Abstract

This study investigates the fluence rate effect, an essential modulating mechanism of photodynamic therapy (PDT), by using photoacoustic imaging method. To the best of our knowledge, this is the first time that the fluence rate dependence is investigated at a microscopic scale, as opposed to previous studies that are based on tumor growth/necrosis or animal surviving rate. This micro-scale examination enables subtle biological responses, including the vascular damage and the self-healing response, to be studied. Our results reveal the correlations between fluence rate and PDT efficacy/self-healing magnitude, indicating that vascular injuries induced by high fluence rates are more likely to recover and by low fluence rates (≤126 mW/cm2) are more likely to be permanent. There exists a turning point of fluence rate (314 mW/cm2), above which PDT practically produces no permanent therapeutic effect and damaged vessels can fully recover. These findings have practical significance in clinical setting. For cancer-related diseases, the ‘effective fluence rate’ is useful to provoke permanent destruction of tumor vasculature. Likewise, the ‘non effective range’ can be applied when PDT is used in applications such as opening the blood brain barrier to avoid permanent brain damage.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Boehncke, T. Elshorst-Schmidt, and R. Kaufmann, “Systemic photodynamic therapy is a safe and effective treatment of psoriasis,” Arch. Dermatol. 136(2), 271–272 (2000).
    [Crossref]
  2. K. B. Trauner and T. Hasan, “Photodynamic treatment of rheumatoid and inflammatory arthritis,” Photochem. Photobiol. 64(5), 740–750 (1996).
    [Crossref]
  3. H. Barr, “Barrett’s Esophagus: Treatment with 5-Aminolevulinic Acid Photodynamic Therapy,” Gastrointestinal Endoscopy Clinics 10(3), 421–437 (2000).
    [Crossref]
  4. S. G. Rockson, D. P. Lorenz, W.-F. Cheong, and K. W. Woodburn, “Photoangioplasty : an emerging clinical cardiovascular role for photodynamic therapy,” Circulation 102(5), 591–596 (2000).
    [Crossref]
  5. B. W. Henderson, T. M. Busch, and J. W. Snyder, “Fluence rate as a modulator of PDT mechanisms,” Lasers Surg. Med. 38(5), 489–493 (2006).
    [Crossref]
  6. T. C. Zhu and J. C. Finlay, “Prostate PDT dosimetry,” Photodiagn. Photodyn. Ther. 3(4), 234–246 (2006).
    [Crossref]
  7. J. C. Finlay and A. Darafsheh, “Light Sources, Drugs, and Dosimetry,” Biomedical Optics in Otorhinolaryngology: Head and Neck Surgery 311–336 (2016).
    [Crossref]
  8. B. Kruijt, E. M. van der Snoek, H. J. C. M. Sterenborg, A. Amelink, and D. J. Robinson, “A dedicated applicator for light delivery and monitoring of PDT of intra-anal intraepithelial neoplasia,” Photodiagn. Photodyn. Ther. 7(1), 3–9 (2010).
    [Crossref]
  9. E. Angell-Petersen, S. Spetalen, S. J. Madsen, C.-H. Sun, Q. Peng, S. W. Carper, M. Sioud, and H. Hirschberg, “Influence of light fluence rate on the effects of photodynamic therapy in an orthotopic rat glioma model,” J. Neurosurg. 104(1), 109–117 (2006).
    [Crossref]
  10. S. L. Gibson, K. R. Vandermeid, R. S. Murant, R. F. Raubertas, and R. Hilf, “Effects of various photoradiation regimens on the antitumor efficacy of photodynamic therapy for R3230AC mammary carcinomas,” Cancer Res. 50(22), 7236 (1990).
  11. T. H. Foster, D. F. Hartley, M. G. Nichols, and R. Hilf, “Fluence rate effects in photodynamic therapy of multicell tumor spheroids,” Cancer Res. 53(6), 1249 (1993).
  12. J. P. Henning, R. L. Fournier, and J. A. Hampton, “A transient mathematical model of oxygen depletion during photodynamic therapy,” Radiat. Res. 142(2), 221–226 (1995).
    [Crossref]
  13. M. G. Nichols and T. H. Foster, “Oxygen diffusion and reaction kinetics in the photodynamic therapy of multicell tumour spheroids,” Phys. Med. Biol. 39(12), 2161–2181 (1994).
    [Crossref]
  14. V. H. Fingar, “Vascular effects of photodynamic therapy,” Journal of clinical laser medicine & surgery 14(5), 323–328 (1996).
    [Crossref]
  15. V. H. Fingar, P. K. Kik, P. S. Haydon, P. B. Cerrito, M. Tseng, E. Abang, and T. J. Wieman, “Analysis of acute vascular damage after photodynamic therapy using benzoporphyrin derivative (BPD),” Br. J. Cancer 79(11-12), 1702–1708 (1999).
    [Crossref]
  16. B. C. Wilson, M. S. Patterson, and L. Lilge, “Implicit and explicit dosimetry in photodynamic therapy: a New paradigm,” Lasers Med. Sci. 12(3), 182–199 (1997).
    [Crossref]
  17. A. G. Sorensen, K. E. Emblem, P. Polaskova, D. Jennings, H. Kim, M. Ancukiewicz, M. Wang, P. Y. Wen, P. Ivy, and T. T. Batchelor, “Increased survival of glioblastoma patients who respond to antiangiogenic therapy with elevated blood perfusion,” Cancer Res. 72(2), 402–407 (2012).
    [Crossref]
  18. K. E. Emblem, K. Mouridsen, A. Bjornerud, C. T. Farrar, D. Jennings, R. J. Borra, P. Y. Wen, P. Ivy, T. T. Batchelor, and B. R. Rosen, “Vessel architectural imaging identifies cancer patient responders to anti-angiogenic therapy,” Nat. Med. 19(9), 1178–1183 (2013).
    [Crossref]
  19. D. Sampath, J. Oeh, S. K. Wyatt, T. C. Cao, H. Koeppen, J. Eastham-Anderson, L. Robillard, C. C. Ho, J. Ross, and G. Zhuang, “Multimodal microvascular imaging reveals that selective inhibition of class I PI3 K is sufficient to induce an antivascular response,” Neoplasia (New York, NY) 15(7), 694–IN4 (2013).
    [Crossref]
  20. B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, and R. K. Jain, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
    [Crossref]
  21. A. B. E. Attia, G. Balasundaram, M. Moothanchery, U. Dinish, R. Bi, V. Ntziachristos, and M. Olivo, “A review of clinical photoacoustic imaging: Current and future trends,” Photoacoustics 16, 100144 (2019).
    [Crossref]
  22. T. Zhao, A. E. Desjardins, S. Ourselin, T. Vercauteren, and W. Xia, “Minimally invasive photoacoustic imaging: Current status and future perspectives,” Photoacoustics 16, 100146 (2019).
    [Crossref]
  23. M. Li, Y. Tang, and J. Yao, “Photoacoustic tomography of blood oxygenation: A mini review,” Photoacoustics 10, 65–73 (2018).
    [Crossref]
  24. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
    [Crossref]
  25. K. Maslov, G. Ku, and L. V. Wang, “Photoacoustic microscopy with submicron resolution,” in Photons Plus Ultrasound: Imaging and Sensing 2010. 2010. International Society for Optics and Photonics.
  26. C. Zhang, K. I. Maslov, S. Hu, L. V. Wang, R. Chen, Q. Zhou, and K. K. Shung, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt. 17(2), 020501 (2012).
    [Crossref]
  27. L. Xiang, D. Xing, H. Gu, D. Yang, S. Yang, L. Zeng, and W. R. Chen, “Real-time optoacoustic monitoring of vascular damage during photodynamic therapy treatment of tumor,” J. Biomed. Opt. 12(1), 014001 (2007).
    [Crossref]
  28. S. Prahl, Tabulated molar extinction coefficient for hemoglobin in water, compiled by Scott Prahl (prahl@ ece.ogi.edu) using data from WB Gratzer, Med. Res. Council Labs, Holly Hill, London, UK, and N. Kollias, Wellman Laboratories, Harvard Medical School, Boston, 1999.
  29. González Salvador, Vibhagool Chitralada, Sherwood Margaret, and Thomas, “The phototoxicity of photodynamic therapy may be suppressed or enhanced by modulation of the cutaneous vasculature,” J. Photochem. Photobiol., B 57(2-3), 142–148 (2000).
    [Crossref]
  30. Hindelang Aguirre, Berezhnoi Andrei, Darsow, and Lauffer, “Assessing nailfold microvascular structure with ultra-wideband raster-scan optoacoustic mesoscopy,” Photoacoustics, 2018.
  31. X. L. Deán-Ben, H. López-Schier, and D. Razansky, “Optoacoustic micro-tomography at 100 volumes per second,” Sci. Rep. 7(1), 6850 (2017).
    [Crossref]
  32. H. Zhao, G. Wang, R. Lin, X. Gong, L. Song, T. Li, W. Wang, K. Zhang, X. Qian, and H. Zhang, “Three-dimensional Hessian matrix-based quantitative vascular imaging of rat iris with optical-resolution photoacoustic microscopy in vivo,” J. Biomed. Opt. 23(04), 1 (2018).
    [Crossref]
  33. H.-C. Zhou, N. Chen, H. Zhao, T. Yin, J. Zhang, W. Zheng, L. Song, C. Liu, and R. Zheng, “Optical-resolution photoacoustic microscopy for monitoring vascular normalization during anti-angiogenic therapy,” Photoacoustics 15, 100143 (2019).
    [Crossref]
  34. P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, and D. Kessel, “Photodynamic therapy of cancer: An update,” CA: A Cancer Journal for Clinicians 61(4), 250–281 (2011).
    [Crossref]
  35. A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer 6(7), 535–545 (2006).
    [Crossref]
  36. M. Firczuk, D. Nowis, and J. Gołąb, “PDT-induced inflammatory and host responses,” Photochem. Photobiol. Sci. 10(5), 653–663 (2011).
    [Crossref]
  37. M. Korbelik, “PDT-associated host response and its role in the therapy outcome,” Lasers in Surgery & Medicine 38(5), 500–508 (2006).
    [Crossref]
  38. T. H. Foster, R. S. Murant, R. G. Bryant, R. S. Knox, S. L. Gibson, and R. Hilf, “Oxygen consumption and diffusion effects in photodynamic therapy,” Radiat Research 126(3), 296–303 (1991).
    [Crossref]
  39. B. W. Henderson, T. M. Busch, and J. W. Snyder, “Fluence rate as a modulator of PDT mechanisms,” The Official Journal of the American Society for Laser Medicine and Surgery 38(5), 489–493 (2006).
    [Crossref]
  40. Zhang Chao, Feng Wei, Vodovozova Elena, Tretiakova Daria, and Ivan Boldyrevd, “Photodynamic opening of the blood-brain barrier to high weight molecules and liposomes through an optical clearing skull window,” Biomed. Opt. Express 9(10), 4850–4862 (2018).
    [Crossref]
  41. Hirschberg Henry, A. Francisco, David Uzal, Michelle Chighvinadze, and J. Zhang, “Disruption of the blood–brain barrier following ALA-mediated photodynamic therapy,” The Official Journal of the American Society for Laser Medicine and Surgery 40(8), 535–542 (2008).
    [Crossref]
  42. S. J. Madsen, H. Hirschberg, S. J. Madsen, and H. Hirschberg, “Site-specific opening of the blood-brain barrier,” J. Biophotonics 3(5-6), 356–367 (2010).
    [Crossref]

2019 (3)

A. B. E. Attia, G. Balasundaram, M. Moothanchery, U. Dinish, R. Bi, V. Ntziachristos, and M. Olivo, “A review of clinical photoacoustic imaging: Current and future trends,” Photoacoustics 16, 100144 (2019).
[Crossref]

T. Zhao, A. E. Desjardins, S. Ourselin, T. Vercauteren, and W. Xia, “Minimally invasive photoacoustic imaging: Current status and future perspectives,” Photoacoustics 16, 100146 (2019).
[Crossref]

H.-C. Zhou, N. Chen, H. Zhao, T. Yin, J. Zhang, W. Zheng, L. Song, C. Liu, and R. Zheng, “Optical-resolution photoacoustic microscopy for monitoring vascular normalization during anti-angiogenic therapy,” Photoacoustics 15, 100143 (2019).
[Crossref]

2018 (3)

M. Li, Y. Tang, and J. Yao, “Photoacoustic tomography of blood oxygenation: A mini review,” Photoacoustics 10, 65–73 (2018).
[Crossref]

H. Zhao, G. Wang, R. Lin, X. Gong, L. Song, T. Li, W. Wang, K. Zhang, X. Qian, and H. Zhang, “Three-dimensional Hessian matrix-based quantitative vascular imaging of rat iris with optical-resolution photoacoustic microscopy in vivo,” J. Biomed. Opt. 23(04), 1 (2018).
[Crossref]

Zhang Chao, Feng Wei, Vodovozova Elena, Tretiakova Daria, and Ivan Boldyrevd, “Photodynamic opening of the blood-brain barrier to high weight molecules and liposomes through an optical clearing skull window,” Biomed. Opt. Express 9(10), 4850–4862 (2018).
[Crossref]

2017 (1)

X. L. Deán-Ben, H. López-Schier, and D. Razansky, “Optoacoustic micro-tomography at 100 volumes per second,” Sci. Rep. 7(1), 6850 (2017).
[Crossref]

2013 (2)

K. E. Emblem, K. Mouridsen, A. Bjornerud, C. T. Farrar, D. Jennings, R. J. Borra, P. Y. Wen, P. Ivy, T. T. Batchelor, and B. R. Rosen, “Vessel architectural imaging identifies cancer patient responders to anti-angiogenic therapy,” Nat. Med. 19(9), 1178–1183 (2013).
[Crossref]

D. Sampath, J. Oeh, S. K. Wyatt, T. C. Cao, H. Koeppen, J. Eastham-Anderson, L. Robillard, C. C. Ho, J. Ross, and G. Zhuang, “Multimodal microvascular imaging reveals that selective inhibition of class I PI3 K is sufficient to induce an antivascular response,” Neoplasia (New York, NY) 15(7), 694–IN4 (2013).
[Crossref]

2012 (3)

A. G. Sorensen, K. E. Emblem, P. Polaskova, D. Jennings, H. Kim, M. Ancukiewicz, M. Wang, P. Y. Wen, P. Ivy, and T. T. Batchelor, “Increased survival of glioblastoma patients who respond to antiangiogenic therapy with elevated blood perfusion,” Cancer Res. 72(2), 402–407 (2012).
[Crossref]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref]

C. Zhang, K. I. Maslov, S. Hu, L. V. Wang, R. Chen, Q. Zhou, and K. K. Shung, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt. 17(2), 020501 (2012).
[Crossref]

2011 (2)

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, and D. Kessel, “Photodynamic therapy of cancer: An update,” CA: A Cancer Journal for Clinicians 61(4), 250–281 (2011).
[Crossref]

M. Firczuk, D. Nowis, and J. Gołąb, “PDT-induced inflammatory and host responses,” Photochem. Photobiol. Sci. 10(5), 653–663 (2011).
[Crossref]

2010 (2)

S. J. Madsen, H. Hirschberg, S. J. Madsen, and H. Hirschberg, “Site-specific opening of the blood-brain barrier,” J. Biophotonics 3(5-6), 356–367 (2010).
[Crossref]

B. Kruijt, E. M. van der Snoek, H. J. C. M. Sterenborg, A. Amelink, and D. J. Robinson, “A dedicated applicator for light delivery and monitoring of PDT of intra-anal intraepithelial neoplasia,” Photodiagn. Photodyn. Ther. 7(1), 3–9 (2010).
[Crossref]

2009 (1)

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, and R. K. Jain, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref]

2008 (1)

Hirschberg Henry, A. Francisco, David Uzal, Michelle Chighvinadze, and J. Zhang, “Disruption of the blood–brain barrier following ALA-mediated photodynamic therapy,” The Official Journal of the American Society for Laser Medicine and Surgery 40(8), 535–542 (2008).
[Crossref]

2007 (1)

L. Xiang, D. Xing, H. Gu, D. Yang, S. Yang, L. Zeng, and W. R. Chen, “Real-time optoacoustic monitoring of vascular damage during photodynamic therapy treatment of tumor,” J. Biomed. Opt. 12(1), 014001 (2007).
[Crossref]

2006 (6)

A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer 6(7), 535–545 (2006).
[Crossref]

M. Korbelik, “PDT-associated host response and its role in the therapy outcome,” Lasers in Surgery & Medicine 38(5), 500–508 (2006).
[Crossref]

B. W. Henderson, T. M. Busch, and J. W. Snyder, “Fluence rate as a modulator of PDT mechanisms,” The Official Journal of the American Society for Laser Medicine and Surgery 38(5), 489–493 (2006).
[Crossref]

E. Angell-Petersen, S. Spetalen, S. J. Madsen, C.-H. Sun, Q. Peng, S. W. Carper, M. Sioud, and H. Hirschberg, “Influence of light fluence rate on the effects of photodynamic therapy in an orthotopic rat glioma model,” J. Neurosurg. 104(1), 109–117 (2006).
[Crossref]

B. W. Henderson, T. M. Busch, and J. W. Snyder, “Fluence rate as a modulator of PDT mechanisms,” Lasers Surg. Med. 38(5), 489–493 (2006).
[Crossref]

T. C. Zhu and J. C. Finlay, “Prostate PDT dosimetry,” Photodiagn. Photodyn. Ther. 3(4), 234–246 (2006).
[Crossref]

2000 (4)

W. H. Boehncke, T. Elshorst-Schmidt, and R. Kaufmann, “Systemic photodynamic therapy is a safe and effective treatment of psoriasis,” Arch. Dermatol. 136(2), 271–272 (2000).
[Crossref]

H. Barr, “Barrett’s Esophagus: Treatment with 5-Aminolevulinic Acid Photodynamic Therapy,” Gastrointestinal Endoscopy Clinics 10(3), 421–437 (2000).
[Crossref]

S. G. Rockson, D. P. Lorenz, W.-F. Cheong, and K. W. Woodburn, “Photoangioplasty : an emerging clinical cardiovascular role for photodynamic therapy,” Circulation 102(5), 591–596 (2000).
[Crossref]

González Salvador, Vibhagool Chitralada, Sherwood Margaret, and Thomas, “The phototoxicity of photodynamic therapy may be suppressed or enhanced by modulation of the cutaneous vasculature,” J. Photochem. Photobiol., B 57(2-3), 142–148 (2000).
[Crossref]

1999 (1)

V. H. Fingar, P. K. Kik, P. S. Haydon, P. B. Cerrito, M. Tseng, E. Abang, and T. J. Wieman, “Analysis of acute vascular damage after photodynamic therapy using benzoporphyrin derivative (BPD),” Br. J. Cancer 79(11-12), 1702–1708 (1999).
[Crossref]

1997 (1)

B. C. Wilson, M. S. Patterson, and L. Lilge, “Implicit and explicit dosimetry in photodynamic therapy: a New paradigm,” Lasers Med. Sci. 12(3), 182–199 (1997).
[Crossref]

1996 (2)

V. H. Fingar, “Vascular effects of photodynamic therapy,” Journal of clinical laser medicine & surgery 14(5), 323–328 (1996).
[Crossref]

K. B. Trauner and T. Hasan, “Photodynamic treatment of rheumatoid and inflammatory arthritis,” Photochem. Photobiol. 64(5), 740–750 (1996).
[Crossref]

1995 (1)

J. P. Henning, R. L. Fournier, and J. A. Hampton, “A transient mathematical model of oxygen depletion during photodynamic therapy,” Radiat. Res. 142(2), 221–226 (1995).
[Crossref]

1994 (1)

M. G. Nichols and T. H. Foster, “Oxygen diffusion and reaction kinetics in the photodynamic therapy of multicell tumour spheroids,” Phys. Med. Biol. 39(12), 2161–2181 (1994).
[Crossref]

1993 (1)

T. H. Foster, D. F. Hartley, M. G. Nichols, and R. Hilf, “Fluence rate effects in photodynamic therapy of multicell tumor spheroids,” Cancer Res. 53(6), 1249 (1993).

1991 (1)

T. H. Foster, R. S. Murant, R. G. Bryant, R. S. Knox, S. L. Gibson, and R. Hilf, “Oxygen consumption and diffusion effects in photodynamic therapy,” Radiat Research 126(3), 296–303 (1991).
[Crossref]

1990 (1)

S. L. Gibson, K. R. Vandermeid, R. S. Murant, R. F. Raubertas, and R. Hilf, “Effects of various photoradiation regimens on the antitumor efficacy of photodynamic therapy for R3230AC mammary carcinomas,” Cancer Res. 50(22), 7236 (1990).

Abang, E.

V. H. Fingar, P. K. Kik, P. S. Haydon, P. B. Cerrito, M. Tseng, E. Abang, and T. J. Wieman, “Analysis of acute vascular damage after photodynamic therapy using benzoporphyrin derivative (BPD),” Br. J. Cancer 79(11-12), 1702–1708 (1999).
[Crossref]

Agostinis, P.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, and D. Kessel, “Photodynamic therapy of cancer: An update,” CA: A Cancer Journal for Clinicians 61(4), 250–281 (2011).
[Crossref]

Aguirre, Hindelang

Hindelang Aguirre, Berezhnoi Andrei, Darsow, and Lauffer, “Assessing nailfold microvascular structure with ultra-wideband raster-scan optoacoustic mesoscopy,” Photoacoustics, 2018.

Amelink, A.

B. Kruijt, E. M. van der Snoek, H. J. C. M. Sterenborg, A. Amelink, and D. J. Robinson, “A dedicated applicator for light delivery and monitoring of PDT of intra-anal intraepithelial neoplasia,” Photodiagn. Photodyn. Ther. 7(1), 3–9 (2010).
[Crossref]

Ancukiewicz, M.

A. G. Sorensen, K. E. Emblem, P. Polaskova, D. Jennings, H. Kim, M. Ancukiewicz, M. Wang, P. Y. Wen, P. Ivy, and T. T. Batchelor, “Increased survival of glioblastoma patients who respond to antiangiogenic therapy with elevated blood perfusion,” Cancer Res. 72(2), 402–407 (2012).
[Crossref]

Andrei, Berezhnoi

Hindelang Aguirre, Berezhnoi Andrei, Darsow, and Lauffer, “Assessing nailfold microvascular structure with ultra-wideband raster-scan optoacoustic mesoscopy,” Photoacoustics, 2018.

Angell-Petersen, E.

E. Angell-Petersen, S. Spetalen, S. J. Madsen, C.-H. Sun, Q. Peng, S. W. Carper, M. Sioud, and H. Hirschberg, “Influence of light fluence rate on the effects of photodynamic therapy in an orthotopic rat glioma model,” J. Neurosurg. 104(1), 109–117 (2006).
[Crossref]

Attia, A. B. E.

A. B. E. Attia, G. Balasundaram, M. Moothanchery, U. Dinish, R. Bi, V. Ntziachristos, and M. Olivo, “A review of clinical photoacoustic imaging: Current and future trends,” Photoacoustics 16, 100144 (2019).
[Crossref]

Balasundaram, G.

A. B. E. Attia, G. Balasundaram, M. Moothanchery, U. Dinish, R. Bi, V. Ntziachristos, and M. Olivo, “A review of clinical photoacoustic imaging: Current and future trends,” Photoacoustics 16, 100144 (2019).
[Crossref]

Barr, H.

H. Barr, “Barrett’s Esophagus: Treatment with 5-Aminolevulinic Acid Photodynamic Therapy,” Gastrointestinal Endoscopy Clinics 10(3), 421–437 (2000).
[Crossref]

Bartlett, L. A.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, and R. K. Jain, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref]

Batchelor, T. T.

K. E. Emblem, K. Mouridsen, A. Bjornerud, C. T. Farrar, D. Jennings, R. J. Borra, P. Y. Wen, P. Ivy, T. T. Batchelor, and B. R. Rosen, “Vessel architectural imaging identifies cancer patient responders to anti-angiogenic therapy,” Nat. Med. 19(9), 1178–1183 (2013).
[Crossref]

A. G. Sorensen, K. E. Emblem, P. Polaskova, D. Jennings, H. Kim, M. Ancukiewicz, M. Wang, P. Y. Wen, P. Ivy, and T. T. Batchelor, “Increased survival of glioblastoma patients who respond to antiangiogenic therapy with elevated blood perfusion,” Cancer Res. 72(2), 402–407 (2012).
[Crossref]

Berg, K.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, and D. Kessel, “Photodynamic therapy of cancer: An update,” CA: A Cancer Journal for Clinicians 61(4), 250–281 (2011).
[Crossref]

Bi, R.

A. B. E. Attia, G. Balasundaram, M. Moothanchery, U. Dinish, R. Bi, V. Ntziachristos, and M. Olivo, “A review of clinical photoacoustic imaging: Current and future trends,” Photoacoustics 16, 100144 (2019).
[Crossref]

Bjornerud, A.

K. E. Emblem, K. Mouridsen, A. Bjornerud, C. T. Farrar, D. Jennings, R. J. Borra, P. Y. Wen, P. Ivy, T. T. Batchelor, and B. R. Rosen, “Vessel architectural imaging identifies cancer patient responders to anti-angiogenic therapy,” Nat. Med. 19(9), 1178–1183 (2013).
[Crossref]

Boehncke, W. H.

W. H. Boehncke, T. Elshorst-Schmidt, and R. Kaufmann, “Systemic photodynamic therapy is a safe and effective treatment of psoriasis,” Arch. Dermatol. 136(2), 271–272 (2000).
[Crossref]

Boldyrevd, Ivan

Borra, R. J.

K. E. Emblem, K. Mouridsen, A. Bjornerud, C. T. Farrar, D. Jennings, R. J. Borra, P. Y. Wen, P. Ivy, T. T. Batchelor, and B. R. Rosen, “Vessel architectural imaging identifies cancer patient responders to anti-angiogenic therapy,” Nat. Med. 19(9), 1178–1183 (2013).
[Crossref]

Bryant, R. G.

T. H. Foster, R. S. Murant, R. G. Bryant, R. S. Knox, S. L. Gibson, and R. Hilf, “Oxygen consumption and diffusion effects in photodynamic therapy,” Radiat Research 126(3), 296–303 (1991).
[Crossref]

Busch, T. M.

B. W. Henderson, T. M. Busch, and J. W. Snyder, “Fluence rate as a modulator of PDT mechanisms,” The Official Journal of the American Society for Laser Medicine and Surgery 38(5), 489–493 (2006).
[Crossref]

B. W. Henderson, T. M. Busch, and J. W. Snyder, “Fluence rate as a modulator of PDT mechanisms,” Lasers Surg. Med. 38(5), 489–493 (2006).
[Crossref]

Cao, T. C.

D. Sampath, J. Oeh, S. K. Wyatt, T. C. Cao, H. Koeppen, J. Eastham-Anderson, L. Robillard, C. C. Ho, J. Ross, and G. Zhuang, “Multimodal microvascular imaging reveals that selective inhibition of class I PI3 K is sufficient to induce an antivascular response,” Neoplasia (New York, NY) 15(7), 694–IN4 (2013).
[Crossref]

Carper, S. W.

E. Angell-Petersen, S. Spetalen, S. J. Madsen, C.-H. Sun, Q. Peng, S. W. Carper, M. Sioud, and H. Hirschberg, “Influence of light fluence rate on the effects of photodynamic therapy in an orthotopic rat glioma model,” J. Neurosurg. 104(1), 109–117 (2006).
[Crossref]

Castano, A. P.

A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer 6(7), 535–545 (2006).
[Crossref]

Cengel, K. A.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, and D. Kessel, “Photodynamic therapy of cancer: An update,” CA: A Cancer Journal for Clinicians 61(4), 250–281 (2011).
[Crossref]

Cerrito, P. B.

V. H. Fingar, P. K. Kik, P. S. Haydon, P. B. Cerrito, M. Tseng, E. Abang, and T. J. Wieman, “Analysis of acute vascular damage after photodynamic therapy using benzoporphyrin derivative (BPD),” Br. J. Cancer 79(11-12), 1702–1708 (1999).
[Crossref]

Chao, Zhang

Chen, N.

H.-C. Zhou, N. Chen, H. Zhao, T. Yin, J. Zhang, W. Zheng, L. Song, C. Liu, and R. Zheng, “Optical-resolution photoacoustic microscopy for monitoring vascular normalization during anti-angiogenic therapy,” Photoacoustics 15, 100143 (2019).
[Crossref]

Chen, R.

C. Zhang, K. I. Maslov, S. Hu, L. V. Wang, R. Chen, Q. Zhou, and K. K. Shung, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt. 17(2), 020501 (2012).
[Crossref]

Chen, W. R.

L. Xiang, D. Xing, H. Gu, D. Yang, S. Yang, L. Zeng, and W. R. Chen, “Real-time optoacoustic monitoring of vascular damage during photodynamic therapy treatment of tumor,” J. Biomed. Opt. 12(1), 014001 (2007).
[Crossref]

Cheong, W.-F.

S. G. Rockson, D. P. Lorenz, W.-F. Cheong, and K. W. Woodburn, “Photoangioplasty : an emerging clinical cardiovascular role for photodynamic therapy,” Circulation 102(5), 591–596 (2000).
[Crossref]

Chighvinadze, Michelle

Hirschberg Henry, A. Francisco, David Uzal, Michelle Chighvinadze, and J. Zhang, “Disruption of the blood–brain barrier following ALA-mediated photodynamic therapy,” The Official Journal of the American Society for Laser Medicine and Surgery 40(8), 535–542 (2008).
[Crossref]

Chitralada, Vibhagool

González Salvador, Vibhagool Chitralada, Sherwood Margaret, and Thomas, “The phototoxicity of photodynamic therapy may be suppressed or enhanced by modulation of the cutaneous vasculature,” J. Photochem. Photobiol., B 57(2-3), 142–148 (2000).
[Crossref]

Darafsheh, A.

J. C. Finlay and A. Darafsheh, “Light Sources, Drugs, and Dosimetry,” Biomedical Optics in Otorhinolaryngology: Head and Neck Surgery 311–336 (2016).
[Crossref]

Daria, Tretiakova

Darsow,

Hindelang Aguirre, Berezhnoi Andrei, Darsow, and Lauffer, “Assessing nailfold microvascular structure with ultra-wideband raster-scan optoacoustic mesoscopy,” Photoacoustics, 2018.

Deán-Ben, X. L.

X. L. Deán-Ben, H. López-Schier, and D. Razansky, “Optoacoustic micro-tomography at 100 volumes per second,” Sci. Rep. 7(1), 6850 (2017).
[Crossref]

Desjardins, A. E.

T. Zhao, A. E. Desjardins, S. Ourselin, T. Vercauteren, and W. Xia, “Minimally invasive photoacoustic imaging: Current status and future perspectives,” Photoacoustics 16, 100146 (2019).
[Crossref]

Dinish, U.

A. B. E. Attia, G. Balasundaram, M. Moothanchery, U. Dinish, R. Bi, V. Ntziachristos, and M. Olivo, “A review of clinical photoacoustic imaging: Current and future trends,” Photoacoustics 16, 100144 (2019).
[Crossref]

Eastham-Anderson, J.

D. Sampath, J. Oeh, S. K. Wyatt, T. C. Cao, H. Koeppen, J. Eastham-Anderson, L. Robillard, C. C. Ho, J. Ross, and G. Zhuang, “Multimodal microvascular imaging reveals that selective inhibition of class I PI3 K is sufficient to induce an antivascular response,” Neoplasia (New York, NY) 15(7), 694–IN4 (2013).
[Crossref]

Elena, Vodovozova

Elshorst-Schmidt, T.

W. H. Boehncke, T. Elshorst-Schmidt, and R. Kaufmann, “Systemic photodynamic therapy is a safe and effective treatment of psoriasis,” Arch. Dermatol. 136(2), 271–272 (2000).
[Crossref]

Emblem, K. E.

K. E. Emblem, K. Mouridsen, A. Bjornerud, C. T. Farrar, D. Jennings, R. J. Borra, P. Y. Wen, P. Ivy, T. T. Batchelor, and B. R. Rosen, “Vessel architectural imaging identifies cancer patient responders to anti-angiogenic therapy,” Nat. Med. 19(9), 1178–1183 (2013).
[Crossref]

A. G. Sorensen, K. E. Emblem, P. Polaskova, D. Jennings, H. Kim, M. Ancukiewicz, M. Wang, P. Y. Wen, P. Ivy, and T. T. Batchelor, “Increased survival of glioblastoma patients who respond to antiangiogenic therapy with elevated blood perfusion,” Cancer Res. 72(2), 402–407 (2012).
[Crossref]

Farrar, C. T.

K. E. Emblem, K. Mouridsen, A. Bjornerud, C. T. Farrar, D. Jennings, R. J. Borra, P. Y. Wen, P. Ivy, T. T. Batchelor, and B. R. Rosen, “Vessel architectural imaging identifies cancer patient responders to anti-angiogenic therapy,” Nat. Med. 19(9), 1178–1183 (2013).
[Crossref]

Fingar, V. H.

V. H. Fingar, P. K. Kik, P. S. Haydon, P. B. Cerrito, M. Tseng, E. Abang, and T. J. Wieman, “Analysis of acute vascular damage after photodynamic therapy using benzoporphyrin derivative (BPD),” Br. J. Cancer 79(11-12), 1702–1708 (1999).
[Crossref]

V. H. Fingar, “Vascular effects of photodynamic therapy,” Journal of clinical laser medicine & surgery 14(5), 323–328 (1996).
[Crossref]

Finlay, J. C.

T. C. Zhu and J. C. Finlay, “Prostate PDT dosimetry,” Photodiagn. Photodyn. Ther. 3(4), 234–246 (2006).
[Crossref]

J. C. Finlay and A. Darafsheh, “Light Sources, Drugs, and Dosimetry,” Biomedical Optics in Otorhinolaryngology: Head and Neck Surgery 311–336 (2016).
[Crossref]

Firczuk, M.

M. Firczuk, D. Nowis, and J. Gołąb, “PDT-induced inflammatory and host responses,” Photochem. Photobiol. Sci. 10(5), 653–663 (2011).
[Crossref]

Foster, T. H.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, and D. Kessel, “Photodynamic therapy of cancer: An update,” CA: A Cancer Journal for Clinicians 61(4), 250–281 (2011).
[Crossref]

M. G. Nichols and T. H. Foster, “Oxygen diffusion and reaction kinetics in the photodynamic therapy of multicell tumour spheroids,” Phys. Med. Biol. 39(12), 2161–2181 (1994).
[Crossref]

T. H. Foster, D. F. Hartley, M. G. Nichols, and R. Hilf, “Fluence rate effects in photodynamic therapy of multicell tumor spheroids,” Cancer Res. 53(6), 1249 (1993).

T. H. Foster, R. S. Murant, R. G. Bryant, R. S. Knox, S. L. Gibson, and R. Hilf, “Oxygen consumption and diffusion effects in photodynamic therapy,” Radiat Research 126(3), 296–303 (1991).
[Crossref]

Fournier, R. L.

J. P. Henning, R. L. Fournier, and J. A. Hampton, “A transient mathematical model of oxygen depletion during photodynamic therapy,” Radiat. Res. 142(2), 221–226 (1995).
[Crossref]

Francisco, A.

Hirschberg Henry, A. Francisco, David Uzal, Michelle Chighvinadze, and J. Zhang, “Disruption of the blood–brain barrier following ALA-mediated photodynamic therapy,” The Official Journal of the American Society for Laser Medicine and Surgery 40(8), 535–542 (2008).
[Crossref]

Fukumura, D.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, and R. K. Jain, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref]

Gibson, S. L.

T. H. Foster, R. S. Murant, R. G. Bryant, R. S. Knox, S. L. Gibson, and R. Hilf, “Oxygen consumption and diffusion effects in photodynamic therapy,” Radiat Research 126(3), 296–303 (1991).
[Crossref]

S. L. Gibson, K. R. Vandermeid, R. S. Murant, R. F. Raubertas, and R. Hilf, “Effects of various photoradiation regimens on the antitumor efficacy of photodynamic therapy for R3230AC mammary carcinomas,” Cancer Res. 50(22), 7236 (1990).

Girotti, A. W.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, and D. Kessel, “Photodynamic therapy of cancer: An update,” CA: A Cancer Journal for Clinicians 61(4), 250–281 (2011).
[Crossref]

Golab, J.

M. Firczuk, D. Nowis, and J. Gołąb, “PDT-induced inflammatory and host responses,” Photochem. Photobiol. Sci. 10(5), 653–663 (2011).
[Crossref]

Gollnick, S. O.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, and D. Kessel, “Photodynamic therapy of cancer: An update,” CA: A Cancer Journal for Clinicians 61(4), 250–281 (2011).
[Crossref]

Gong, X.

H. Zhao, G. Wang, R. Lin, X. Gong, L. Song, T. Li, W. Wang, K. Zhang, X. Qian, and H. Zhang, “Three-dimensional Hessian matrix-based quantitative vascular imaging of rat iris with optical-resolution photoacoustic microscopy in vivo,” J. Biomed. Opt. 23(04), 1 (2018).
[Crossref]

Gu, H.

L. Xiang, D. Xing, H. Gu, D. Yang, S. Yang, L. Zeng, and W. R. Chen, “Real-time optoacoustic monitoring of vascular damage during photodynamic therapy treatment of tumor,” J. Biomed. Opt. 12(1), 014001 (2007).
[Crossref]

Hahn, S. M.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, and D. Kessel, “Photodynamic therapy of cancer: An update,” CA: A Cancer Journal for Clinicians 61(4), 250–281 (2011).
[Crossref]

Hamblin, M. R.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, and D. Kessel, “Photodynamic therapy of cancer: An update,” CA: A Cancer Journal for Clinicians 61(4), 250–281 (2011).
[Crossref]

A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer 6(7), 535–545 (2006).
[Crossref]

Hampton, J. A.

J. P. Henning, R. L. Fournier, and J. A. Hampton, “A transient mathematical model of oxygen depletion during photodynamic therapy,” Radiat. Res. 142(2), 221–226 (1995).
[Crossref]

Hartley, D. F.

T. H. Foster, D. F. Hartley, M. G. Nichols, and R. Hilf, “Fluence rate effects in photodynamic therapy of multicell tumor spheroids,” Cancer Res. 53(6), 1249 (1993).

Hasan, T.

K. B. Trauner and T. Hasan, “Photodynamic treatment of rheumatoid and inflammatory arthritis,” Photochem. Photobiol. 64(5), 740–750 (1996).
[Crossref]

Haydon, P. S.

V. H. Fingar, P. K. Kik, P. S. Haydon, P. B. Cerrito, M. Tseng, E. Abang, and T. J. Wieman, “Analysis of acute vascular damage after photodynamic therapy using benzoporphyrin derivative (BPD),” Br. J. Cancer 79(11-12), 1702–1708 (1999).
[Crossref]

Henderson, B. W.

B. W. Henderson, T. M. Busch, and J. W. Snyder, “Fluence rate as a modulator of PDT mechanisms,” Lasers Surg. Med. 38(5), 489–493 (2006).
[Crossref]

B. W. Henderson, T. M. Busch, and J. W. Snyder, “Fluence rate as a modulator of PDT mechanisms,” The Official Journal of the American Society for Laser Medicine and Surgery 38(5), 489–493 (2006).
[Crossref]

Henning, J. P.

J. P. Henning, R. L. Fournier, and J. A. Hampton, “A transient mathematical model of oxygen depletion during photodynamic therapy,” Radiat. Res. 142(2), 221–226 (1995).
[Crossref]

Henry, Hirschberg

Hirschberg Henry, A. Francisco, David Uzal, Michelle Chighvinadze, and J. Zhang, “Disruption of the blood–brain barrier following ALA-mediated photodynamic therapy,” The Official Journal of the American Society for Laser Medicine and Surgery 40(8), 535–542 (2008).
[Crossref]

Hilf, R.

T. H. Foster, D. F. Hartley, M. G. Nichols, and R. Hilf, “Fluence rate effects in photodynamic therapy of multicell tumor spheroids,” Cancer Res. 53(6), 1249 (1993).

T. H. Foster, R. S. Murant, R. G. Bryant, R. S. Knox, S. L. Gibson, and R. Hilf, “Oxygen consumption and diffusion effects in photodynamic therapy,” Radiat Research 126(3), 296–303 (1991).
[Crossref]

S. L. Gibson, K. R. Vandermeid, R. S. Murant, R. F. Raubertas, and R. Hilf, “Effects of various photoradiation regimens on the antitumor efficacy of photodynamic therapy for R3230AC mammary carcinomas,” Cancer Res. 50(22), 7236 (1990).

Hirschberg, H.

S. J. Madsen, H. Hirschberg, S. J. Madsen, and H. Hirschberg, “Site-specific opening of the blood-brain barrier,” J. Biophotonics 3(5-6), 356–367 (2010).
[Crossref]

S. J. Madsen, H. Hirschberg, S. J. Madsen, and H. Hirschberg, “Site-specific opening of the blood-brain barrier,” J. Biophotonics 3(5-6), 356–367 (2010).
[Crossref]

E. Angell-Petersen, S. Spetalen, S. J. Madsen, C.-H. Sun, Q. Peng, S. W. Carper, M. Sioud, and H. Hirschberg, “Influence of light fluence rate on the effects of photodynamic therapy in an orthotopic rat glioma model,” J. Neurosurg. 104(1), 109–117 (2006).
[Crossref]

Ho, C. C.

D. Sampath, J. Oeh, S. K. Wyatt, T. C. Cao, H. Koeppen, J. Eastham-Anderson, L. Robillard, C. C. Ho, J. Ross, and G. Zhuang, “Multimodal microvascular imaging reveals that selective inhibition of class I PI3 K is sufficient to induce an antivascular response,” Neoplasia (New York, NY) 15(7), 694–IN4 (2013).
[Crossref]

Hu, S.

C. Zhang, K. I. Maslov, S. Hu, L. V. Wang, R. Chen, Q. Zhou, and K. K. Shung, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt. 17(2), 020501 (2012).
[Crossref]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref]

Ivy, P.

K. E. Emblem, K. Mouridsen, A. Bjornerud, C. T. Farrar, D. Jennings, R. J. Borra, P. Y. Wen, P. Ivy, T. T. Batchelor, and B. R. Rosen, “Vessel architectural imaging identifies cancer patient responders to anti-angiogenic therapy,” Nat. Med. 19(9), 1178–1183 (2013).
[Crossref]

A. G. Sorensen, K. E. Emblem, P. Polaskova, D. Jennings, H. Kim, M. Ancukiewicz, M. Wang, P. Y. Wen, P. Ivy, and T. T. Batchelor, “Increased survival of glioblastoma patients who respond to antiangiogenic therapy with elevated blood perfusion,” Cancer Res. 72(2), 402–407 (2012).
[Crossref]

Jain, R. K.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, and R. K. Jain, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref]

Jennings, D.

K. E. Emblem, K. Mouridsen, A. Bjornerud, C. T. Farrar, D. Jennings, R. J. Borra, P. Y. Wen, P. Ivy, T. T. Batchelor, and B. R. Rosen, “Vessel architectural imaging identifies cancer patient responders to anti-angiogenic therapy,” Nat. Med. 19(9), 1178–1183 (2013).
[Crossref]

A. G. Sorensen, K. E. Emblem, P. Polaskova, D. Jennings, H. Kim, M. Ancukiewicz, M. Wang, P. Y. Wen, P. Ivy, and T. T. Batchelor, “Increased survival of glioblastoma patients who respond to antiangiogenic therapy with elevated blood perfusion,” Cancer Res. 72(2), 402–407 (2012).
[Crossref]

Juzeniene, A.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, and D. Kessel, “Photodynamic therapy of cancer: An update,” CA: A Cancer Journal for Clinicians 61(4), 250–281 (2011).
[Crossref]

Kaufmann, R.

W. H. Boehncke, T. Elshorst-Schmidt, and R. Kaufmann, “Systemic photodynamic therapy is a safe and effective treatment of psoriasis,” Arch. Dermatol. 136(2), 271–272 (2000).
[Crossref]

Kessel, D.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, and D. Kessel, “Photodynamic therapy of cancer: An update,” CA: A Cancer Journal for Clinicians 61(4), 250–281 (2011).
[Crossref]

Kik, P. K.

V. H. Fingar, P. K. Kik, P. S. Haydon, P. B. Cerrito, M. Tseng, E. Abang, and T. J. Wieman, “Analysis of acute vascular damage after photodynamic therapy using benzoporphyrin derivative (BPD),” Br. J. Cancer 79(11-12), 1702–1708 (1999).
[Crossref]

Kim, H.

A. G. Sorensen, K. E. Emblem, P. Polaskova, D. Jennings, H. Kim, M. Ancukiewicz, M. Wang, P. Y. Wen, P. Ivy, and T. T. Batchelor, “Increased survival of glioblastoma patients who respond to antiangiogenic therapy with elevated blood perfusion,” Cancer Res. 72(2), 402–407 (2012).
[Crossref]

Knox, R. S.

T. H. Foster, R. S. Murant, R. G. Bryant, R. S. Knox, S. L. Gibson, and R. Hilf, “Oxygen consumption and diffusion effects in photodynamic therapy,” Radiat Research 126(3), 296–303 (1991).
[Crossref]

Koeppen, H.

D. Sampath, J. Oeh, S. K. Wyatt, T. C. Cao, H. Koeppen, J. Eastham-Anderson, L. Robillard, C. C. Ho, J. Ross, and G. Zhuang, “Multimodal microvascular imaging reveals that selective inhibition of class I PI3 K is sufficient to induce an antivascular response,” Neoplasia (New York, NY) 15(7), 694–IN4 (2013).
[Crossref]

Korbelik, M.

M. Korbelik, “PDT-associated host response and its role in the therapy outcome,” Lasers in Surgery & Medicine 38(5), 500–508 (2006).
[Crossref]

Kruijt, B.

B. Kruijt, E. M. van der Snoek, H. J. C. M. Sterenborg, A. Amelink, and D. J. Robinson, “A dedicated applicator for light delivery and monitoring of PDT of intra-anal intraepithelial neoplasia,” Photodiagn. Photodyn. Ther. 7(1), 3–9 (2010).
[Crossref]

Ku, G.

K. Maslov, G. Ku, and L. V. Wang, “Photoacoustic microscopy with submicron resolution,” in Photons Plus Ultrasound: Imaging and Sensing 2010. 2010. International Society for Optics and Photonics.

Lanning, R. M.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, and R. K. Jain, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref]

Lauffer,

Hindelang Aguirre, Berezhnoi Andrei, Darsow, and Lauffer, “Assessing nailfold microvascular structure with ultra-wideband raster-scan optoacoustic mesoscopy,” Photoacoustics, 2018.

Li, M.

M. Li, Y. Tang, and J. Yao, “Photoacoustic tomography of blood oxygenation: A mini review,” Photoacoustics 10, 65–73 (2018).
[Crossref]

Li, T.

H. Zhao, G. Wang, R. Lin, X. Gong, L. Song, T. Li, W. Wang, K. Zhang, X. Qian, and H. Zhang, “Three-dimensional Hessian matrix-based quantitative vascular imaging of rat iris with optical-resolution photoacoustic microscopy in vivo,” J. Biomed. Opt. 23(04), 1 (2018).
[Crossref]

Lilge, L.

B. C. Wilson, M. S. Patterson, and L. Lilge, “Implicit and explicit dosimetry in photodynamic therapy: a New paradigm,” Lasers Med. Sci. 12(3), 182–199 (1997).
[Crossref]

Lin, R.

H. Zhao, G. Wang, R. Lin, X. Gong, L. Song, T. Li, W. Wang, K. Zhang, X. Qian, and H. Zhang, “Three-dimensional Hessian matrix-based quantitative vascular imaging of rat iris with optical-resolution photoacoustic microscopy in vivo,” J. Biomed. Opt. 23(04), 1 (2018).
[Crossref]

Liu, C.

H.-C. Zhou, N. Chen, H. Zhao, T. Yin, J. Zhang, W. Zheng, L. Song, C. Liu, and R. Zheng, “Optical-resolution photoacoustic microscopy for monitoring vascular normalization during anti-angiogenic therapy,” Photoacoustics 15, 100143 (2019).
[Crossref]

López-Schier, H.

X. L. Deán-Ben, H. López-Schier, and D. Razansky, “Optoacoustic micro-tomography at 100 volumes per second,” Sci. Rep. 7(1), 6850 (2017).
[Crossref]

Lorenz, D. P.

S. G. Rockson, D. P. Lorenz, W.-F. Cheong, and K. W. Woodburn, “Photoangioplasty : an emerging clinical cardiovascular role for photodynamic therapy,” Circulation 102(5), 591–596 (2000).
[Crossref]

Madsen, S. J.

S. J. Madsen, H. Hirschberg, S. J. Madsen, and H. Hirschberg, “Site-specific opening of the blood-brain barrier,” J. Biophotonics 3(5-6), 356–367 (2010).
[Crossref]

S. J. Madsen, H. Hirschberg, S. J. Madsen, and H. Hirschberg, “Site-specific opening of the blood-brain barrier,” J. Biophotonics 3(5-6), 356–367 (2010).
[Crossref]

E. Angell-Petersen, S. Spetalen, S. J. Madsen, C.-H. Sun, Q. Peng, S. W. Carper, M. Sioud, and H. Hirschberg, “Influence of light fluence rate on the effects of photodynamic therapy in an orthotopic rat glioma model,” J. Neurosurg. 104(1), 109–117 (2006).
[Crossref]

Margaret, Sherwood

González Salvador, Vibhagool Chitralada, Sherwood Margaret, and Thomas, “The phototoxicity of photodynamic therapy may be suppressed or enhanced by modulation of the cutaneous vasculature,” J. Photochem. Photobiol., B 57(2-3), 142–148 (2000).
[Crossref]

Maslov, K.

K. Maslov, G. Ku, and L. V. Wang, “Photoacoustic microscopy with submicron resolution,” in Photons Plus Ultrasound: Imaging and Sensing 2010. 2010. International Society for Optics and Photonics.

Maslov, K. I.

C. Zhang, K. I. Maslov, S. Hu, L. V. Wang, R. Chen, Q. Zhou, and K. K. Shung, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt. 17(2), 020501 (2012).
[Crossref]

Moothanchery, M.

A. B. E. Attia, G. Balasundaram, M. Moothanchery, U. Dinish, R. Bi, V. Ntziachristos, and M. Olivo, “A review of clinical photoacoustic imaging: Current and future trends,” Photoacoustics 16, 100144 (2019).
[Crossref]

Mouridsen, K.

K. E. Emblem, K. Mouridsen, A. Bjornerud, C. T. Farrar, D. Jennings, R. J. Borra, P. Y. Wen, P. Ivy, T. T. Batchelor, and B. R. Rosen, “Vessel architectural imaging identifies cancer patient responders to anti-angiogenic therapy,” Nat. Med. 19(9), 1178–1183 (2013).
[Crossref]

Mroz, P.

A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer 6(7), 535–545 (2006).
[Crossref]

Munn, L. L.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, and R. K. Jain, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref]

Murant, R. S.

T. H. Foster, R. S. Murant, R. G. Bryant, R. S. Knox, S. L. Gibson, and R. Hilf, “Oxygen consumption and diffusion effects in photodynamic therapy,” Radiat Research 126(3), 296–303 (1991).
[Crossref]

S. L. Gibson, K. R. Vandermeid, R. S. Murant, R. F. Raubertas, and R. Hilf, “Effects of various photoradiation regimens on the antitumor efficacy of photodynamic therapy for R3230AC mammary carcinomas,” Cancer Res. 50(22), 7236 (1990).

Nichols, M. G.

M. G. Nichols and T. H. Foster, “Oxygen diffusion and reaction kinetics in the photodynamic therapy of multicell tumour spheroids,” Phys. Med. Biol. 39(12), 2161–2181 (1994).
[Crossref]

T. H. Foster, D. F. Hartley, M. G. Nichols, and R. Hilf, “Fluence rate effects in photodynamic therapy of multicell tumor spheroids,” Cancer Res. 53(6), 1249 (1993).

Nowis, D.

M. Firczuk, D. Nowis, and J. Gołąb, “PDT-induced inflammatory and host responses,” Photochem. Photobiol. Sci. 10(5), 653–663 (2011).
[Crossref]

Ntziachristos, V.

A. B. E. Attia, G. Balasundaram, M. Moothanchery, U. Dinish, R. Bi, V. Ntziachristos, and M. Olivo, “A review of clinical photoacoustic imaging: Current and future trends,” Photoacoustics 16, 100144 (2019).
[Crossref]

Oeh, J.

D. Sampath, J. Oeh, S. K. Wyatt, T. C. Cao, H. Koeppen, J. Eastham-Anderson, L. Robillard, C. C. Ho, J. Ross, and G. Zhuang, “Multimodal microvascular imaging reveals that selective inhibition of class I PI3 K is sufficient to induce an antivascular response,” Neoplasia (New York, NY) 15(7), 694–IN4 (2013).
[Crossref]

Olivo, M.

A. B. E. Attia, G. Balasundaram, M. Moothanchery, U. Dinish, R. Bi, V. Ntziachristos, and M. Olivo, “A review of clinical photoacoustic imaging: Current and future trends,” Photoacoustics 16, 100144 (2019).
[Crossref]

Ourselin, S.

T. Zhao, A. E. Desjardins, S. Ourselin, T. Vercauteren, and W. Xia, “Minimally invasive photoacoustic imaging: Current status and future perspectives,” Photoacoustics 16, 100146 (2019).
[Crossref]

Padera, T. P.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, and R. K. Jain, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref]

Patterson, M. S.

B. C. Wilson, M. S. Patterson, and L. Lilge, “Implicit and explicit dosimetry in photodynamic therapy: a New paradigm,” Lasers Med. Sci. 12(3), 182–199 (1997).
[Crossref]

Peng, Q.

E. Angell-Petersen, S. Spetalen, S. J. Madsen, C.-H. Sun, Q. Peng, S. W. Carper, M. Sioud, and H. Hirschberg, “Influence of light fluence rate on the effects of photodynamic therapy in an orthotopic rat glioma model,” J. Neurosurg. 104(1), 109–117 (2006).
[Crossref]

Polaskova, P.

A. G. Sorensen, K. E. Emblem, P. Polaskova, D. Jennings, H. Kim, M. Ancukiewicz, M. Wang, P. Y. Wen, P. Ivy, and T. T. Batchelor, “Increased survival of glioblastoma patients who respond to antiangiogenic therapy with elevated blood perfusion,” Cancer Res. 72(2), 402–407 (2012).
[Crossref]

Prahl, S.

S. Prahl, Tabulated molar extinction coefficient for hemoglobin in water, compiled by Scott Prahl (prahl@ ece.ogi.edu) using data from WB Gratzer, Med. Res. Council Labs, Holly Hill, London, UK, and N. Kollias, Wellman Laboratories, Harvard Medical School, Boston, 1999.

Qian, X.

H. Zhao, G. Wang, R. Lin, X. Gong, L. Song, T. Li, W. Wang, K. Zhang, X. Qian, and H. Zhang, “Three-dimensional Hessian matrix-based quantitative vascular imaging of rat iris with optical-resolution photoacoustic microscopy in vivo,” J. Biomed. Opt. 23(04), 1 (2018).
[Crossref]

Raubertas, R. F.

S. L. Gibson, K. R. Vandermeid, R. S. Murant, R. F. Raubertas, and R. Hilf, “Effects of various photoradiation regimens on the antitumor efficacy of photodynamic therapy for R3230AC mammary carcinomas,” Cancer Res. 50(22), 7236 (1990).

Razansky, D.

X. L. Deán-Ben, H. López-Schier, and D. Razansky, “Optoacoustic micro-tomography at 100 volumes per second,” Sci. Rep. 7(1), 6850 (2017).
[Crossref]

Robillard, L.

D. Sampath, J. Oeh, S. K. Wyatt, T. C. Cao, H. Koeppen, J. Eastham-Anderson, L. Robillard, C. C. Ho, J. Ross, and G. Zhuang, “Multimodal microvascular imaging reveals that selective inhibition of class I PI3 K is sufficient to induce an antivascular response,” Neoplasia (New York, NY) 15(7), 694–IN4 (2013).
[Crossref]

Robinson, D. J.

B. Kruijt, E. M. van der Snoek, H. J. C. M. Sterenborg, A. Amelink, and D. J. Robinson, “A dedicated applicator for light delivery and monitoring of PDT of intra-anal intraepithelial neoplasia,” Photodiagn. Photodyn. Ther. 7(1), 3–9 (2010).
[Crossref]

Rockson, S. G.

S. G. Rockson, D. P. Lorenz, W.-F. Cheong, and K. W. Woodburn, “Photoangioplasty : an emerging clinical cardiovascular role for photodynamic therapy,” Circulation 102(5), 591–596 (2000).
[Crossref]

Rosen, B. R.

K. E. Emblem, K. Mouridsen, A. Bjornerud, C. T. Farrar, D. Jennings, R. J. Borra, P. Y. Wen, P. Ivy, T. T. Batchelor, and B. R. Rosen, “Vessel architectural imaging identifies cancer patient responders to anti-angiogenic therapy,” Nat. Med. 19(9), 1178–1183 (2013).
[Crossref]

Ross, J.

D. Sampath, J. Oeh, S. K. Wyatt, T. C. Cao, H. Koeppen, J. Eastham-Anderson, L. Robillard, C. C. Ho, J. Ross, and G. Zhuang, “Multimodal microvascular imaging reveals that selective inhibition of class I PI3 K is sufficient to induce an antivascular response,” Neoplasia (New York, NY) 15(7), 694–IN4 (2013).
[Crossref]

Salvador, González

González Salvador, Vibhagool Chitralada, Sherwood Margaret, and Thomas, “The phototoxicity of photodynamic therapy may be suppressed or enhanced by modulation of the cutaneous vasculature,” J. Photochem. Photobiol., B 57(2-3), 142–148 (2000).
[Crossref]

Sampath, D.

D. Sampath, J. Oeh, S. K. Wyatt, T. C. Cao, H. Koeppen, J. Eastham-Anderson, L. Robillard, C. C. Ho, J. Ross, and G. Zhuang, “Multimodal microvascular imaging reveals that selective inhibition of class I PI3 K is sufficient to induce an antivascular response,” Neoplasia (New York, NY) 15(7), 694–IN4 (2013).
[Crossref]

Shung, K. K.

C. Zhang, K. I. Maslov, S. Hu, L. V. Wang, R. Chen, Q. Zhou, and K. K. Shung, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt. 17(2), 020501 (2012).
[Crossref]

Sioud, M.

E. Angell-Petersen, S. Spetalen, S. J. Madsen, C.-H. Sun, Q. Peng, S. W. Carper, M. Sioud, and H. Hirschberg, “Influence of light fluence rate on the effects of photodynamic therapy in an orthotopic rat glioma model,” J. Neurosurg. 104(1), 109–117 (2006).
[Crossref]

Snyder, J. W.

B. W. Henderson, T. M. Busch, and J. W. Snyder, “Fluence rate as a modulator of PDT mechanisms,” Lasers Surg. Med. 38(5), 489–493 (2006).
[Crossref]

B. W. Henderson, T. M. Busch, and J. W. Snyder, “Fluence rate as a modulator of PDT mechanisms,” The Official Journal of the American Society for Laser Medicine and Surgery 38(5), 489–493 (2006).
[Crossref]

Song, L.

H.-C. Zhou, N. Chen, H. Zhao, T. Yin, J. Zhang, W. Zheng, L. Song, C. Liu, and R. Zheng, “Optical-resolution photoacoustic microscopy for monitoring vascular normalization during anti-angiogenic therapy,” Photoacoustics 15, 100143 (2019).
[Crossref]

H. Zhao, G. Wang, R. Lin, X. Gong, L. Song, T. Li, W. Wang, K. Zhang, X. Qian, and H. Zhang, “Three-dimensional Hessian matrix-based quantitative vascular imaging of rat iris with optical-resolution photoacoustic microscopy in vivo,” J. Biomed. Opt. 23(04), 1 (2018).
[Crossref]

Sorensen, A. G.

A. G. Sorensen, K. E. Emblem, P. Polaskova, D. Jennings, H. Kim, M. Ancukiewicz, M. Wang, P. Y. Wen, P. Ivy, and T. T. Batchelor, “Increased survival of glioblastoma patients who respond to antiangiogenic therapy with elevated blood perfusion,” Cancer Res. 72(2), 402–407 (2012).
[Crossref]

Spetalen, S.

E. Angell-Petersen, S. Spetalen, S. J. Madsen, C.-H. Sun, Q. Peng, S. W. Carper, M. Sioud, and H. Hirschberg, “Influence of light fluence rate on the effects of photodynamic therapy in an orthotopic rat glioma model,” J. Neurosurg. 104(1), 109–117 (2006).
[Crossref]

Sterenborg, H. J. C. M.

B. Kruijt, E. M. van der Snoek, H. J. C. M. Sterenborg, A. Amelink, and D. J. Robinson, “A dedicated applicator for light delivery and monitoring of PDT of intra-anal intraepithelial neoplasia,” Photodiagn. Photodyn. Ther. 7(1), 3–9 (2010).
[Crossref]

Stylianopoulos, T.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, and R. K. Jain, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref]

Sun, C.-H.

E. Angell-Petersen, S. Spetalen, S. J. Madsen, C.-H. Sun, Q. Peng, S. W. Carper, M. Sioud, and H. Hirschberg, “Influence of light fluence rate on the effects of photodynamic therapy in an orthotopic rat glioma model,” J. Neurosurg. 104(1), 109–117 (2006).
[Crossref]

Tang, Y.

M. Li, Y. Tang, and J. Yao, “Photoacoustic tomography of blood oxygenation: A mini review,” Photoacoustics 10, 65–73 (2018).
[Crossref]

Tearney, G. J.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, and R. K. Jain, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref]

Thomas,

González Salvador, Vibhagool Chitralada, Sherwood Margaret, and Thomas, “The phototoxicity of photodynamic therapy may be suppressed or enhanced by modulation of the cutaneous vasculature,” J. Photochem. Photobiol., B 57(2-3), 142–148 (2000).
[Crossref]

Trauner, K. B.

K. B. Trauner and T. Hasan, “Photodynamic treatment of rheumatoid and inflammatory arthritis,” Photochem. Photobiol. 64(5), 740–750 (1996).
[Crossref]

Tseng, M.

V. H. Fingar, P. K. Kik, P. S. Haydon, P. B. Cerrito, M. Tseng, E. Abang, and T. J. Wieman, “Analysis of acute vascular damage after photodynamic therapy using benzoporphyrin derivative (BPD),” Br. J. Cancer 79(11-12), 1702–1708 (1999).
[Crossref]

Tyrrell, J. A.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, and R. K. Jain, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref]

Uzal, David

Hirschberg Henry, A. Francisco, David Uzal, Michelle Chighvinadze, and J. Zhang, “Disruption of the blood–brain barrier following ALA-mediated photodynamic therapy,” The Official Journal of the American Society for Laser Medicine and Surgery 40(8), 535–542 (2008).
[Crossref]

Vakoc, B. J.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, and R. K. Jain, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref]

van der Snoek, E. M.

B. Kruijt, E. M. van der Snoek, H. J. C. M. Sterenborg, A. Amelink, and D. J. Robinson, “A dedicated applicator for light delivery and monitoring of PDT of intra-anal intraepithelial neoplasia,” Photodiagn. Photodyn. Ther. 7(1), 3–9 (2010).
[Crossref]

Vandermeid, K. R.

S. L. Gibson, K. R. Vandermeid, R. S. Murant, R. F. Raubertas, and R. Hilf, “Effects of various photoradiation regimens on the antitumor efficacy of photodynamic therapy for R3230AC mammary carcinomas,” Cancer Res. 50(22), 7236 (1990).

Vercauteren, T.

T. Zhao, A. E. Desjardins, S. Ourselin, T. Vercauteren, and W. Xia, “Minimally invasive photoacoustic imaging: Current status and future perspectives,” Photoacoustics 16, 100146 (2019).
[Crossref]

Wang, G.

H. Zhao, G. Wang, R. Lin, X. Gong, L. Song, T. Li, W. Wang, K. Zhang, X. Qian, and H. Zhang, “Three-dimensional Hessian matrix-based quantitative vascular imaging of rat iris with optical-resolution photoacoustic microscopy in vivo,” J. Biomed. Opt. 23(04), 1 (2018).
[Crossref]

Wang, L. V.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref]

C. Zhang, K. I. Maslov, S. Hu, L. V. Wang, R. Chen, Q. Zhou, and K. K. Shung, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt. 17(2), 020501 (2012).
[Crossref]

K. Maslov, G. Ku, and L. V. Wang, “Photoacoustic microscopy with submicron resolution,” in Photons Plus Ultrasound: Imaging and Sensing 2010. 2010. International Society for Optics and Photonics.

Wang, M.

A. G. Sorensen, K. E. Emblem, P. Polaskova, D. Jennings, H. Kim, M. Ancukiewicz, M. Wang, P. Y. Wen, P. Ivy, and T. T. Batchelor, “Increased survival of glioblastoma patients who respond to antiangiogenic therapy with elevated blood perfusion,” Cancer Res. 72(2), 402–407 (2012).
[Crossref]

Wang, W.

H. Zhao, G. Wang, R. Lin, X. Gong, L. Song, T. Li, W. Wang, K. Zhang, X. Qian, and H. Zhang, “Three-dimensional Hessian matrix-based quantitative vascular imaging of rat iris with optical-resolution photoacoustic microscopy in vivo,” J. Biomed. Opt. 23(04), 1 (2018).
[Crossref]

Wei, Feng

Wen, P. Y.

K. E. Emblem, K. Mouridsen, A. Bjornerud, C. T. Farrar, D. Jennings, R. J. Borra, P. Y. Wen, P. Ivy, T. T. Batchelor, and B. R. Rosen, “Vessel architectural imaging identifies cancer patient responders to anti-angiogenic therapy,” Nat. Med. 19(9), 1178–1183 (2013).
[Crossref]

A. G. Sorensen, K. E. Emblem, P. Polaskova, D. Jennings, H. Kim, M. Ancukiewicz, M. Wang, P. Y. Wen, P. Ivy, and T. T. Batchelor, “Increased survival of glioblastoma patients who respond to antiangiogenic therapy with elevated blood perfusion,” Cancer Res. 72(2), 402–407 (2012).
[Crossref]

Wieman, T. J.

V. H. Fingar, P. K. Kik, P. S. Haydon, P. B. Cerrito, M. Tseng, E. Abang, and T. J. Wieman, “Analysis of acute vascular damage after photodynamic therapy using benzoporphyrin derivative (BPD),” Br. J. Cancer 79(11-12), 1702–1708 (1999).
[Crossref]

Wilson, B. C.

B. C. Wilson, M. S. Patterson, and L. Lilge, “Implicit and explicit dosimetry in photodynamic therapy: a New paradigm,” Lasers Med. Sci. 12(3), 182–199 (1997).
[Crossref]

Woodburn, K. W.

S. G. Rockson, D. P. Lorenz, W.-F. Cheong, and K. W. Woodburn, “Photoangioplasty : an emerging clinical cardiovascular role for photodynamic therapy,” Circulation 102(5), 591–596 (2000).
[Crossref]

Wyatt, S. K.

D. Sampath, J. Oeh, S. K. Wyatt, T. C. Cao, H. Koeppen, J. Eastham-Anderson, L. Robillard, C. C. Ho, J. Ross, and G. Zhuang, “Multimodal microvascular imaging reveals that selective inhibition of class I PI3 K is sufficient to induce an antivascular response,” Neoplasia (New York, NY) 15(7), 694–IN4 (2013).
[Crossref]

Xia, W.

T. Zhao, A. E. Desjardins, S. Ourselin, T. Vercauteren, and W. Xia, “Minimally invasive photoacoustic imaging: Current status and future perspectives,” Photoacoustics 16, 100146 (2019).
[Crossref]

Xiang, L.

L. Xiang, D. Xing, H. Gu, D. Yang, S. Yang, L. Zeng, and W. R. Chen, “Real-time optoacoustic monitoring of vascular damage during photodynamic therapy treatment of tumor,” J. Biomed. Opt. 12(1), 014001 (2007).
[Crossref]

Xing, D.

L. Xiang, D. Xing, H. Gu, D. Yang, S. Yang, L. Zeng, and W. R. Chen, “Real-time optoacoustic monitoring of vascular damage during photodynamic therapy treatment of tumor,” J. Biomed. Opt. 12(1), 014001 (2007).
[Crossref]

Yang, D.

L. Xiang, D. Xing, H. Gu, D. Yang, S. Yang, L. Zeng, and W. R. Chen, “Real-time optoacoustic monitoring of vascular damage during photodynamic therapy treatment of tumor,” J. Biomed. Opt. 12(1), 014001 (2007).
[Crossref]

Yang, S.

L. Xiang, D. Xing, H. Gu, D. Yang, S. Yang, L. Zeng, and W. R. Chen, “Real-time optoacoustic monitoring of vascular damage during photodynamic therapy treatment of tumor,” J. Biomed. Opt. 12(1), 014001 (2007).
[Crossref]

Yao, J.

M. Li, Y. Tang, and J. Yao, “Photoacoustic tomography of blood oxygenation: A mini review,” Photoacoustics 10, 65–73 (2018).
[Crossref]

Yin, T.

H.-C. Zhou, N. Chen, H. Zhao, T. Yin, J. Zhang, W. Zheng, L. Song, C. Liu, and R. Zheng, “Optical-resolution photoacoustic microscopy for monitoring vascular normalization during anti-angiogenic therapy,” Photoacoustics 15, 100143 (2019).
[Crossref]

Zeng, L.

L. Xiang, D. Xing, H. Gu, D. Yang, S. Yang, L. Zeng, and W. R. Chen, “Real-time optoacoustic monitoring of vascular damage during photodynamic therapy treatment of tumor,” J. Biomed. Opt. 12(1), 014001 (2007).
[Crossref]

Zhang, C.

C. Zhang, K. I. Maslov, S. Hu, L. V. Wang, R. Chen, Q. Zhou, and K. K. Shung, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt. 17(2), 020501 (2012).
[Crossref]

Zhang, H.

H. Zhao, G. Wang, R. Lin, X. Gong, L. Song, T. Li, W. Wang, K. Zhang, X. Qian, and H. Zhang, “Three-dimensional Hessian matrix-based quantitative vascular imaging of rat iris with optical-resolution photoacoustic microscopy in vivo,” J. Biomed. Opt. 23(04), 1 (2018).
[Crossref]

Zhang, J.

H.-C. Zhou, N. Chen, H. Zhao, T. Yin, J. Zhang, W. Zheng, L. Song, C. Liu, and R. Zheng, “Optical-resolution photoacoustic microscopy for monitoring vascular normalization during anti-angiogenic therapy,” Photoacoustics 15, 100143 (2019).
[Crossref]

Hirschberg Henry, A. Francisco, David Uzal, Michelle Chighvinadze, and J. Zhang, “Disruption of the blood–brain barrier following ALA-mediated photodynamic therapy,” The Official Journal of the American Society for Laser Medicine and Surgery 40(8), 535–542 (2008).
[Crossref]

Zhang, K.

H. Zhao, G. Wang, R. Lin, X. Gong, L. Song, T. Li, W. Wang, K. Zhang, X. Qian, and H. Zhang, “Three-dimensional Hessian matrix-based quantitative vascular imaging of rat iris with optical-resolution photoacoustic microscopy in vivo,” J. Biomed. Opt. 23(04), 1 (2018).
[Crossref]

Zhao, H.

H.-C. Zhou, N. Chen, H. Zhao, T. Yin, J. Zhang, W. Zheng, L. Song, C. Liu, and R. Zheng, “Optical-resolution photoacoustic microscopy for monitoring vascular normalization during anti-angiogenic therapy,” Photoacoustics 15, 100143 (2019).
[Crossref]

H. Zhao, G. Wang, R. Lin, X. Gong, L. Song, T. Li, W. Wang, K. Zhang, X. Qian, and H. Zhang, “Three-dimensional Hessian matrix-based quantitative vascular imaging of rat iris with optical-resolution photoacoustic microscopy in vivo,” J. Biomed. Opt. 23(04), 1 (2018).
[Crossref]

Zhao, T.

T. Zhao, A. E. Desjardins, S. Ourselin, T. Vercauteren, and W. Xia, “Minimally invasive photoacoustic imaging: Current status and future perspectives,” Photoacoustics 16, 100146 (2019).
[Crossref]

Zheng, R.

H.-C. Zhou, N. Chen, H. Zhao, T. Yin, J. Zhang, W. Zheng, L. Song, C. Liu, and R. Zheng, “Optical-resolution photoacoustic microscopy for monitoring vascular normalization during anti-angiogenic therapy,” Photoacoustics 15, 100143 (2019).
[Crossref]

Zheng, W.

H.-C. Zhou, N. Chen, H. Zhao, T. Yin, J. Zhang, W. Zheng, L. Song, C. Liu, and R. Zheng, “Optical-resolution photoacoustic microscopy for monitoring vascular normalization during anti-angiogenic therapy,” Photoacoustics 15, 100143 (2019).
[Crossref]

Zhou, H.-C.

H.-C. Zhou, N. Chen, H. Zhao, T. Yin, J. Zhang, W. Zheng, L. Song, C. Liu, and R. Zheng, “Optical-resolution photoacoustic microscopy for monitoring vascular normalization during anti-angiogenic therapy,” Photoacoustics 15, 100143 (2019).
[Crossref]

Zhou, Q.

C. Zhang, K. I. Maslov, S. Hu, L. V. Wang, R. Chen, Q. Zhou, and K. K. Shung, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt. 17(2), 020501 (2012).
[Crossref]

Zhu, T. C.

T. C. Zhu and J. C. Finlay, “Prostate PDT dosimetry,” Photodiagn. Photodyn. Ther. 3(4), 234–246 (2006).
[Crossref]

Zhuang, G.

D. Sampath, J. Oeh, S. K. Wyatt, T. C. Cao, H. Koeppen, J. Eastham-Anderson, L. Robillard, C. C. Ho, J. Ross, and G. Zhuang, “Multimodal microvascular imaging reveals that selective inhibition of class I PI3 K is sufficient to induce an antivascular response,” Neoplasia (New York, NY) 15(7), 694–IN4 (2013).
[Crossref]

Arch. Dermatol. (1)

W. H. Boehncke, T. Elshorst-Schmidt, and R. Kaufmann, “Systemic photodynamic therapy is a safe and effective treatment of psoriasis,” Arch. Dermatol. 136(2), 271–272 (2000).
[Crossref]

Biomed. Opt. Express (1)

Br. J. Cancer (1)

V. H. Fingar, P. K. Kik, P. S. Haydon, P. B. Cerrito, M. Tseng, E. Abang, and T. J. Wieman, “Analysis of acute vascular damage after photodynamic therapy using benzoporphyrin derivative (BPD),” Br. J. Cancer 79(11-12), 1702–1708 (1999).
[Crossref]

CA: A Cancer Journal for Clinicians (1)

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, and D. Kessel, “Photodynamic therapy of cancer: An update,” CA: A Cancer Journal for Clinicians 61(4), 250–281 (2011).
[Crossref]

Cancer Res. (3)

A. G. Sorensen, K. E. Emblem, P. Polaskova, D. Jennings, H. Kim, M. Ancukiewicz, M. Wang, P. Y. Wen, P. Ivy, and T. T. Batchelor, “Increased survival of glioblastoma patients who respond to antiangiogenic therapy with elevated blood perfusion,” Cancer Res. 72(2), 402–407 (2012).
[Crossref]

S. L. Gibson, K. R. Vandermeid, R. S. Murant, R. F. Raubertas, and R. Hilf, “Effects of various photoradiation regimens on the antitumor efficacy of photodynamic therapy for R3230AC mammary carcinomas,” Cancer Res. 50(22), 7236 (1990).

T. H. Foster, D. F. Hartley, M. G. Nichols, and R. Hilf, “Fluence rate effects in photodynamic therapy of multicell tumor spheroids,” Cancer Res. 53(6), 1249 (1993).

Circulation (1)

S. G. Rockson, D. P. Lorenz, W.-F. Cheong, and K. W. Woodburn, “Photoangioplasty : an emerging clinical cardiovascular role for photodynamic therapy,” Circulation 102(5), 591–596 (2000).
[Crossref]

Gastrointestinal Endoscopy Clinics (1)

H. Barr, “Barrett’s Esophagus: Treatment with 5-Aminolevulinic Acid Photodynamic Therapy,” Gastrointestinal Endoscopy Clinics 10(3), 421–437 (2000).
[Crossref]

J. Biomed. Opt. (3)

C. Zhang, K. I. Maslov, S. Hu, L. V. Wang, R. Chen, Q. Zhou, and K. K. Shung, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt. 17(2), 020501 (2012).
[Crossref]

L. Xiang, D. Xing, H. Gu, D. Yang, S. Yang, L. Zeng, and W. R. Chen, “Real-time optoacoustic monitoring of vascular damage during photodynamic therapy treatment of tumor,” J. Biomed. Opt. 12(1), 014001 (2007).
[Crossref]

H. Zhao, G. Wang, R. Lin, X. Gong, L. Song, T. Li, W. Wang, K. Zhang, X. Qian, and H. Zhang, “Three-dimensional Hessian matrix-based quantitative vascular imaging of rat iris with optical-resolution photoacoustic microscopy in vivo,” J. Biomed. Opt. 23(04), 1 (2018).
[Crossref]

J. Biophotonics (1)

S. J. Madsen, H. Hirschberg, S. J. Madsen, and H. Hirschberg, “Site-specific opening of the blood-brain barrier,” J. Biophotonics 3(5-6), 356–367 (2010).
[Crossref]

J. Neurosurg. (1)

E. Angell-Petersen, S. Spetalen, S. J. Madsen, C.-H. Sun, Q. Peng, S. W. Carper, M. Sioud, and H. Hirschberg, “Influence of light fluence rate on the effects of photodynamic therapy in an orthotopic rat glioma model,” J. Neurosurg. 104(1), 109–117 (2006).
[Crossref]

J. Photochem. Photobiol., B (1)

González Salvador, Vibhagool Chitralada, Sherwood Margaret, and Thomas, “The phototoxicity of photodynamic therapy may be suppressed or enhanced by modulation of the cutaneous vasculature,” J. Photochem. Photobiol., B 57(2-3), 142–148 (2000).
[Crossref]

Journal of clinical laser medicine & surgery (1)

V. H. Fingar, “Vascular effects of photodynamic therapy,” Journal of clinical laser medicine & surgery 14(5), 323–328 (1996).
[Crossref]

Lasers in Surgery & Medicine (1)

M. Korbelik, “PDT-associated host response and its role in the therapy outcome,” Lasers in Surgery & Medicine 38(5), 500–508 (2006).
[Crossref]

Lasers Med. Sci. (1)

B. C. Wilson, M. S. Patterson, and L. Lilge, “Implicit and explicit dosimetry in photodynamic therapy: a New paradigm,” Lasers Med. Sci. 12(3), 182–199 (1997).
[Crossref]

Lasers Surg. Med. (1)

B. W. Henderson, T. M. Busch, and J. W. Snyder, “Fluence rate as a modulator of PDT mechanisms,” Lasers Surg. Med. 38(5), 489–493 (2006).
[Crossref]

Nat. Med. (2)

K. E. Emblem, K. Mouridsen, A. Bjornerud, C. T. Farrar, D. Jennings, R. J. Borra, P. Y. Wen, P. Ivy, T. T. Batchelor, and B. R. Rosen, “Vessel architectural imaging identifies cancer patient responders to anti-angiogenic therapy,” Nat. Med. 19(9), 1178–1183 (2013).
[Crossref]

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, and R. K. Jain, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref]

Nat. Rev. Cancer (1)

A. P. Castano, P. Mroz, and M. R. Hamblin, “Photodynamic therapy and anti-tumour immunity,” Nat. Rev. Cancer 6(7), 535–545 (2006).
[Crossref]

Neoplasia (New York, NY) (1)

D. Sampath, J. Oeh, S. K. Wyatt, T. C. Cao, H. Koeppen, J. Eastham-Anderson, L. Robillard, C. C. Ho, J. Ross, and G. Zhuang, “Multimodal microvascular imaging reveals that selective inhibition of class I PI3 K is sufficient to induce an antivascular response,” Neoplasia (New York, NY) 15(7), 694–IN4 (2013).
[Crossref]

Photoacoustics (4)

A. B. E. Attia, G. Balasundaram, M. Moothanchery, U. Dinish, R. Bi, V. Ntziachristos, and M. Olivo, “A review of clinical photoacoustic imaging: Current and future trends,” Photoacoustics 16, 100144 (2019).
[Crossref]

T. Zhao, A. E. Desjardins, S. Ourselin, T. Vercauteren, and W. Xia, “Minimally invasive photoacoustic imaging: Current status and future perspectives,” Photoacoustics 16, 100146 (2019).
[Crossref]

M. Li, Y. Tang, and J. Yao, “Photoacoustic tomography of blood oxygenation: A mini review,” Photoacoustics 10, 65–73 (2018).
[Crossref]

H.-C. Zhou, N. Chen, H. Zhao, T. Yin, J. Zhang, W. Zheng, L. Song, C. Liu, and R. Zheng, “Optical-resolution photoacoustic microscopy for monitoring vascular normalization during anti-angiogenic therapy,” Photoacoustics 15, 100143 (2019).
[Crossref]

Photochem. Photobiol. (1)

K. B. Trauner and T. Hasan, “Photodynamic treatment of rheumatoid and inflammatory arthritis,” Photochem. Photobiol. 64(5), 740–750 (1996).
[Crossref]

Photochem. Photobiol. Sci. (1)

M. Firczuk, D. Nowis, and J. Gołąb, “PDT-induced inflammatory and host responses,” Photochem. Photobiol. Sci. 10(5), 653–663 (2011).
[Crossref]

Photodiagn. Photodyn. Ther. (2)

B. Kruijt, E. M. van der Snoek, H. J. C. M. Sterenborg, A. Amelink, and D. J. Robinson, “A dedicated applicator for light delivery and monitoring of PDT of intra-anal intraepithelial neoplasia,” Photodiagn. Photodyn. Ther. 7(1), 3–9 (2010).
[Crossref]

T. C. Zhu and J. C. Finlay, “Prostate PDT dosimetry,” Photodiagn. Photodyn. Ther. 3(4), 234–246 (2006).
[Crossref]

Phys. Med. Biol. (1)

M. G. Nichols and T. H. Foster, “Oxygen diffusion and reaction kinetics in the photodynamic therapy of multicell tumour spheroids,” Phys. Med. Biol. 39(12), 2161–2181 (1994).
[Crossref]

Radiat Research (1)

T. H. Foster, R. S. Murant, R. G. Bryant, R. S. Knox, S. L. Gibson, and R. Hilf, “Oxygen consumption and diffusion effects in photodynamic therapy,” Radiat Research 126(3), 296–303 (1991).
[Crossref]

Radiat. Res. (1)

J. P. Henning, R. L. Fournier, and J. A. Hampton, “A transient mathematical model of oxygen depletion during photodynamic therapy,” Radiat. Res. 142(2), 221–226 (1995).
[Crossref]

Sci. Rep. (1)

X. L. Deán-Ben, H. López-Schier, and D. Razansky, “Optoacoustic micro-tomography at 100 volumes per second,” Sci. Rep. 7(1), 6850 (2017).
[Crossref]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref]

The Official Journal of the American Society for Laser Medicine and Surgery (2)

B. W. Henderson, T. M. Busch, and J. W. Snyder, “Fluence rate as a modulator of PDT mechanisms,” The Official Journal of the American Society for Laser Medicine and Surgery 38(5), 489–493 (2006).
[Crossref]

Hirschberg Henry, A. Francisco, David Uzal, Michelle Chighvinadze, and J. Zhang, “Disruption of the blood–brain barrier following ALA-mediated photodynamic therapy,” The Official Journal of the American Society for Laser Medicine and Surgery 40(8), 535–542 (2008).
[Crossref]

Other (4)

K. Maslov, G. Ku, and L. V. Wang, “Photoacoustic microscopy with submicron resolution,” in Photons Plus Ultrasound: Imaging and Sensing 2010. 2010. International Society for Optics and Photonics.

Hindelang Aguirre, Berezhnoi Andrei, Darsow, and Lauffer, “Assessing nailfold microvascular structure with ultra-wideband raster-scan optoacoustic mesoscopy,” Photoacoustics, 2018.

S. Prahl, Tabulated molar extinction coefficient for hemoglobin in water, compiled by Scott Prahl (prahl@ ece.ogi.edu) using data from WB Gratzer, Med. Res. Council Labs, Holly Hill, London, UK, and N. Kollias, Wellman Laboratories, Harvard Medical School, Boston, 1999.

J. C. Finlay and A. Darafsheh, “Light Sources, Drugs, and Dosimetry,” Biomedical Optics in Otorhinolaryngology: Head and Neck Surgery 311–336 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Measured absorbance and fluorescence spectrum of BPD in comparison with the spectrum of HbO2 and Hb obtained from [28]. BPD: benzoporphyrin derivative monoacid ring-A; HbO2: oxygenated hemoglobin; Hb: deoxygenated hemoglobin.
Fig. 2.
Fig. 2. The fluorescence imaging of PS biodistribution. (a) Images of BPD distribution in mice at different time points. The white circle shows the region of interest (ROI) in the mouse ear used for fluorescence intensity quantification. (b) Fluorescence intensity of BPD at ear region as a function of time.
Fig. 3.
Fig. 3. An overview of the experimental setup. (a) The schematic diagram of the custom-built OR-PAM System. NDF, neutral density filter; FC, fiber coupler; SMF, single-mode fiber; OBJ, objective; DL, doublet lense; UST, ultrasonic transducer; DAQ, acquisition card; PC, personal computer. (b) Detailed view of the optical-acoustic beam combiner. (c) Lateral resolution measurement on a metallic blade edge. (d) A photograph of PDT treatment on a mice ear.
Fig. 4.
Fig. 4. PDT-induced vascular damage in response to fluence rate (5 days tracking) for different groups, characterized by OR-PAM and photograph at different days (Each group shows one representative mouse).
Fig. 5.
Fig. 5. Quantitative analysis of PDT efficacy and residual vessel as a function of fluence rate (based on the strongest injuries on day 2 post-PDT). Blue line: the efficacy of PDT. Histogram: the residual vessel in diameter, quantified by Rpost/Rpre. Error bars: standard deviation (3 mice in each group). ${\star}$, p<0.05. The right table shows the specific p-values between groups, indicating the statistical difference. The PDT efficacy (ΔR/Rpre) and residual vessel (Rpost/Rpre) have the same p-value results.
Fig. 6.
Fig. 6. Long term (15 days) tracking of PDT-induced vasculature damage for different fluence rate groups, characterized by OR-PAM and photograph at different days.
Fig. 7.
Fig. 7. Quantitative analysis of PDT responses after 15 days of treatment (a) Permanent vascular change and PDT efficacy as a function of fluence rate (vascular destruction at day 15 post PDT was considered permanent). Blue line: the efficacy of PDT. Histogram: the residual vessel in diameter, quantified by Rpost/Rpre. Error bars: standard deviation (from 3 sets of random sampling statistics, each sampling contains 10 random positions in treated ear region). ${\star}$, p<0.05; ${\star}$${\star}$, p<0.01; NS, not significant. The table below shows the specific p-values between groups, indicating the statistical difference. The PDT efficacy (ΔR/Rpre) and the residual vessel (Rpost/Rpre) have the same p-value results. (b) Self-healing magnitude as a function of PDT fluence rate based on the results of day 15 Post-PDT. Total light dose (fluence rate times treatment time) was maintained at a constant (113 J/cm2), as shown by the table below. Error bars: standard deviation.
Fig. 8.
Fig. 8. The ear region for PDT irradiation characterized by photograph for all mice used in this study. The photographs of Pre condition, treatment region and day 1 post-PDT are shown for each mouse to verify the treatment area, where the round black circle in Pre-condition indicates the region for PDT irradiation, and matches the tape hole area (region for PDT).(a) PDT group 1 (fluence rate of 47 mW/cm2) (b) PDT group 2 (fluence rate of 126 mW/cm2); (c) PDT group 3 (fluence rate of 314 mW/cm2); (d) PDT group 4 (fluence rate of 876 mW/cm2). Each PDT group has three mice for statistical analysis, corresponding to three observing periods, including 2 days, 5 days and 15 days post PDT. (e) Control group 1 (mice treated with only light); (f) Control group 2 (mice treated with only PS).
Fig. 9.
Fig. 9. The photographs of mice ear vasculature before and immediately after PDT treatment. The mouse was treated with fluence rate of 47 mW/cm2, and no obvious destruction were noted immediately after PDT treatment.
Fig. 10.
Fig. 10. Vasculature tracking of two control groups, characterized by OR-PAM and photograph at different days. The vasculature conditions were monitored at Pre-PDT, and post condition at day 1 and day 2 when usually the strongest injuries occur. Control group 1 was treated with PDT light (690 nm) without PS. Control group 2 was treated with PS without 690 nm irradiation. Photoacoustic imaging light (532 nm) was applied to mice in both control groups and PDT treatment groups, thus control group 1 is to evaluate the vascular injuries from light alone (PDT light 690 nm and photoacoustic light 532 nm), and control group 2 is to assess the PDT effect caused by the photoacoustic light at 532 nm.
Fig. 11.
Fig. 11. PDT-induced vascular damage in response to fluence rate (2 days tracking) for different groups, characterized by OR-PAM and photograph at different days (Each group shows one representative mouse).

Tables (2)

Tables Icon

Table 1. Experimental arrangement of different groups and corresponding observing periods.

Tables Icon

Table 2. The parameters of the two lasers used in this study, YAG (GKNQL-532-4-20) for photoacoustic imaging, and laser diode (Model MRL-III) for PDT treatment, corresponding to the experimental setups in Figs. 3(a) and 3(d), respectively.