Abstract

Photo-magnetic imaging (PMI) is an emerging optical imaging modality that showed great performance on providing absorption maps with high resolution and quantitative accuracy. As a multi-modality technology, PMI warms up the imaged object using a near infrared laser while temperature variation is measured using magnetic resonance imaging. By probing tissue at multiple wavelengths, concentration of the main tissue chromophores such as oxy- and deoxy-hemoglobin, lipid, and water are obtained then used to derive functional parameters such as total hemoglobin concentration and relative oxygen saturation. In this paper, we present a multi-wavelength PMI system that was custom-built to host five different laser wavelengths. After recovering the high-resolution absorption maps, a least-squared minimization process was used to resolve the different chromophore concentration. The performance of the system was experimentally tested on a phantom with two different dyes. Their concentrations were successfully assessed with high spatial resolution and average accuracy of nearly 80%.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. K. V. Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (600–1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 406–414 (2016).
    [Crossref]
  2. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref]
  3. H. S. Yazdi, T. D. O’Sullivan, A. Leproux, B. Hill, A. Durkin, S. Telep, J. Lam, S. S. Yazdi, A. M. Police, and R. M. Carroll, “Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy,” J. Biomed. Opt. 22(4), 045003 (2017).
    [Crossref]
  4. M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259(2), 365–374 (2011).
    [Crossref]
  5. W. Cong, X. Intes, and G. Wang, “Optical tomographic imaging for breast cancer detection,” J. Biomed. Opt. 22(09), 1 (2017).
    [Crossref]
  6. M. Algarawi, A. Luk, H. Erkol, M. Almudhry, B. M. Unlu, G. Gulsen, and F. Nouizi, “Reconstruction chromophore concentration directly by Photo-Magnetic Imaging: simulation study,” in Clinical and Translational Biophotonics, (Optical Society of America, 2020), JTu3A. 15.
  7. M. Algarawi, F. Nouizi, A. Luk, M. Mehrabi, H. Erkol, M. B. Ünlü, G. Gulsen, and S. Ha, “High-resolution chromophore concentration recovery using multi-wavelength photo-magnetic imaging,” Proc. SPIE 10871, 108710F (2019).
    [Crossref]
  8. S. Vasudevan, F. Forghani, C. Campbell, S. Bedford, and T. D. O’Sullivan, “Method for Quantitative Broadband Diffuse Optical Spectroscopy of Tumor-Like Inclusions,” Appl. Sci. 10(4), 1419 (2020).
    [Crossref]
  9. D. Lighter, J. Hughes, I. Styles, A. Filer, and H. Dehghani, “Multispectral, non-contact diffuse optical tomography of healthy human finger joints,” Biomed. Opt. Express 9(4), 1445–1460 (2018).
    [Crossref]
  10. A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
    [Crossref]
  11. Y. Lin, M. T. Ghijsen, H. Gao, N. Liu, O. Nalcioglu, and G. Gulsen, “A photo-multiplier tube-based hybrid MRI and frequency domain fluorescence tomography system for small animal imaging,” Phys. Med. Biol. 56(15), 4731–4747 (2011).
    [Crossref]
  12. F. Nouizi, M. Torregrossa, R. Chabrier, and P. Poulet, “Improvement of absorption and scattering discrimination by selection of sensitive points on temporal profile in diffuse optical tomography,” Opt. Express 19(13), 12843–12854 (2011).
    [Crossref]
  13. A. Farina, M. Betcke, L. Di Sieno, A. Bassi, N. Ducros, A. Pifferi, G. Valentini, S. Arridge, and C. D’Andrea, “Multiple-view diffuse optical tomography system based on time-domain compressive measurements,” Opt. Lett. 42(14), 2822–2825 (2017).
    [Crossref]
  14. M. Alayed, M. A. Naser, I. Aden-Ali, and M. J. Deen, “Time-resolved diffuse optical tomography system using an accelerated inverse problem solver,” Opt. Express 26(2), 963–979 (2018).
    [Crossref]
  15. J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13(4), 041305 (2008).
    [Crossref]
  16. J. Ruiz, F. Nouizi, J. Cho, J. Zheng, Y. Li, J.-H. Chen, M.-Y. Su, and G. Gulsen, “Breast density quantification using structured-light-based diffuse optical tomography simulations,” Appl. Opt. 56(25), 7146–7157 (2017).
    [Crossref]
  17. H. Vavadi, A. Mostafa, F. Zhou, K. S. Uddin, M. Althobaiti, C. Xu, R. Bansal, F. Ademuyiwa, S. Poplack, and Q. Zhu, “Compact ultrasound-guided diffuse optical tomography system for breast cancer imaging,” J. Biomed. Opt. 24(02), 1 (2018).
    [Crossref]
  18. P. G. Anderson, J. M. Kainerstorfer, A. Sassaroli, N. Krishnamurthy, M. J. Homer, R. A. Graham, and S. Fantini, “Broadband optical mammography: chromophore concentration and hemoglobin saturation contrast in breast cancer,” PLoS One 10, e0117322 (2015).
    [Crossref]
  19. A. Leproux, Y. M. Kim, J. W. Min, C. E. McLaren, W.-P. Chen, T. D. O’Sullivan, S.-H. Lee, P.-S. Chung, and B. J. Tromberg, “Differential diagnosis of breast masses in South Korean premenopausal women using diffuse optical spectroscopic imaging,” J. Biomed. Opt. 21(7), 074001 (2016).
    [Crossref]
  20. Y. Yamada and S. Okawa, “Diffuse optical tomography: Present status and its future,” Opt. Rev. 21(3), 185–205 (2014).
    [Crossref]
  21. L. Zhang, Y. Zhao, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Direct regularization from co-registered anatomical images for MRI-guided near-infrared spectral tomographic image reconstruction,” Biomed. Opt. Express 6(9), 3618–3630 (2015).
    [Crossref]
  22. M. Althobaiti, H. Vavadi, and Q. Zhu, “Diffuse optical tomography reconstruction method using ultrasound images as prior for regularization matrix,” J. Biomed. Opt. 22(2), 026002 (2017).
    [Crossref]
  23. T. C. Kwong, M. Hsing, Y. Lin, D. Thayer, M. B. Unlu, M.-Y. Su, and G. Gulsen, “Differentiation of tumor vasculature heterogeneity levels in small animals based on total hemoglobin concentration using magnetic resonance-guided diffuse optical tomography in vivo,” Appl. Opt. 55(21), 5479–5487 (2016).
    [Crossref]
  24. H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Philos. Trans. R. Soc., A 367(1900), 3073–3093 (2009).
    [Crossref]
  25. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U. S. A. 97(6), 2767–2772 (2000).
    [Crossref]
  26. V. Rieke and K. Butts Pauly, “MR thermometry,” J. Magn. Reson. Imaging 27(2), 376–390 (2008).
    [Crossref]
  27. F. Nouizi, A. Luk, D. Thayer, Y. Lin, S. Ha, and G. Gulsen, “Experimental validation of a high-resolution diffuse optical imaging modality: photomagnetic imaging,” J. Biomed. Opt. 21(1), 016009 (2016).
    [Crossref]
  28. D. A. Thayer, Y. Lin, A. Luk, and G. Gulsen, “Laser-induced photo-thermal magnetic imaging,” Appl. Phys. Lett. 101(8), 083703 (2012).
    [Crossref]
  29. A. Luk, F. Nouizi, H. Erkol, M. B. Unlu, and G. Gulsen, “Ex vivo validation of photo-magnetic imaging,” Opt. Lett. 42(20), 4171–4174 (2017).
    [Crossref]
  30. Y. Lin, H. Gao, D. Thayer, A. L. Luk, and G. Gulsen, “Photo-magnetic imaging: resolving optical contrast at MRI resolution,” Phys. Med. Biol. 58(11), 3551–3562 (2013).
    [Crossref]
  31. F. Nouizi, H. Erkol, A. Luk, M. Marks, M. B. Unlu, and G. Gulsen, “An accelerated photo-magnetic imaging reconstruction algorithm based on an analytical forward solution and a fast Jacobian assembly method,” Phys. Med. Biol. 61(20), 7448–7465 (2016).
    [Crossref]
  32. H. Erkol, F. Nouizi, A. Luk, M. B. Unlu, and G. Gulsen, “Comprehensive analytical model for CW laser induced heat in turbid media,” Opt. Express 23(24), 31069–31084 (2015).
    [Crossref]
  33. F. Nouizi, H. Erkol, A. Luk, M. B. Unlu, and G. Gulsen, “Real-time photo-magnetic imaging,” Biomed. Opt. Express 7(10), 3899–3904 (2016).
    [Crossref]
  34. A. T. Luk, F. Nouizi, M. Marks, T. Kart, and G. Gulsen, “Monitoring gold nanoparticle distribution with high resolution using photo-magnetic imaging,” Proc. SPIE 9706, 97060M (2016).
    [Crossref]
  35. M. Algarawi, F. Nouizi, A. Luk, H. Erkol, M. Almudhry, B. M. Unlu, S. Ha, and G. Gulsen, “Experimental validation of a multiple wavelength Photo-Magnetic Imaging system,” in Optical Tomography and Spectroscopy, (Optical Society of America, 2020), STh3D. 3.
  36. S. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
    [Crossref]
  37. Q. Zhu, P. U. Hegde, A. Ricci Jr, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, and P. J. Deckers, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
    [Crossref]
  38. Y. Lin, D. Thayer, O. Nalcioglu, and G. Gulsen, “Tumor characterization in small animals using magnetic resonance-guided dynamic contrast enhanced diffuse optical tomography,” J. Biomed. Opt. 16(10), 106015 (2011).
    [Crossref]
  39. Y. Lin, W. C. Barber, J. S. Iwanczyk, N. E. Hartsough, W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system,” Opt. Express 18(8), 7835–7850 (2010).
    [Crossref]
  40. F. Nouizi, T. C. Kwong, J. Cho, Y. Lin, U. Sampathkumaran, and G. Gulsen, “Implementation of a new scanning method for high-resolution fluorescence tomography using thermo-sensitive fluorescent agents,” Opt. Lett. 40(21), 4991–4994 (2015).
    [Crossref]
  41. A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys. 37(5), 1976–1986 (2010).
    [Crossref]
  42. A. T. Luk, S. Ha, F. Nouizi, D. Thayer, Y. Lin, and G. Gulsen, “A true multi-modality approach for high resolution optical imaging: photo-magnetic imaging,” in SPIE BiOS, (International Society for Optics and Photonics, 2014), 89370G–89377.
  43. J. Y. Lee, J. T. Pierce, R. Zeh, S. S. Cho, R. Salinas, S. Nie, and S. Singhal, “Intraoperative near-infrared optical contrast can localize brain metastases,” World Neurosurg. 106, 120–130 (2017).
    [Crossref]
  44. Z.-Z. J. Lim, J.-E. J. Li, C.-T. Ng, L.-Y. L. Yung, and B.-H. Bay, “Gold nanoparticles in cancer therapy,” Acta Pharmacol. Sin. 32(8), 983–990 (2011).
    [Crossref]
  45. P. Taroni, A. M. Paganoni, F. Ieva, A. Pifferi, G. Quarto, F. Abbate, E. Cassano, and R. Cubeddu, “Non-invasive optical estimate of tissue composition to differentiate malignant from benign breast lesions: A pilot study,” Sci. Rep. 7(1), 40683–11 (2017).
    [Crossref]

2020 (1)

S. Vasudevan, F. Forghani, C. Campbell, S. Bedford, and T. D. O’Sullivan, “Method for Quantitative Broadband Diffuse Optical Spectroscopy of Tumor-Like Inclusions,” Appl. Sci. 10(4), 1419 (2020).
[Crossref]

2019 (1)

M. Algarawi, F. Nouizi, A. Luk, M. Mehrabi, H. Erkol, M. B. Ünlü, G. Gulsen, and S. Ha, “High-resolution chromophore concentration recovery using multi-wavelength photo-magnetic imaging,” Proc. SPIE 10871, 108710F (2019).
[Crossref]

2018 (3)

2017 (8)

H. S. Yazdi, T. D. O’Sullivan, A. Leproux, B. Hill, A. Durkin, S. Telep, J. Lam, S. S. Yazdi, A. M. Police, and R. M. Carroll, “Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy,” J. Biomed. Opt. 22(4), 045003 (2017).
[Crossref]

A. Farina, M. Betcke, L. Di Sieno, A. Bassi, N. Ducros, A. Pifferi, G. Valentini, S. Arridge, and C. D’Andrea, “Multiple-view diffuse optical tomography system based on time-domain compressive measurements,” Opt. Lett. 42(14), 2822–2825 (2017).
[Crossref]

J. Ruiz, F. Nouizi, J. Cho, J. Zheng, Y. Li, J.-H. Chen, M.-Y. Su, and G. Gulsen, “Breast density quantification using structured-light-based diffuse optical tomography simulations,” Appl. Opt. 56(25), 7146–7157 (2017).
[Crossref]

W. Cong, X. Intes, and G. Wang, “Optical tomographic imaging for breast cancer detection,” J. Biomed. Opt. 22(09), 1 (2017).
[Crossref]

M. Althobaiti, H. Vavadi, and Q. Zhu, “Diffuse optical tomography reconstruction method using ultrasound images as prior for regularization matrix,” J. Biomed. Opt. 22(2), 026002 (2017).
[Crossref]

A. Luk, F. Nouizi, H. Erkol, M. B. Unlu, and G. Gulsen, “Ex vivo validation of photo-magnetic imaging,” Opt. Lett. 42(20), 4171–4174 (2017).
[Crossref]

J. Y. Lee, J. T. Pierce, R. Zeh, S. S. Cho, R. Salinas, S. Nie, and S. Singhal, “Intraoperative near-infrared optical contrast can localize brain metastases,” World Neurosurg. 106, 120–130 (2017).
[Crossref]

P. Taroni, A. M. Paganoni, F. Ieva, A. Pifferi, G. Quarto, F. Abbate, E. Cassano, and R. Cubeddu, “Non-invasive optical estimate of tissue composition to differentiate malignant from benign breast lesions: A pilot study,” Sci. Rep. 7(1), 40683–11 (2017).
[Crossref]

2016 (7)

F. Nouizi, A. Luk, D. Thayer, Y. Lin, S. Ha, and G. Gulsen, “Experimental validation of a high-resolution diffuse optical imaging modality: photomagnetic imaging,” J. Biomed. Opt. 21(1), 016009 (2016).
[Crossref]

F. Nouizi, H. Erkol, A. Luk, M. Marks, M. B. Unlu, and G. Gulsen, “An accelerated photo-magnetic imaging reconstruction algorithm based on an analytical forward solution and a fast Jacobian assembly method,” Phys. Med. Biol. 61(20), 7448–7465 (2016).
[Crossref]

F. Nouizi, H. Erkol, A. Luk, M. B. Unlu, and G. Gulsen, “Real-time photo-magnetic imaging,” Biomed. Opt. Express 7(10), 3899–3904 (2016).
[Crossref]

A. T. Luk, F. Nouizi, M. Marks, T. Kart, and G. Gulsen, “Monitoring gold nanoparticle distribution with high resolution using photo-magnetic imaging,” Proc. SPIE 9706, 97060M (2016).
[Crossref]

T. C. Kwong, M. Hsing, Y. Lin, D. Thayer, M. B. Unlu, M.-Y. Su, and G. Gulsen, “Differentiation of tumor vasculature heterogeneity levels in small animals based on total hemoglobin concentration using magnetic resonance-guided diffuse optical tomography in vivo,” Appl. Opt. 55(21), 5479–5487 (2016).
[Crossref]

A. Leproux, Y. M. Kim, J. W. Min, C. E. McLaren, W.-P. Chen, T. D. O’Sullivan, S.-H. Lee, P.-S. Chung, and B. J. Tromberg, “Differential diagnosis of breast masses in South Korean premenopausal women using diffuse optical spectroscopic imaging,” J. Biomed. Opt. 21(7), 074001 (2016).
[Crossref]

S. K. V. Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (600–1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 406–414 (2016).
[Crossref]

2015 (4)

2014 (2)

Y. Yamada and S. Okawa, “Diffuse optical tomography: Present status and its future,” Opt. Rev. 21(3), 185–205 (2014).
[Crossref]

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]

2013 (2)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref]

Y. Lin, H. Gao, D. Thayer, A. L. Luk, and G. Gulsen, “Photo-magnetic imaging: resolving optical contrast at MRI resolution,” Phys. Med. Biol. 58(11), 3551–3562 (2013).
[Crossref]

2012 (1)

D. A. Thayer, Y. Lin, A. Luk, and G. Gulsen, “Laser-induced photo-thermal magnetic imaging,” Appl. Phys. Lett. 101(8), 083703 (2012).
[Crossref]

2011 (5)

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259(2), 365–374 (2011).
[Crossref]

Y. Lin, M. T. Ghijsen, H. Gao, N. Liu, O. Nalcioglu, and G. Gulsen, “A photo-multiplier tube-based hybrid MRI and frequency domain fluorescence tomography system for small animal imaging,” Phys. Med. Biol. 56(15), 4731–4747 (2011).
[Crossref]

F. Nouizi, M. Torregrossa, R. Chabrier, and P. Poulet, “Improvement of absorption and scattering discrimination by selection of sensitive points on temporal profile in diffuse optical tomography,” Opt. Express 19(13), 12843–12854 (2011).
[Crossref]

Y. Lin, D. Thayer, O. Nalcioglu, and G. Gulsen, “Tumor characterization in small animals using magnetic resonance-guided dynamic contrast enhanced diffuse optical tomography,” J. Biomed. Opt. 16(10), 106015 (2011).
[Crossref]

Z.-Z. J. Lim, J.-E. J. Li, C.-T. Ng, L.-Y. L. Yung, and B.-H. Bay, “Gold nanoparticles in cancer therapy,” Acta Pharmacol. Sin. 32(8), 983–990 (2011).
[Crossref]

2010 (3)

Q. Zhu, P. U. Hegde, A. Ricci Jr, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, and P. J. Deckers, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[Crossref]

Y. Lin, W. C. Barber, J. S. Iwanczyk, N. E. Hartsough, W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system,” Opt. Express 18(8), 7835–7850 (2010).
[Crossref]

A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys. 37(5), 1976–1986 (2010).
[Crossref]

2009 (1)

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Philos. Trans. R. Soc., A 367(1900), 3073–3093 (2009).
[Crossref]

2008 (2)

V. Rieke and K. Butts Pauly, “MR thermometry,” J. Magn. Reson. Imaging 27(2), 376–390 (2008).
[Crossref]

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13(4), 041305 (2008).
[Crossref]

2000 (1)

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U. S. A. 97(6), 2767–2772 (2000).
[Crossref]

1999 (1)

S. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[Crossref]

Abbate, F.

P. Taroni, A. M. Paganoni, F. Ieva, A. Pifferi, G. Quarto, F. Abbate, E. Cassano, and R. Cubeddu, “Non-invasive optical estimate of tissue composition to differentiate malignant from benign breast lesions: A pilot study,” Sci. Rep. 7(1), 40683–11 (2017).
[Crossref]

Ademuyiwa, F.

H. Vavadi, A. Mostafa, F. Zhou, K. S. Uddin, M. Althobaiti, C. Xu, R. Bansal, F. Ademuyiwa, S. Poplack, and Q. Zhu, “Compact ultrasound-guided diffuse optical tomography system for breast cancer imaging,” J. Biomed. Opt. 24(02), 1 (2018).
[Crossref]

Aden-Ali, I.

Aguirre, A.

Q. Zhu, P. U. Hegde, A. Ricci Jr, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, and P. J. Deckers, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[Crossref]

Alayed, M.

Ale, A.

A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys. 37(5), 1976–1986 (2010).
[Crossref]

Algarawi, M.

M. Algarawi, F. Nouizi, A. Luk, M. Mehrabi, H. Erkol, M. B. Ünlü, G. Gulsen, and S. Ha, “High-resolution chromophore concentration recovery using multi-wavelength photo-magnetic imaging,” Proc. SPIE 10871, 108710F (2019).
[Crossref]

M. Algarawi, A. Luk, H. Erkol, M. Almudhry, B. M. Unlu, G. Gulsen, and F. Nouizi, “Reconstruction chromophore concentration directly by Photo-Magnetic Imaging: simulation study,” in Clinical and Translational Biophotonics, (Optical Society of America, 2020), JTu3A. 15.

M. Algarawi, F. Nouizi, A. Luk, H. Erkol, M. Almudhry, B. M. Unlu, S. Ha, and G. Gulsen, “Experimental validation of a multiple wavelength Photo-Magnetic Imaging system,” in Optical Tomography and Spectroscopy, (Optical Society of America, 2020), STh3D. 3.

Almudhry, M.

M. Algarawi, F. Nouizi, A. Luk, H. Erkol, M. Almudhry, B. M. Unlu, S. Ha, and G. Gulsen, “Experimental validation of a multiple wavelength Photo-Magnetic Imaging system,” in Optical Tomography and Spectroscopy, (Optical Society of America, 2020), STh3D. 3.

M. Algarawi, A. Luk, H. Erkol, M. Almudhry, B. M. Unlu, G. Gulsen, and F. Nouizi, “Reconstruction chromophore concentration directly by Photo-Magnetic Imaging: simulation study,” in Clinical and Translational Biophotonics, (Optical Society of America, 2020), JTu3A. 15.

Althobaiti, M.

H. Vavadi, A. Mostafa, F. Zhou, K. S. Uddin, M. Althobaiti, C. Xu, R. Bansal, F. Ademuyiwa, S. Poplack, and Q. Zhu, “Compact ultrasound-guided diffuse optical tomography system for breast cancer imaging,” J. Biomed. Opt. 24(02), 1 (2018).
[Crossref]

M. Althobaiti, H. Vavadi, and Q. Zhu, “Diffuse optical tomography reconstruction method using ultrasound images as prior for regularization matrix,” J. Biomed. Opt. 22(2), 026002 (2017).
[Crossref]

Anderson, P. G.

P. G. Anderson, J. M. Kainerstorfer, A. Sassaroli, N. Krishnamurthy, M. J. Homer, R. A. Graham, and S. Fantini, “Broadband optical mammography: chromophore concentration and hemoglobin saturation contrast in breast cancer,” PLoS One 10, e0117322 (2015).
[Crossref]

Ardeshirpour, Y.

Q. Zhu, P. U. Hegde, A. Ricci Jr, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, and P. J. Deckers, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[Crossref]

Arridge, S.

Bansal, R.

H. Vavadi, A. Mostafa, F. Zhou, K. S. Uddin, M. Althobaiti, C. Xu, R. Bansal, F. Ademuyiwa, S. Poplack, and Q. Zhu, “Compact ultrasound-guided diffuse optical tomography system for breast cancer imaging,” J. Biomed. Opt. 24(02), 1 (2018).
[Crossref]

Barber, W. C.

Bargigia, I.

S. K. V. Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (600–1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 406–414 (2016).
[Crossref]

Bassi, A.

Bay, B.-H.

Z.-Z. J. Lim, J.-E. J. Li, C.-T. Ng, L.-Y. L. Yung, and B.-H. Bay, “Gold nanoparticles in cancer therapy,” Acta Pharmacol. Sin. 32(8), 983–990 (2011).
[Crossref]

Bedford, S.

S. Vasudevan, F. Forghani, C. Campbell, S. Bedford, and T. D. O’Sullivan, “Method for Quantitative Broadband Diffuse Optical Spectroscopy of Tumor-Like Inclusions,” Appl. Sci. 10(4), 1419 (2020).
[Crossref]

Betcke, M.

Butts Pauly, K.

V. Rieke and K. Butts Pauly, “MR thermometry,” J. Magn. Reson. Imaging 27(2), 376–390 (2008).
[Crossref]

Campbell, C.

S. Vasudevan, F. Forghani, C. Campbell, S. Bedford, and T. D. O’Sullivan, “Method for Quantitative Broadband Diffuse Optical Spectroscopy of Tumor-Like Inclusions,” Appl. Sci. 10(4), 1419 (2020).
[Crossref]

Carroll, R. M.

H. S. Yazdi, T. D. O’Sullivan, A. Leproux, B. Hill, A. Durkin, S. Telep, J. Lam, S. S. Yazdi, A. M. Police, and R. M. Carroll, “Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy,” J. Biomed. Opt. 22(4), 045003 (2017).
[Crossref]

Cassano, E.

P. Taroni, A. M. Paganoni, F. Ieva, A. Pifferi, G. Quarto, F. Abbate, E. Cassano, and R. Cubeddu, “Non-invasive optical estimate of tissue composition to differentiate malignant from benign breast lesions: A pilot study,” Sci. Rep. 7(1), 40683–11 (2017).
[Crossref]

Chabrier, R.

Chance, B.

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U. S. A. 97(6), 2767–2772 (2000).
[Crossref]

Chen, J.-H.

Chen, W.-P.

A. Leproux, Y. M. Kim, J. W. Min, C. E. McLaren, W.-P. Chen, T. D. O’Sullivan, S.-H. Lee, P.-S. Chung, and B. J. Tromberg, “Differential diagnosis of breast masses in South Korean premenopausal women using diffuse optical spectroscopic imaging,” J. Biomed. Opt. 21(7), 074001 (2016).
[Crossref]

Cho, J.

Cho, S. S.

J. Y. Lee, J. T. Pierce, R. Zeh, S. S. Cho, R. Salinas, S. Nie, and S. Singhal, “Intraoperative near-infrared optical contrast can localize brain metastases,” World Neurosurg. 106, 120–130 (2017).
[Crossref]

Chung, P.-S.

A. Leproux, Y. M. Kim, J. W. Min, C. E. McLaren, W.-P. Chen, T. D. O’Sullivan, S.-H. Lee, P.-S. Chung, and B. J. Tromberg, “Differential diagnosis of breast masses in South Korean premenopausal women using diffuse optical spectroscopic imaging,” J. Biomed. Opt. 21(7), 074001 (2016).
[Crossref]

Cong, W.

W. Cong, X. Intes, and G. Wang, “Optical tomographic imaging for breast cancer detection,” J. Biomed. Opt. 22(09), 1 (2017).
[Crossref]

Cronin, E. B.

Q. Zhu, P. U. Hegde, A. Ricci Jr, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, and P. J. Deckers, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[Crossref]

Cubeddu, R.

P. Taroni, A. M. Paganoni, F. Ieva, A. Pifferi, G. Quarto, F. Abbate, E. Cassano, and R. Cubeddu, “Non-invasive optical estimate of tissue composition to differentiate malignant from benign breast lesions: A pilot study,” Sci. Rep. 7(1), 40683–11 (2017).
[Crossref]

Culver, J. P.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]

D’Andrea, C.

Dalla Mora, A.

S. K. V. Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (600–1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 406–414 (2016).
[Crossref]

Davis, S. C.

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13(4), 041305 (2008).
[Crossref]

Deckers, P. J.

Q. Zhu, P. U. Hegde, A. Ricci Jr, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, and P. J. Deckers, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[Crossref]

Deen, M. J.

Dehghani, H.

D. Lighter, J. Hughes, I. Styles, A. Filer, and H. Dehghani, “Multispectral, non-contact diffuse optical tomography of healthy human finger joints,” Biomed. Opt. Express 9(4), 1445–1460 (2018).
[Crossref]

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Philos. Trans. R. Soc., A 367(1900), 3073–3093 (2009).
[Crossref]

Di Sieno, L.

Ducros, N.

Durduran, T.

S. K. V. Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (600–1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 406–414 (2016).
[Crossref]

Durkin, A.

H. S. Yazdi, T. D. O’Sullivan, A. Leproux, B. Hill, A. Durkin, S. Telep, J. Lam, S. S. Yazdi, A. M. Police, and R. M. Carroll, “Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy,” J. Biomed. Opt. 22(4), 045003 (2017).
[Crossref]

Eggebrecht, A. T.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]

Erkol, H.

M. Algarawi, F. Nouizi, A. Luk, M. Mehrabi, H. Erkol, M. B. Ünlü, G. Gulsen, and S. Ha, “High-resolution chromophore concentration recovery using multi-wavelength photo-magnetic imaging,” Proc. SPIE 10871, 108710F (2019).
[Crossref]

A. Luk, F. Nouizi, H. Erkol, M. B. Unlu, and G. Gulsen, “Ex vivo validation of photo-magnetic imaging,” Opt. Lett. 42(20), 4171–4174 (2017).
[Crossref]

F. Nouizi, H. Erkol, A. Luk, M. Marks, M. B. Unlu, and G. Gulsen, “An accelerated photo-magnetic imaging reconstruction algorithm based on an analytical forward solution and a fast Jacobian assembly method,” Phys. Med. Biol. 61(20), 7448–7465 (2016).
[Crossref]

F. Nouizi, H. Erkol, A. Luk, M. B. Unlu, and G. Gulsen, “Real-time photo-magnetic imaging,” Biomed. Opt. Express 7(10), 3899–3904 (2016).
[Crossref]

H. Erkol, F. Nouizi, A. Luk, M. B. Unlu, and G. Gulsen, “Comprehensive analytical model for CW laser induced heat in turbid media,” Opt. Express 23(24), 31069–31084 (2015).
[Crossref]

M. Algarawi, A. Luk, H. Erkol, M. Almudhry, B. M. Unlu, G. Gulsen, and F. Nouizi, “Reconstruction chromophore concentration directly by Photo-Magnetic Imaging: simulation study,” in Clinical and Translational Biophotonics, (Optical Society of America, 2020), JTu3A. 15.

M. Algarawi, F. Nouizi, A. Luk, H. Erkol, M. Almudhry, B. M. Unlu, S. Ha, and G. Gulsen, “Experimental validation of a multiple wavelength Photo-Magnetic Imaging system,” in Optical Tomography and Spectroscopy, (Optical Society of America, 2020), STh3D. 3.

Fantini, S.

P. G. Anderson, J. M. Kainerstorfer, A. Sassaroli, N. Krishnamurthy, M. J. Homer, R. A. Graham, and S. Fantini, “Broadband optical mammography: chromophore concentration and hemoglobin saturation contrast in breast cancer,” PLoS One 10, e0117322 (2015).
[Crossref]

Farina, A.

Farzam, P.

S. K. V. Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (600–1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 406–414 (2016).
[Crossref]

Ferradal, S. L.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]

Filer, A.

Forghani, F.

S. Vasudevan, F. Forghani, C. Campbell, S. Bedford, and T. D. O’Sullivan, “Method for Quantitative Broadband Diffuse Optical Spectroscopy of Tumor-Like Inclusions,” Appl. Sci. 10(4), 1419 (2020).
[Crossref]

Froehlich, H. M.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259(2), 365–374 (2011).
[Crossref]

Gao, H.

Y. Lin, H. Gao, D. Thayer, A. L. Luk, and G. Gulsen, “Photo-magnetic imaging: resolving optical contrast at MRI resolution,” Phys. Med. Biol. 58(11), 3551–3562 (2013).
[Crossref]

Y. Lin, M. T. Ghijsen, H. Gao, N. Liu, O. Nalcioglu, and G. Gulsen, “A photo-multiplier tube-based hybrid MRI and frequency domain fluorescence tomography system for small animal imaging,” Phys. Med. Biol. 56(15), 4731–4747 (2011).
[Crossref]

Ghijsen, M. T.

Y. Lin, M. T. Ghijsen, H. Gao, N. Liu, O. Nalcioglu, and G. Gulsen, “A photo-multiplier tube-based hybrid MRI and frequency domain fluorescence tomography system for small animal imaging,” Phys. Med. Biol. 56(15), 4731–4747 (2011).
[Crossref]

Gibson, A.

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Philos. Trans. R. Soc., A 367(1900), 3073–3093 (2009).
[Crossref]

Graham, R. A.

P. G. Anderson, J. M. Kainerstorfer, A. Sassaroli, N. Krishnamurthy, M. J. Homer, R. A. Graham, and S. Fantini, “Broadband optical mammography: chromophore concentration and hemoglobin saturation contrast in breast cancer,” PLoS One 10, e0117322 (2015).
[Crossref]

Gulsen, G.

M. Algarawi, F. Nouizi, A. Luk, M. Mehrabi, H. Erkol, M. B. Ünlü, G. Gulsen, and S. Ha, “High-resolution chromophore concentration recovery using multi-wavelength photo-magnetic imaging,” Proc. SPIE 10871, 108710F (2019).
[Crossref]

J. Ruiz, F. Nouizi, J. Cho, J. Zheng, Y. Li, J.-H. Chen, M.-Y. Su, and G. Gulsen, “Breast density quantification using structured-light-based diffuse optical tomography simulations,” Appl. Opt. 56(25), 7146–7157 (2017).
[Crossref]

A. Luk, F. Nouizi, H. Erkol, M. B. Unlu, and G. Gulsen, “Ex vivo validation of photo-magnetic imaging,” Opt. Lett. 42(20), 4171–4174 (2017).
[Crossref]

T. C. Kwong, M. Hsing, Y. Lin, D. Thayer, M. B. Unlu, M.-Y. Su, and G. Gulsen, “Differentiation of tumor vasculature heterogeneity levels in small animals based on total hemoglobin concentration using magnetic resonance-guided diffuse optical tomography in vivo,” Appl. Opt. 55(21), 5479–5487 (2016).
[Crossref]

F. Nouizi, H. Erkol, A. Luk, M. Marks, M. B. Unlu, and G. Gulsen, “An accelerated photo-magnetic imaging reconstruction algorithm based on an analytical forward solution and a fast Jacobian assembly method,” Phys. Med. Biol. 61(20), 7448–7465 (2016).
[Crossref]

A. T. Luk, F. Nouizi, M. Marks, T. Kart, and G. Gulsen, “Monitoring gold nanoparticle distribution with high resolution using photo-magnetic imaging,” Proc. SPIE 9706, 97060M (2016).
[Crossref]

F. Nouizi, H. Erkol, A. Luk, M. B. Unlu, and G. Gulsen, “Real-time photo-magnetic imaging,” Biomed. Opt. Express 7(10), 3899–3904 (2016).
[Crossref]

F. Nouizi, A. Luk, D. Thayer, Y. Lin, S. Ha, and G. Gulsen, “Experimental validation of a high-resolution diffuse optical imaging modality: photomagnetic imaging,” J. Biomed. Opt. 21(1), 016009 (2016).
[Crossref]

H. Erkol, F. Nouizi, A. Luk, M. B. Unlu, and G. Gulsen, “Comprehensive analytical model for CW laser induced heat in turbid media,” Opt. Express 23(24), 31069–31084 (2015).
[Crossref]

F. Nouizi, T. C. Kwong, J. Cho, Y. Lin, U. Sampathkumaran, and G. Gulsen, “Implementation of a new scanning method for high-resolution fluorescence tomography using thermo-sensitive fluorescent agents,” Opt. Lett. 40(21), 4991–4994 (2015).
[Crossref]

Y. Lin, H. Gao, D. Thayer, A. L. Luk, and G. Gulsen, “Photo-magnetic imaging: resolving optical contrast at MRI resolution,” Phys. Med. Biol. 58(11), 3551–3562 (2013).
[Crossref]

D. A. Thayer, Y. Lin, A. Luk, and G. Gulsen, “Laser-induced photo-thermal magnetic imaging,” Appl. Phys. Lett. 101(8), 083703 (2012).
[Crossref]

Y. Lin, M. T. Ghijsen, H. Gao, N. Liu, O. Nalcioglu, and G. Gulsen, “A photo-multiplier tube-based hybrid MRI and frequency domain fluorescence tomography system for small animal imaging,” Phys. Med. Biol. 56(15), 4731–4747 (2011).
[Crossref]

Y. Lin, D. Thayer, O. Nalcioglu, and G. Gulsen, “Tumor characterization in small animals using magnetic resonance-guided dynamic contrast enhanced diffuse optical tomography,” J. Biomed. Opt. 16(10), 106015 (2011).
[Crossref]

Y. Lin, W. C. Barber, J. S. Iwanczyk, N. E. Hartsough, W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system,” Opt. Express 18(8), 7835–7850 (2010).
[Crossref]

M. Algarawi, A. Luk, H. Erkol, M. Almudhry, B. M. Unlu, G. Gulsen, and F. Nouizi, “Reconstruction chromophore concentration directly by Photo-Magnetic Imaging: simulation study,” in Clinical and Translational Biophotonics, (Optical Society of America, 2020), JTu3A. 15.

M. Algarawi, F. Nouizi, A. Luk, H. Erkol, M. Almudhry, B. M. Unlu, S. Ha, and G. Gulsen, “Experimental validation of a multiple wavelength Photo-Magnetic Imaging system,” in Optical Tomography and Spectroscopy, (Optical Society of America, 2020), STh3D. 3.

A. T. Luk, S. Ha, F. Nouizi, D. Thayer, Y. Lin, and G. Gulsen, “A true multi-modality approach for high resolution optical imaging: photo-magnetic imaging,” in SPIE BiOS, (International Society for Optics and Photonics, 2014), 89370G–89377.

Ha, S.

M. Algarawi, F. Nouizi, A. Luk, M. Mehrabi, H. Erkol, M. B. Ünlü, G. Gulsen, and S. Ha, “High-resolution chromophore concentration recovery using multi-wavelength photo-magnetic imaging,” Proc. SPIE 10871, 108710F (2019).
[Crossref]

F. Nouizi, A. Luk, D. Thayer, Y. Lin, S. Ha, and G. Gulsen, “Experimental validation of a high-resolution diffuse optical imaging modality: photomagnetic imaging,” J. Biomed. Opt. 21(1), 016009 (2016).
[Crossref]

M. Algarawi, F. Nouizi, A. Luk, H. Erkol, M. Almudhry, B. M. Unlu, S. Ha, and G. Gulsen, “Experimental validation of a multiple wavelength Photo-Magnetic Imaging system,” in Optical Tomography and Spectroscopy, (Optical Society of America, 2020), STh3D. 3.

A. T. Luk, S. Ha, F. Nouizi, D. Thayer, Y. Lin, and G. Gulsen, “A true multi-modality approach for high resolution optical imaging: photo-magnetic imaging,” in SPIE BiOS, (International Society for Optics and Photonics, 2014), 89370G–89377.

Hartsough, N. E.

Hassanpour, M. S.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]

Hegde, P. U.

Q. Zhu, P. U. Hegde, A. Ricci Jr, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, and P. J. Deckers, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[Crossref]

Hershey, T.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]

Hill, B.

H. S. Yazdi, T. D. O’Sullivan, A. Leproux, B. Hill, A. Durkin, S. Telep, J. Lam, S. S. Yazdi, A. M. Police, and R. M. Carroll, “Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy,” J. Biomed. Opt. 22(4), 045003 (2017).
[Crossref]

Homer, M. J.

P. G. Anderson, J. M. Kainerstorfer, A. Sassaroli, N. Krishnamurthy, M. J. Homer, R. A. Graham, and S. Fantini, “Broadband optical mammography: chromophore concentration and hemoglobin saturation contrast in breast cancer,” PLoS One 10, e0117322 (2015).
[Crossref]

Hsing, M.

Hughes, J.

Ieva, F.

P. Taroni, A. M. Paganoni, F. Ieva, A. Pifferi, G. Quarto, F. Abbate, E. Cassano, and R. Cubeddu, “Non-invasive optical estimate of tissue composition to differentiate malignant from benign breast lesions: A pilot study,” Sci. Rep. 7(1), 40683–11 (2017).
[Crossref]

Intes, X.

W. Cong, X. Intes, and G. Wang, “Optical tomographic imaging for breast cancer detection,” J. Biomed. Opt. 22(09), 1 (2017).
[Crossref]

Iwanczyk, J. S.

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref]

Jiang, S.

L. Zhang, Y. Zhao, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Direct regularization from co-registered anatomical images for MRI-guided near-infrared spectral tomographic image reconstruction,” Biomed. Opt. Express 6(9), 3618–3630 (2015).
[Crossref]

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259(2), 365–374 (2011).
[Crossref]

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13(4), 041305 (2008).
[Crossref]

Kainerstorfer, J. M.

P. G. Anderson, J. M. Kainerstorfer, A. Sassaroli, N. Krishnamurthy, M. J. Homer, R. A. Graham, and S. Fantini, “Broadband optical mammography: chromophore concentration and hemoglobin saturation contrast in breast cancer,” PLoS One 10, e0117322 (2015).
[Crossref]

Kane, M.

Q. Zhu, P. U. Hegde, A. Ricci Jr, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, and P. J. Deckers, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[Crossref]

Kart, T.

A. T. Luk, F. Nouizi, M. Marks, T. Kart, and G. Gulsen, “Monitoring gold nanoparticle distribution with high resolution using photo-magnetic imaging,” Proc. SPIE 9706, 97060M (2016).
[Crossref]

Kaufman, P. A.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259(2), 365–374 (2011).
[Crossref]

Kim, Y. M.

A. Leproux, Y. M. Kim, J. W. Min, C. E. McLaren, W.-P. Chen, T. D. O’Sullivan, S.-H. Lee, P.-S. Chung, and B. J. Tromberg, “Differential diagnosis of breast masses in South Korean premenopausal women using diffuse optical spectroscopic imaging,” J. Biomed. Opt. 21(7), 074001 (2016).
[Crossref]

Krishnamurthy, N.

P. G. Anderson, J. M. Kainerstorfer, A. Sassaroli, N. Krishnamurthy, M. J. Homer, R. A. Graham, and S. Fantini, “Broadband optical mammography: chromophore concentration and hemoglobin saturation contrast in breast cancer,” PLoS One 10, e0117322 (2015).
[Crossref]

Kurtzman, S. H.

Q. Zhu, P. U. Hegde, A. Ricci Jr, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, and P. J. Deckers, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[Crossref]

Kwong, T. C.

Lam, J.

H. S. Yazdi, T. D. O’Sullivan, A. Leproux, B. Hill, A. Durkin, S. Telep, J. Lam, S. S. Yazdi, A. M. Police, and R. M. Carroll, “Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy,” J. Biomed. Opt. 22(4), 045003 (2017).
[Crossref]

Lee, J. Y.

J. Y. Lee, J. T. Pierce, R. Zeh, S. S. Cho, R. Salinas, S. Nie, and S. Singhal, “Intraoperative near-infrared optical contrast can localize brain metastases,” World Neurosurg. 106, 120–130 (2017).
[Crossref]

Lee, S.-H.

A. Leproux, Y. M. Kim, J. W. Min, C. E. McLaren, W.-P. Chen, T. D. O’Sullivan, S.-H. Lee, P.-S. Chung, and B. J. Tromberg, “Differential diagnosis of breast masses in South Korean premenopausal women using diffuse optical spectroscopic imaging,” J. Biomed. Opt. 21(7), 074001 (2016).
[Crossref]

Leproux, A.

H. S. Yazdi, T. D. O’Sullivan, A. Leproux, B. Hill, A. Durkin, S. Telep, J. Lam, S. S. Yazdi, A. M. Police, and R. M. Carroll, “Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy,” J. Biomed. Opt. 22(4), 045003 (2017).
[Crossref]

A. Leproux, Y. M. Kim, J. W. Min, C. E. McLaren, W.-P. Chen, T. D. O’Sullivan, S.-H. Lee, P.-S. Chung, and B. J. Tromberg, “Differential diagnosis of breast masses in South Korean premenopausal women using diffuse optical spectroscopic imaging,” J. Biomed. Opt. 21(7), 074001 (2016).
[Crossref]

Li, J.-E. J.

Z.-Z. J. Lim, J.-E. J. Li, C.-T. Ng, L.-Y. L. Yung, and B.-H. Bay, “Gold nanoparticles in cancer therapy,” Acta Pharmacol. Sin. 32(8), 983–990 (2011).
[Crossref]

Li, Y.

Li, Z.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259(2), 365–374 (2011).
[Crossref]

Lighter, D.

Lim, Z.-Z. J.

Z.-Z. J. Lim, J.-E. J. Li, C.-T. Ng, L.-Y. L. Yung, and B.-H. Bay, “Gold nanoparticles in cancer therapy,” Acta Pharmacol. Sin. 32(8), 983–990 (2011).
[Crossref]

Lin, Y.

F. Nouizi, A. Luk, D. Thayer, Y. Lin, S. Ha, and G. Gulsen, “Experimental validation of a high-resolution diffuse optical imaging modality: photomagnetic imaging,” J. Biomed. Opt. 21(1), 016009 (2016).
[Crossref]

T. C. Kwong, M. Hsing, Y. Lin, D. Thayer, M. B. Unlu, M.-Y. Su, and G. Gulsen, “Differentiation of tumor vasculature heterogeneity levels in small animals based on total hemoglobin concentration using magnetic resonance-guided diffuse optical tomography in vivo,” Appl. Opt. 55(21), 5479–5487 (2016).
[Crossref]

F. Nouizi, T. C. Kwong, J. Cho, Y. Lin, U. Sampathkumaran, and G. Gulsen, “Implementation of a new scanning method for high-resolution fluorescence tomography using thermo-sensitive fluorescent agents,” Opt. Lett. 40(21), 4991–4994 (2015).
[Crossref]

Y. Lin, H. Gao, D. Thayer, A. L. Luk, and G. Gulsen, “Photo-magnetic imaging: resolving optical contrast at MRI resolution,” Phys. Med. Biol. 58(11), 3551–3562 (2013).
[Crossref]

D. A. Thayer, Y. Lin, A. Luk, and G. Gulsen, “Laser-induced photo-thermal magnetic imaging,” Appl. Phys. Lett. 101(8), 083703 (2012).
[Crossref]

Y. Lin, M. T. Ghijsen, H. Gao, N. Liu, O. Nalcioglu, and G. Gulsen, “A photo-multiplier tube-based hybrid MRI and frequency domain fluorescence tomography system for small animal imaging,” Phys. Med. Biol. 56(15), 4731–4747 (2011).
[Crossref]

Y. Lin, D. Thayer, O. Nalcioglu, and G. Gulsen, “Tumor characterization in small animals using magnetic resonance-guided dynamic contrast enhanced diffuse optical tomography,” J. Biomed. Opt. 16(10), 106015 (2011).
[Crossref]

Y. Lin, W. C. Barber, J. S. Iwanczyk, N. E. Hartsough, W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system,” Opt. Express 18(8), 7835–7850 (2010).
[Crossref]

A. T. Luk, S. Ha, F. Nouizi, D. Thayer, Y. Lin, and G. Gulsen, “A true multi-modality approach for high resolution optical imaging: photo-magnetic imaging,” in SPIE BiOS, (International Society for Optics and Photonics, 2014), 89370G–89377.

Lindner, C.

S. K. V. Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (600–1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 406–414 (2016).
[Crossref]

Liu, N.

Y. Lin, M. T. Ghijsen, H. Gao, N. Liu, O. Nalcioglu, and G. Gulsen, “A photo-multiplier tube-based hybrid MRI and frequency domain fluorescence tomography system for small animal imaging,” Phys. Med. Biol. 56(15), 4731–4747 (2011).
[Crossref]

Luk, A.

M. Algarawi, F. Nouizi, A. Luk, M. Mehrabi, H. Erkol, M. B. Ünlü, G. Gulsen, and S. Ha, “High-resolution chromophore concentration recovery using multi-wavelength photo-magnetic imaging,” Proc. SPIE 10871, 108710F (2019).
[Crossref]

A. Luk, F. Nouizi, H. Erkol, M. B. Unlu, and G. Gulsen, “Ex vivo validation of photo-magnetic imaging,” Opt. Lett. 42(20), 4171–4174 (2017).
[Crossref]

F. Nouizi, H. Erkol, A. Luk, M. Marks, M. B. Unlu, and G. Gulsen, “An accelerated photo-magnetic imaging reconstruction algorithm based on an analytical forward solution and a fast Jacobian assembly method,” Phys. Med. Biol. 61(20), 7448–7465 (2016).
[Crossref]

F. Nouizi, A. Luk, D. Thayer, Y. Lin, S. Ha, and G. Gulsen, “Experimental validation of a high-resolution diffuse optical imaging modality: photomagnetic imaging,” J. Biomed. Opt. 21(1), 016009 (2016).
[Crossref]

F. Nouizi, H. Erkol, A. Luk, M. B. Unlu, and G. Gulsen, “Real-time photo-magnetic imaging,” Biomed. Opt. Express 7(10), 3899–3904 (2016).
[Crossref]

H. Erkol, F. Nouizi, A. Luk, M. B. Unlu, and G. Gulsen, “Comprehensive analytical model for CW laser induced heat in turbid media,” Opt. Express 23(24), 31069–31084 (2015).
[Crossref]

D. A. Thayer, Y. Lin, A. Luk, and G. Gulsen, “Laser-induced photo-thermal magnetic imaging,” Appl. Phys. Lett. 101(8), 083703 (2012).
[Crossref]

M. Algarawi, F. Nouizi, A. Luk, H. Erkol, M. Almudhry, B. M. Unlu, S. Ha, and G. Gulsen, “Experimental validation of a multiple wavelength Photo-Magnetic Imaging system,” in Optical Tomography and Spectroscopy, (Optical Society of America, 2020), STh3D. 3.

M. Algarawi, A. Luk, H. Erkol, M. Almudhry, B. M. Unlu, G. Gulsen, and F. Nouizi, “Reconstruction chromophore concentration directly by Photo-Magnetic Imaging: simulation study,” in Clinical and Translational Biophotonics, (Optical Society of America, 2020), JTu3A. 15.

Luk, A. L.

Y. Lin, H. Gao, D. Thayer, A. L. Luk, and G. Gulsen, “Photo-magnetic imaging: resolving optical contrast at MRI resolution,” Phys. Med. Biol. 58(11), 3551–3562 (2013).
[Crossref]

Luk, A. T.

A. T. Luk, F. Nouizi, M. Marks, T. Kart, and G. Gulsen, “Monitoring gold nanoparticle distribution with high resolution using photo-magnetic imaging,” Proc. SPIE 9706, 97060M (2016).
[Crossref]

A. T. Luk, S. Ha, F. Nouizi, D. Thayer, Y. Lin, and G. Gulsen, “A true multi-modality approach for high resolution optical imaging: photo-magnetic imaging,” in SPIE BiOS, (International Society for Optics and Photonics, 2014), 89370G–89377.

Marks, M.

A. T. Luk, F. Nouizi, M. Marks, T. Kart, and G. Gulsen, “Monitoring gold nanoparticle distribution with high resolution using photo-magnetic imaging,” Proc. SPIE 9706, 97060M (2016).
[Crossref]

F. Nouizi, H. Erkol, A. Luk, M. Marks, M. B. Unlu, and G. Gulsen, “An accelerated photo-magnetic imaging reconstruction algorithm based on an analytical forward solution and a fast Jacobian assembly method,” Phys. Med. Biol. 61(20), 7448–7465 (2016).
[Crossref]

Martinenghi, E.

S. K. V. Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (600–1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 406–414 (2016).
[Crossref]

McLaren, C. E.

A. Leproux, Y. M. Kim, J. W. Min, C. E. McLaren, W.-P. Chen, T. D. O’Sullivan, S.-H. Lee, P.-S. Chung, and B. J. Tromberg, “Differential diagnosis of breast masses in South Korean premenopausal women using diffuse optical spectroscopic imaging,” J. Biomed. Opt. 21(7), 074001 (2016).
[Crossref]

Mehrabi, M.

M. Algarawi, F. Nouizi, A. Luk, M. Mehrabi, H. Erkol, M. B. Ünlü, G. Gulsen, and S. Ha, “High-resolution chromophore concentration recovery using multi-wavelength photo-magnetic imaging,” Proc. SPIE 10871, 108710F (2019).
[Crossref]

Min, J. W.

A. Leproux, Y. M. Kim, J. W. Min, C. E. McLaren, W.-P. Chen, T. D. O’Sullivan, S.-H. Lee, P.-S. Chung, and B. J. Tromberg, “Differential diagnosis of breast masses in South Korean premenopausal women using diffuse optical spectroscopic imaging,” J. Biomed. Opt. 21(7), 074001 (2016).
[Crossref]

Mostafa, A.

H. Vavadi, A. Mostafa, F. Zhou, K. S. Uddin, M. Althobaiti, C. Xu, R. Bansal, F. Ademuyiwa, S. Poplack, and Q. Zhu, “Compact ultrasound-guided diffuse optical tomography system for breast cancer imaging,” J. Biomed. Opt. 24(02), 1 (2018).
[Crossref]

Nalcioglu, O.

Y. Lin, M. T. Ghijsen, H. Gao, N. Liu, O. Nalcioglu, and G. Gulsen, “A photo-multiplier tube-based hybrid MRI and frequency domain fluorescence tomography system for small animal imaging,” Phys. Med. Biol. 56(15), 4731–4747 (2011).
[Crossref]

Y. Lin, D. Thayer, O. Nalcioglu, and G. Gulsen, “Tumor characterization in small animals using magnetic resonance-guided dynamic contrast enhanced diffuse optical tomography,” J. Biomed. Opt. 16(10), 106015 (2011).
[Crossref]

Y. Lin, W. C. Barber, J. S. Iwanczyk, N. E. Hartsough, W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system,” Opt. Express 18(8), 7835–7850 (2010).
[Crossref]

Naser, M. A.

Ng, C.-T.

Z.-Z. J. Lim, J.-E. J. Li, C.-T. Ng, L.-Y. L. Yung, and B.-H. Bay, “Gold nanoparticles in cancer therapy,” Acta Pharmacol. Sin. 32(8), 983–990 (2011).
[Crossref]

Nie, S.

J. Y. Lee, J. T. Pierce, R. Zeh, S. S. Cho, R. Salinas, S. Nie, and S. Singhal, “Intraoperative near-infrared optical contrast can localize brain metastases,” World Neurosurg. 106, 120–130 (2017).
[Crossref]

Nouizi, F.

M. Algarawi, F. Nouizi, A. Luk, M. Mehrabi, H. Erkol, M. B. Ünlü, G. Gulsen, and S. Ha, “High-resolution chromophore concentration recovery using multi-wavelength photo-magnetic imaging,” Proc. SPIE 10871, 108710F (2019).
[Crossref]

J. Ruiz, F. Nouizi, J. Cho, J. Zheng, Y. Li, J.-H. Chen, M.-Y. Su, and G. Gulsen, “Breast density quantification using structured-light-based diffuse optical tomography simulations,” Appl. Opt. 56(25), 7146–7157 (2017).
[Crossref]

A. Luk, F. Nouizi, H. Erkol, M. B. Unlu, and G. Gulsen, “Ex vivo validation of photo-magnetic imaging,” Opt. Lett. 42(20), 4171–4174 (2017).
[Crossref]

F. Nouizi, H. Erkol, A. Luk, M. Marks, M. B. Unlu, and G. Gulsen, “An accelerated photo-magnetic imaging reconstruction algorithm based on an analytical forward solution and a fast Jacobian assembly method,” Phys. Med. Biol. 61(20), 7448–7465 (2016).
[Crossref]

F. Nouizi, A. Luk, D. Thayer, Y. Lin, S. Ha, and G. Gulsen, “Experimental validation of a high-resolution diffuse optical imaging modality: photomagnetic imaging,” J. Biomed. Opt. 21(1), 016009 (2016).
[Crossref]

F. Nouizi, H. Erkol, A. Luk, M. B. Unlu, and G. Gulsen, “Real-time photo-magnetic imaging,” Biomed. Opt. Express 7(10), 3899–3904 (2016).
[Crossref]

A. T. Luk, F. Nouizi, M. Marks, T. Kart, and G. Gulsen, “Monitoring gold nanoparticle distribution with high resolution using photo-magnetic imaging,” Proc. SPIE 9706, 97060M (2016).
[Crossref]

H. Erkol, F. Nouizi, A. Luk, M. B. Unlu, and G. Gulsen, “Comprehensive analytical model for CW laser induced heat in turbid media,” Opt. Express 23(24), 31069–31084 (2015).
[Crossref]

F. Nouizi, T. C. Kwong, J. Cho, Y. Lin, U. Sampathkumaran, and G. Gulsen, “Implementation of a new scanning method for high-resolution fluorescence tomography using thermo-sensitive fluorescent agents,” Opt. Lett. 40(21), 4991–4994 (2015).
[Crossref]

F. Nouizi, M. Torregrossa, R. Chabrier, and P. Poulet, “Improvement of absorption and scattering discrimination by selection of sensitive points on temporal profile in diffuse optical tomography,” Opt. Express 19(13), 12843–12854 (2011).
[Crossref]

M. Algarawi, F. Nouizi, A. Luk, H. Erkol, M. Almudhry, B. M. Unlu, S. Ha, and G. Gulsen, “Experimental validation of a multiple wavelength Photo-Magnetic Imaging system,” in Optical Tomography and Spectroscopy, (Optical Society of America, 2020), STh3D. 3.

A. T. Luk, S. Ha, F. Nouizi, D. Thayer, Y. Lin, and G. Gulsen, “A true multi-modality approach for high resolution optical imaging: photo-magnetic imaging,” in SPIE BiOS, (International Society for Optics and Photonics, 2014), 89370G–89377.

M. Algarawi, A. Luk, H. Erkol, M. Almudhry, B. M. Unlu, G. Gulsen, and F. Nouizi, “Reconstruction chromophore concentration directly by Photo-Magnetic Imaging: simulation study,” in Clinical and Translational Biophotonics, (Optical Society of America, 2020), JTu3A. 15.

Ntziachristos, V.

A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys. 37(5), 1976–1986 (2010).
[Crossref]

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U. S. A. 97(6), 2767–2772 (2000).
[Crossref]

O’Sullivan, T. D.

S. Vasudevan, F. Forghani, C. Campbell, S. Bedford, and T. D. O’Sullivan, “Method for Quantitative Broadband Diffuse Optical Spectroscopy of Tumor-Like Inclusions,” Appl. Sci. 10(4), 1419 (2020).
[Crossref]

H. S. Yazdi, T. D. O’Sullivan, A. Leproux, B. Hill, A. Durkin, S. Telep, J. Lam, S. S. Yazdi, A. M. Police, and R. M. Carroll, “Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy,” J. Biomed. Opt. 22(4), 045003 (2017).
[Crossref]

A. Leproux, Y. M. Kim, J. W. Min, C. E. McLaren, W.-P. Chen, T. D. O’Sullivan, S.-H. Lee, P.-S. Chung, and B. J. Tromberg, “Differential diagnosis of breast masses in South Korean premenopausal women using diffuse optical spectroscopic imaging,” J. Biomed. Opt. 21(7), 074001 (2016).
[Crossref]

Okawa, S.

Y. Yamada and S. Okawa, “Diffuse optical tomography: Present status and its future,” Opt. Rev. 21(3), 185–205 (2014).
[Crossref]

Paganoni, A. M.

P. Taroni, A. M. Paganoni, F. Ieva, A. Pifferi, G. Quarto, F. Abbate, E. Cassano, and R. Cubeddu, “Non-invasive optical estimate of tissue composition to differentiate malignant from benign breast lesions: A pilot study,” Sci. Rep. 7(1), 40683–11 (2017).
[Crossref]

Pagliazzi, M.

S. K. V. Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (600–1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 406–414 (2016).
[Crossref]

Pakalniskis, M. G.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259(2), 365–374 (2011).
[Crossref]

Paulsen, K. D.

L. Zhang, Y. Zhao, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Direct regularization from co-registered anatomical images for MRI-guided near-infrared spectral tomographic image reconstruction,” Biomed. Opt. Express 6(9), 3618–3630 (2015).
[Crossref]

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259(2), 365–374 (2011).
[Crossref]

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13(4), 041305 (2008).
[Crossref]

Pierce, J. T.

J. Y. Lee, J. T. Pierce, R. Zeh, S. S. Cho, R. Salinas, S. Nie, and S. Singhal, “Intraoperative near-infrared optical contrast can localize brain metastases,” World Neurosurg. 106, 120–130 (2017).
[Crossref]

Pifferi, A.

A. Farina, M. Betcke, L. Di Sieno, A. Bassi, N. Ducros, A. Pifferi, G. Valentini, S. Arridge, and C. D’Andrea, “Multiple-view diffuse optical tomography system based on time-domain compressive measurements,” Opt. Lett. 42(14), 2822–2825 (2017).
[Crossref]

P. Taroni, A. M. Paganoni, F. Ieva, A. Pifferi, G. Quarto, F. Abbate, E. Cassano, and R. Cubeddu, “Non-invasive optical estimate of tissue composition to differentiate malignant from benign breast lesions: A pilot study,” Sci. Rep. 7(1), 40683–11 (2017).
[Crossref]

S. K. V. Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (600–1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 406–414 (2016).
[Crossref]

Pogue, B. W.

L. Zhang, Y. Zhao, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Direct regularization from co-registered anatomical images for MRI-guided near-infrared spectral tomographic image reconstruction,” Biomed. Opt. Express 6(9), 3618–3630 (2015).
[Crossref]

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259(2), 365–374 (2011).
[Crossref]

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Philos. Trans. R. Soc., A 367(1900), 3073–3093 (2009).
[Crossref]

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13(4), 041305 (2008).
[Crossref]

Police, A. M.

H. S. Yazdi, T. D. O’Sullivan, A. Leproux, B. Hill, A. Durkin, S. Telep, J. Lam, S. S. Yazdi, A. M. Police, and R. M. Carroll, “Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy,” J. Biomed. Opt. 22(4), 045003 (2017).
[Crossref]

Poplack, S.

H. Vavadi, A. Mostafa, F. Zhou, K. S. Uddin, M. Althobaiti, C. Xu, R. Bansal, F. Ademuyiwa, S. Poplack, and Q. Zhu, “Compact ultrasound-guided diffuse optical tomography system for breast cancer imaging,” J. Biomed. Opt. 24(02), 1 (2018).
[Crossref]

Poplack, S. P.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259(2), 365–374 (2011).
[Crossref]

Poulet, P.

Quarto, G.

P. Taroni, A. M. Paganoni, F. Ieva, A. Pifferi, G. Quarto, F. Abbate, E. Cassano, and R. Cubeddu, “Non-invasive optical estimate of tissue composition to differentiate malignant from benign breast lesions: A pilot study,” Sci. Rep. 7(1), 40683–11 (2017).
[Crossref]

Ricci Jr, A.

Q. Zhu, P. U. Hegde, A. Ricci Jr, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, and P. J. Deckers, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[Crossref]

Rieke, V.

V. Rieke and K. Butts Pauly, “MR thermometry,” J. Magn. Reson. Imaging 27(2), 376–390 (2008).
[Crossref]

Robichaux-Viehoever, A.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]

Roeck, W.

Ruiz, J.

Salinas, R.

J. Y. Lee, J. T. Pierce, R. Zeh, S. S. Cho, R. Salinas, S. Nie, and S. Singhal, “Intraoperative near-infrared optical contrast can localize brain metastases,” World Neurosurg. 106, 120–130 (2017).
[Crossref]

Sampathkumaran, U.

Sarantopoulos, A.

A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys. 37(5), 1976–1986 (2010).
[Crossref]

Sassaroli, A.

P. G. Anderson, J. M. Kainerstorfer, A. Sassaroli, N. Krishnamurthy, M. J. Homer, R. A. Graham, and S. Fantini, “Broadband optical mammography: chromophore concentration and hemoglobin saturation contrast in breast cancer,” PLoS One 10, e0117322 (2015).
[Crossref]

Schnall, M.

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U. S. A. 97(6), 2767–2772 (2000).
[Crossref]

Schulz, R. B.

A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys. 37(5), 1976–1986 (2010).
[Crossref]

Schwab, M. C.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259(2), 365–374 (2011).
[Crossref]

Sekar, S. K. V.

S. K. V. Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (600–1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 406–414 (2016).
[Crossref]

Singhal, S.

J. Y. Lee, J. T. Pierce, R. Zeh, S. S. Cho, R. Salinas, S. Nie, and S. Singhal, “Intraoperative near-infrared optical contrast can localize brain metastases,” World Neurosurg. 106, 120–130 (2017).
[Crossref]

Snyder, A. Z.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]

Srinivasan, S.

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Philos. Trans. R. Soc., A 367(1900), 3073–3093 (2009).
[Crossref]

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13(4), 041305 (2008).
[Crossref]

Styles, I.

Su, M.-Y.

Taroni, P.

P. Taroni, A. M. Paganoni, F. Ieva, A. Pifferi, G. Quarto, F. Abbate, E. Cassano, and R. Cubeddu, “Non-invasive optical estimate of tissue composition to differentiate malignant from benign breast lesions: A pilot study,” Sci. Rep. 7(1), 40683–11 (2017).
[Crossref]

S. K. V. Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (600–1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 406–414 (2016).
[Crossref]

Telep, S.

H. S. Yazdi, T. D. O’Sullivan, A. Leproux, B. Hill, A. Durkin, S. Telep, J. Lam, S. S. Yazdi, A. M. Police, and R. M. Carroll, “Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy,” J. Biomed. Opt. 22(4), 045003 (2017).
[Crossref]

Thayer, D.

F. Nouizi, A. Luk, D. Thayer, Y. Lin, S. Ha, and G. Gulsen, “Experimental validation of a high-resolution diffuse optical imaging modality: photomagnetic imaging,” J. Biomed. Opt. 21(1), 016009 (2016).
[Crossref]

T. C. Kwong, M. Hsing, Y. Lin, D. Thayer, M. B. Unlu, M.-Y. Su, and G. Gulsen, “Differentiation of tumor vasculature heterogeneity levels in small animals based on total hemoglobin concentration using magnetic resonance-guided diffuse optical tomography in vivo,” Appl. Opt. 55(21), 5479–5487 (2016).
[Crossref]

Y. Lin, H. Gao, D. Thayer, A. L. Luk, and G. Gulsen, “Photo-magnetic imaging: resolving optical contrast at MRI resolution,” Phys. Med. Biol. 58(11), 3551–3562 (2013).
[Crossref]

Y. Lin, D. Thayer, O. Nalcioglu, and G. Gulsen, “Tumor characterization in small animals using magnetic resonance-guided dynamic contrast enhanced diffuse optical tomography,” J. Biomed. Opt. 16(10), 106015 (2011).
[Crossref]

A. T. Luk, S. Ha, F. Nouizi, D. Thayer, Y. Lin, and G. Gulsen, “A true multi-modality approach for high resolution optical imaging: photo-magnetic imaging,” in SPIE BiOS, (International Society for Optics and Photonics, 2014), 89370G–89377.

Thayer, D. A.

D. A. Thayer, Y. Lin, A. Luk, and G. Gulsen, “Laser-induced photo-thermal magnetic imaging,” Appl. Phys. Lett. 101(8), 083703 (2012).
[Crossref]

Torregrossa, M.

Tosteson, T. D.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259(2), 365–374 (2011).
[Crossref]

Tromberg, B. J.

A. Leproux, Y. M. Kim, J. W. Min, C. E. McLaren, W.-P. Chen, T. D. O’Sullivan, S.-H. Lee, P.-S. Chung, and B. J. Tromberg, “Differential diagnosis of breast masses in South Korean premenopausal women using diffuse optical spectroscopic imaging,” J. Biomed. Opt. 21(7), 074001 (2016).
[Crossref]

Uddin, K. S.

H. Vavadi, A. Mostafa, F. Zhou, K. S. Uddin, M. Althobaiti, C. Xu, R. Bansal, F. Ademuyiwa, S. Poplack, and Q. Zhu, “Compact ultrasound-guided diffuse optical tomography system for breast cancer imaging,” J. Biomed. Opt. 24(02), 1 (2018).
[Crossref]

Unlu, B. M.

M. Algarawi, F. Nouizi, A. Luk, H. Erkol, M. Almudhry, B. M. Unlu, S. Ha, and G. Gulsen, “Experimental validation of a multiple wavelength Photo-Magnetic Imaging system,” in Optical Tomography and Spectroscopy, (Optical Society of America, 2020), STh3D. 3.

M. Algarawi, A. Luk, H. Erkol, M. Almudhry, B. M. Unlu, G. Gulsen, and F. Nouizi, “Reconstruction chromophore concentration directly by Photo-Magnetic Imaging: simulation study,” in Clinical and Translational Biophotonics, (Optical Society of America, 2020), JTu3A. 15.

Unlu, M. B.

Ünlü, M. B.

M. Algarawi, F. Nouizi, A. Luk, M. Mehrabi, H. Erkol, M. B. Ünlü, G. Gulsen, and S. Ha, “High-resolution chromophore concentration recovery using multi-wavelength photo-magnetic imaging,” Proc. SPIE 10871, 108710F (2019).
[Crossref]

Valentini, G.

Vasudevan, S.

S. Vasudevan, F. Forghani, C. Campbell, S. Bedford, and T. D. O’Sullivan, “Method for Quantitative Broadband Diffuse Optical Spectroscopy of Tumor-Like Inclusions,” Appl. Sci. 10(4), 1419 (2020).
[Crossref]

Vavadi, H.

H. Vavadi, A. Mostafa, F. Zhou, K. S. Uddin, M. Althobaiti, C. Xu, R. Bansal, F. Ademuyiwa, S. Poplack, and Q. Zhu, “Compact ultrasound-guided diffuse optical tomography system for breast cancer imaging,” J. Biomed. Opt. 24(02), 1 (2018).
[Crossref]

M. Althobaiti, H. Vavadi, and Q. Zhu, “Diffuse optical tomography reconstruction method using ultrasound images as prior for regularization matrix,” J. Biomed. Opt. 22(2), 026002 (2017).
[Crossref]

Wang, G.

W. Cong, X. Intes, and G. Wang, “Optical tomographic imaging for breast cancer detection,” J. Biomed. Opt. 22(09), 1 (2017).
[Crossref]

Wang, J.

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13(4), 041305 (2008).
[Crossref]

Wells, W. A.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259(2), 365–374 (2011).
[Crossref]

Xu, C.

H. Vavadi, A. Mostafa, F. Zhou, K. S. Uddin, M. Althobaiti, C. Xu, R. Bansal, F. Ademuyiwa, S. Poplack, and Q. Zhu, “Compact ultrasound-guided diffuse optical tomography system for breast cancer imaging,” J. Biomed. Opt. 24(02), 1 (2018).
[Crossref]

Q. Zhu, P. U. Hegde, A. Ricci Jr, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, and P. J. Deckers, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[Crossref]

Yamada, Y.

Y. Yamada and S. Okawa, “Diffuse optical tomography: Present status and its future,” Opt. Rev. 21(3), 185–205 (2014).
[Crossref]

Yazdi, H. S.

H. S. Yazdi, T. D. O’Sullivan, A. Leproux, B. Hill, A. Durkin, S. Telep, J. Lam, S. S. Yazdi, A. M. Police, and R. M. Carroll, “Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy,” J. Biomed. Opt. 22(4), 045003 (2017).
[Crossref]

Yazdi, S. S.

H. S. Yazdi, T. D. O’Sullivan, A. Leproux, B. Hill, A. Durkin, S. Telep, J. Lam, S. S. Yazdi, A. M. Police, and R. M. Carroll, “Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy,” J. Biomed. Opt. 22(4), 045003 (2017).
[Crossref]

Yodh, A. G.

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U. S. A. 97(6), 2767–2772 (2000).
[Crossref]

Yung, L.-Y. L.

Z.-Z. J. Lim, J.-E. J. Li, C.-T. Ng, L.-Y. L. Yung, and B.-H. Bay, “Gold nanoparticles in cancer therapy,” Acta Pharmacol. Sin. 32(8), 983–990 (2011).
[Crossref]

Zeh, R.

J. Y. Lee, J. T. Pierce, R. Zeh, S. S. Cho, R. Salinas, S. Nie, and S. Singhal, “Intraoperative near-infrared optical contrast can localize brain metastases,” World Neurosurg. 106, 120–130 (2017).
[Crossref]

Zhang, L.

Zhao, Y.

Zheng, J.

Zhou, F.

H. Vavadi, A. Mostafa, F. Zhou, K. S. Uddin, M. Althobaiti, C. Xu, R. Bansal, F. Ademuyiwa, S. Poplack, and Q. Zhu, “Compact ultrasound-guided diffuse optical tomography system for breast cancer imaging,” J. Biomed. Opt. 24(02), 1 (2018).
[Crossref]

Zhu, Q.

H. Vavadi, A. Mostafa, F. Zhou, K. S. Uddin, M. Althobaiti, C. Xu, R. Bansal, F. Ademuyiwa, S. Poplack, and Q. Zhu, “Compact ultrasound-guided diffuse optical tomography system for breast cancer imaging,” J. Biomed. Opt. 24(02), 1 (2018).
[Crossref]

M. Althobaiti, H. Vavadi, and Q. Zhu, “Diffuse optical tomography reconstruction method using ultrasound images as prior for regularization matrix,” J. Biomed. Opt. 22(2), 026002 (2017).
[Crossref]

Q. Zhu, P. U. Hegde, A. Ricci Jr, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, and P. J. Deckers, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[Crossref]

Acta Pharmacol. Sin. (1)

Z.-Z. J. Lim, J.-E. J. Li, C.-T. Ng, L.-Y. L. Yung, and B.-H. Bay, “Gold nanoparticles in cancer therapy,” Acta Pharmacol. Sin. 32(8), 983–990 (2011).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

D. A. Thayer, Y. Lin, A. Luk, and G. Gulsen, “Laser-induced photo-thermal magnetic imaging,” Appl. Phys. Lett. 101(8), 083703 (2012).
[Crossref]

Appl. Sci. (1)

S. Vasudevan, F. Forghani, C. Campbell, S. Bedford, and T. D. O’Sullivan, “Method for Quantitative Broadband Diffuse Optical Spectroscopy of Tumor-Like Inclusions,” Appl. Sci. 10(4), 1419 (2020).
[Crossref]

Biomed. Opt. Express (3)

IEEE J. Sel. Top. Quantum Electron. (1)

S. K. V. Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, and A. Pifferi, “Broadband (600–1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 406–414 (2016).
[Crossref]

Inverse Probl. (1)

S. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[Crossref]

J. Biomed. Opt. (8)

Y. Lin, D. Thayer, O. Nalcioglu, and G. Gulsen, “Tumor characterization in small animals using magnetic resonance-guided dynamic contrast enhanced diffuse optical tomography,” J. Biomed. Opt. 16(10), 106015 (2011).
[Crossref]

F. Nouizi, A. Luk, D. Thayer, Y. Lin, S. Ha, and G. Gulsen, “Experimental validation of a high-resolution diffuse optical imaging modality: photomagnetic imaging,” J. Biomed. Opt. 21(1), 016009 (2016).
[Crossref]

H. S. Yazdi, T. D. O’Sullivan, A. Leproux, B. Hill, A. Durkin, S. Telep, J. Lam, S. S. Yazdi, A. M. Police, and R. M. Carroll, “Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy,” J. Biomed. Opt. 22(4), 045003 (2017).
[Crossref]

W. Cong, X. Intes, and G. Wang, “Optical tomographic imaging for breast cancer detection,” J. Biomed. Opt. 22(09), 1 (2017).
[Crossref]

H. Vavadi, A. Mostafa, F. Zhou, K. S. Uddin, M. Althobaiti, C. Xu, R. Bansal, F. Ademuyiwa, S. Poplack, and Q. Zhu, “Compact ultrasound-guided diffuse optical tomography system for breast cancer imaging,” J. Biomed. Opt. 24(02), 1 (2018).
[Crossref]

A. Leproux, Y. M. Kim, J. W. Min, C. E. McLaren, W.-P. Chen, T. D. O’Sullivan, S.-H. Lee, P.-S. Chung, and B. J. Tromberg, “Differential diagnosis of breast masses in South Korean premenopausal women using diffuse optical spectroscopic imaging,” J. Biomed. Opt. 21(7), 074001 (2016).
[Crossref]

J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data,” J. Biomed. Opt. 13(4), 041305 (2008).
[Crossref]

M. Althobaiti, H. Vavadi, and Q. Zhu, “Diffuse optical tomography reconstruction method using ultrasound images as prior for regularization matrix,” J. Biomed. Opt. 22(2), 026002 (2017).
[Crossref]

J. Magn. Reson. Imaging (1)

V. Rieke and K. Butts Pauly, “MR thermometry,” J. Magn. Reson. Imaging 27(2), 376–390 (2008).
[Crossref]

Med. Phys. (1)

A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys. 37(5), 1976–1986 (2010).
[Crossref]

Nat. Photonics (1)

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Opt. Rev. (1)

Y. Yamada and S. Okawa, “Diffuse optical tomography: Present status and its future,” Opt. Rev. 21(3), 185–205 (2014).
[Crossref]

Philos. Trans. R. Soc., A (1)

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Philos. Trans. R. Soc., A 367(1900), 3073–3093 (2009).
[Crossref]

Phys. Med. Biol. (4)

Y. Lin, M. T. Ghijsen, H. Gao, N. Liu, O. Nalcioglu, and G. Gulsen, “A photo-multiplier tube-based hybrid MRI and frequency domain fluorescence tomography system for small animal imaging,” Phys. Med. Biol. 56(15), 4731–4747 (2011).
[Crossref]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref]

Y. Lin, H. Gao, D. Thayer, A. L. Luk, and G. Gulsen, “Photo-magnetic imaging: resolving optical contrast at MRI resolution,” Phys. Med. Biol. 58(11), 3551–3562 (2013).
[Crossref]

F. Nouizi, H. Erkol, A. Luk, M. Marks, M. B. Unlu, and G. Gulsen, “An accelerated photo-magnetic imaging reconstruction algorithm based on an analytical forward solution and a fast Jacobian assembly method,” Phys. Med. Biol. 61(20), 7448–7465 (2016).
[Crossref]

PLoS One (1)

P. G. Anderson, J. M. Kainerstorfer, A. Sassaroli, N. Krishnamurthy, M. J. Homer, R. A. Graham, and S. Fantini, “Broadband optical mammography: chromophore concentration and hemoglobin saturation contrast in breast cancer,” PLoS One 10, e0117322 (2015).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U. S. A. 97(6), 2767–2772 (2000).
[Crossref]

Proc. SPIE (2)

A. T. Luk, F. Nouizi, M. Marks, T. Kart, and G. Gulsen, “Monitoring gold nanoparticle distribution with high resolution using photo-magnetic imaging,” Proc. SPIE 9706, 97060M (2016).
[Crossref]

M. Algarawi, F. Nouizi, A. Luk, M. Mehrabi, H. Erkol, M. B. Ünlü, G. Gulsen, and S. Ha, “High-resolution chromophore concentration recovery using multi-wavelength photo-magnetic imaging,” Proc. SPIE 10871, 108710F (2019).
[Crossref]

Radiology (2)

Q. Zhu, P. U. Hegde, A. Ricci Jr, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, and P. J. Deckers, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256(2), 367–378 (2010).
[Crossref]

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology 259(2), 365–374 (2011).
[Crossref]

Sci. Rep. (1)

P. Taroni, A. M. Paganoni, F. Ieva, A. Pifferi, G. Quarto, F. Abbate, E. Cassano, and R. Cubeddu, “Non-invasive optical estimate of tissue composition to differentiate malignant from benign breast lesions: A pilot study,” Sci. Rep. 7(1), 40683–11 (2017).
[Crossref]

World Neurosurg. (1)

J. Y. Lee, J. T. Pierce, R. Zeh, S. S. Cho, R. Salinas, S. Nie, and S. Singhal, “Intraoperative near-infrared optical contrast can localize brain metastases,” World Neurosurg. 106, 120–130 (2017).
[Crossref]

Other (3)

A. T. Luk, S. Ha, F. Nouizi, D. Thayer, Y. Lin, and G. Gulsen, “A true multi-modality approach for high resolution optical imaging: photo-magnetic imaging,” in SPIE BiOS, (International Society for Optics and Photonics, 2014), 89370G–89377.

M. Algarawi, F. Nouizi, A. Luk, H. Erkol, M. Almudhry, B. M. Unlu, S. Ha, and G. Gulsen, “Experimental validation of a multiple wavelength Photo-Magnetic Imaging system,” in Optical Tomography and Spectroscopy, (Optical Society of America, 2020), STh3D. 3.

M. Algarawi, A. Luk, H. Erkol, M. Almudhry, B. M. Unlu, G. Gulsen, and F. Nouizi, “Reconstruction chromophore concentration directly by Photo-Magnetic Imaging: simulation study,” in Clinical and Translational Biophotonics, (Optical Society of America, 2020), JTu3A. 15.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Photography of the multi-wavelength PMI system. (b) Schematic of the PMI interface showing the phantom inside the RF-coil with four illumination windows.
Fig. 2.
Fig. 2. (a) Axial T1-weighted MR image showing a cross-section of the 25 mm diameter cylindrical phantom. The inclusions are sketched on the phantom to show their size and position. (b) Extinction coefficient spectra of the two used dyes. The spectrum of Dye 1, used to fill Inclusion 1, is highlighted in blue, while the spectrum of Dye 2, used in Inclusion 2, is presented in red.
Fig. 3.
Fig. 3. The temperature maps measured experimentally using MRT at 780 nm, 808 nm and 860 nm. The phantom was only heated for 6 seconds.
Fig. 4.
Fig. 4. The simulated temperature maps at 780 nm, 808 nm and 860 nm. The phantom was only heated for 6 seconds.
Fig. 5.
Fig. 5. The real absorption maps (top) and the recovered absorption maps at 780 nm, 808 nm, and 860 nm (bottom).
Fig. 6.
Fig. 6. The recovered molar concentration maps of Dye 1 (left) and Dye 2 (right) obtained using the absorption maps in Fig. 5 and Eq. (4). The dashed lines show the position of the profiles presented in Fig. 7.
Fig. 7.
Fig. 7. The profiles carried along the y-axis of the dye concentration map at the center of each inclusion: the real concentration (red line) and the recovered concentration (blue line).

Tables (2)

Tables Icon

Table 1. The real absorption coefficient of Inclusion 1 and Inclusion 2 at the three used wavelengths (mm−1).

Tables Icon

Table 2. Mean and standard deviation of the recovered absorption coefficient (mm−1) of Inclusion 1 and Inclusion 2 at the three used wavelengths.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

{ [ D ( r ) Φ ( r ) ] + μ a ( r ) Φ ( r ) = S ( r ) ρ c T ( r , t ) t [ k T ( r , t ) ] = μ a ( r ) Φ ( r )
Ω ( μ a ) = arg min μ a n = 1 N | | T n m T n ( μ a ) | | 2
Δ μ a = ( J T J + γ I ) 1 J T ( T m T ( μ a ) )
μ a t o t ( λ ) = m = 1 M μ a m = l n 10 m = 1 M ε m ( λ ) C m