Abstract

Time-domain measurements facilitate the elimination of the influence of extracerebral, systemic effects, a key problem in functional near-infrared spectroscopy (fNIRS) of the adult human brain. The analysis of measured time-of-flight distributions of photons often relies on moments or time windows. However, a systematic and quantitative characterization of the performance of these measurands is still lacking. Based on perturbation simulations for small localized absorption changes, we compared spatial sensitivity profiles and depth selectivity for moments (integral, mean time of flight and variance), photon counts in time windows and their ratios for different time windows. The influence of the instrument response function (IRF) was investigated for all measurands and for various source-detector separations. Variance exhibits the highest depth selectivity among the moments. Ratios of photon counts in different late time windows can achieve even higher selectivity. An advantage of moments is their robustness against the shape of the IRF and instrumental drifts.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Obrig, R. Wenzel, M. Kohl, S. Horst, P. Wobst, J. Steinbrink, F. Thomas, and A. Villringer, “Near-infrared spectroscopy: does it function in functional activation studies of the adult brain?” Int. J. Psychophysiol. 35(2-3), 125–142 (2000).
    [Crossref]
  2. M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” NeuroImage 63(2), 921–935 (2012).
    [Crossref]
  3. D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: Introduction for the special issue,” NeuroImage 85, 1–5 (2014).
    [Crossref]
  4. M. A. Yücel, J. J. Selb, T. J. Huppert, M. A. Franceschini, and D. A. Boas, “Functional Near Infrared Spectroscopy: Enabling Routine Functional Brain Imaging,” Curr. Opin. Biomed. Eng. 4, 78–86 (2017).
    [Crossref]
  5. A. Siegel, J. J. Marota, and D. Boas, “Design and evaluation of a continuous-wave diffuse optical tomography system,” Opt. Express 4(8), 287–298 (1999).
    [Crossref]
  6. N. L. Everdell, A. P. Gibson, I. D. C. Tullis, T. Vaithianathan, J. C. Hebden, and D. T. Delpy, “A frequency multiplexed near-infrared topography system for imaging functional activation in the brain,” Rev. Sci. Instrum. 76(9), 093705 (2005).
    [Crossref]
  7. B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” NeuroImage 47(1), 148–156 (2009).
    [Crossref]
  8. Y. Hoshi, M. Shimada, C. Sato, and Y. Iguchi, “Reevaluation of near-infrared light propagation in the adult human head: implications for functional near-infrared spectroscopy,” J. Biomed. Opt. 10(6), 064032 (2005).
    [Crossref]
  9. A. Jelzow, H. Wabnitz, I. Tachtsidis, E. Kirilina, R. Brühl, and R. Macdonald, “Separation of superficial and cerebral hemodynamics using a single distance time-domain NIRS measurement,” Biomed. Opt. Express 5(5), 1465–1482 (2014).
    [Crossref]
  10. C. Sato, T. Yamaguchi, M. Seida, Y. Ota, I. Yu, Y. Iguchi, M. Nemoto, and Y. Hoshi, “Intraoperative monitoring of depth-dependent hemoglobin concentration changes during carotid endarterectomy by time-resolved spectroscopy,” Appl. Opt. 46(14), 2785–2792 (2007).
    [Crossref]
  11. R. Saager and A. Berger, “Measurement of layer-like hemodynamic trends in scalp and cortex: implications for physiological baseline suppression in functional near-infrared spectroscopy,” J. Biomed. Opt. 13(3), 034017 (2008).
    [Crossref]
  12. E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” NeuroImage 61(1), 70–81 (2012).
    [Crossref]
  13. F. B. Haeussinger, T. Dresler, S. Heinzel, M. Schecklmann, A. J. Fallgatter, and A. C. Ehlis, “Reconstructing functional near-infrared spectroscopy (fNIRS) signals impaired by extra-cranial confounds: An easy-to-use filter method,” NeuroImage 95, 69–79 (2014).
    [Crossref]
  14. S. B. Erdoǧan, M. A. Yücel, and A. Akin, “Analysis of task-evoked systemic interference in fNIRS measurements: Insights from fMRI,” NeuroImage 87, 490–504 (2014).
    [Crossref]
  15. I. Tachtsidis and F. Scholkmann, “False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward,” Neurophotonics 3(3), 031405 (2016).
    [Crossref]
  16. M. Caldwell, F. Scholkmann, U. Wolf, M. Wolf, C. Elwell, and I. Tachtsidis, “Modelling confounding effects from extracerebral contamination and systemic factors on functional near-infrared spectroscopy,” NeuroImage 143, 91–105 (2016).
    [Crossref]
  17. A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” NeuroImage 85, 28–50 (2014).
    [Crossref]
  18. H. Wabnitz, M. Moeller, A. Liebert, A. Walter, R. Erdmann, O. Raitza, C. Drenckhahn, J. P. Dreier, H. Obrig, J. Steinbrink, and R. Macdonald, “A time-domain NIR brain imager applied in functional stimulation experiments,” Proc. SPIE 5859, 58590H (2005).
    [Crossref]
  19. D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, and R. Cubeddu, “Multi-channel time-resolved system for functional near infrared spectroscopy,” Opt. Express 14(12), 5418–5432 (2006).
    [Crossref]
  20. M. Kacprzak, A. Liebert, P. Sawosz, N. Żolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt. 12(3), 034019 (2007).
    [Crossref]
  21. R. J. Cooper, E. Magee, N. Everdell, S. Magazov, M. Varela, D. Airantzis, A. P. Gibson, and J. C. Hebden, “MONSTIR II: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging,” Rev. Sci. Instrum. 85(5), 053105 (2014).
    [Crossref]
  22. D. Milej, A. Gerega, M. Kacprzak, P. Sawosz, W. Weigl, R. Maniewski, and A. Liebert, “Time-resolved multi-channel optical system for assessment of brain oxygenation and perfusion by monitoring of diffuse reflectance and fluorescence,” Opto-electronics Rev. 22(1), 55–67 (2014).
    [Crossref]
  23. F. Lange, L. Dunne, L. Hale, and I. Tachtsidis, “MAESTROS: A Multiwavelength Time-Domain NIRS System to Monitor Changes in Oxygenation and Oxidation State of Cytochrome-C-Oxidase,” IEEE J. Sel. Top. Quantum Electron. 25, 1–12 (2019).
    [Crossref]
  24. J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 011013 (2005).
    [Crossref]
  25. P. Sawosz, M. Kacprzak, N. Zolek, W. Weigl, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Optical system based on time-gated, intensified charge-coupled device camera for brain imaging studies,” J. Biomed. Opt. 15(6), 066025 (2010).
    [Crossref]
  26. B. M. Mackert, S. Leistner, T. Sander, A. Liebert, H. Wabnitz, M. Burghoff, L. Trahms, R. Macdonald, and G. Curio, “Dynamics of cortical neurovascular coupling analyzed by simultaneous DC-magnetoencephalography and time-resolved near-infrared spectroscopy,” NeuroImage 39(3), 979–986 (2008).
    [Crossref]
  27. A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” NeuroImage 24(2), 426–435 (2005).
    [Crossref]
  28. O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: Technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt. 15(6), 061708 (2010).
    [Crossref]
  29. M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, and R. Maniewski, “Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery,” J. Biomed. Opt. 17(1), 016002 (2012).
    [Crossref]
  30. E. Molteni, D. Contini, M. Caffini, G. Baselli, L. Spinelli, R. Cubeddu, S. Cerutti, A. M. Bianchi, and A. Torricelli, “Load-dependent brain activation assessed by time-domain functional near-infrared spectroscopy during a working memory task with graded levels of difficulty,” J. Biomed. Opt. 17(5), 056005 (2012).
    [Crossref]
  31. R. Re, D. Contini, M. Turola, L. Spinelli, L. Zucchelli, M. Caffini, R. Cubeddu, and A. Torricelli, “Multi-channel medical device for time domain functional near infrared spectroscopy based on wavelength space multiplexing,” Biomed. Opt. Express 4(10), 2231–2246 (2013).
    [Crossref]
  32. F. Lange, F. Peyrin, and B. Montcel, “Broadband time-resolved multi-channel functional near-infrared spectroscopy system to monitor in vivo physiological changes of human brain activity,” Appl. Opt. 57(22), 6417–6429 (2018).
    [Crossref]
  33. M. Mazurenka, L. Di Sieno, G. Boso, D. Contini, A. Pifferi, A. Dalla Mora, A. Tosi, H. Wabnitz, and R. Macdonald, “Non-contact in vivo diffuse optical imaging using a time-gated scanning system,” Biomed. Opt. Express 4(10), 2257–2268 (2013).
    [Crossref]
  34. A. Pifferi, D. Contini, A. Dalla Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
    [Crossref]
  35. H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. MacDonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: Basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
    [Crossref]
  36. H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, R. Maniewski, A. Liebert, S. Magazov, J. Hebden, F. Martelli, P. Di Ninni, G. Zaccanti, A. Torricelli, D. Contini, R. Re, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Pifferi, “Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol,” J. Biomed. Opt. 19(8), 086012 (2014).
    [Crossref]
  37. J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46(3), 879–896 (2001).
    [Crossref]
  38. S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: Theoretical and experimental investigation,” Phys. Med. Biol. 47(23), 4131–4144 (2002).
    [Crossref]
  39. L. Zucchelli, D. Contini, R. Re, A. Torricelli, and L. Spinelli, “Method for the discrimination of superficial and deep absorption variations by time domain fNIRS,” Biomed. Opt. Express 4(12), 2893–2910 (2013).
    [Crossref]
  40. Y. Nomura, O. Hazeki, and M. Tamura, “Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media,” Phys. Med. Biol. 42(6), 1009–1022 (1997).
    [Crossref]
  41. S. R. Arridge and M. Schweiger, “Direct calculation of the moments of the distribution of photon time of flight in tissue with a finite-element method,” Appl. Opt. 34(15), 2683–2687 (1995).
    [Crossref]
  42. M. Schweiger and S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44(7), 1699–1717 (1999).
    [Crossref]
  43. B. Montcel, R. Chabrier, and P. Poulet, “Detection of cortical activation with time-resolved diffuse optical methods,” Appl. Opt. 44(10), 1942–1947 (2005).
    [Crossref]
  44. J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11(4), 044008 (2006).
    [Crossref]
  45. D. Orive-Miguel, L. Hervé, L. Condat, and J. Mars, “Improving Localization of Deep Inclusions in Time-Resolved Diffuse Optical Tomography,” Appl. Sci. 9(24), 5468 (2019).
    [Crossref]
  46. A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: Intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
    [Crossref]
  47. A. Liebert, H. Wabnitz, and C. Elster, “Determination of absorption changes from moments of distributions of times of flight of photons: optimization of measurement conditions for a two-layered tissue model,” J. Biomed. Opt. 17(5), 057005 (2012).
    [Crossref]
  48. L. Hervé, A. Puszka, A. Planat-Chrétien, and J. M. Dinten, “Time-domain diffuse optical tomography processing by using the Mellin-Laplace transform,” Appl. Opt. 51(25), 5978–5988 (2012).
    [Crossref]
  49. A. Puszka, L. Di Sieno, A. Dalla Mora, A. Pifferi, D. Contini, G. Boso, A. Tosi, L. Hervé, A. Planat-Chrétien, A. Koenig, and J.-M. Dinten, “Time-resolved diffuse optical tomography using fast-gated single-photon avalanche diodes,” Biomed. Opt. Express 4(8), 1351–1365 (2013).
    [Crossref]
  50. J. Zouaoui, L. Di Sieno, L. Hervé, A. Pifferi, A. Farina, A. D. Mora, J. Derouard, and J.-M. Dinten, “Quantification in time-domain diffuse optical tomography using Mellin-Laplace transforms,” Biomed. Opt. Express 7(10), 4346–4362 (2016).
    [Crossref]
  51. M. Mozumder and T. Tarvainen, “Time-domain diffuse optical tomography utilizing truncated Fourier series approximation,” J. Opt. Soc. Am. A 37(2), 182–191 (2020).
    [Crossref]
  52. H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-Resolved Near-Infrared Spectroscopy and Imaging of the Adult Human Brain,” Adv. Exp. Med. Biol. 662, 143–148 (2010).
  53. J. T. Elliott, D. Milej, A. Gerega, W. Weigl, M. Diop, L. B. Morrison, T.-Y. Lee, A. Liebert, and K. St. Lawrence, “Variance of time-of-flight distribution is sensitive to cerebral blood flow as demonstrated by ICG bolus-tracking measurements in adult pigs,” Biomed. Opt. Express 4(2), 206–218 (2013).
    [Crossref]
  54. D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38(13), 2927–2943 (1999).
    [Crossref]
  55. P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50(11), 2469–2488 (2005).
    [Crossref]
  56. D. Contini, L. Spinelli, A. Torricelli, A. Pifferi, and R. Cubeddu, “Novel method for depth-resolved brain functional imaging by time-domain NIRS,” Proc. SPIE 6629, 662908 (2007).
    [Crossref]
  57. G. Mitic, J. Kölzer, J. Otto, E. Plies, G. Sölkner, and W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Appl. Opt. 33(28), 6699 (1994).
    [Crossref]
  58. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Imaging of optical inhomogeneities in highly diffusive media: Discrimination between scattering and absorption contributions,” Appl. Phys. Lett. 69(27), 4162–4164 (1996).
    [Crossref]
  59. D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation I Theory,” Appl. Opt. 36(19), 4587–4599 (1997).
    [Crossref]
  60. A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42(28), 5785–5792 (2003).
    [Crossref]
  61. C. A. Laury-Micouldaut, “The nth centred moment of a multiple convolution and its applications to an intercloud gas model,” Astron. Astrophys. 51, 343–346 (1976).
  62. S. R. Arridge, “Photon-measurement density functions Part I: Analytical forms,” Appl. Opt. 34(31), 7395–7409 (1995).
    [Crossref]
  63. F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions, and Software (SPIE, 2009), Chap. 7.
  64. M. Morin, S. Verreault, A. Mailloux, J. Fréchette, S. Chatigny, Y. Painchaud, and P. Beaudry, “Inclusion characterization in a scattering slab with time-resolved transmittance measurements: perturbation analysis,” Appl. Opt. 39(16), 2840–2852 (2000).
    [Crossref]
  65. S. Carraresi, T. S. M. Shatir, F. Martelli, and G. Zaccanti, “Accuracy of a perturbation model to predict the effect of scattering and absorbing inhomogeneities on photon migration,” Appl. Opt. 40(25), 4622–4632 (2001).
    [Crossref]
  66. E. M. Sevick, J. K. Frisoli, C. L. Burch, and J. R. Lakowicz, “Localization of absorbers in scattering media by use of frequency-domain measurements of time-dependent photon migration,” Appl. Opt. 33(16), 3562–3570 (1994).
    [Crossref]
  67. F. Martelli, P. Di Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation,” J. Biomed. Opt. 19(7), 076011 (2014).
    [Crossref]
  68. S. Gunadi, T. S. Leung, C. E. Elwell, and I. Tachtsidis, “Spatial sensitivity and penetration depth of three cerebral oxygenation monitors,” Biomed. Opt. Express 5(9), 2896–2912 (2014).
    [Crossref]
  69. P. Sawosz and A. Liebert, “Method to improve the depth sensitivity of diffuse reflectance measurements to absorption changes in optically turbid medium,” Biomed. Opt. Express 10(10), 5031–5041 (2019).
    [Crossref]
  70. S. Fantini and A. Sassaroli, “Frequency-Domain Techniques for Cerebral and Functional Near-Infrared Spectroscopy,” Front. Neurosci. 14, 300 (2020).
    [Crossref]
  71. L. Di Sieno, A. Dalla Mora, A. Torricelli, L. Spinelli, R. Re, A. Pifferi, and D. Contini, “A Versatile Setup for Time-Resolved Functional Near Infrared Spectroscopy Based on Fast-Gated Single-Photon Avalanche Diode and on Four-Wave Mixing Laser,” Appl. Sci. 9(11), 2366 (2019).
    [Crossref]
  72. A. Sudakou, L. Yang, H. Wabnitz, S. Wojtkiewicz, and A. Liebert, “Performance of measurands in time-domain optical brain imaging: depth selectivity versus contrast-to-noise ratio,” Biomed. Opt. Express 10, in press (2020).
    [Crossref]

2020 (2)

M. Mozumder and T. Tarvainen, “Time-domain diffuse optical tomography utilizing truncated Fourier series approximation,” J. Opt. Soc. Am. A 37(2), 182–191 (2020).
[Crossref]

S. Fantini and A. Sassaroli, “Frequency-Domain Techniques for Cerebral and Functional Near-Infrared Spectroscopy,” Front. Neurosci. 14, 300 (2020).
[Crossref]

2019 (4)

L. Di Sieno, A. Dalla Mora, A. Torricelli, L. Spinelli, R. Re, A. Pifferi, and D. Contini, “A Versatile Setup for Time-Resolved Functional Near Infrared Spectroscopy Based on Fast-Gated Single-Photon Avalanche Diode and on Four-Wave Mixing Laser,” Appl. Sci. 9(11), 2366 (2019).
[Crossref]

P. Sawosz and A. Liebert, “Method to improve the depth sensitivity of diffuse reflectance measurements to absorption changes in optically turbid medium,” Biomed. Opt. Express 10(10), 5031–5041 (2019).
[Crossref]

D. Orive-Miguel, L. Hervé, L. Condat, and J. Mars, “Improving Localization of Deep Inclusions in Time-Resolved Diffuse Optical Tomography,” Appl. Sci. 9(24), 5468 (2019).
[Crossref]

F. Lange, L. Dunne, L. Hale, and I. Tachtsidis, “MAESTROS: A Multiwavelength Time-Domain NIRS System to Monitor Changes in Oxygenation and Oxidation State of Cytochrome-C-Oxidase,” IEEE J. Sel. Top. Quantum Electron. 25, 1–12 (2019).
[Crossref]

2018 (1)

2017 (1)

M. A. Yücel, J. J. Selb, T. J. Huppert, M. A. Franceschini, and D. A. Boas, “Functional Near Infrared Spectroscopy: Enabling Routine Functional Brain Imaging,” Curr. Opin. Biomed. Eng. 4, 78–86 (2017).
[Crossref]

2016 (4)

I. Tachtsidis and F. Scholkmann, “False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward,” Neurophotonics 3(3), 031405 (2016).
[Crossref]

M. Caldwell, F. Scholkmann, U. Wolf, M. Wolf, C. Elwell, and I. Tachtsidis, “Modelling confounding effects from extracerebral contamination and systemic factors on functional near-infrared spectroscopy,” NeuroImage 143, 91–105 (2016).
[Crossref]

J. Zouaoui, L. Di Sieno, L. Hervé, A. Pifferi, A. Farina, A. D. Mora, J. Derouard, and J.-M. Dinten, “Quantification in time-domain diffuse optical tomography using Mellin-Laplace transforms,” Biomed. Opt. Express 7(10), 4346–4362 (2016).
[Crossref]

A. Pifferi, D. Contini, A. Dalla Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref]

2014 (11)

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. MacDonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: Basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, R. Maniewski, A. Liebert, S. Magazov, J. Hebden, F. Martelli, P. Di Ninni, G. Zaccanti, A. Torricelli, D. Contini, R. Re, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Pifferi, “Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol,” J. Biomed. Opt. 19(8), 086012 (2014).
[Crossref]

F. Martelli, P. Di Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation,” J. Biomed. Opt. 19(7), 076011 (2014).
[Crossref]

S. Gunadi, T. S. Leung, C. E. Elwell, and I. Tachtsidis, “Spatial sensitivity and penetration depth of three cerebral oxygenation monitors,” Biomed. Opt. Express 5(9), 2896–2912 (2014).
[Crossref]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” NeuroImage 85, 28–50 (2014).
[Crossref]

A. Jelzow, H. Wabnitz, I. Tachtsidis, E. Kirilina, R. Brühl, and R. Macdonald, “Separation of superficial and cerebral hemodynamics using a single distance time-domain NIRS measurement,” Biomed. Opt. Express 5(5), 1465–1482 (2014).
[Crossref]

D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: Introduction for the special issue,” NeuroImage 85, 1–5 (2014).
[Crossref]

R. J. Cooper, E. Magee, N. Everdell, S. Magazov, M. Varela, D. Airantzis, A. P. Gibson, and J. C. Hebden, “MONSTIR II: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging,” Rev. Sci. Instrum. 85(5), 053105 (2014).
[Crossref]

D. Milej, A. Gerega, M. Kacprzak, P. Sawosz, W. Weigl, R. Maniewski, and A. Liebert, “Time-resolved multi-channel optical system for assessment of brain oxygenation and perfusion by monitoring of diffuse reflectance and fluorescence,” Opto-electronics Rev. 22(1), 55–67 (2014).
[Crossref]

F. B. Haeussinger, T. Dresler, S. Heinzel, M. Schecklmann, A. J. Fallgatter, and A. C. Ehlis, “Reconstructing functional near-infrared spectroscopy (fNIRS) signals impaired by extra-cranial confounds: An easy-to-use filter method,” NeuroImage 95, 69–79 (2014).
[Crossref]

S. B. Erdoǧan, M. A. Yücel, and A. Akin, “Analysis of task-evoked systemic interference in fNIRS measurements: Insights from fMRI,” NeuroImage 87, 490–504 (2014).
[Crossref]

2013 (5)

2012 (6)

A. Liebert, H. Wabnitz, and C. Elster, “Determination of absorption changes from moments of distributions of times of flight of photons: optimization of measurement conditions for a two-layered tissue model,” J. Biomed. Opt. 17(5), 057005 (2012).
[Crossref]

L. Hervé, A. Puszka, A. Planat-Chrétien, and J. M. Dinten, “Time-domain diffuse optical tomography processing by using the Mellin-Laplace transform,” Appl. Opt. 51(25), 5978–5988 (2012).
[Crossref]

M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, and R. Maniewski, “Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery,” J. Biomed. Opt. 17(1), 016002 (2012).
[Crossref]

E. Molteni, D. Contini, M. Caffini, G. Baselli, L. Spinelli, R. Cubeddu, S. Cerutti, A. M. Bianchi, and A. Torricelli, “Load-dependent brain activation assessed by time-domain functional near-infrared spectroscopy during a working memory task with graded levels of difficulty,” J. Biomed. Opt. 17(5), 056005 (2012).
[Crossref]

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” NeuroImage 63(2), 921–935 (2012).
[Crossref]

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” NeuroImage 61(1), 70–81 (2012).
[Crossref]

2010 (3)

P. Sawosz, M. Kacprzak, N. Zolek, W. Weigl, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Optical system based on time-gated, intensified charge-coupled device camera for brain imaging studies,” J. Biomed. Opt. 15(6), 066025 (2010).
[Crossref]

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: Technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt. 15(6), 061708 (2010).
[Crossref]

H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-Resolved Near-Infrared Spectroscopy and Imaging of the Adult Human Brain,” Adv. Exp. Med. Biol. 662, 143–148 (2010).

2009 (1)

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” NeuroImage 47(1), 148–156 (2009).
[Crossref]

2008 (2)

R. Saager and A. Berger, “Measurement of layer-like hemodynamic trends in scalp and cortex: implications for physiological baseline suppression in functional near-infrared spectroscopy,” J. Biomed. Opt. 13(3), 034017 (2008).
[Crossref]

B. M. Mackert, S. Leistner, T. Sander, A. Liebert, H. Wabnitz, M. Burghoff, L. Trahms, R. Macdonald, and G. Curio, “Dynamics of cortical neurovascular coupling analyzed by simultaneous DC-magnetoencephalography and time-resolved near-infrared spectroscopy,” NeuroImage 39(3), 979–986 (2008).
[Crossref]

2007 (3)

M. Kacprzak, A. Liebert, P. Sawosz, N. Żolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt. 12(3), 034019 (2007).
[Crossref]

C. Sato, T. Yamaguchi, M. Seida, Y. Ota, I. Yu, Y. Iguchi, M. Nemoto, and Y. Hoshi, “Intraoperative monitoring of depth-dependent hemoglobin concentration changes during carotid endarterectomy by time-resolved spectroscopy,” Appl. Opt. 46(14), 2785–2792 (2007).
[Crossref]

D. Contini, L. Spinelli, A. Torricelli, A. Pifferi, and R. Cubeddu, “Novel method for depth-resolved brain functional imaging by time-domain NIRS,” Proc. SPIE 6629, 662908 (2007).
[Crossref]

2006 (2)

J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11(4), 044008 (2006).
[Crossref]

D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, and R. Cubeddu, “Multi-channel time-resolved system for functional near infrared spectroscopy,” Opt. Express 14(12), 5418–5432 (2006).
[Crossref]

2005 (7)

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 011013 (2005).
[Crossref]

A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” NeuroImage 24(2), 426–435 (2005).
[Crossref]

H. Wabnitz, M. Moeller, A. Liebert, A. Walter, R. Erdmann, O. Raitza, C. Drenckhahn, J. P. Dreier, H. Obrig, J. Steinbrink, and R. Macdonald, “A time-domain NIR brain imager applied in functional stimulation experiments,” Proc. SPIE 5859, 58590H (2005).
[Crossref]

Y. Hoshi, M. Shimada, C. Sato, and Y. Iguchi, “Reevaluation of near-infrared light propagation in the adult human head: implications for functional near-infrared spectroscopy,” J. Biomed. Opt. 10(6), 064032 (2005).
[Crossref]

N. L. Everdell, A. P. Gibson, I. D. C. Tullis, T. Vaithianathan, J. C. Hebden, and D. T. Delpy, “A frequency multiplexed near-infrared topography system for imaging functional activation in the brain,” Rev. Sci. Instrum. 76(9), 093705 (2005).
[Crossref]

B. Montcel, R. Chabrier, and P. Poulet, “Detection of cortical activation with time-resolved diffuse optical methods,” Appl. Opt. 44(10), 1942–1947 (2005).
[Crossref]

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50(11), 2469–2488 (2005).
[Crossref]

2004 (1)

2003 (1)

2002 (1)

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: Theoretical and experimental investigation,” Phys. Med. Biol. 47(23), 4131–4144 (2002).
[Crossref]

2001 (2)

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46(3), 879–896 (2001).
[Crossref]

S. Carraresi, T. S. M. Shatir, F. Martelli, and G. Zaccanti, “Accuracy of a perturbation model to predict the effect of scattering and absorbing inhomogeneities on photon migration,” Appl. Opt. 40(25), 4622–4632 (2001).
[Crossref]

2000 (2)

H. Obrig, R. Wenzel, M. Kohl, S. Horst, P. Wobst, J. Steinbrink, F. Thomas, and A. Villringer, “Near-infrared spectroscopy: does it function in functional activation studies of the adult brain?” Int. J. Psychophysiol. 35(2-3), 125–142 (2000).
[Crossref]

M. Morin, S. Verreault, A. Mailloux, J. Fréchette, S. Chatigny, Y. Painchaud, and P. Beaudry, “Inclusion characterization in a scattering slab with time-resolved transmittance measurements: perturbation analysis,” Appl. Opt. 39(16), 2840–2852 (2000).
[Crossref]

1999 (3)

1997 (2)

Y. Nomura, O. Hazeki, and M. Tamura, “Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media,” Phys. Med. Biol. 42(6), 1009–1022 (1997).
[Crossref]

D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation I Theory,” Appl. Opt. 36(19), 4587–4599 (1997).
[Crossref]

1996 (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Imaging of optical inhomogeneities in highly diffusive media: Discrimination between scattering and absorption contributions,” Appl. Phys. Lett. 69(27), 4162–4164 (1996).
[Crossref]

1995 (2)

1994 (2)

1976 (1)

C. A. Laury-Micouldaut, “The nth centred moment of a multiple convolution and its applications to an intercloud gas model,” Astron. Astrophys. 51, 343–346 (1976).

Airantzis, D.

R. J. Cooper, E. Magee, N. Everdell, S. Magazov, M. Varela, D. Airantzis, A. P. Gibson, and J. C. Hebden, “MONSTIR II: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging,” Rev. Sci. Instrum. 85(5), 053105 (2014).
[Crossref]

Akin, A.

S. B. Erdoǧan, M. A. Yücel, and A. Akin, “Analysis of task-evoked systemic interference in fNIRS measurements: Insights from fMRI,” NeuroImage 87, 490–504 (2014).
[Crossref]

Arpaia, F.

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50(11), 2469–2488 (2005).
[Crossref]

Arridge, S. R.

Bargigia, I.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. MacDonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: Basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref]

Baselli, G.

E. Molteni, D. Contini, M. Caffini, G. Baselli, L. Spinelli, R. Cubeddu, S. Cerutti, A. M. Bianchi, and A. Torricelli, “Load-dependent brain activation assessed by time-domain functional near-infrared spectroscopy during a working memory task with graded levels of difficulty,” J. Biomed. Opt. 17(5), 056005 (2012).
[Crossref]

Beaudry, P.

Berger, A.

R. Saager and A. Berger, “Measurement of layer-like hemodynamic trends in scalp and cortex: implications for physiological baseline suppression in functional near-infrared spectroscopy,” J. Biomed. Opt. 13(3), 034017 (2008).
[Crossref]

Bianchi, A. M.

E. Molteni, D. Contini, M. Caffini, G. Baselli, L. Spinelli, R. Cubeddu, S. Cerutti, A. M. Bianchi, and A. Torricelli, “Load-dependent brain activation assessed by time-domain functional near-infrared spectroscopy during a working memory task with graded levels of difficulty,” J. Biomed. Opt. 17(5), 056005 (2012).
[Crossref]

Boas, D.

Boas, D. A.

M. A. Yücel, J. J. Selb, T. J. Huppert, M. A. Franceschini, and D. A. Boas, “Functional Near Infrared Spectroscopy: Enabling Routine Functional Brain Imaging,” Curr. Opin. Biomed. Eng. 4, 78–86 (2017).
[Crossref]

D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: Introduction for the special issue,” NeuroImage 85, 1–5 (2014).
[Crossref]

J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11(4), 044008 (2006).
[Crossref]

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 011013 (2005).
[Crossref]

Boso, G.

Brühl, R.

A. Jelzow, H. Wabnitz, I. Tachtsidis, E. Kirilina, R. Brühl, and R. Macdonald, “Separation of superficial and cerebral hemodynamics using a single distance time-domain NIRS measurement,” Biomed. Opt. Express 5(5), 1465–1482 (2014).
[Crossref]

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” NeuroImage 61(1), 70–81 (2012).
[Crossref]

Burch, C. L.

Burghoff, M.

B. M. Mackert, S. Leistner, T. Sander, A. Liebert, H. Wabnitz, M. Burghoff, L. Trahms, R. Macdonald, and G. Curio, “Dynamics of cortical neurovascular coupling analyzed by simultaneous DC-magnetoencephalography and time-resolved near-infrared spectroscopy,” NeuroImage 39(3), 979–986 (2008).
[Crossref]

Caffini, M.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. MacDonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: Basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” NeuroImage 85, 28–50 (2014).
[Crossref]

R. Re, D. Contini, M. Turola, L. Spinelli, L. Zucchelli, M. Caffini, R. Cubeddu, and A. Torricelli, “Multi-channel medical device for time domain functional near infrared spectroscopy based on wavelength space multiplexing,” Biomed. Opt. Express 4(10), 2231–2246 (2013).
[Crossref]

E. Molteni, D. Contini, M. Caffini, G. Baselli, L. Spinelli, R. Cubeddu, S. Cerutti, A. M. Bianchi, and A. Torricelli, “Load-dependent brain activation assessed by time-domain functional near-infrared spectroscopy during a working memory task with graded levels of difficulty,” J. Biomed. Opt. 17(5), 056005 (2012).
[Crossref]

Caldwell, M.

M. Caldwell, F. Scholkmann, U. Wolf, M. Wolf, C. Elwell, and I. Tachtsidis, “Modelling confounding effects from extracerebral contamination and systemic factors on functional near-infrared spectroscopy,” NeuroImage 143, 91–105 (2016).
[Crossref]

Carraresi, S.

Cerutti, S.

E. Molteni, D. Contini, M. Caffini, G. Baselli, L. Spinelli, R. Cubeddu, S. Cerutti, A. M. Bianchi, and A. Torricelli, “Load-dependent brain activation assessed by time-domain functional near-infrared spectroscopy during a working memory task with graded levels of difficulty,” J. Biomed. Opt. 17(5), 056005 (2012).
[Crossref]

Chabrier, R.

Chatigny, S.

Cohen, A. L.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” NeuroImage 47(1), 148–156 (2009).
[Crossref]

Condat, L.

D. Orive-Miguel, L. Hervé, L. Condat, and J. Mars, “Improving Localization of Deep Inclusions in Time-Resolved Diffuse Optical Tomography,” Appl. Sci. 9(24), 5468 (2019).
[Crossref]

Contini, D.

L. Di Sieno, A. Dalla Mora, A. Torricelli, L. Spinelli, R. Re, A. Pifferi, and D. Contini, “A Versatile Setup for Time-Resolved Functional Near Infrared Spectroscopy Based on Fast-Gated Single-Photon Avalanche Diode and on Four-Wave Mixing Laser,” Appl. Sci. 9(11), 2366 (2019).
[Crossref]

A. Pifferi, D. Contini, A. Dalla Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. MacDonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: Basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, R. Maniewski, A. Liebert, S. Magazov, J. Hebden, F. Martelli, P. Di Ninni, G. Zaccanti, A. Torricelli, D. Contini, R. Re, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Pifferi, “Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol,” J. Biomed. Opt. 19(8), 086012 (2014).
[Crossref]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” NeuroImage 85, 28–50 (2014).
[Crossref]

F. Martelli, P. Di Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation,” J. Biomed. Opt. 19(7), 076011 (2014).
[Crossref]

A. Puszka, L. Di Sieno, A. Dalla Mora, A. Pifferi, D. Contini, G. Boso, A. Tosi, L. Hervé, A. Planat-Chrétien, A. Koenig, and J.-M. Dinten, “Time-resolved diffuse optical tomography using fast-gated single-photon avalanche diodes,” Biomed. Opt. Express 4(8), 1351–1365 (2013).
[Crossref]

L. Zucchelli, D. Contini, R. Re, A. Torricelli, and L. Spinelli, “Method for the discrimination of superficial and deep absorption variations by time domain fNIRS,” Biomed. Opt. Express 4(12), 2893–2910 (2013).
[Crossref]

R. Re, D. Contini, M. Turola, L. Spinelli, L. Zucchelli, M. Caffini, R. Cubeddu, and A. Torricelli, “Multi-channel medical device for time domain functional near infrared spectroscopy based on wavelength space multiplexing,” Biomed. Opt. Express 4(10), 2231–2246 (2013).
[Crossref]

M. Mazurenka, L. Di Sieno, G. Boso, D. Contini, A. Pifferi, A. Dalla Mora, A. Tosi, H. Wabnitz, and R. Macdonald, “Non-contact in vivo diffuse optical imaging using a time-gated scanning system,” Biomed. Opt. Express 4(10), 2257–2268 (2013).
[Crossref]

E. Molteni, D. Contini, M. Caffini, G. Baselli, L. Spinelli, R. Cubeddu, S. Cerutti, A. M. Bianchi, and A. Torricelli, “Load-dependent brain activation assessed by time-domain functional near-infrared spectroscopy during a working memory task with graded levels of difficulty,” J. Biomed. Opt. 17(5), 056005 (2012).
[Crossref]

D. Contini, L. Spinelli, A. Torricelli, A. Pifferi, and R. Cubeddu, “Novel method for depth-resolved brain functional imaging by time-domain NIRS,” Proc. SPIE 6629, 662908 (2007).
[Crossref]

D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, and R. Cubeddu, “Multi-channel time-resolved system for functional near infrared spectroscopy,” Opt. Express 14(12), 5418–5432 (2006).
[Crossref]

D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation I Theory,” Appl. Opt. 36(19), 4587–4599 (1997).
[Crossref]

Cooper, R.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. MacDonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: Basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref]

Cooper, R. J.

R. J. Cooper, E. Magee, N. Everdell, S. Magazov, M. Varela, D. Airantzis, A. P. Gibson, and J. C. Hebden, “MONSTIR II: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging,” Rev. Sci. Instrum. 85(5), 053105 (2014).
[Crossref]

Cubeddu, R.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. MacDonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: Basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, R. Maniewski, A. Liebert, S. Magazov, J. Hebden, F. Martelli, P. Di Ninni, G. Zaccanti, A. Torricelli, D. Contini, R. Re, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Pifferi, “Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol,” J. Biomed. Opt. 19(8), 086012 (2014).
[Crossref]

F. Martelli, P. Di Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation,” J. Biomed. Opt. 19(7), 076011 (2014).
[Crossref]

R. Re, D. Contini, M. Turola, L. Spinelli, L. Zucchelli, M. Caffini, R. Cubeddu, and A. Torricelli, “Multi-channel medical device for time domain functional near infrared spectroscopy based on wavelength space multiplexing,” Biomed. Opt. Express 4(10), 2231–2246 (2013).
[Crossref]

E. Molteni, D. Contini, M. Caffini, G. Baselli, L. Spinelli, R. Cubeddu, S. Cerutti, A. M. Bianchi, and A. Torricelli, “Load-dependent brain activation assessed by time-domain functional near-infrared spectroscopy during a working memory task with graded levels of difficulty,” J. Biomed. Opt. 17(5), 056005 (2012).
[Crossref]

D. Contini, L. Spinelli, A. Torricelli, A. Pifferi, and R. Cubeddu, “Novel method for depth-resolved brain functional imaging by time-domain NIRS,” Proc. SPIE 6629, 662908 (2007).
[Crossref]

D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, and R. Cubeddu, “Multi-channel time-resolved system for functional near infrared spectroscopy,” Opt. Express 14(12), 5418–5432 (2006).
[Crossref]

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50(11), 2469–2488 (2005).
[Crossref]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Imaging of optical inhomogeneities in highly diffusive media: Discrimination between scattering and absorption contributions,” Appl. Phys. Lett. 69(27), 4162–4164 (1996).
[Crossref]

Culver, J. P.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” NeuroImage 47(1), 148–156 (2009).
[Crossref]

Curio, G.

B. M. Mackert, S. Leistner, T. Sander, A. Liebert, H. Wabnitz, M. Burghoff, L. Trahms, R. Macdonald, and G. Curio, “Dynamics of cortical neurovascular coupling analyzed by simultaneous DC-magnetoencephalography and time-resolved near-infrared spectroscopy,” NeuroImage 39(3), 979–986 (2008).
[Crossref]

Dalla Mora, A.

L. Di Sieno, A. Dalla Mora, A. Torricelli, L. Spinelli, R. Re, A. Pifferi, and D. Contini, “A Versatile Setup for Time-Resolved Functional Near Infrared Spectroscopy Based on Fast-Gated Single-Photon Avalanche Diode and on Four-Wave Mixing Laser,” Appl. Sci. 9(11), 2366 (2019).
[Crossref]

A. Pifferi, D. Contini, A. Dalla Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref]

M. Mazurenka, L. Di Sieno, G. Boso, D. Contini, A. Pifferi, A. Dalla Mora, A. Tosi, H. Wabnitz, and R. Macdonald, “Non-contact in vivo diffuse optical imaging using a time-gated scanning system,” Biomed. Opt. Express 4(10), 2257–2268 (2013).
[Crossref]

A. Puszka, L. Di Sieno, A. Dalla Mora, A. Pifferi, D. Contini, G. Boso, A. Tosi, L. Hervé, A. Planat-Chrétien, A. Koenig, and J.-M. Dinten, “Time-resolved diffuse optical tomography using fast-gated single-photon avalanche diodes,” Biomed. Opt. Express 4(8), 1351–1365 (2013).
[Crossref]

Danesini, G.

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50(11), 2469–2488 (2005).
[Crossref]

Del Bianco, S.

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: Theoretical and experimental investigation,” Phys. Med. Biol. 47(23), 4131–4144 (2002).
[Crossref]

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions, and Software (SPIE, 2009), Chap. 7.

Delpy, D. T.

N. L. Everdell, A. P. Gibson, I. D. C. Tullis, T. Vaithianathan, J. C. Hebden, and D. T. Delpy, “A frequency multiplexed near-infrared topography system for imaging functional activation in the brain,” Rev. Sci. Instrum. 76(9), 093705 (2005).
[Crossref]

Derouard, J.

Di Ninni, P.

F. Martelli, P. Di Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation,” J. Biomed. Opt. 19(7), 076011 (2014).
[Crossref]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, R. Maniewski, A. Liebert, S. Magazov, J. Hebden, F. Martelli, P. Di Ninni, G. Zaccanti, A. Torricelli, D. Contini, R. Re, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Pifferi, “Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol,” J. Biomed. Opt. 19(8), 086012 (2014).
[Crossref]

Di Sieno, L.

Dinten, J. M.

Dinten, J.-M.

Diop, M.

Dreier, J. P.

H. Wabnitz, M. Moeller, A. Liebert, A. Walter, R. Erdmann, O. Raitza, C. Drenckhahn, J. P. Dreier, H. Obrig, J. Steinbrink, and R. Macdonald, “A time-domain NIR brain imager applied in functional stimulation experiments,” Proc. SPIE 5859, 58590H (2005).
[Crossref]

Drenckhahn, C.

H. Wabnitz, M. Moeller, A. Liebert, A. Walter, R. Erdmann, O. Raitza, C. Drenckhahn, J. P. Dreier, H. Obrig, J. Steinbrink, and R. Macdonald, “A time-domain NIR brain imager applied in functional stimulation experiments,” Proc. SPIE 5859, 58590H (2005).
[Crossref]

Dresler, T.

F. B. Haeussinger, T. Dresler, S. Heinzel, M. Schecklmann, A. J. Fallgatter, and A. C. Ehlis, “Reconstructing functional near-infrared spectroscopy (fNIRS) signals impaired by extra-cranial confounds: An easy-to-use filter method,” NeuroImage 95, 69–79 (2014).
[Crossref]

Dunne, L.

F. Lange, L. Dunne, L. Hale, and I. Tachtsidis, “MAESTROS: A Multiwavelength Time-Domain NIRS System to Monitor Changes in Oxygenation and Oxidation State of Cytochrome-C-Oxidase,” IEEE J. Sel. Top. Quantum Electron. 25, 1–12 (2019).
[Crossref]

Ehlis, A. C.

F. B. Haeussinger, T. Dresler, S. Heinzel, M. Schecklmann, A. J. Fallgatter, and A. C. Ehlis, “Reconstructing functional near-infrared spectroscopy (fNIRS) signals impaired by extra-cranial confounds: An easy-to-use filter method,” NeuroImage 95, 69–79 (2014).
[Crossref]

Elliott, J. T.

Elster, C.

A. Liebert, H. Wabnitz, and C. Elster, “Determination of absorption changes from moments of distributions of times of flight of photons: optimization of measurement conditions for a two-layered tissue model,” J. Biomed. Opt. 17(5), 057005 (2012).
[Crossref]

Elwell, C.

M. Caldwell, F. Scholkmann, U. Wolf, M. Wolf, C. Elwell, and I. Tachtsidis, “Modelling confounding effects from extracerebral contamination and systemic factors on functional near-infrared spectroscopy,” NeuroImage 143, 91–105 (2016).
[Crossref]

Elwell, C. E.

D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: Introduction for the special issue,” NeuroImage 85, 1–5 (2014).
[Crossref]

S. Gunadi, T. S. Leung, C. E. Elwell, and I. Tachtsidis, “Spatial sensitivity and penetration depth of three cerebral oxygenation monitors,” Biomed. Opt. Express 5(9), 2896–2912 (2014).
[Crossref]

Erdmann, R.

H. Wabnitz, M. Moeller, A. Liebert, A. Walter, R. Erdmann, O. Raitza, C. Drenckhahn, J. P. Dreier, H. Obrig, J. Steinbrink, and R. Macdonald, “A time-domain NIR brain imager applied in functional stimulation experiments,” Proc. SPIE 5859, 58590H (2005).
[Crossref]

Erdogan, S. B.

S. B. Erdoǧan, M. A. Yücel, and A. Akin, “Analysis of task-evoked systemic interference in fNIRS measurements: Insights from fMRI,” NeuroImage 87, 490–504 (2014).
[Crossref]

Everdell, N.

R. J. Cooper, E. Magee, N. Everdell, S. Magazov, M. Varela, D. Airantzis, A. P. Gibson, and J. C. Hebden, “MONSTIR II: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging,” Rev. Sci. Instrum. 85(5), 053105 (2014).
[Crossref]

Everdell, N. L.

N. L. Everdell, A. P. Gibson, I. D. C. Tullis, T. Vaithianathan, J. C. Hebden, and D. T. Delpy, “A frequency multiplexed near-infrared topography system for imaging functional activation in the brain,” Rev. Sci. Instrum. 76(9), 093705 (2005).
[Crossref]

Fallgatter, A. J.

F. B. Haeussinger, T. Dresler, S. Heinzel, M. Schecklmann, A. J. Fallgatter, and A. C. Ehlis, “Reconstructing functional near-infrared spectroscopy (fNIRS) signals impaired by extra-cranial confounds: An easy-to-use filter method,” NeuroImage 95, 69–79 (2014).
[Crossref]

Fantini, S.

S. Fantini and A. Sassaroli, “Frequency-Domain Techniques for Cerebral and Functional Near-Infrared Spectroscopy,” Front. Neurosci. 14, 300 (2020).
[Crossref]

Farina, A.

J. Zouaoui, L. Di Sieno, L. Hervé, A. Pifferi, A. Farina, A. D. Mora, J. Derouard, and J.-M. Dinten, “Quantification in time-domain diffuse optical tomography using Mellin-Laplace transforms,” Biomed. Opt. Express 7(10), 4346–4362 (2016).
[Crossref]

A. Pifferi, D. Contini, A. Dalla Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. MacDonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: Basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref]

Ferrari, M.

D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: Introduction for the special issue,” NeuroImage 85, 1–5 (2014).
[Crossref]

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” NeuroImage 63(2), 921–935 (2012).
[Crossref]

Fiebach, J. B.

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: Technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt. 15(6), 061708 (2010).
[Crossref]

Franceschini, M. A.

M. A. Yücel, J. J. Selb, T. J. Huppert, M. A. Franceschini, and D. A. Boas, “Functional Near Infrared Spectroscopy: Enabling Routine Functional Brain Imaging,” Curr. Opin. Biomed. Eng. 4, 78–86 (2017).
[Crossref]

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 011013 (2005).
[Crossref]

Fréchette, J.

Frisoli, J. K.

Gabrusiewicz, A.

M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, and R. Maniewski, “Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery,” J. Biomed. Opt. 17(1), 016002 (2012).
[Crossref]

Gerega, A.

D. Milej, A. Gerega, M. Kacprzak, P. Sawosz, W. Weigl, R. Maniewski, and A. Liebert, “Time-resolved multi-channel optical system for assessment of brain oxygenation and perfusion by monitoring of diffuse reflectance and fluorescence,” Opto-electronics Rev. 22(1), 55–67 (2014).
[Crossref]

J. T. Elliott, D. Milej, A. Gerega, W. Weigl, M. Diop, L. B. Morrison, T.-Y. Lee, A. Liebert, and K. St. Lawrence, “Variance of time-of-flight distribution is sensitive to cerebral blood flow as demonstrated by ICG bolus-tracking measurements in adult pigs,” Biomed. Opt. Express 4(2), 206–218 (2013).
[Crossref]

Gibson, A. P.

R. J. Cooper, E. Magee, N. Everdell, S. Magazov, M. Varela, D. Airantzis, A. P. Gibson, and J. C. Hebden, “MONSTIR II: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging,” Rev. Sci. Instrum. 85(5), 053105 (2014).
[Crossref]

N. L. Everdell, A. P. Gibson, I. D. C. Tullis, T. Vaithianathan, J. C. Hebden, and D. T. Delpy, “A frequency multiplexed near-infrared topography system for imaging functional activation in the brain,” Rev. Sci. Instrum. 76(9), 093705 (2005).
[Crossref]

Grosenick, D.

Gruber, C.

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: Technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt. 15(6), 061708 (2010).
[Crossref]

Gunadi, S.

Haeussinger, F. B.

F. B. Haeussinger, T. Dresler, S. Heinzel, M. Schecklmann, A. J. Fallgatter, and A. C. Ehlis, “Reconstructing functional near-infrared spectroscopy (fNIRS) signals impaired by extra-cranial confounds: An easy-to-use filter method,” NeuroImage 95, 69–79 (2014).
[Crossref]

Hale, L.

F. Lange, L. Dunne, L. Hale, and I. Tachtsidis, “MAESTROS: A Multiwavelength Time-Domain NIRS System to Monitor Changes in Oxygenation and Oxidation State of Cytochrome-C-Oxidase,” IEEE J. Sel. Top. Quantum Electron. 25, 1–12 (2019).
[Crossref]

Hazeki, O.

Y. Nomura, O. Hazeki, and M. Tamura, “Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media,” Phys. Med. Biol. 42(6), 1009–1022 (1997).
[Crossref]

Hebden, J.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. MacDonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: Basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, R. Maniewski, A. Liebert, S. Magazov, J. Hebden, F. Martelli, P. Di Ninni, G. Zaccanti, A. Torricelli, D. Contini, R. Re, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Pifferi, “Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol,” J. Biomed. Opt. 19(8), 086012 (2014).
[Crossref]

Hebden, J. C.

R. J. Cooper, E. Magee, N. Everdell, S. Magazov, M. Varela, D. Airantzis, A. P. Gibson, and J. C. Hebden, “MONSTIR II: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging,” Rev. Sci. Instrum. 85(5), 053105 (2014).
[Crossref]

N. L. Everdell, A. P. Gibson, I. D. C. Tullis, T. Vaithianathan, J. C. Hebden, and D. T. Delpy, “A frequency multiplexed near-infrared topography system for imaging functional activation in the brain,” Rev. Sci. Instrum. 76(9), 093705 (2005).
[Crossref]

Heine, A.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” NeuroImage 61(1), 70–81 (2012).
[Crossref]

Heinzel, S.

F. B. Haeussinger, T. Dresler, S. Heinzel, M. Schecklmann, A. J. Fallgatter, and A. C. Ehlis, “Reconstructing functional near-infrared spectroscopy (fNIRS) signals impaired by extra-cranial confounds: An easy-to-use filter method,” NeuroImage 95, 69–79 (2014).
[Crossref]

Hervé, L.

Horst, S.

H. Obrig, R. Wenzel, M. Kohl, S. Horst, P. Wobst, J. Steinbrink, F. Thomas, and A. Villringer, “Near-infrared spectroscopy: does it function in functional activation studies of the adult brain?” Int. J. Psychophysiol. 35(2-3), 125–142 (2000).
[Crossref]

Hoshi, Y.

C. Sato, T. Yamaguchi, M. Seida, Y. Ota, I. Yu, Y. Iguchi, M. Nemoto, and Y. Hoshi, “Intraoperative monitoring of depth-dependent hemoglobin concentration changes during carotid endarterectomy by time-resolved spectroscopy,” Appl. Opt. 46(14), 2785–2792 (2007).
[Crossref]

Y. Hoshi, M. Shimada, C. Sato, and Y. Iguchi, “Reevaluation of near-infrared light propagation in the adult human head: implications for functional near-infrared spectroscopy,” J. Biomed. Opt. 10(6), 064032 (2005).
[Crossref]

Huppert, T. J.

M. A. Yücel, J. J. Selb, T. J. Huppert, M. A. Franceschini, and D. A. Boas, “Functional Near Infrared Spectroscopy: Enabling Routine Functional Brain Imaging,” Curr. Opin. Biomed. Eng. 4, 78–86 (2017).
[Crossref]

Iguchi, Y.

C. Sato, T. Yamaguchi, M. Seida, Y. Ota, I. Yu, Y. Iguchi, M. Nemoto, and Y. Hoshi, “Intraoperative monitoring of depth-dependent hemoglobin concentration changes during carotid endarterectomy by time-resolved spectroscopy,” Appl. Opt. 46(14), 2785–2792 (2007).
[Crossref]

Y. Hoshi, M. Shimada, C. Sato, and Y. Iguchi, “Reevaluation of near-infrared light propagation in the adult human head: implications for functional near-infrared spectroscopy,” J. Biomed. Opt. 10(6), 064032 (2005).
[Crossref]

Ismaelli, A.

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions, and Software (SPIE, 2009), Chap. 7.

Ittermann, B.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” NeuroImage 61(1), 70–81 (2012).
[Crossref]

Jacobs, A. M.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” NeuroImage 61(1), 70–81 (2012).
[Crossref]

Jelzow, A.

A. Jelzow, H. Wabnitz, I. Tachtsidis, E. Kirilina, R. Brühl, and R. Macdonald, “Separation of superficial and cerebral hemodynamics using a single distance time-domain NIRS measurement,” Biomed. Opt. Express 5(5), 1465–1482 (2014).
[Crossref]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, R. Maniewski, A. Liebert, S. Magazov, J. Hebden, F. Martelli, P. Di Ninni, G. Zaccanti, A. Torricelli, D. Contini, R. Re, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Pifferi, “Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol,” J. Biomed. Opt. 19(8), 086012 (2014).
[Crossref]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. MacDonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: Basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref]

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” NeuroImage 61(1), 70–81 (2012).
[Crossref]

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: Technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt. 15(6), 061708 (2010).
[Crossref]

Joseph, D. K.

J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11(4), 044008 (2006).
[Crossref]

Kacprzak, M.

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, R. Maniewski, A. Liebert, S. Magazov, J. Hebden, F. Martelli, P. Di Ninni, G. Zaccanti, A. Torricelli, D. Contini, R. Re, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Pifferi, “Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol,” J. Biomed. Opt. 19(8), 086012 (2014).
[Crossref]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. MacDonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: Basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref]

D. Milej, A. Gerega, M. Kacprzak, P. Sawosz, W. Weigl, R. Maniewski, and A. Liebert, “Time-resolved multi-channel optical system for assessment of brain oxygenation and perfusion by monitoring of diffuse reflectance and fluorescence,” Opto-electronics Rev. 22(1), 55–67 (2014).
[Crossref]

M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, and R. Maniewski, “Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery,” J. Biomed. Opt. 17(1), 016002 (2012).
[Crossref]

P. Sawosz, M. Kacprzak, N. Zolek, W. Weigl, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Optical system based on time-gated, intensified charge-coupled device camera for brain imaging studies,” J. Biomed. Opt. 15(6), 066025 (2010).
[Crossref]

M. Kacprzak, A. Liebert, P. Sawosz, N. Żolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt. 12(3), 034019 (2007).
[Crossref]

Kirilina, E.

A. Jelzow, H. Wabnitz, I. Tachtsidis, E. Kirilina, R. Brühl, and R. Macdonald, “Separation of superficial and cerebral hemodynamics using a single distance time-domain NIRS measurement,” Biomed. Opt. Express 5(5), 1465–1482 (2014).
[Crossref]

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” NeuroImage 61(1), 70–81 (2012).
[Crossref]

Koenig, A.

Kohl, M.

H. Obrig, R. Wenzel, M. Kohl, S. Horst, P. Wobst, J. Steinbrink, F. Thomas, and A. Villringer, “Near-infrared spectroscopy: does it function in functional activation studies of the adult brain?” Int. J. Psychophysiol. 35(2-3), 125–142 (2000).
[Crossref]

Kölzer, J.

Lakowicz, J. R.

Lange, F.

F. Lange, L. Dunne, L. Hale, and I. Tachtsidis, “MAESTROS: A Multiwavelength Time-Domain NIRS System to Monitor Changes in Oxygenation and Oxidation State of Cytochrome-C-Oxidase,” IEEE J. Sel. Top. Quantum Electron. 25, 1–12 (2019).
[Crossref]

F. Lange, F. Peyrin, and B. Montcel, “Broadband time-resolved multi-channel functional near-infrared spectroscopy system to monitor in vivo physiological changes of human brain activity,” Appl. Opt. 57(22), 6417–6429 (2018).
[Crossref]

Laury-Micouldaut, C. A.

C. A. Laury-Micouldaut, “The nth centred moment of a multiple convolution and its applications to an intercloud gas model,” Astron. Astrophys. 51, 343–346 (1976).

Lee, T.-Y.

Leistner, S.

B. M. Mackert, S. Leistner, T. Sander, A. Liebert, H. Wabnitz, M. Burghoff, L. Trahms, R. Macdonald, and G. Curio, “Dynamics of cortical neurovascular coupling analyzed by simultaneous DC-magnetoencephalography and time-resolved near-infrared spectroscopy,” NeuroImage 39(3), 979–986 (2008).
[Crossref]

Leung, T. S.

Liebert, A.

P. Sawosz and A. Liebert, “Method to improve the depth sensitivity of diffuse reflectance measurements to absorption changes in optically turbid medium,” Biomed. Opt. Express 10(10), 5031–5041 (2019).
[Crossref]

D. Milej, A. Gerega, M. Kacprzak, P. Sawosz, W. Weigl, R. Maniewski, and A. Liebert, “Time-resolved multi-channel optical system for assessment of brain oxygenation and perfusion by monitoring of diffuse reflectance and fluorescence,” Opto-electronics Rev. 22(1), 55–67 (2014).
[Crossref]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. MacDonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: Basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, R. Maniewski, A. Liebert, S. Magazov, J. Hebden, F. Martelli, P. Di Ninni, G. Zaccanti, A. Torricelli, D. Contini, R. Re, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Pifferi, “Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol,” J. Biomed. Opt. 19(8), 086012 (2014).
[Crossref]

J. T. Elliott, D. Milej, A. Gerega, W. Weigl, M. Diop, L. B. Morrison, T.-Y. Lee, A. Liebert, and K. St. Lawrence, “Variance of time-of-flight distribution is sensitive to cerebral blood flow as demonstrated by ICG bolus-tracking measurements in adult pigs,” Biomed. Opt. Express 4(2), 206–218 (2013).
[Crossref]

A. Liebert, H. Wabnitz, and C. Elster, “Determination of absorption changes from moments of distributions of times of flight of photons: optimization of measurement conditions for a two-layered tissue model,” J. Biomed. Opt. 17(5), 057005 (2012).
[Crossref]

M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, and R. Maniewski, “Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery,” J. Biomed. Opt. 17(1), 016002 (2012).
[Crossref]

P. Sawosz, M. Kacprzak, N. Zolek, W. Weigl, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Optical system based on time-gated, intensified charge-coupled device camera for brain imaging studies,” J. Biomed. Opt. 15(6), 066025 (2010).
[Crossref]

H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-Resolved Near-Infrared Spectroscopy and Imaging of the Adult Human Brain,” Adv. Exp. Med. Biol. 662, 143–148 (2010).

B. M. Mackert, S. Leistner, T. Sander, A. Liebert, H. Wabnitz, M. Burghoff, L. Trahms, R. Macdonald, and G. Curio, “Dynamics of cortical neurovascular coupling analyzed by simultaneous DC-magnetoencephalography and time-resolved near-infrared spectroscopy,” NeuroImage 39(3), 979–986 (2008).
[Crossref]

M. Kacprzak, A. Liebert, P. Sawosz, N. Żolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt. 12(3), 034019 (2007).
[Crossref]

H. Wabnitz, M. Moeller, A. Liebert, A. Walter, R. Erdmann, O. Raitza, C. Drenckhahn, J. P. Dreier, H. Obrig, J. Steinbrink, and R. Macdonald, “A time-domain NIR brain imager applied in functional stimulation experiments,” Proc. SPIE 5859, 58590H (2005).
[Crossref]

A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” NeuroImage 24(2), 426–435 (2005).
[Crossref]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: Intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
[Crossref]

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42(28), 5785–5792 (2003).
[Crossref]

A. Sudakou, L. Yang, H. Wabnitz, S. Wojtkiewicz, and A. Liebert, “Performance of measurands in time-domain optical brain imaging: depth selectivity versus contrast-to-noise ratio,” Biomed. Opt. Express 10, in press (2020).
[Crossref]

Macdonald, R.

F. Martelli, P. Di Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation,” J. Biomed. Opt. 19(7), 076011 (2014).
[Crossref]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, R. Maniewski, A. Liebert, S. Magazov, J. Hebden, F. Martelli, P. Di Ninni, G. Zaccanti, A. Torricelli, D. Contini, R. Re, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Pifferi, “Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol,” J. Biomed. Opt. 19(8), 086012 (2014).
[Crossref]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. MacDonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: Basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref]

A. Jelzow, H. Wabnitz, I. Tachtsidis, E. Kirilina, R. Brühl, and R. Macdonald, “Separation of superficial and cerebral hemodynamics using a single distance time-domain NIRS measurement,” Biomed. Opt. Express 5(5), 1465–1482 (2014).
[Crossref]

M. Mazurenka, L. Di Sieno, G. Boso, D. Contini, A. Pifferi, A. Dalla Mora, A. Tosi, H. Wabnitz, and R. Macdonald, “Non-contact in vivo diffuse optical imaging using a time-gated scanning system,” Biomed. Opt. Express 4(10), 2257–2268 (2013).
[Crossref]

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: Technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt. 15(6), 061708 (2010).
[Crossref]

H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-Resolved Near-Infrared Spectroscopy and Imaging of the Adult Human Brain,” Adv. Exp. Med. Biol. 662, 143–148 (2010).

B. M. Mackert, S. Leistner, T. Sander, A. Liebert, H. Wabnitz, M. Burghoff, L. Trahms, R. Macdonald, and G. Curio, “Dynamics of cortical neurovascular coupling analyzed by simultaneous DC-magnetoencephalography and time-resolved near-infrared spectroscopy,” NeuroImage 39(3), 979–986 (2008).
[Crossref]

A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” NeuroImage 24(2), 426–435 (2005).
[Crossref]

H. Wabnitz, M. Moeller, A. Liebert, A. Walter, R. Erdmann, O. Raitza, C. Drenckhahn, J. P. Dreier, H. Obrig, J. Steinbrink, and R. Macdonald, “A time-domain NIR brain imager applied in functional stimulation experiments,” Proc. SPIE 5859, 58590H (2005).
[Crossref]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: Intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
[Crossref]

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42(28), 5785–5792 (2003).
[Crossref]

Mackert, B. M.

B. M. Mackert, S. Leistner, T. Sander, A. Liebert, H. Wabnitz, M. Burghoff, L. Trahms, R. Macdonald, and G. Curio, “Dynamics of cortical neurovascular coupling analyzed by simultaneous DC-magnetoencephalography and time-resolved near-infrared spectroscopy,” NeuroImage 39(3), 979–986 (2008).
[Crossref]

Madycki, G.

M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, and R. Maniewski, “Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery,” J. Biomed. Opt. 17(1), 016002 (2012).
[Crossref]

Magazov, S.

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, R. Maniewski, A. Liebert, S. Magazov, J. Hebden, F. Martelli, P. Di Ninni, G. Zaccanti, A. Torricelli, D. Contini, R. Re, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Pifferi, “Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol,” J. Biomed. Opt. 19(8), 086012 (2014).
[Crossref]

R. J. Cooper, E. Magee, N. Everdell, S. Magazov, M. Varela, D. Airantzis, A. P. Gibson, and J. C. Hebden, “MONSTIR II: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging,” Rev. Sci. Instrum. 85(5), 053105 (2014).
[Crossref]

Magee, E.

R. J. Cooper, E. Magee, N. Everdell, S. Magazov, M. Varela, D. Airantzis, A. P. Gibson, and J. C. Hebden, “MONSTIR II: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging,” Rev. Sci. Instrum. 85(5), 053105 (2014).
[Crossref]

Mailloux, A.

Maniewski, R.

D. Milej, A. Gerega, M. Kacprzak, P. Sawosz, W. Weigl, R. Maniewski, and A. Liebert, “Time-resolved multi-channel optical system for assessment of brain oxygenation and perfusion by monitoring of diffuse reflectance and fluorescence,” Opto-electronics Rev. 22(1), 55–67 (2014).
[Crossref]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, R. Maniewski, A. Liebert, S. Magazov, J. Hebden, F. Martelli, P. Di Ninni, G. Zaccanti, A. Torricelli, D. Contini, R. Re, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Pifferi, “Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol,” J. Biomed. Opt. 19(8), 086012 (2014).
[Crossref]

M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, and R. Maniewski, “Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery,” J. Biomed. Opt. 17(1), 016002 (2012).
[Crossref]

P. Sawosz, M. Kacprzak, N. Zolek, W. Weigl, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Optical system based on time-gated, intensified charge-coupled device camera for brain imaging studies,” J. Biomed. Opt. 15(6), 066025 (2010).
[Crossref]

M. Kacprzak, A. Liebert, P. Sawosz, N. Żolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt. 12(3), 034019 (2007).
[Crossref]

Marota, J. J.

Mars, J.

D. Orive-Miguel, L. Hervé, L. Condat, and J. Mars, “Improving Localization of Deep Inclusions in Time-Resolved Diffuse Optical Tomography,” Appl. Sci. 9(24), 5468 (2019).
[Crossref]

Martelli, F.

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, R. Maniewski, A. Liebert, S. Magazov, J. Hebden, F. Martelli, P. Di Ninni, G. Zaccanti, A. Torricelli, D. Contini, R. Re, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Pifferi, “Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol,” J. Biomed. Opt. 19(8), 086012 (2014).
[Crossref]

F. Martelli, P. Di Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation,” J. Biomed. Opt. 19(7), 076011 (2014).
[Crossref]

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: Theoretical and experimental investigation,” Phys. Med. Biol. 47(23), 4131–4144 (2002).
[Crossref]

S. Carraresi, T. S. M. Shatir, F. Martelli, and G. Zaccanti, “Accuracy of a perturbation model to predict the effect of scattering and absorbing inhomogeneities on photon migration,” Appl. Opt. 40(25), 4622–4632 (2001).
[Crossref]

D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation I Theory,” Appl. Opt. 36(19), 4587–4599 (1997).
[Crossref]

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions, and Software (SPIE, 2009), Chap. 7.

Mazurenka, M.

F. Martelli, P. Di Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation,” J. Biomed. Opt. 19(7), 076011 (2014).
[Crossref]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, R. Maniewski, A. Liebert, S. Magazov, J. Hebden, F. Martelli, P. Di Ninni, G. Zaccanti, A. Torricelli, D. Contini, R. Re, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Pifferi, “Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol,” J. Biomed. Opt. 19(8), 086012 (2014).
[Crossref]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. MacDonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: Basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref]

M. Mazurenka, L. Di Sieno, G. Boso, D. Contini, A. Pifferi, A. Dalla Mora, A. Tosi, H. Wabnitz, and R. Macdonald, “Non-contact in vivo diffuse optical imaging using a time-gated scanning system,” Biomed. Opt. Express 4(10), 2257–2268 (2013).
[Crossref]

Milej, D.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. MacDonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: Basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, R. Maniewski, A. Liebert, S. Magazov, J. Hebden, F. Martelli, P. Di Ninni, G. Zaccanti, A. Torricelli, D. Contini, R. Re, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Pifferi, “Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol,” J. Biomed. Opt. 19(8), 086012 (2014).
[Crossref]

D. Milej, A. Gerega, M. Kacprzak, P. Sawosz, W. Weigl, R. Maniewski, and A. Liebert, “Time-resolved multi-channel optical system for assessment of brain oxygenation and perfusion by monitoring of diffuse reflectance and fluorescence,” Opto-electronics Rev. 22(1), 55–67 (2014).
[Crossref]

J. T. Elliott, D. Milej, A. Gerega, W. Weigl, M. Diop, L. B. Morrison, T.-Y. Lee, A. Liebert, and K. St. Lawrence, “Variance of time-of-flight distribution is sensitive to cerebral blood flow as demonstrated by ICG bolus-tracking measurements in adult pigs,” Biomed. Opt. Express 4(2), 206–218 (2013).
[Crossref]

Mitic, G.

Moeller, M.

H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-Resolved Near-Infrared Spectroscopy and Imaging of the Adult Human Brain,” Adv. Exp. Med. Biol. 662, 143–148 (2010).

H. Wabnitz, M. Moeller, A. Liebert, A. Walter, R. Erdmann, O. Raitza, C. Drenckhahn, J. P. Dreier, H. Obrig, J. Steinbrink, and R. Macdonald, “A time-domain NIR brain imager applied in functional stimulation experiments,” Proc. SPIE 5859, 58590H (2005).
[Crossref]

Moesta, K. T.

Möller, M.

Molteni, E.

E. Molteni, D. Contini, M. Caffini, G. Baselli, L. Spinelli, R. Cubeddu, S. Cerutti, A. M. Bianchi, and A. Torricelli, “Load-dependent brain activation assessed by time-domain functional near-infrared spectroscopy during a working memory task with graded levels of difficulty,” J. Biomed. Opt. 17(5), 056005 (2012).
[Crossref]

Montcel, B.

Mora, A. D.

Morin, M.

Morrison, L. B.

Mozumder, M.

Nemoto, M.

Niessing, M.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” NeuroImage 61(1), 70–81 (2012).
[Crossref]

Nomura, Y.

Y. Nomura, O. Hazeki, and M. Tamura, “Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media,” Phys. Med. Biol. 42(6), 1009–1022 (1997).
[Crossref]

Obrig, H.

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: Technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt. 15(6), 061708 (2010).
[Crossref]

H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-Resolved Near-Infrared Spectroscopy and Imaging of the Adult Human Brain,” Adv. Exp. Med. Biol. 662, 143–148 (2010).

A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” NeuroImage 24(2), 426–435 (2005).
[Crossref]

H. Wabnitz, M. Moeller, A. Liebert, A. Walter, R. Erdmann, O. Raitza, C. Drenckhahn, J. P. Dreier, H. Obrig, J. Steinbrink, and R. Macdonald, “A time-domain NIR brain imager applied in functional stimulation experiments,” Proc. SPIE 5859, 58590H (2005).
[Crossref]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: Intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
[Crossref]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46(3), 879–896 (2001).
[Crossref]

H. Obrig, R. Wenzel, M. Kohl, S. Horst, P. Wobst, J. Steinbrink, F. Thomas, and A. Villringer, “Near-infrared spectroscopy: does it function in functional activation studies of the adult brain?” Int. J. Psychophysiol. 35(2-3), 125–142 (2000).
[Crossref]

Orive-Miguel, D.

D. Orive-Miguel, L. Hervé, L. Condat, and J. Mars, “Improving Localization of Deep Inclusions in Time-Resolved Diffuse Optical Tomography,” Appl. Sci. 9(24), 5468 (2019).
[Crossref]

Ota, Y.

Otto, J.

Paglia, F.

Painchaud, Y.

Petersen, S. E.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” NeuroImage 47(1), 148–156 (2009).
[Crossref]

Peyrin, F.

Pifferi, A.

L. Di Sieno, A. Dalla Mora, A. Torricelli, L. Spinelli, R. Re, A. Pifferi, and D. Contini, “A Versatile Setup for Time-Resolved Functional Near Infrared Spectroscopy Based on Fast-Gated Single-Photon Avalanche Diode and on Four-Wave Mixing Laser,” Appl. Sci. 9(11), 2366 (2019).
[Crossref]

J. Zouaoui, L. Di Sieno, L. Hervé, A. Pifferi, A. Farina, A. D. Mora, J. Derouard, and J.-M. Dinten, “Quantification in time-domain diffuse optical tomography using Mellin-Laplace transforms,” Biomed. Opt. Express 7(10), 4346–4362 (2016).
[Crossref]

A. Pifferi, D. Contini, A. Dalla Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. MacDonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: Basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, R. Maniewski, A. Liebert, S. Magazov, J. Hebden, F. Martelli, P. Di Ninni, G. Zaccanti, A. Torricelli, D. Contini, R. Re, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Pifferi, “Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol,” J. Biomed. Opt. 19(8), 086012 (2014).
[Crossref]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” NeuroImage 85, 28–50 (2014).
[Crossref]

F. Martelli, P. Di Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation,” J. Biomed. Opt. 19(7), 076011 (2014).
[Crossref]

A. Puszka, L. Di Sieno, A. Dalla Mora, A. Pifferi, D. Contini, G. Boso, A. Tosi, L. Hervé, A. Planat-Chrétien, A. Koenig, and J.-M. Dinten, “Time-resolved diffuse optical tomography using fast-gated single-photon avalanche diodes,” Biomed. Opt. Express 4(8), 1351–1365 (2013).
[Crossref]

M. Mazurenka, L. Di Sieno, G. Boso, D. Contini, A. Pifferi, A. Dalla Mora, A. Tosi, H. Wabnitz, and R. Macdonald, “Non-contact in vivo diffuse optical imaging using a time-gated scanning system,” Biomed. Opt. Express 4(10), 2257–2268 (2013).
[Crossref]

D. Contini, L. Spinelli, A. Torricelli, A. Pifferi, and R. Cubeddu, “Novel method for depth-resolved brain functional imaging by time-domain NIRS,” Proc. SPIE 6629, 662908 (2007).
[Crossref]

D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, and R. Cubeddu, “Multi-channel time-resolved system for functional near infrared spectroscopy,” Opt. Express 14(12), 5418–5432 (2006).
[Crossref]

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50(11), 2469–2488 (2005).
[Crossref]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Imaging of optical inhomogeneities in highly diffusive media: Discrimination between scattering and absorption contributions,” Appl. Phys. Lett. 69(27), 4162–4164 (1996).
[Crossref]

Planat-Chrétien, A.

Plies, E.

Poulet, P.

Puszka, A.

Quaresima, V.

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” NeuroImage 63(2), 921–935 (2012).
[Crossref]

Raichle, M. E.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” NeuroImage 47(1), 148–156 (2009).
[Crossref]

Raitza, O.

H. Wabnitz, M. Moeller, A. Liebert, A. Walter, R. Erdmann, O. Raitza, C. Drenckhahn, J. P. Dreier, H. Obrig, J. Steinbrink, and R. Macdonald, “A time-domain NIR brain imager applied in functional stimulation experiments,” Proc. SPIE 5859, 58590H (2005).
[Crossref]

Re, R.

L. Di Sieno, A. Dalla Mora, A. Torricelli, L. Spinelli, R. Re, A. Pifferi, and D. Contini, “A Versatile Setup for Time-Resolved Functional Near Infrared Spectroscopy Based on Fast-Gated Single-Photon Avalanche Diode and on Four-Wave Mixing Laser,” Appl. Sci. 9(11), 2366 (2019).
[Crossref]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” NeuroImage 85, 28–50 (2014).
[Crossref]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, R. Maniewski, A. Liebert, S. Magazov, J. Hebden, F. Martelli, P. Di Ninni, G. Zaccanti, A. Torricelli, D. Contini, R. Re, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Pifferi, “Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol,” J. Biomed. Opt. 19(8), 086012 (2014).
[Crossref]

L. Zucchelli, D. Contini, R. Re, A. Torricelli, and L. Spinelli, “Method for the discrimination of superficial and deep absorption variations by time domain fNIRS,” Biomed. Opt. Express 4(12), 2893–2910 (2013).
[Crossref]

R. Re, D. Contini, M. Turola, L. Spinelli, L. Zucchelli, M. Caffini, R. Cubeddu, and A. Torricelli, “Multi-channel medical device for time domain functional near infrared spectroscopy based on wavelength space multiplexing,” Biomed. Opt. Express 4(10), 2231–2246 (2013).
[Crossref]

Rinneberg, H.

A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” NeuroImage 24(2), 426–435 (2005).
[Crossref]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: Intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
[Crossref]

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42(28), 5785–5792 (2003).
[Crossref]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46(3), 879–896 (2001).
[Crossref]

Rinneberg, H. H.

Saager, R.

R. Saager and A. Berger, “Measurement of layer-like hemodynamic trends in scalp and cortex: implications for physiological baseline suppression in functional near-infrared spectroscopy,” J. Biomed. Opt. 13(3), 034017 (2008).
[Crossref]

Sander, T.

B. M. Mackert, S. Leistner, T. Sander, A. Liebert, H. Wabnitz, M. Burghoff, L. Trahms, R. Macdonald, and G. Curio, “Dynamics of cortical neurovascular coupling analyzed by simultaneous DC-magnetoencephalography and time-resolved near-infrared spectroscopy,” NeuroImage 39(3), 979–986 (2008).
[Crossref]

Sassaroli, A.

S. Fantini and A. Sassaroli, “Frequency-Domain Techniques for Cerebral and Functional Near-Infrared Spectroscopy,” Front. Neurosci. 14, 300 (2020).
[Crossref]

F. Martelli, P. Di Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation,” J. Biomed. Opt. 19(7), 076011 (2014).
[Crossref]

Sato, C.

C. Sato, T. Yamaguchi, M. Seida, Y. Ota, I. Yu, Y. Iguchi, M. Nemoto, and Y. Hoshi, “Intraoperative monitoring of depth-dependent hemoglobin concentration changes during carotid endarterectomy by time-resolved spectroscopy,” Appl. Opt. 46(14), 2785–2792 (2007).
[Crossref]

Y. Hoshi, M. Shimada, C. Sato, and Y. Iguchi, “Reevaluation of near-infrared light propagation in the adult human head: implications for functional near-infrared spectroscopy,” J. Biomed. Opt. 10(6), 064032 (2005).
[Crossref]

Sawosz, P.

P. Sawosz and A. Liebert, “Method to improve the depth sensitivity of diffuse reflectance measurements to absorption changes in optically turbid medium,” Biomed. Opt. Express 10(10), 5031–5041 (2019).
[Crossref]

D. Milej, A. Gerega, M. Kacprzak, P. Sawosz, W. Weigl, R. Maniewski, and A. Liebert, “Time-resolved multi-channel optical system for assessment of brain oxygenation and perfusion by monitoring of diffuse reflectance and fluorescence,” Opto-electronics Rev. 22(1), 55–67 (2014).
[Crossref]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, R. Maniewski, A. Liebert, S. Magazov, J. Hebden, F. Martelli, P. Di Ninni, G. Zaccanti, A. Torricelli, D. Contini, R. Re, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Pifferi, “Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol,” J. Biomed. Opt. 19(8), 086012 (2014).
[Crossref]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. MacDonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: Basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref]

M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, and R. Maniewski, “Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery,” J. Biomed. Opt. 17(1), 016002 (2012).
[Crossref]

P. Sawosz, M. Kacprzak, N. Zolek, W. Weigl, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Optical system based on time-gated, intensified charge-coupled device camera for brain imaging studies,” J. Biomed. Opt. 15(6), 066025 (2010).
[Crossref]

M. Kacprzak, A. Liebert, P. Sawosz, N. Żolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt. 12(3), 034019 (2007).
[Crossref]

Schecklmann, M.

F. B. Haeussinger, T. Dresler, S. Heinzel, M. Schecklmann, A. J. Fallgatter, and A. C. Ehlis, “Reconstructing functional near-infrared spectroscopy (fNIRS) signals impaired by extra-cranial confounds: An easy-to-use filter method,” NeuroImage 95, 69–79 (2014).
[Crossref]

Schlag, P. M.

Schlaggar, B. L.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” NeuroImage 47(1), 148–156 (2009).
[Crossref]

Scholkmann, F.

I. Tachtsidis and F. Scholkmann, “False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward,” Neurophotonics 3(3), 031405 (2016).
[Crossref]

M. Caldwell, F. Scholkmann, U. Wolf, M. Wolf, C. Elwell, and I. Tachtsidis, “Modelling confounding effects from extracerebral contamination and systemic factors on functional near-infrared spectroscopy,” NeuroImage 143, 91–105 (2016).
[Crossref]

Schweiger, M.

M. Schweiger and S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44(7), 1699–1717 (1999).
[Crossref]

S. R. Arridge and M. Schweiger, “Direct calculation of the moments of the distribution of photon time of flight in tissue with a finite-element method,” Appl. Opt. 34(15), 2683–2687 (1995).
[Crossref]

Seida, M.

Selb, J.

J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11(4), 044008 (2006).
[Crossref]

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 011013 (2005).
[Crossref]

Selb, J. J.

M. A. Yücel, J. J. Selb, T. J. Huppert, M. A. Franceschini, and D. A. Boas, “Functional Near Infrared Spectroscopy: Enabling Routine Functional Brain Imaging,” Curr. Opin. Biomed. Eng. 4, 78–86 (2017).
[Crossref]

Sevick, E. M.

Shatir, T. S. M.

Shimada, M.

Y. Hoshi, M. Shimada, C. Sato, and Y. Iguchi, “Reevaluation of near-infrared light propagation in the adult human head: implications for functional near-infrared spectroscopy,” J. Biomed. Opt. 10(6), 064032 (2005).
[Crossref]

Siegel, A.

Snyder, A. Z.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” NeuroImage 47(1), 148–156 (2009).
[Crossref]

Sölkner, G.

Sorensen, A. G.

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 011013 (2005).
[Crossref]

Spinelli, L.

L. Di Sieno, A. Dalla Mora, A. Torricelli, L. Spinelli, R. Re, A. Pifferi, and D. Contini, “A Versatile Setup for Time-Resolved Functional Near Infrared Spectroscopy Based on Fast-Gated Single-Photon Avalanche Diode and on Four-Wave Mixing Laser,” Appl. Sci. 9(11), 2366 (2019).
[Crossref]

A. Pifferi, D. Contini, A. Dalla Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, R. Maniewski, A. Liebert, S. Magazov, J. Hebden, F. Martelli, P. Di Ninni, G. Zaccanti, A. Torricelli, D. Contini, R. Re, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Pifferi, “Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol,” J. Biomed. Opt. 19(8), 086012 (2014).
[Crossref]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. MacDonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: Basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” NeuroImage 85, 28–50 (2014).
[Crossref]

F. Martelli, P. Di Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation,” J. Biomed. Opt. 19(7), 076011 (2014).
[Crossref]

L. Zucchelli, D. Contini, R. Re, A. Torricelli, and L. Spinelli, “Method for the discrimination of superficial and deep absorption variations by time domain fNIRS,” Biomed. Opt. Express 4(12), 2893–2910 (2013).
[Crossref]

R. Re, D. Contini, M. Turola, L. Spinelli, L. Zucchelli, M. Caffini, R. Cubeddu, and A. Torricelli, “Multi-channel medical device for time domain functional near infrared spectroscopy based on wavelength space multiplexing,” Biomed. Opt. Express 4(10), 2231–2246 (2013).
[Crossref]

E. Molteni, D. Contini, M. Caffini, G. Baselli, L. Spinelli, R. Cubeddu, S. Cerutti, A. M. Bianchi, and A. Torricelli, “Load-dependent brain activation assessed by time-domain functional near-infrared spectroscopy during a working memory task with graded levels of difficulty,” J. Biomed. Opt. 17(5), 056005 (2012).
[Crossref]

D. Contini, L. Spinelli, A. Torricelli, A. Pifferi, and R. Cubeddu, “Novel method for depth-resolved brain functional imaging by time-domain NIRS,” Proc. SPIE 6629, 662908 (2007).
[Crossref]

D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, and R. Cubeddu, “Multi-channel time-resolved system for functional near infrared spectroscopy,” Opt. Express 14(12), 5418–5432 (2006).
[Crossref]

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50(11), 2469–2488 (2005).
[Crossref]

St. Lawrence, K.

Staszkiewicz, W.

M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, and R. Maniewski, “Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery,” J. Biomed. Opt. 17(1), 016002 (2012).
[Crossref]

Steinbrink, J.

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: Technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt. 15(6), 061708 (2010).
[Crossref]

H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-Resolved Near-Infrared Spectroscopy and Imaging of the Adult Human Brain,” Adv. Exp. Med. Biol. 662, 143–148 (2010).

A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” NeuroImage 24(2), 426–435 (2005).
[Crossref]

H. Wabnitz, M. Moeller, A. Liebert, A. Walter, R. Erdmann, O. Raitza, C. Drenckhahn, J. P. Dreier, H. Obrig, J. Steinbrink, and R. Macdonald, “A time-domain NIR brain imager applied in functional stimulation experiments,” Proc. SPIE 5859, 58590H (2005).
[Crossref]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: Intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
[Crossref]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46(3), 879–896 (2001).
[Crossref]

H. Obrig, R. Wenzel, M. Kohl, S. Horst, P. Wobst, J. Steinbrink, F. Thomas, and A. Villringer, “Near-infrared spectroscopy: does it function in functional activation studies of the adult brain?” Int. J. Psychophysiol. 35(2-3), 125–142 (2000).
[Crossref]

Steinkellner, O.

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, R. Maniewski, A. Liebert, S. Magazov, J. Hebden, F. Martelli, P. Di Ninni, G. Zaccanti, A. Torricelli, D. Contini, R. Re, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Pifferi, “Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol,” J. Biomed. Opt. 19(8), 086012 (2014).
[Crossref]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. MacDonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: Basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref]

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: Technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt. 15(6), 061708 (2010).
[Crossref]

Stott, J. J.

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 011013 (2005).
[Crossref]

Sudakou, A.

A. Sudakou, L. Yang, H. Wabnitz, S. Wojtkiewicz, and A. Liebert, “Performance of measurands in time-domain optical brain imaging: depth selectivity versus contrast-to-noise ratio,” Biomed. Opt. Express 10, in press (2020).
[Crossref]

Tachtsidis, I.

F. Lange, L. Dunne, L. Hale, and I. Tachtsidis, “MAESTROS: A Multiwavelength Time-Domain NIRS System to Monitor Changes in Oxygenation and Oxidation State of Cytochrome-C-Oxidase,” IEEE J. Sel. Top. Quantum Electron. 25, 1–12 (2019).
[Crossref]

I. Tachtsidis and F. Scholkmann, “False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward,” Neurophotonics 3(3), 031405 (2016).
[Crossref]

M. Caldwell, F. Scholkmann, U. Wolf, M. Wolf, C. Elwell, and I. Tachtsidis, “Modelling confounding effects from extracerebral contamination and systemic factors on functional near-infrared spectroscopy,” NeuroImage 143, 91–105 (2016).
[Crossref]

A. Jelzow, H. Wabnitz, I. Tachtsidis, E. Kirilina, R. Brühl, and R. Macdonald, “Separation of superficial and cerebral hemodynamics using a single distance time-domain NIRS measurement,” Biomed. Opt. Express 5(5), 1465–1482 (2014).
[Crossref]

S. Gunadi, T. S. Leung, C. E. Elwell, and I. Tachtsidis, “Spatial sensitivity and penetration depth of three cerebral oxygenation monitors,” Biomed. Opt. Express 5(9), 2896–2912 (2014).
[Crossref]

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” NeuroImage 61(1), 70–81 (2012).
[Crossref]

Taga, G.

D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: Introduction for the special issue,” NeuroImage 85, 1–5 (2014).
[Crossref]

Tamura, M.

Y. Nomura, O. Hazeki, and M. Tamura, “Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media,” Phys. Med. Biol. 42(6), 1009–1022 (1997).
[Crossref]

Taroni, P.

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50(11), 2469–2488 (2005).
[Crossref]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Imaging of optical inhomogeneities in highly diffusive media: Discrimination between scattering and absorption contributions,” Appl. Phys. Lett. 69(27), 4162–4164 (1996).
[Crossref]

Tarvainen, T.

Taubert, D. R.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. MacDonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: Basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref]

Thomas, F.

H. Obrig, R. Wenzel, M. Kohl, S. Horst, P. Wobst, J. Steinbrink, F. Thomas, and A. Villringer, “Near-infrared spectroscopy: does it function in functional activation studies of the adult brain?” Int. J. Psychophysiol. 35(2-3), 125–142 (2000).
[Crossref]

Torricelli, A.

L. Di Sieno, A. Dalla Mora, A. Torricelli, L. Spinelli, R. Re, A. Pifferi, and D. Contini, “A Versatile Setup for Time-Resolved Functional Near Infrared Spectroscopy Based on Fast-Gated Single-Photon Avalanche Diode and on Four-Wave Mixing Laser,” Appl. Sci. 9(11), 2366 (2019).
[Crossref]

A. Pifferi, D. Contini, A. Dalla Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. MacDonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: Basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, R. Maniewski, A. Liebert, S. Magazov, J. Hebden, F. Martelli, P. Di Ninni, G. Zaccanti, A. Torricelli, D. Contini, R. Re, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Pifferi, “Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol,” J. Biomed. Opt. 19(8), 086012 (2014).
[Crossref]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” NeuroImage 85, 28–50 (2014).
[Crossref]

F. Martelli, P. Di Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation,” J. Biomed. Opt. 19(7), 076011 (2014).
[Crossref]

L. Zucchelli, D. Contini, R. Re, A. Torricelli, and L. Spinelli, “Method for the discrimination of superficial and deep absorption variations by time domain fNIRS,” Biomed. Opt. Express 4(12), 2893–2910 (2013).
[Crossref]

R. Re, D. Contini, M. Turola, L. Spinelli, L. Zucchelli, M. Caffini, R. Cubeddu, and A. Torricelli, “Multi-channel medical device for time domain functional near infrared spectroscopy based on wavelength space multiplexing,” Biomed. Opt. Express 4(10), 2231–2246 (2013).
[Crossref]

E. Molteni, D. Contini, M. Caffini, G. Baselli, L. Spinelli, R. Cubeddu, S. Cerutti, A. M. Bianchi, and A. Torricelli, “Load-dependent brain activation assessed by time-domain functional near-infrared spectroscopy during a working memory task with graded levels of difficulty,” J. Biomed. Opt. 17(5), 056005 (2012).
[Crossref]

D. Contini, L. Spinelli, A. Torricelli, A. Pifferi, and R. Cubeddu, “Novel method for depth-resolved brain functional imaging by time-domain NIRS,” Proc. SPIE 6629, 662908 (2007).
[Crossref]

D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, and R. Cubeddu, “Multi-channel time-resolved system for functional near infrared spectroscopy,” Opt. Express 14(12), 5418–5432 (2006).
[Crossref]

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50(11), 2469–2488 (2005).
[Crossref]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Imaging of optical inhomogeneities in highly diffusive media: Discrimination between scattering and absorption contributions,” Appl. Phys. Lett. 69(27), 4162–4164 (1996).
[Crossref]

Tosi, A.

Trahms, L.

B. M. Mackert, S. Leistner, T. Sander, A. Liebert, H. Wabnitz, M. Burghoff, L. Trahms, R. Macdonald, and G. Curio, “Dynamics of cortical neurovascular coupling analyzed by simultaneous DC-magnetoencephalography and time-resolved near-infrared spectroscopy,” NeuroImage 39(3), 979–986 (2008).
[Crossref]

Tullis, I. D. C.

N. L. Everdell, A. P. Gibson, I. D. C. Tullis, T. Vaithianathan, J. C. Hebden, and D. T. Delpy, “A frequency multiplexed near-infrared topography system for imaging functional activation in the brain,” Rev. Sci. Instrum. 76(9), 093705 (2005).
[Crossref]

Turola, M.

Vaithianathan, T.

N. L. Everdell, A. P. Gibson, I. D. C. Tullis, T. Vaithianathan, J. C. Hebden, and D. T. Delpy, “A frequency multiplexed near-infrared topography system for imaging functional activation in the brain,” Rev. Sci. Instrum. 76(9), 093705 (2005).
[Crossref]

Valentini, G.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Imaging of optical inhomogeneities in highly diffusive media: Discrimination between scattering and absorption contributions,” Appl. Phys. Lett. 69(27), 4162–4164 (1996).
[Crossref]

Varela, M.

R. J. Cooper, E. Magee, N. Everdell, S. Magazov, M. Varela, D. Airantzis, A. P. Gibson, and J. C. Hebden, “MONSTIR II: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging,” Rev. Sci. Instrum. 85(5), 053105 (2014).
[Crossref]

Verreault, S.

Villringer, A.

A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” NeuroImage 24(2), 426–435 (2005).
[Crossref]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: Intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
[Crossref]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46(3), 879–896 (2001).
[Crossref]

H. Obrig, R. Wenzel, M. Kohl, S. Horst, P. Wobst, J. Steinbrink, F. Thomas, and A. Villringer, “Near-infrared spectroscopy: does it function in functional activation studies of the adult brain?” Int. J. Psychophysiol. 35(2-3), 125–142 (2000).
[Crossref]

Wabnitz, H.

A. Jelzow, H. Wabnitz, I. Tachtsidis, E. Kirilina, R. Brühl, and R. Macdonald, “Separation of superficial and cerebral hemodynamics using a single distance time-domain NIRS measurement,” Biomed. Opt. Express 5(5), 1465–1482 (2014).
[Crossref]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, R. Maniewski, A. Liebert, S. Magazov, J. Hebden, F. Martelli, P. Di Ninni, G. Zaccanti, A. Torricelli, D. Contini, R. Re, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Pifferi, “Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol,” J. Biomed. Opt. 19(8), 086012 (2014).
[Crossref]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. MacDonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: Basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref]

F. Martelli, P. Di Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation,” J. Biomed. Opt. 19(7), 076011 (2014).
[Crossref]

M. Mazurenka, L. Di Sieno, G. Boso, D. Contini, A. Pifferi, A. Dalla Mora, A. Tosi, H. Wabnitz, and R. Macdonald, “Non-contact in vivo diffuse optical imaging using a time-gated scanning system,” Biomed. Opt. Express 4(10), 2257–2268 (2013).
[Crossref]

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” NeuroImage 61(1), 70–81 (2012).
[Crossref]

A. Liebert, H. Wabnitz, and C. Elster, “Determination of absorption changes from moments of distributions of times of flight of photons: optimization of measurement conditions for a two-layered tissue model,” J. Biomed. Opt. 17(5), 057005 (2012).
[Crossref]

H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-Resolved Near-Infrared Spectroscopy and Imaging of the Adult Human Brain,” Adv. Exp. Med. Biol. 662, 143–148 (2010).

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: Technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt. 15(6), 061708 (2010).
[Crossref]

B. M. Mackert, S. Leistner, T. Sander, A. Liebert, H. Wabnitz, M. Burghoff, L. Trahms, R. Macdonald, and G. Curio, “Dynamics of cortical neurovascular coupling analyzed by simultaneous DC-magnetoencephalography and time-resolved near-infrared spectroscopy,” NeuroImage 39(3), 979–986 (2008).
[Crossref]

A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” NeuroImage 24(2), 426–435 (2005).
[Crossref]

H. Wabnitz, M. Moeller, A. Liebert, A. Walter, R. Erdmann, O. Raitza, C. Drenckhahn, J. P. Dreier, H. Obrig, J. Steinbrink, and R. Macdonald, “A time-domain NIR brain imager applied in functional stimulation experiments,” Proc. SPIE 5859, 58590H (2005).
[Crossref]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: Intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
[Crossref]

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42(28), 5785–5792 (2003).
[Crossref]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46(3), 879–896 (2001).
[Crossref]

D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38(13), 2927–2943 (1999).
[Crossref]

A. Sudakou, L. Yang, H. Wabnitz, S. Wojtkiewicz, and A. Liebert, “Performance of measurands in time-domain optical brain imaging: depth selectivity versus contrast-to-noise ratio,” Biomed. Opt. Express 10, in press (2020).
[Crossref]

Walter, A.

H. Wabnitz, M. Moeller, A. Liebert, A. Walter, R. Erdmann, O. Raitza, C. Drenckhahn, J. P. Dreier, H. Obrig, J. Steinbrink, and R. Macdonald, “A time-domain NIR brain imager applied in functional stimulation experiments,” Proc. SPIE 5859, 58590H (2005).
[Crossref]

Weigl, W.

D. Milej, A. Gerega, M. Kacprzak, P. Sawosz, W. Weigl, R. Maniewski, and A. Liebert, “Time-resolved multi-channel optical system for assessment of brain oxygenation and perfusion by monitoring of diffuse reflectance and fluorescence,” Opto-electronics Rev. 22(1), 55–67 (2014).
[Crossref]

J. T. Elliott, D. Milej, A. Gerega, W. Weigl, M. Diop, L. B. Morrison, T.-Y. Lee, A. Liebert, and K. St. Lawrence, “Variance of time-of-flight distribution is sensitive to cerebral blood flow as demonstrated by ICG bolus-tracking measurements in adult pigs,” Biomed. Opt. Express 4(2), 206–218 (2013).
[Crossref]

P. Sawosz, M. Kacprzak, N. Zolek, W. Weigl, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Optical system based on time-gated, intensified charge-coupled device camera for brain imaging studies,” J. Biomed. Opt. 15(6), 066025 (2010).
[Crossref]

Wenzel, R.

H. Obrig, R. Wenzel, M. Kohl, S. Horst, P. Wobst, J. Steinbrink, F. Thomas, and A. Villringer, “Near-infrared spectroscopy: does it function in functional activation studies of the adult brain?” Int. J. Psychophysiol. 35(2-3), 125–142 (2000).
[Crossref]

White, B. R.

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” NeuroImage 47(1), 148–156 (2009).
[Crossref]

Wobst, P.

H. Obrig, R. Wenzel, M. Kohl, S. Horst, P. Wobst, J. Steinbrink, F. Thomas, and A. Villringer, “Near-infrared spectroscopy: does it function in functional activation studies of the adult brain?” Int. J. Psychophysiol. 35(2-3), 125–142 (2000).
[Crossref]

Wojtkiewicz, S.

P. Sawosz, M. Kacprzak, N. Zolek, W. Weigl, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Optical system based on time-gated, intensified charge-coupled device camera for brain imaging studies,” J. Biomed. Opt. 15(6), 066025 (2010).
[Crossref]

A. Sudakou, L. Yang, H. Wabnitz, S. Wojtkiewicz, and A. Liebert, “Performance of measurands in time-domain optical brain imaging: depth selectivity versus contrast-to-noise ratio,” Biomed. Opt. Express 10, in press (2020).
[Crossref]

Wolf, M.

M. Caldwell, F. Scholkmann, U. Wolf, M. Wolf, C. Elwell, and I. Tachtsidis, “Modelling confounding effects from extracerebral contamination and systemic factors on functional near-infrared spectroscopy,” NeuroImage 143, 91–105 (2016).
[Crossref]

Wolf, U.

M. Caldwell, F. Scholkmann, U. Wolf, M. Wolf, C. Elwell, and I. Tachtsidis, “Modelling confounding effects from extracerebral contamination and systemic factors on functional near-infrared spectroscopy,” NeuroImage 143, 91–105 (2016).
[Crossref]

Yamaguchi, T.

Yang, L.

A. Sudakou, L. Yang, H. Wabnitz, S. Wojtkiewicz, and A. Liebert, “Performance of measurands in time-domain optical brain imaging: depth selectivity versus contrast-to-noise ratio,” Biomed. Opt. Express 10, in press (2020).
[Crossref]

Yu, I.

Yücel, M. A.

M. A. Yücel, J. J. Selb, T. J. Huppert, M. A. Franceschini, and D. A. Boas, “Functional Near Infrared Spectroscopy: Enabling Routine Functional Brain Imaging,” Curr. Opin. Biomed. Eng. 4, 78–86 (2017).
[Crossref]

S. B. Erdoǧan, M. A. Yücel, and A. Akin, “Analysis of task-evoked systemic interference in fNIRS measurements: Insights from fMRI,” NeuroImage 87, 490–504 (2014).
[Crossref]

Zaccanti, G.

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, R. Maniewski, A. Liebert, S. Magazov, J. Hebden, F. Martelli, P. Di Ninni, G. Zaccanti, A. Torricelli, D. Contini, R. Re, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Pifferi, “Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol,” J. Biomed. Opt. 19(8), 086012 (2014).
[Crossref]

F. Martelli, P. Di Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation,” J. Biomed. Opt. 19(7), 076011 (2014).
[Crossref]

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: Theoretical and experimental investigation,” Phys. Med. Biol. 47(23), 4131–4144 (2002).
[Crossref]

S. Carraresi, T. S. M. Shatir, F. Martelli, and G. Zaccanti, “Accuracy of a perturbation model to predict the effect of scattering and absorbing inhomogeneities on photon migration,” Appl. Opt. 40(25), 4622–4632 (2001).
[Crossref]

D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation I Theory,” Appl. Opt. 36(19), 4587–4599 (1997).
[Crossref]

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions, and Software (SPIE, 2009), Chap. 7.

Zinth, W.

Zolek, N.

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, R. Maniewski, A. Liebert, S. Magazov, J. Hebden, F. Martelli, P. Di Ninni, G. Zaccanti, A. Torricelli, D. Contini, R. Re, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Pifferi, “Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol,” J. Biomed. Opt. 19(8), 086012 (2014).
[Crossref]

P. Sawosz, M. Kacprzak, N. Zolek, W. Weigl, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Optical system based on time-gated, intensified charge-coupled device camera for brain imaging studies,” J. Biomed. Opt. 15(6), 066025 (2010).
[Crossref]

M. Kacprzak, A. Liebert, P. Sawosz, N. Żolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt. 12(3), 034019 (2007).
[Crossref]

Zouaoui, J.

Zucchelli, L.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” NeuroImage 85, 28–50 (2014).
[Crossref]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. MacDonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: Basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, R. Maniewski, A. Liebert, S. Magazov, J. Hebden, F. Martelli, P. Di Ninni, G. Zaccanti, A. Torricelli, D. Contini, R. Re, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Pifferi, “Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol,” J. Biomed. Opt. 19(8), 086012 (2014).
[Crossref]

L. Zucchelli, D. Contini, R. Re, A. Torricelli, and L. Spinelli, “Method for the discrimination of superficial and deep absorption variations by time domain fNIRS,” Biomed. Opt. Express 4(12), 2893–2910 (2013).
[Crossref]

R. Re, D. Contini, M. Turola, L. Spinelli, L. Zucchelli, M. Caffini, R. Cubeddu, and A. Torricelli, “Multi-channel medical device for time domain functional near infrared spectroscopy based on wavelength space multiplexing,” Biomed. Opt. Express 4(10), 2231–2246 (2013).
[Crossref]

Adv. Exp. Med. Biol. (1)

H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-Resolved Near-Infrared Spectroscopy and Imaging of the Adult Human Brain,” Adv. Exp. Med. Biol. 662, 143–148 (2010).

Appl. Opt. (14)

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42(28), 5785–5792 (2003).
[Crossref]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: Intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
[Crossref]

B. Montcel, R. Chabrier, and P. Poulet, “Detection of cortical activation with time-resolved diffuse optical methods,” Appl. Opt. 44(10), 1942–1947 (2005).
[Crossref]

D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation I Theory,” Appl. Opt. 36(19), 4587–4599 (1997).
[Crossref]

S. Carraresi, T. S. M. Shatir, F. Martelli, and G. Zaccanti, “Accuracy of a perturbation model to predict the effect of scattering and absorbing inhomogeneities on photon migration,” Appl. Opt. 40(25), 4622–4632 (2001).
[Crossref]

E. M. Sevick, J. K. Frisoli, C. L. Burch, and J. R. Lakowicz, “Localization of absorbers in scattering media by use of frequency-domain measurements of time-dependent photon migration,” Appl. Opt. 33(16), 3562–3570 (1994).
[Crossref]

S. R. Arridge and M. Schweiger, “Direct calculation of the moments of the distribution of photon time of flight in tissue with a finite-element method,” Appl. Opt. 34(15), 2683–2687 (1995).
[Crossref]

D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38(13), 2927–2943 (1999).
[Crossref]

M. Morin, S. Verreault, A. Mailloux, J. Fréchette, S. Chatigny, Y. Painchaud, and P. Beaudry, “Inclusion characterization in a scattering slab with time-resolved transmittance measurements: perturbation analysis,” Appl. Opt. 39(16), 2840–2852 (2000).
[Crossref]

C. Sato, T. Yamaguchi, M. Seida, Y. Ota, I. Yu, Y. Iguchi, M. Nemoto, and Y. Hoshi, “Intraoperative monitoring of depth-dependent hemoglobin concentration changes during carotid endarterectomy by time-resolved spectroscopy,” Appl. Opt. 46(14), 2785–2792 (2007).
[Crossref]

S. R. Arridge, “Photon-measurement density functions Part I: Analytical forms,” Appl. Opt. 34(31), 7395–7409 (1995).
[Crossref]

F. Lange, F. Peyrin, and B. Montcel, “Broadband time-resolved multi-channel functional near-infrared spectroscopy system to monitor in vivo physiological changes of human brain activity,” Appl. Opt. 57(22), 6417–6429 (2018).
[Crossref]

G. Mitic, J. Kölzer, J. Otto, E. Plies, G. Sölkner, and W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Appl. Opt. 33(28), 6699 (1994).
[Crossref]

L. Hervé, A. Puszka, A. Planat-Chrétien, and J. M. Dinten, “Time-domain diffuse optical tomography processing by using the Mellin-Laplace transform,” Appl. Opt. 51(25), 5978–5988 (2012).
[Crossref]

Appl. Phys. Lett. (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Imaging of optical inhomogeneities in highly diffusive media: Discrimination between scattering and absorption contributions,” Appl. Phys. Lett. 69(27), 4162–4164 (1996).
[Crossref]

Appl. Sci. (2)

D. Orive-Miguel, L. Hervé, L. Condat, and J. Mars, “Improving Localization of Deep Inclusions in Time-Resolved Diffuse Optical Tomography,” Appl. Sci. 9(24), 5468 (2019).
[Crossref]

L. Di Sieno, A. Dalla Mora, A. Torricelli, L. Spinelli, R. Re, A. Pifferi, and D. Contini, “A Versatile Setup for Time-Resolved Functional Near Infrared Spectroscopy Based on Fast-Gated Single-Photon Avalanche Diode and on Four-Wave Mixing Laser,” Appl. Sci. 9(11), 2366 (2019).
[Crossref]

Astron. Astrophys. (1)

C. A. Laury-Micouldaut, “The nth centred moment of a multiple convolution and its applications to an intercloud gas model,” Astron. Astrophys. 51, 343–346 (1976).

Biomed. Opt. Express (9)

R. Re, D. Contini, M. Turola, L. Spinelli, L. Zucchelli, M. Caffini, R. Cubeddu, and A. Torricelli, “Multi-channel medical device for time domain functional near infrared spectroscopy based on wavelength space multiplexing,” Biomed. Opt. Express 4(10), 2231–2246 (2013).
[Crossref]

J. T. Elliott, D. Milej, A. Gerega, W. Weigl, M. Diop, L. B. Morrison, T.-Y. Lee, A. Liebert, and K. St. Lawrence, “Variance of time-of-flight distribution is sensitive to cerebral blood flow as demonstrated by ICG bolus-tracking measurements in adult pigs,” Biomed. Opt. Express 4(2), 206–218 (2013).
[Crossref]

P. Sawosz and A. Liebert, “Method to improve the depth sensitivity of diffuse reflectance measurements to absorption changes in optically turbid medium,” Biomed. Opt. Express 10(10), 5031–5041 (2019).
[Crossref]

M. Mazurenka, L. Di Sieno, G. Boso, D. Contini, A. Pifferi, A. Dalla Mora, A. Tosi, H. Wabnitz, and R. Macdonald, “Non-contact in vivo diffuse optical imaging using a time-gated scanning system,” Biomed. Opt. Express 4(10), 2257–2268 (2013).
[Crossref]

A. Jelzow, H. Wabnitz, I. Tachtsidis, E. Kirilina, R. Brühl, and R. Macdonald, “Separation of superficial and cerebral hemodynamics using a single distance time-domain NIRS measurement,” Biomed. Opt. Express 5(5), 1465–1482 (2014).
[Crossref]

S. Gunadi, T. S. Leung, C. E. Elwell, and I. Tachtsidis, “Spatial sensitivity and penetration depth of three cerebral oxygenation monitors,” Biomed. Opt. Express 5(9), 2896–2912 (2014).
[Crossref]

J. Zouaoui, L. Di Sieno, L. Hervé, A. Pifferi, A. Farina, A. D. Mora, J. Derouard, and J.-M. Dinten, “Quantification in time-domain diffuse optical tomography using Mellin-Laplace transforms,” Biomed. Opt. Express 7(10), 4346–4362 (2016).
[Crossref]

A. Puszka, L. Di Sieno, A. Dalla Mora, A. Pifferi, D. Contini, G. Boso, A. Tosi, L. Hervé, A. Planat-Chrétien, A. Koenig, and J.-M. Dinten, “Time-resolved diffuse optical tomography using fast-gated single-photon avalanche diodes,” Biomed. Opt. Express 4(8), 1351–1365 (2013).
[Crossref]

L. Zucchelli, D. Contini, R. Re, A. Torricelli, and L. Spinelli, “Method for the discrimination of superficial and deep absorption variations by time domain fNIRS,” Biomed. Opt. Express 4(12), 2893–2910 (2013).
[Crossref]

Curr. Opin. Biomed. Eng. (1)

M. A. Yücel, J. J. Selb, T. J. Huppert, M. A. Franceschini, and D. A. Boas, “Functional Near Infrared Spectroscopy: Enabling Routine Functional Brain Imaging,” Curr. Opin. Biomed. Eng. 4, 78–86 (2017).
[Crossref]

Front. Neurosci. (1)

S. Fantini and A. Sassaroli, “Frequency-Domain Techniques for Cerebral and Functional Near-Infrared Spectroscopy,” Front. Neurosci. 14, 300 (2020).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Lange, L. Dunne, L. Hale, and I. Tachtsidis, “MAESTROS: A Multiwavelength Time-Domain NIRS System to Monitor Changes in Oxygenation and Oxidation State of Cytochrome-C-Oxidase,” IEEE J. Sel. Top. Quantum Electron. 25, 1–12 (2019).
[Crossref]

Int. J. Psychophysiol. (1)

H. Obrig, R. Wenzel, M. Kohl, S. Horst, P. Wobst, J. Steinbrink, F. Thomas, and A. Villringer, “Near-infrared spectroscopy: does it function in functional activation studies of the adult brain?” Int. J. Psychophysiol. 35(2-3), 125–142 (2000).
[Crossref]

J. Biomed. Opt. (14)

Y. Hoshi, M. Shimada, C. Sato, and Y. Iguchi, “Reevaluation of near-infrared light propagation in the adult human head: implications for functional near-infrared spectroscopy,” J. Biomed. Opt. 10(6), 064032 (2005).
[Crossref]

R. Saager and A. Berger, “Measurement of layer-like hemodynamic trends in scalp and cortex: implications for physiological baseline suppression in functional near-infrared spectroscopy,” J. Biomed. Opt. 13(3), 034017 (2008).
[Crossref]

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 011013 (2005).
[Crossref]

P. Sawosz, M. Kacprzak, N. Zolek, W. Weigl, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Optical system based on time-gated, intensified charge-coupled device camera for brain imaging studies,” J. Biomed. Opt. 15(6), 066025 (2010).
[Crossref]

M. Kacprzak, A. Liebert, P. Sawosz, N. Żolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt. 12(3), 034019 (2007).
[Crossref]

A. Liebert, H. Wabnitz, and C. Elster, “Determination of absorption changes from moments of distributions of times of flight of photons: optimization of measurement conditions for a two-layered tissue model,” J. Biomed. Opt. 17(5), 057005 (2012).
[Crossref]

F. Martelli, P. Di Ninni, G. Zaccanti, D. Contini, L. Spinelli, A. Torricelli, R. Cubeddu, H. Wabnitz, M. Mazurenka, R. Macdonald, A. Sassaroli, and A. Pifferi, “Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation,” J. Biomed. Opt. 19(7), 076011 (2014).
[Crossref]

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: Technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt. 15(6), 061708 (2010).
[Crossref]

M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, and R. Maniewski, “Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery,” J. Biomed. Opt. 17(1), 016002 (2012).
[Crossref]

E. Molteni, D. Contini, M. Caffini, G. Baselli, L. Spinelli, R. Cubeddu, S. Cerutti, A. M. Bianchi, and A. Torricelli, “Load-dependent brain activation assessed by time-domain functional near-infrared spectroscopy during a working memory task with graded levels of difficulty,” J. Biomed. Opt. 17(5), 056005 (2012).
[Crossref]

A. Pifferi, D. Contini, A. Dalla Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. MacDonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: Basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref]

H. Wabnitz, A. Jelzow, M. Mazurenka, O. Steinkellner, R. Macdonald, D. Milej, N. Zolek, M. Kacprzak, P. Sawosz, R. Maniewski, A. Liebert, S. Magazov, J. Hebden, F. Martelli, P. Di Ninni, G. Zaccanti, A. Torricelli, D. Contini, R. Re, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Pifferi, “Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol,” J. Biomed. Opt. 19(8), 086012 (2014).
[Crossref]

J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11(4), 044008 (2006).
[Crossref]

J. Opt. Soc. Am. A (1)

NeuroImage (10)

B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” NeuroImage 47(1), 148–156 (2009).
[Crossref]

M. Caldwell, F. Scholkmann, U. Wolf, M. Wolf, C. Elwell, and I. Tachtsidis, “Modelling confounding effects from extracerebral contamination and systemic factors on functional near-infrared spectroscopy,” NeuroImage 143, 91–105 (2016).
[Crossref]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” NeuroImage 85, 28–50 (2014).
[Crossref]

B. M. Mackert, S. Leistner, T. Sander, A. Liebert, H. Wabnitz, M. Burghoff, L. Trahms, R. Macdonald, and G. Curio, “Dynamics of cortical neurovascular coupling analyzed by simultaneous DC-magnetoencephalography and time-resolved near-infrared spectroscopy,” NeuroImage 39(3), 979–986 (2008).
[Crossref]

A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” NeuroImage 24(2), 426–435 (2005).
[Crossref]

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” NeuroImage 61(1), 70–81 (2012).
[Crossref]

F. B. Haeussinger, T. Dresler, S. Heinzel, M. Schecklmann, A. J. Fallgatter, and A. C. Ehlis, “Reconstructing functional near-infrared spectroscopy (fNIRS) signals impaired by extra-cranial confounds: An easy-to-use filter method,” NeuroImage 95, 69–79 (2014).
[Crossref]

S. B. Erdoǧan, M. A. Yücel, and A. Akin, “Analysis of task-evoked systemic interference in fNIRS measurements: Insights from fMRI,” NeuroImage 87, 490–504 (2014).
[Crossref]

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” NeuroImage 63(2), 921–935 (2012).
[Crossref]

D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: Introduction for the special issue,” NeuroImage 85, 1–5 (2014).
[Crossref]

Neurophotonics (1)

I. Tachtsidis and F. Scholkmann, “False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward,” Neurophotonics 3(3), 031405 (2016).
[Crossref]

Opt. Express (2)

Opto-electronics Rev. (1)

D. Milej, A. Gerega, M. Kacprzak, P. Sawosz, W. Weigl, R. Maniewski, and A. Liebert, “Time-resolved multi-channel optical system for assessment of brain oxygenation and perfusion by monitoring of diffuse reflectance and fluorescence,” Opto-electronics Rev. 22(1), 55–67 (2014).
[Crossref]

Phys. Med. Biol. (5)

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50(11), 2469–2488 (2005).
[Crossref]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46(3), 879–896 (2001).
[Crossref]

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: Theoretical and experimental investigation,” Phys. Med. Biol. 47(23), 4131–4144 (2002).
[Crossref]

Y. Nomura, O. Hazeki, and M. Tamura, “Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media,” Phys. Med. Biol. 42(6), 1009–1022 (1997).
[Crossref]

M. Schweiger and S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44(7), 1699–1717 (1999).
[Crossref]

Proc. SPIE (2)

D. Contini, L. Spinelli, A. Torricelli, A. Pifferi, and R. Cubeddu, “Novel method for depth-resolved brain functional imaging by time-domain NIRS,” Proc. SPIE 6629, 662908 (2007).
[Crossref]

H. Wabnitz, M. Moeller, A. Liebert, A. Walter, R. Erdmann, O. Raitza, C. Drenckhahn, J. P. Dreier, H. Obrig, J. Steinbrink, and R. Macdonald, “A time-domain NIR brain imager applied in functional stimulation experiments,” Proc. SPIE 5859, 58590H (2005).
[Crossref]

Rev. Sci. Instrum. (2)

R. J. Cooper, E. Magee, N. Everdell, S. Magazov, M. Varela, D. Airantzis, A. P. Gibson, and J. C. Hebden, “MONSTIR II: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging,” Rev. Sci. Instrum. 85(5), 053105 (2014).
[Crossref]

N. L. Everdell, A. P. Gibson, I. D. C. Tullis, T. Vaithianathan, J. C. Hebden, and D. T. Delpy, “A frequency multiplexed near-infrared topography system for imaging functional activation in the brain,” Rev. Sci. Instrum. 76(9), 093705 (2005).
[Crossref]

Other (2)

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions, and Software (SPIE, 2009), Chap. 7.

A. Sudakou, L. Yang, H. Wabnitz, S. Wojtkiewicz, and A. Liebert, “Performance of measurands in time-domain optical brain imaging: depth selectivity versus contrast-to-noise ratio,” Biomed. Opt. Express 10, in press (2020).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Integrands and their constituents for calculation of (a) mean time of flight m1, (b) variance V, and (c) photon counts in consecutive time windows of 500 ps width. The time-of-flight distribution N(t) represents time-resolved diffuse reflectance obtained for a semi-infinite homogeneous medium with reduced scattering coefficient μs′ = 10 cm-1, absorption coefficient μa = 0.1 cm-1, refractive index n = 1.4 and for source-detector separation ρ = 3 cm, based on the diffusion model and extrapolated boundary conditions [59]. N(t) and G(t)N(t) in (a,b) were normalized to their respective maxima. Poisson noise shown in (a,b) was simulated for Ntot = 106 and 5 ps width of the histogram time bins.
Fig. 2.
Fig. 2. Spatial distributions of sensitivity factors SM related to the measurands (M) attenuation A (left column), mean time of flight m1 (middle column), and variance V (right column) for a semi-infinite homogeneous medium with μs′ = 10 cm-1, μa = 0.1 cm-1, n = 1.4 (also valid for all subsequent figures) and a source-detector separation ρ = 3 cm. The positions of the point-like source and detector are (0, 0, z0) with z0 = 1/μs′ and (ρ, 0, 0), respectively. The top row shows a cut along the plane y = 0, the second row along the plane x = ρ/2 and the third and fourth rows along planes parallel to the surface, at two different depths z = z1 = 0.5 cm and z = z2 = 1 cm. The color scales are the same within each column. They range from -0.64 to 1.6 times the maximum sensitivity in the y-z cuts (second row), SM,max(x = ρ/2, y, z).
Fig. 3.
Fig. 3. Spatial distributions of depth selectivity for moments A, m1 and V, for depths z > 0.5 cm, obtained by normalizing the 3D sensitivities plotted in Fig. 2 to the total sensitivity within the upper layer (z ≤ 0.5 cm). The third row refers to the cut at z = z2 = 1 cm. The color scales are the same in all panels, ranging from -0.48 to 1.2 times the maximum for SV in the y-z cut.
Fig. 4.
Fig. 4. Comparison of sensitivity distributions (integrated over y direction) for various measurands M related to time windows and moments. Top row, panels 1-6: Attenuation Ak in consecutive time windows of equal width (500 ps) as shown in Fig. 1(c). Bottom row, panels 1-5: Attenuation difference AlAe between late (l) and early (e) time windows. The selection of the early time window was varied (1 to 5) while the late window was always the last one (6th). Right part of the figure: Related plots for moments, A (top row, panel 7), m1 and V (bottom row, panels 6 and 7). The plot in each panel is normalized to its maximum value, the relative color bar in each row is valid for all panels in that row.
Fig. 5.
Fig. 5. Depth-dependent sensitivities and depth selectivity for moments and time windows for different source-detector separations. (a) Comparison of sensitivities for moments at ρ = 2 cm and 3 cm. Sensitivities for each moment (A, m1 and V) were normalized to their maxima for ρ = 3 cm. (b) Comparison of sensitivities for time-window measurands, all normalized to the maximum sensitivity for A6. Data shown for ρ = 3 cm, sensitivities for ρ = 2 cm are very similar. (c) Depth selectivity for moments vs. depth position (upper boundary) zL of lower layer, schematic shown in the inset. (d) Depth selectivity for time-window measurands.
Fig. 6.
Fig. 6. Characteristics of the z-dependent sensitivities for all measurands, comparing the positions of their maxima (*), FWHM (▪) and z positions at 50% of maximum sensitivity toward smaller ($\lhd$) and larger ($\rhd$) z values. Parameters for time-window measurands were calculated for ρ = 3 cm (valid for 2 cm as well). Results for moments are provided for ρ = 2 cm (green dashed lines) and ρ = 3 cm (red solid lines).
Fig. 7.
Fig. 7. Examples of two IRFs: (a) IRF A, (b) IRF B (see text for details), together with simulated (unperturbed) DTOFs for ρ = 2 cm and ρ = 3 cm before (dashed lines) and after (solid lines) convolution with the IRF. The 6th time window is marked by a yellow rectangle.
Fig. 8.
Fig. 8. 2D sensitivity plots for the time-window measurands (analogous to Fig. 4), normalized to maximum in each panel, for IRF B, (a) for ρ = 2 cm and (b) for ρ = 3 cm.
Fig. 9.
Fig. 9. Depth-dependent sensitivities SML(z) (a) for A6 and (b) for A6A5, for ρ = 2 cm (dashed lines) and ρ = 3 cm (solid lines). IRF 0 denotes a Dirac delta-pulse like IRF.
Fig. 10.
Fig. 10. Contrast, noise and their ratio as a function of the upper integration limit tup for A, m1 and V (columns of panels) at ρ = 2 cm for an absorption change of Δµa = 0.001 cm-1 in a layer extending from z = 1.05 cm to z = 1.5 cm and for the instrument response functions IRF 0 (blue), IRF A (green) and IRF B (red), illustrated in Fig. 7. (a-c) Contrast (top row of panels), (d-f) Noise (standard deviation due to Poisson noise) (middle row), (g-i) Contrast-to-noise ratio (bottom row).

Tables (1)

Tables Icon

Table 1. Comparison of TD fNIRS Analysis Based on Moments and Time Windows

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

M G = 0 G ( t ) N ( t ) d t
m 1 = t = 1 N tot 0 t N ( t ) d t
V = ( t t ) 2 = 1 N tot 0 ( t < t > ) 2 N ( t ) d t = m 2 m 1 2 ,
N k = t a k t b k N ( t ) d t .
R ( ρ , t ; x , y , z ) = R 0 ( ρ , t ) + Δ R ( ρ , t ; x , y , z ) .
Δ M ( x , y , z ) = M ( x , y , z ) M 0 .
Δ A k = A k A k , 0 = log ( N k / N k , 0 ) Δ N k / N k , 0 .
Δ ( A l A e ) = Δ A l Δ A e = log N l / N l , 0 N e / N e , 0 Δ ( N l / N e ) N l , 0 / N e , 0 Δ N l N l , 0 + Δ N e N e , 0 .
S M ( x , y , z ) = s i g n M Δ M ( x , y , z ) Δ μ a d v .
S M L ( z ) = S M ( x , y , z ) d x d y .
S M ( 2 / 1 ) = S M , 2 / S M , 1 = layer  2 S M L ( z ) d z / layer  1 S M L ( z ) d z