appl. Environ. Microbiol. 72(4), 2586–2593 (2006).
[Crossref]

Zoh, K.

J. Lee, K. Zoh, and G. Ko, “Inactivation and UV disinfection of murine norovirus with TiO2 under various environmental conditions,” Appl. Environ. Microbiol. 74(7), 2111–2117 (2008).
[Crossref]

Acta Hydrochim. Hydrobiol. (1)

M. Clauß, “Higher effectiveness of photoinactivation of bacterial spores, UV resistant vegetative bacteria and mold spores with 222 nm compared to 254 nm wavelength,” Acta Hydrochim. Hydrobiol. 34(6), 525–532 (2006).
[Crossref]

Appl. Environ. Microbiol. (4)

W. L. Nicholson and B. Galeano, “UV Resistance of Bacillus anthracis Spores Revisited: Validation of Bacillus subtilis Spores as UV Surrogates for Spores of B. anthracis Sterne,” Appl. Environ. Microbiol. 69(2), 1327–1330 (2003).
[Crossref]

M. Berney, H. Weilenmann, J. Ihssen, C. Bassin, and T. Egli, “Specific growth rate determines the sensitivity of Escherichia coli to thermal, UVA, and solar disinfection,” Appl. Environ. Microbiol. 72(4), 2586–2593 (2006).
[Crossref]

N. Nwachuku, C. P. Gerba, A. Oswald, and F. D. Mashadi, “Comparative inactivation of adenovirus serotypes by UV light disinfection,” Appl. Environ. Microbiol. 71(9), 5633–5636 (2005).
[Crossref]

J. Lee, K. Zoh, and G. Ko, “Inactivation and UV disinfection of murine norovirus with TiO2 under various environmental conditions,” Appl. Environ. Microbiol. 74(7), 2111–2117 (2008).
[Crossref]

BMC Infect. Dis. (1)

A. Kramer, I. Schwebke, and G. Kampf, “How long do nosocomial pathogens persist on inanimate surfaces? A systematic review,” BMC Infect. Dis. 6(1), 130 (2006).
[Crossref]

Clin. Microbiol. Rev. (1)

W. Rutala and D. Weber, “Uses of inorganic hypochlorite (bleach) in health-care facilities,” Clin. Microbiol. Rev. 10(4), 597–610 (1997).
[Crossref]

Compr. Rev. Food Sci. Food Saf. (1)

A. Soni, I. Oey, P. Silcock, and P. Bremer, “Bacillus Spores in the Food Industry: A Review on Resistance and Response to Novel Inactivation Technologies,” Compr. Rev. Food Sci. Food Saf. 15(6), 1139–1148 (2016).
[Crossref]

Environ. Mol. Mutagen. (1)

P. Setlow, “Resistance of spores of Bacillus species to ultraviolet light,” Environ. Mol. Mutagen. 38(2-3), 97–104 (2001).
[Crossref]

J. Appl. Microbiol. (2)

W. Cochran, G. McFeters, and P. Stewart, “Reduced susceptibility of thin Pseudomonas aeruginosa biofilms to hydrogen peroxide and monochloramine,” J. Appl. Microbiol. 88(1), 22–30 (2001).
[Crossref]

P. Setlow, “Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals,” J. Appl. Microbiol. 101(3), 514–525 (2006).
[Crossref]

J. Environ. Eng. (1)

B. Ernest R., M. Anne, A. Arthur I., and B. Lindsay, “Inactivation of Bacillus Spores by Ultraviolet or Gamma Radiation,” J. Environ. Eng. 131(9), 1245–1252 (2005).
[Crossref]

Nat. Rev. Mater. (1)

A. M. Armani, D. E. Hurt, D. Hwang, M. C. McCarthy, and A. Scholtz, “Low-tech solutions for the COVID-19 supply chain crisis,” Nat. Rev. Mater. 5(6), 403–406 (2020).
[Crossref]

Photochem. Photobiol. Sci. (1)

R. Sinha and D. Hader, “UV-induced DNA damage and repair: a review,” Photochem. Photobiol. Sci. 1(4), 225–236 (2002).
[Crossref]

Vacuum (1)

J. Edmends, C. Maldé, and S. Corrigan, “Measurements of the far ultraviolet reflectivity of evaporated aluminum films under exposure to O2, H2O, CO and CO2,” Vacuum 40(5), 471–475 (1990).
[Crossref]

Water Res. (3)

G. D. Harris, V. D. Adams, D. L. Sorensen, and M. S. Curtis, “Ultraviolet inactivation of selected bacteria and viruses with photoreactivation of the bacteria,” Water Res. 21(6), 687–692 (1987).
[Crossref]

J. Koivunen and H. Heinonen-Tanski, “Inactivation of enteric microorganisms with chemical disinfectants, UV irradiation and combined chemical/UV treatments,” Water Res. 39(8), 1519–1526 (2005).
[Crossref]

W. Hijnen, E. Beerendonk, and G. Medema, “Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review,” Water Res. 40(1), 3–22 (2006).
[Crossref]

Other (4)

Centers for Disease Control and Prevention (U.S.), Antibiotic Resistance Threats in the United States, 2019 (Centers for Disease Control and Prevention (U.S.), 2019).

K. Bergmann, “UV-C Irradiation: A New Viral Inactivation Method for Biopharmaceuticals,” American Pharmaceutical Review (2014).

FDA, CFR - Code of Federal Regulations Title 21, Code of Federal Regulations Title 21 (US Government, 2019), Vol. 8.

K. J. Card, D. Crozier, A. Dhawan, M. Dinh, E. Dolson, N. Farrokhian, V. Gopalakrishnan, E. Ho, E. S. King, N. Krishnan, G. Kuzmin, J. Maltas, J. Pelesko, J. A. Scarborough, J. G. Scott, G. Sedor, and D. T. Weaver, “UV Sterilization of Personal Protective Equipment with Idle Laboratory Biosafety Cabinets During the Covid-19 Pandemic,” medRxiv (2020).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. UV-C Disinfection system. (a) Schematic of system. (b) Image of system before application of reflective coating, (c) Example of several systems on their sides. (Shown with visible lights for safety.)
Fig. 2.
Fig. 2. Schematic showing key variables used to calculate cumulative UV-C dose.
Fig. 3.
Fig. 3. Cumulative UV-C dose delivered for a three minute exposure inside the UV-C disinfection system. Three different wall reflectivity values are modeled: (a) 0%, (b) 25%, and (c) 85%. (d) The dose at different heights for all three reflectivities modeled, measured in the centered of the box x-y plane (e) Dose as a function of time for three different UV-C source powers. This calculation is performed at the center of the bottom of the enclosure. The specific coordinate based on the schematic in Fig. 2 is (39.4, 25.4, 0). For comparison, the requisite doses to achieve three log reduction in growth for two bacteria and two viruses are also plotted [1720].
Fig. 4.
Fig. 4. Summary of results. (a) In both control samples, over 106 colony forming units (CFUs) grew during the 24 hour incubation period. In contrast, the majority of the exposed dishes were unable to support colony formation, indicating a 6 log reduction. (b) Control sample of B. cereus not exposed to UV-C formed colonies after 24 hour incubation time. (c) In contrast, this growth was dramatically eliminated after 1 minute exposure of identical sample preparations to the UV-C.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

D i s t a n c e = ( X x ) 2 + y 2 + ( h z ) 2
P / 4 π ( ( X x ) 2 + y 2 + ( h z ) 2 ) .
I = L l 2 L + l 2 P / d X 4 π ( ( X x ) 2 + y 2 + ( h z ) 2 ) .
I w i t h r e f l e c t i o n = L l 2 L + l 2 P / l d X 4 π ( ( X x ) 2 + y 2 + ( h z ) 2 ) + f i r s t o r d e r r e f l e c t i o n L l 2 L + l 2 α P / l d X N e w d i s t a n c e + s e c o n d o r d e r r e f l e c t i o n L l 2 L + l 2 α 2 P / l d X N e w d i s t a n c e