Abstract

We present Optical Incoherence Tomography (OIT): a completely digital method to generate tomographic retinal cross-sections from en-face through-focus image stacks acquired by non-interferometric imaging systems, such as en-face adaptive optics (AO)-ophthalmoscopes. We demonstrate that OIT can be applied to different imaging modalities using back-scattered light, including systems without inherent optical sectioning and, for the first time, multiply-scattered light, revealing a distinctive cross-sectional view of the retina. The axial dimension of OIT cross-sections is given in terms of focus position rather than optical path, as in OCT. We explore this property to guide focus position in cases where the user is “blind” focusing, allowing precise plane selection for en-face imaging of retinal pigment epithelium, the vascular plexuses and translucent retinal neurons, such as photoreceptor inner segments and retinal ganglion cells, using respectively autofluorescence, motion contrast and split detection techniques.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Gofas-Salas, P. Mecê, C. Petit, J. Jarosz, L. M. Mugnier, A. M. Bonnefois, K. Grieve, J. Sahel, M. Paques, and S. Meimon, “High loop rate adaptive optics flood illumination ophthalmoscope with structured illumination capability,” Appl. Opt. 57(20), 5635–5642 (2018).
    [Crossref]
  2. A. Roorda and J. L. Duncan, “Adaptive optics ophthalmoscopy,” Annu. Rev. Vis. Sci. 1(1), 19–50 (2015).
    [Crossref]
  3. J. Jarosz, P. Mecê, J.-M. Conan, C. Petit, M. Paques, and S. Meimon, “High temporal resolution aberrometry in a 50-eye population and implications for adaptive optics error budget,” Biomed. Opt. Express 8(4), 2088–2105 (2017).
    [Crossref]
  4. P. Mecê, E. Gofas-Salas, C. Petit, F. Cassaing, J. Sahel, M. Paques, K. Grieve, and S. Meimon, “Higher adaptive optics loop rate enhances axial resolution in nonconfocal ophthalmoscopes,” Opt. Lett. 44(9), 2208–2211 (2019).
    [Crossref]
  5. S. A. Burns, A. E. Elsner, K. A. Sapoznik, R. L. Warner, and T. J. Gast, “Adaptive optics imaging of the human retina,” Prog. Retinal Eye Res. 68, 1–30 (2019).
    [Crossref]
  6. D. Scoles, Y. N. Sulai, C. S. Langlo, G. A. Fishman, C. A. Curcio, J. Carroll, and A. Dubra, “In vivo imaging of human cone photoreceptor inner segments,” Invest. Ophthalmol. Visual Sci. 55(7), 4244–4251 (2014).
    [Crossref]
  7. E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. 114(3), 586–591 (2017).
    [Crossref]
  8. T. Y. Chui, D. A. Van Nasdale, and S. A. Burns, “The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 3(10), 2537–2549 (2012).
    [Crossref]
  9. K. Grieve, E. Gofas-Salas, R. D. Ferguson, J. A. Sahel, M. Paques, and E. A. Rossi, “In vivo near-infrared autofluorescence imaging of retinal pigment epithelial cells with 757 nm excitation,” Biomed. Opt. Express 9(12), 5946–5961 (2018).
    [Crossref]
  10. E. Gofas-Salas, P. Mecê, L. Mugnier, A. M. Bonnefois, C. Petit, K. Grieve, J. Sahel, M. Paques, and S. Meimon, “Near infrared adaptive optics flood illumination retinal angiography,” Biomed. Opt. Express 10(6), 2730–2743 (2019).
    [Crossref]
  11. M. Miura and A. E. Elsner, “Three dimensional imaging in age-related macular degeneration,” Opt. Express 9(9), 436–443 (2001).
    [Crossref]
  12. A. Elsner, M. Miura, S. Burns, E. Beausencourt, C. Kunze, L. Kelley, J. Walker, G. Wing, P. Raskauskas, D. Fletcher, Q. Zhou, and A. Dreher, “Multiply scattered light tomography and confocal imaging: detecting neovascularization in age-related macular degeneration,” Opt. Express 7(2), 95–106 (2000).
    [Crossref]
  13. Y. Zhang, L. Liu, W. Gong, H. Yu, W. Wang, C. Zhao, P. Wang, and T. Ueda, “Autofocus system and evaluation methodologies: a literature review,” Sens. Mater. 30, 1165–1174 (2018).
    [Crossref]
  14. D. Alonso-Caneiro, D. M. Sampson, A. L. Chew, M. J. Collins, and F. K. Chen, “Use of focus measure operators for characterization of flood illumination adaptive optics ophthalmoscopy image quality,” Biomed. Opt. Express 9(2), 679–693 (2018).
    [Crossref]
  15. A. Lazareva, P. Liatsis, and F. G. Rauscher, “Hessian-log filtering for enhancement and detection of photoreceptor cells in adaptive optics retinal images,” J. Opt. Soc. Am. A 33(1), 84–94 (2016).
    [Crossref]
  16. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref]
  17. D. Lim, K. K. Chu, and J. Mertz, “Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy,” Opt. Lett. 33(16), 1819–1821 (2008).
    [Crossref]
  18. P. Mecê, “Optical Incoherence Tomography (OIT) software,” (2020). https://doi.org/10.5281/zenodo.3888203 .
  19. A. Roorda, F. Romero-Borja, W. J. Donnelly III, H. Queener, T. J. Hebert, and M. C. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
    [Crossref]
  20. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).
  21. P. Mecê, E. Gofas Salas, C. Petit, K. Grieve, C. Chabrier, M. Paques, and S. Meimon, “Visualizing and enhancing axial resolution in nonconfocal adaptive optics ophthalmoscopy,” Proc. SPIE 10858, 108580P (2019).
    [Crossref]
  22. P. Mecê, J. Jarosz, J.-M. Conan, C. Petit, K. Grieve, M. Paques, and S. Meimon, “Fixational eye movement: a negligible source of dynamic aberration,” Biomed. Opt. Express 9(2), 717–727 (2018).
    [Crossref]
  23. M. Mujat, A. Patel, N. Iftimia, J. D. Akula, A. B. Fulton, and R. D. Ferguson, “High-resolution retinal imaging: enhancement techniques,” in Ophthalmic Technologies XXV, vol. 9307 (International Society for Optics and Photonics, 2015), p. 930703.
  24. J. Campbell, M. Zhang, T. Hwang, S. Bailey, D. Wilson, Y. Jia, and D. Huang, “Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography,” Sci. Rep. 7(1), 42201 (2017).
    [Crossref]
  25. S. Fouquet, O. Vacca, F. Sennlaub, and M. Paques, “The 3D retinal capillary circulation in pigs reveals a predominant serial organization,” Invest. Ophthalmol. Visual Sci. 58(13), 5754–5763 (2017).
    [Crossref]
  26. R. F. Cooper, M. A. Wilk, S. Tarima, and J. Carroll, “Evaluating descriptive metrics of the human cone mosaic,” Invest. Ophthalmol. Visual Sci. 57(7), 2992–3001 (2016).
    [Crossref]
  27. Z. Liu, O. P. Kocaoglu, and D. T. Miller, “3D imaging of retinal pigment epithelial cells in the living human retina,” Invest. Ophthalmol. Visual Sci. 57(9), OCT533 (2016).
    [Crossref]
  28. C. Lavia, P. Mecê, M. Nassisi, S. Bonnin, J. Marie-Louise, A. Couturier, A. Erginay, R. Tadayoni, and A. Gaudric, “Retinal capillary plexus pattern and density from fovea to periphery measured in healthy eyes with swept-source optical coherence tomography angiography,” Sci. Rep. 10(1), 1474 (2020).
    [Crossref]
  29. T. Hirano, K. Chanwimol, J. Weichsel, T. Tepelus, and S. Sadda, “Distinct retinal capillary plexuses in normal eyes as observed in optical coherence tomography angiography axial profile analysis,” Sci. Rep. 8(1), 9380 (2018).
    [Crossref]
  30. Z. Liu, K. Kurokawa, F. Zhang, J. J. Lee, and D. T. Miller, “Imaging and quantifying ganglion cells and other transparent neurons in the living human retina,” Proc. Natl. Acad. Sci. 114(48), 12803–12808 (2017).
    [Crossref]
  31. C. A. Curcio and K. A. Allen, “Topography of ganglion cells in human retina,” J. Comp. Neurol. 300(1), 5–25 (1990).
    [Crossref]
  32. I. Jalbert, F. Stapleton, E. Papas, D. Sweeney, and M. Coroneo, “In vivo confocal microscopy of the human cornea,” Br. J. Ophthalmol. 87(2), 225–236 (2003).
    [Crossref]
  33. M. Rajadhyaksha, A. Marghoob, A. Rossi, A. C. Halpern, and K. S. Nehal, “Reflectance confocal microscopy of skin in vivo: From bench to bedside,” Lasers Surg. Med. 49(1), 7–19 (2017).
    [Crossref]
  34. D. Gratadour, L. Mugnier, and D. Rouan, “Sub-pixel image registration with a maximum likelihood estimator-application to the first adaptive optics observations of arp 220 in the l band,” Astron. Astrophys. 443(1), 357–365 (2005).
  35. P. Mecê, J. Scholler, K. Groux, and C. Boccara, “High-resolution in-vivo human retinal imaging using full-field oct with optical stabilization of axial motion,” Biomed. Opt. Express 11(1), 492–504 (2020).
    [Crossref]
  36. R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, S.-H. Lee, J. S. Werner, and D. T. Miller, “The cellular origins of the outer retinal bands in optical coherence tomography images,” Invest. Ophthalmol. Visual Sci. 55(12), 7904–7918 (2014).
    [Crossref]
  37. P. Mecê, K. Groux, J. Scholler, O. Thouvenin, M. Fink, K. Grieve, and C. Boccara, “Curved-full-field oct for high-resolution imaging of living human retina over a large field-of-view,” arXiv preprint arXiv:2001.06893 (2020).
  38. M. Kernt, R. E. Cheuteu, S. Cserhati, F. Seidensticker, R. G. Liegl, J. Lang, C. Haritoglou, A. Kampik, M. W. Ulbig, and A. S. Neubauer, “Pain and accuracy of focal laser treatment for diabetic macular edema using a retinal navigated laser (navilas),” Clin. Ophthalmol. 6, 289 (2012).
    [Crossref]
  39. B. Liesfeld, K.-U. Amthor, D. Dowell, U. Weber, and W. Teiwes, “Navigating comfortably across the retina,” in World Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009, Munich, Germany (Springer, 2009), pp. 243–246.
  40. M. Paques, E. Philippakis, C. Bonnet, S. Falah, S. Ayello-Scheer, S. Zwillinger, J.-F. Girmens, and B. Dupas, “Indocyanine-green-guided targeted laser photocoagulation of capillary macroaneurysms in macular oedema: a pilot study,” Br. J. Ophthalmol. 101(2), 170–174 (2017).
    [Crossref]
  41. P. Mecê, C. Petit, E. G. Salas, L. Mugnier, K. Grieve, C. Chabrier, J. A. Sahel, M. Paques, and S. Meimon, “What can adaptive optics do for laser photocoagulation?” Invest. Ophthalmol. Visual Sci. 59, 6194 (2018).
    [Crossref]
  42. P. Mecê, “4D exploration of the retina for adaptive optics-assisted laser photocoagulation,” (2018). https://www.researchgate.net/publication/342123596 .
  43. S. Meimon, E. G. Salas, P. Mecě, K. Grieve, J. A. Sahel, and M. Paques, “Manipulation of the illumination geometry on adaptive optics (AO) flood illumination ophthalmoscope (FIO) for dark field imaging of the retina,” Invest. Ophthalmol. Visual Sci. 59, 4641 (2018).
    [Crossref]
  44. A. Guevara-Torres, D. Williams, and J. Schallek, “Origin of cell contrast in offset aperture adaptive optics ophthalmoscopy,” Opt. Lett. 45(4), 840–843 (2020).
    [Crossref]
  45. K. A. Sapoznik, T. Luo, A. De Castro, L. Sawides, R. L. Warner, and S. A. Burns, “Enhanced retinal vasculature imaging with a rapidly configurable aperture,” Biomed. Opt. Express 9(3), 1323–1333 (2018).
    [Crossref]

2020 (3)

C. Lavia, P. Mecê, M. Nassisi, S. Bonnin, J. Marie-Louise, A. Couturier, A. Erginay, R. Tadayoni, and A. Gaudric, “Retinal capillary plexus pattern and density from fovea to periphery measured in healthy eyes with swept-source optical coherence tomography angiography,” Sci. Rep. 10(1), 1474 (2020).
[Crossref]

P. Mecê, J. Scholler, K. Groux, and C. Boccara, “High-resolution in-vivo human retinal imaging using full-field oct with optical stabilization of axial motion,” Biomed. Opt. Express 11(1), 492–504 (2020).
[Crossref]

A. Guevara-Torres, D. Williams, and J. Schallek, “Origin of cell contrast in offset aperture adaptive optics ophthalmoscopy,” Opt. Lett. 45(4), 840–843 (2020).
[Crossref]

2019 (4)

P. Mecê, E. Gofas Salas, C. Petit, K. Grieve, C. Chabrier, M. Paques, and S. Meimon, “Visualizing and enhancing axial resolution in nonconfocal adaptive optics ophthalmoscopy,” Proc. SPIE 10858, 108580P (2019).
[Crossref]

P. Mecê, E. Gofas-Salas, C. Petit, F. Cassaing, J. Sahel, M. Paques, K. Grieve, and S. Meimon, “Higher adaptive optics loop rate enhances axial resolution in nonconfocal ophthalmoscopes,” Opt. Lett. 44(9), 2208–2211 (2019).
[Crossref]

S. A. Burns, A. E. Elsner, K. A. Sapoznik, R. L. Warner, and T. J. Gast, “Adaptive optics imaging of the human retina,” Prog. Retinal Eye Res. 68, 1–30 (2019).
[Crossref]

E. Gofas-Salas, P. Mecê, L. Mugnier, A. M. Bonnefois, C. Petit, K. Grieve, J. Sahel, M. Paques, and S. Meimon, “Near infrared adaptive optics flood illumination retinal angiography,” Biomed. Opt. Express 10(6), 2730–2743 (2019).
[Crossref]

2018 (9)

Y. Zhang, L. Liu, W. Gong, H. Yu, W. Wang, C. Zhao, P. Wang, and T. Ueda, “Autofocus system and evaluation methodologies: a literature review,” Sens. Mater. 30, 1165–1174 (2018).
[Crossref]

D. Alonso-Caneiro, D. M. Sampson, A. L. Chew, M. J. Collins, and F. K. Chen, “Use of focus measure operators for characterization of flood illumination adaptive optics ophthalmoscopy image quality,” Biomed. Opt. Express 9(2), 679–693 (2018).
[Crossref]

E. Gofas-Salas, P. Mecê, C. Petit, J. Jarosz, L. M. Mugnier, A. M. Bonnefois, K. Grieve, J. Sahel, M. Paques, and S. Meimon, “High loop rate adaptive optics flood illumination ophthalmoscope with structured illumination capability,” Appl. Opt. 57(20), 5635–5642 (2018).
[Crossref]

K. Grieve, E. Gofas-Salas, R. D. Ferguson, J. A. Sahel, M. Paques, and E. A. Rossi, “In vivo near-infrared autofluorescence imaging of retinal pigment epithelial cells with 757 nm excitation,” Biomed. Opt. Express 9(12), 5946–5961 (2018).
[Crossref]

P. Mecê, J. Jarosz, J.-M. Conan, C. Petit, K. Grieve, M. Paques, and S. Meimon, “Fixational eye movement: a negligible source of dynamic aberration,” Biomed. Opt. Express 9(2), 717–727 (2018).
[Crossref]

T. Hirano, K. Chanwimol, J. Weichsel, T. Tepelus, and S. Sadda, “Distinct retinal capillary plexuses in normal eyes as observed in optical coherence tomography angiography axial profile analysis,” Sci. Rep. 8(1), 9380 (2018).
[Crossref]

P. Mecê, C. Petit, E. G. Salas, L. Mugnier, K. Grieve, C. Chabrier, J. A. Sahel, M. Paques, and S. Meimon, “What can adaptive optics do for laser photocoagulation?” Invest. Ophthalmol. Visual Sci. 59, 6194 (2018).
[Crossref]

S. Meimon, E. G. Salas, P. Mecě, K. Grieve, J. A. Sahel, and M. Paques, “Manipulation of the illumination geometry on adaptive optics (AO) flood illumination ophthalmoscope (FIO) for dark field imaging of the retina,” Invest. Ophthalmol. Visual Sci. 59, 4641 (2018).
[Crossref]

K. A. Sapoznik, T. Luo, A. De Castro, L. Sawides, R. L. Warner, and S. A. Burns, “Enhanced retinal vasculature imaging with a rapidly configurable aperture,” Biomed. Opt. Express 9(3), 1323–1333 (2018).
[Crossref]

2017 (7)

M. Paques, E. Philippakis, C. Bonnet, S. Falah, S. Ayello-Scheer, S. Zwillinger, J.-F. Girmens, and B. Dupas, “Indocyanine-green-guided targeted laser photocoagulation of capillary macroaneurysms in macular oedema: a pilot study,” Br. J. Ophthalmol. 101(2), 170–174 (2017).
[Crossref]

M. Rajadhyaksha, A. Marghoob, A. Rossi, A. C. Halpern, and K. S. Nehal, “Reflectance confocal microscopy of skin in vivo: From bench to bedside,” Lasers Surg. Med. 49(1), 7–19 (2017).
[Crossref]

Z. Liu, K. Kurokawa, F. Zhang, J. J. Lee, and D. T. Miller, “Imaging and quantifying ganglion cells and other transparent neurons in the living human retina,” Proc. Natl. Acad. Sci. 114(48), 12803–12808 (2017).
[Crossref]

J. Campbell, M. Zhang, T. Hwang, S. Bailey, D. Wilson, Y. Jia, and D. Huang, “Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref]

S. Fouquet, O. Vacca, F. Sennlaub, and M. Paques, “The 3D retinal capillary circulation in pigs reveals a predominant serial organization,” Invest. Ophthalmol. Visual Sci. 58(13), 5754–5763 (2017).
[Crossref]

J. Jarosz, P. Mecê, J.-M. Conan, C. Petit, M. Paques, and S. Meimon, “High temporal resolution aberrometry in a 50-eye population and implications for adaptive optics error budget,” Biomed. Opt. Express 8(4), 2088–2105 (2017).
[Crossref]

E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. 114(3), 586–591 (2017).
[Crossref]

2016 (3)

A. Lazareva, P. Liatsis, and F. G. Rauscher, “Hessian-log filtering for enhancement and detection of photoreceptor cells in adaptive optics retinal images,” J. Opt. Soc. Am. A 33(1), 84–94 (2016).
[Crossref]

R. F. Cooper, M. A. Wilk, S. Tarima, and J. Carroll, “Evaluating descriptive metrics of the human cone mosaic,” Invest. Ophthalmol. Visual Sci. 57(7), 2992–3001 (2016).
[Crossref]

Z. Liu, O. P. Kocaoglu, and D. T. Miller, “3D imaging of retinal pigment epithelial cells in the living human retina,” Invest. Ophthalmol. Visual Sci. 57(9), OCT533 (2016).
[Crossref]

2015 (1)

A. Roorda and J. L. Duncan, “Adaptive optics ophthalmoscopy,” Annu. Rev. Vis. Sci. 1(1), 19–50 (2015).
[Crossref]

2014 (2)

D. Scoles, Y. N. Sulai, C. S. Langlo, G. A. Fishman, C. A. Curcio, J. Carroll, and A. Dubra, “In vivo imaging of human cone photoreceptor inner segments,” Invest. Ophthalmol. Visual Sci. 55(7), 4244–4251 (2014).
[Crossref]

R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, S.-H. Lee, J. S. Werner, and D. T. Miller, “The cellular origins of the outer retinal bands in optical coherence tomography images,” Invest. Ophthalmol. Visual Sci. 55(12), 7904–7918 (2014).
[Crossref]

2012 (2)

M. Kernt, R. E. Cheuteu, S. Cserhati, F. Seidensticker, R. G. Liegl, J. Lang, C. Haritoglou, A. Kampik, M. W. Ulbig, and A. S. Neubauer, “Pain and accuracy of focal laser treatment for diabetic macular edema using a retinal navigated laser (navilas),” Clin. Ophthalmol. 6, 289 (2012).
[Crossref]

T. Y. Chui, D. A. Van Nasdale, and S. A. Burns, “The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 3(10), 2537–2549 (2012).
[Crossref]

2008 (1)

2005 (1)

D. Gratadour, L. Mugnier, and D. Rouan, “Sub-pixel image registration with a maximum likelihood estimator-application to the first adaptive optics observations of arp 220 in the l band,” Astron. Astrophys. 443(1), 357–365 (2005).

2003 (1)

I. Jalbert, F. Stapleton, E. Papas, D. Sweeney, and M. Coroneo, “In vivo confocal microscopy of the human cornea,” Br. J. Ophthalmol. 87(2), 225–236 (2003).
[Crossref]

2002 (1)

2001 (1)

2000 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

1990 (1)

C. A. Curcio and K. A. Allen, “Topography of ganglion cells in human retina,” J. Comp. Neurol. 300(1), 5–25 (1990).
[Crossref]

Akula, J. D.

M. Mujat, A. Patel, N. Iftimia, J. D. Akula, A. B. Fulton, and R. D. Ferguson, “High-resolution retinal imaging: enhancement techniques,” in Ophthalmic Technologies XXV, vol. 9307 (International Society for Optics and Photonics, 2015), p. 930703.

Allen, K. A.

C. A. Curcio and K. A. Allen, “Topography of ganglion cells in human retina,” J. Comp. Neurol. 300(1), 5–25 (1990).
[Crossref]

Alonso-Caneiro, D.

Amthor, K.-U.

B. Liesfeld, K.-U. Amthor, D. Dowell, U. Weber, and W. Teiwes, “Navigating comfortably across the retina,” in World Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009, Munich, Germany (Springer, 2009), pp. 243–246.

Ayello-Scheer, S.

M. Paques, E. Philippakis, C. Bonnet, S. Falah, S. Ayello-Scheer, S. Zwillinger, J.-F. Girmens, and B. Dupas, “Indocyanine-green-guided targeted laser photocoagulation of capillary macroaneurysms in macular oedema: a pilot study,” Br. J. Ophthalmol. 101(2), 170–174 (2017).
[Crossref]

Bailey, S.

J. Campbell, M. Zhang, T. Hwang, S. Bailey, D. Wilson, Y. Jia, and D. Huang, “Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref]

Beausencourt, E.

Boccara, C.

P. Mecê, J. Scholler, K. Groux, and C. Boccara, “High-resolution in-vivo human retinal imaging using full-field oct with optical stabilization of axial motion,” Biomed. Opt. Express 11(1), 492–504 (2020).
[Crossref]

P. Mecê, K. Groux, J. Scholler, O. Thouvenin, M. Fink, K. Grieve, and C. Boccara, “Curved-full-field oct for high-resolution imaging of living human retina over a large field-of-view,” arXiv preprint arXiv:2001.06893 (2020).

Bonnefois, A. M.

Bonnet, C.

M. Paques, E. Philippakis, C. Bonnet, S. Falah, S. Ayello-Scheer, S. Zwillinger, J.-F. Girmens, and B. Dupas, “Indocyanine-green-guided targeted laser photocoagulation of capillary macroaneurysms in macular oedema: a pilot study,” Br. J. Ophthalmol. 101(2), 170–174 (2017).
[Crossref]

Bonnin, S.

C. Lavia, P. Mecê, M. Nassisi, S. Bonnin, J. Marie-Louise, A. Couturier, A. Erginay, R. Tadayoni, and A. Gaudric, “Retinal capillary plexus pattern and density from fovea to periphery measured in healthy eyes with swept-source optical coherence tomography angiography,” Sci. Rep. 10(1), 1474 (2020).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).

Burns, S.

Burns, S. A.

Campbell, J.

J. Campbell, M. Zhang, T. Hwang, S. Bailey, D. Wilson, Y. Jia, and D. Huang, “Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref]

Campbell, M. C.

Carroll, J.

R. F. Cooper, M. A. Wilk, S. Tarima, and J. Carroll, “Evaluating descriptive metrics of the human cone mosaic,” Invest. Ophthalmol. Visual Sci. 57(7), 2992–3001 (2016).
[Crossref]

D. Scoles, Y. N. Sulai, C. S. Langlo, G. A. Fishman, C. A. Curcio, J. Carroll, and A. Dubra, “In vivo imaging of human cone photoreceptor inner segments,” Invest. Ophthalmol. Visual Sci. 55(7), 4244–4251 (2014).
[Crossref]

Cassaing, F.

Chabrier, C.

P. Mecê, E. Gofas Salas, C. Petit, K. Grieve, C. Chabrier, M. Paques, and S. Meimon, “Visualizing and enhancing axial resolution in nonconfocal adaptive optics ophthalmoscopy,” Proc. SPIE 10858, 108580P (2019).
[Crossref]

P. Mecê, C. Petit, E. G. Salas, L. Mugnier, K. Grieve, C. Chabrier, J. A. Sahel, M. Paques, and S. Meimon, “What can adaptive optics do for laser photocoagulation?” Invest. Ophthalmol. Visual Sci. 59, 6194 (2018).
[Crossref]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Chanwimol, K.

T. Hirano, K. Chanwimol, J. Weichsel, T. Tepelus, and S. Sadda, “Distinct retinal capillary plexuses in normal eyes as observed in optical coherence tomography angiography axial profile analysis,” Sci. Rep. 8(1), 9380 (2018).
[Crossref]

Chen, F. K.

Cheuteu, R. E.

M. Kernt, R. E. Cheuteu, S. Cserhati, F. Seidensticker, R. G. Liegl, J. Lang, C. Haritoglou, A. Kampik, M. W. Ulbig, and A. S. Neubauer, “Pain and accuracy of focal laser treatment for diabetic macular edema using a retinal navigated laser (navilas),” Clin. Ophthalmol. 6, 289 (2012).
[Crossref]

Chew, A. L.

Chu, K. K.

Chui, T. Y.

Chung, M. M.

E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. 114(3), 586–591 (2017).
[Crossref]

Collins, M. J.

Conan, J.-M.

Cooper, R. F.

R. F. Cooper, M. A. Wilk, S. Tarima, and J. Carroll, “Evaluating descriptive metrics of the human cone mosaic,” Invest. Ophthalmol. Visual Sci. 57(7), 2992–3001 (2016).
[Crossref]

Coroneo, M.

I. Jalbert, F. Stapleton, E. Papas, D. Sweeney, and M. Coroneo, “In vivo confocal microscopy of the human cornea,” Br. J. Ophthalmol. 87(2), 225–236 (2003).
[Crossref]

Couturier, A.

C. Lavia, P. Mecê, M. Nassisi, S. Bonnin, J. Marie-Louise, A. Couturier, A. Erginay, R. Tadayoni, and A. Gaudric, “Retinal capillary plexus pattern and density from fovea to periphery measured in healthy eyes with swept-source optical coherence tomography angiography,” Sci. Rep. 10(1), 1474 (2020).
[Crossref]

Cserhati, S.

M. Kernt, R. E. Cheuteu, S. Cserhati, F. Seidensticker, R. G. Liegl, J. Lang, C. Haritoglou, A. Kampik, M. W. Ulbig, and A. S. Neubauer, “Pain and accuracy of focal laser treatment for diabetic macular edema using a retinal navigated laser (navilas),” Clin. Ophthalmol. 6, 289 (2012).
[Crossref]

Curcio, C. A.

D. Scoles, Y. N. Sulai, C. S. Langlo, G. A. Fishman, C. A. Curcio, J. Carroll, and A. Dubra, “In vivo imaging of human cone photoreceptor inner segments,” Invest. Ophthalmol. Visual Sci. 55(7), 4244–4251 (2014).
[Crossref]

C. A. Curcio and K. A. Allen, “Topography of ganglion cells in human retina,” J. Comp. Neurol. 300(1), 5–25 (1990).
[Crossref]

De Castro, A.

Donnelly III, W. J.

Dowell, D.

B. Liesfeld, K.-U. Amthor, D. Dowell, U. Weber, and W. Teiwes, “Navigating comfortably across the retina,” in World Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009, Munich, Germany (Springer, 2009), pp. 243–246.

Dreher, A.

Dubra, A.

D. Scoles, Y. N. Sulai, C. S. Langlo, G. A. Fishman, C. A. Curcio, J. Carroll, and A. Dubra, “In vivo imaging of human cone photoreceptor inner segments,” Invest. Ophthalmol. Visual Sci. 55(7), 4244–4251 (2014).
[Crossref]

Duncan, J. L.

A. Roorda and J. L. Duncan, “Adaptive optics ophthalmoscopy,” Annu. Rev. Vis. Sci. 1(1), 19–50 (2015).
[Crossref]

Dupas, B.

M. Paques, E. Philippakis, C. Bonnet, S. Falah, S. Ayello-Scheer, S. Zwillinger, J.-F. Girmens, and B. Dupas, “Indocyanine-green-guided targeted laser photocoagulation of capillary macroaneurysms in macular oedema: a pilot study,” Br. J. Ophthalmol. 101(2), 170–174 (2017).
[Crossref]

Elsner, A.

Elsner, A. E.

S. A. Burns, A. E. Elsner, K. A. Sapoznik, R. L. Warner, and T. J. Gast, “Adaptive optics imaging of the human retina,” Prog. Retinal Eye Res. 68, 1–30 (2019).
[Crossref]

M. Miura and A. E. Elsner, “Three dimensional imaging in age-related macular degeneration,” Opt. Express 9(9), 436–443 (2001).
[Crossref]

Erginay, A.

C. Lavia, P. Mecê, M. Nassisi, S. Bonnin, J. Marie-Louise, A. Couturier, A. Erginay, R. Tadayoni, and A. Gaudric, “Retinal capillary plexus pattern and density from fovea to periphery measured in healthy eyes with swept-source optical coherence tomography angiography,” Sci. Rep. 10(1), 1474 (2020).
[Crossref]

Falah, S.

M. Paques, E. Philippakis, C. Bonnet, S. Falah, S. Ayello-Scheer, S. Zwillinger, J.-F. Girmens, and B. Dupas, “Indocyanine-green-guided targeted laser photocoagulation of capillary macroaneurysms in macular oedema: a pilot study,” Br. J. Ophthalmol. 101(2), 170–174 (2017).
[Crossref]

Ferguson, R. D.

K. Grieve, E. Gofas-Salas, R. D. Ferguson, J. A. Sahel, M. Paques, and E. A. Rossi, “In vivo near-infrared autofluorescence imaging of retinal pigment epithelial cells with 757 nm excitation,” Biomed. Opt. Express 9(12), 5946–5961 (2018).
[Crossref]

M. Mujat, A. Patel, N. Iftimia, J. D. Akula, A. B. Fulton, and R. D. Ferguson, “High-resolution retinal imaging: enhancement techniques,” in Ophthalmic Technologies XXV, vol. 9307 (International Society for Optics and Photonics, 2015), p. 930703.

Fink, M.

P. Mecê, K. Groux, J. Scholler, O. Thouvenin, M. Fink, K. Grieve, and C. Boccara, “Curved-full-field oct for high-resolution imaging of living human retina over a large field-of-view,” arXiv preprint arXiv:2001.06893 (2020).

Fischer, W.

E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. 114(3), 586–591 (2017).
[Crossref]

Fishman, G. A.

D. Scoles, Y. N. Sulai, C. S. Langlo, G. A. Fishman, C. A. Curcio, J. Carroll, and A. Dubra, “In vivo imaging of human cone photoreceptor inner segments,” Invest. Ophthalmol. Visual Sci. 55(7), 4244–4251 (2014).
[Crossref]

Fletcher, D.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Fouquet, S.

S. Fouquet, O. Vacca, F. Sennlaub, and M. Paques, “The 3D retinal capillary circulation in pigs reveals a predominant serial organization,” Invest. Ophthalmol. Visual Sci. 58(13), 5754–5763 (2017).
[Crossref]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Fulton, A. B.

M. Mujat, A. Patel, N. Iftimia, J. D. Akula, A. B. Fulton, and R. D. Ferguson, “High-resolution retinal imaging: enhancement techniques,” in Ophthalmic Technologies XXV, vol. 9307 (International Society for Optics and Photonics, 2015), p. 930703.

Gast, T. J.

S. A. Burns, A. E. Elsner, K. A. Sapoznik, R. L. Warner, and T. J. Gast, “Adaptive optics imaging of the human retina,” Prog. Retinal Eye Res. 68, 1–30 (2019).
[Crossref]

Gaudric, A.

C. Lavia, P. Mecê, M. Nassisi, S. Bonnin, J. Marie-Louise, A. Couturier, A. Erginay, R. Tadayoni, and A. Gaudric, “Retinal capillary plexus pattern and density from fovea to periphery measured in healthy eyes with swept-source optical coherence tomography angiography,” Sci. Rep. 10(1), 1474 (2020).
[Crossref]

Girmens, J.-F.

M. Paques, E. Philippakis, C. Bonnet, S. Falah, S. Ayello-Scheer, S. Zwillinger, J.-F. Girmens, and B. Dupas, “Indocyanine-green-guided targeted laser photocoagulation of capillary macroaneurysms in macular oedema: a pilot study,” Br. J. Ophthalmol. 101(2), 170–174 (2017).
[Crossref]

Gofas Salas, E.

P. Mecê, E. Gofas Salas, C. Petit, K. Grieve, C. Chabrier, M. Paques, and S. Meimon, “Visualizing and enhancing axial resolution in nonconfocal adaptive optics ophthalmoscopy,” Proc. SPIE 10858, 108580P (2019).
[Crossref]

Gofas-Salas, E.

Gong, W.

Y. Zhang, L. Liu, W. Gong, H. Yu, W. Wang, C. Zhao, P. Wang, and T. Ueda, “Autofocus system and evaluation methodologies: a literature review,” Sens. Mater. 30, 1165–1174 (2018).
[Crossref]

Granger, C. E.

E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. 114(3), 586–591 (2017).
[Crossref]

Gratadour, D.

D. Gratadour, L. Mugnier, and D. Rouan, “Sub-pixel image registration with a maximum likelihood estimator-application to the first adaptive optics observations of arp 220 in the l band,” Astron. Astrophys. 443(1), 357–365 (2005).

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Grieve, K.

P. Mecê, E. Gofas Salas, C. Petit, K. Grieve, C. Chabrier, M. Paques, and S. Meimon, “Visualizing and enhancing axial resolution in nonconfocal adaptive optics ophthalmoscopy,” Proc. SPIE 10858, 108580P (2019).
[Crossref]

E. Gofas-Salas, P. Mecê, L. Mugnier, A. M. Bonnefois, C. Petit, K. Grieve, J. Sahel, M. Paques, and S. Meimon, “Near infrared adaptive optics flood illumination retinal angiography,” Biomed. Opt. Express 10(6), 2730–2743 (2019).
[Crossref]

P. Mecê, E. Gofas-Salas, C. Petit, F. Cassaing, J. Sahel, M. Paques, K. Grieve, and S. Meimon, “Higher adaptive optics loop rate enhances axial resolution in nonconfocal ophthalmoscopes,” Opt. Lett. 44(9), 2208–2211 (2019).
[Crossref]

E. Gofas-Salas, P. Mecê, C. Petit, J. Jarosz, L. M. Mugnier, A. M. Bonnefois, K. Grieve, J. Sahel, M. Paques, and S. Meimon, “High loop rate adaptive optics flood illumination ophthalmoscope with structured illumination capability,” Appl. Opt. 57(20), 5635–5642 (2018).
[Crossref]

K. Grieve, E. Gofas-Salas, R. D. Ferguson, J. A. Sahel, M. Paques, and E. A. Rossi, “In vivo near-infrared autofluorescence imaging of retinal pigment epithelial cells with 757 nm excitation,” Biomed. Opt. Express 9(12), 5946–5961 (2018).
[Crossref]

P. Mecê, J. Jarosz, J.-M. Conan, C. Petit, K. Grieve, M. Paques, and S. Meimon, “Fixational eye movement: a negligible source of dynamic aberration,” Biomed. Opt. Express 9(2), 717–727 (2018).
[Crossref]

P. Mecê, C. Petit, E. G. Salas, L. Mugnier, K. Grieve, C. Chabrier, J. A. Sahel, M. Paques, and S. Meimon, “What can adaptive optics do for laser photocoagulation?” Invest. Ophthalmol. Visual Sci. 59, 6194 (2018).
[Crossref]

S. Meimon, E. G. Salas, P. Mecě, K. Grieve, J. A. Sahel, and M. Paques, “Manipulation of the illumination geometry on adaptive optics (AO) flood illumination ophthalmoscope (FIO) for dark field imaging of the retina,” Invest. Ophthalmol. Visual Sci. 59, 4641 (2018).
[Crossref]

P. Mecê, K. Groux, J. Scholler, O. Thouvenin, M. Fink, K. Grieve, and C. Boccara, “Curved-full-field oct for high-resolution imaging of living human retina over a large field-of-view,” arXiv preprint arXiv:2001.06893 (2020).

Groux, K.

P. Mecê, J. Scholler, K. Groux, and C. Boccara, “High-resolution in-vivo human retinal imaging using full-field oct with optical stabilization of axial motion,” Biomed. Opt. Express 11(1), 492–504 (2020).
[Crossref]

P. Mecê, K. Groux, J. Scholler, O. Thouvenin, M. Fink, K. Grieve, and C. Boccara, “Curved-full-field oct for high-resolution imaging of living human retina over a large field-of-view,” arXiv preprint arXiv:2001.06893 (2020).

Guevara-Torres, A.

Halpern, A. C.

M. Rajadhyaksha, A. Marghoob, A. Rossi, A. C. Halpern, and K. S. Nehal, “Reflectance confocal microscopy of skin in vivo: From bench to bedside,” Lasers Surg. Med. 49(1), 7–19 (2017).
[Crossref]

Haritoglou, C.

M. Kernt, R. E. Cheuteu, S. Cserhati, F. Seidensticker, R. G. Liegl, J. Lang, C. Haritoglou, A. Kampik, M. W. Ulbig, and A. S. Neubauer, “Pain and accuracy of focal laser treatment for diabetic macular edema using a retinal navigated laser (navilas),” Clin. Ophthalmol. 6, 289 (2012).
[Crossref]

Hebert, T. J.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Hirano, T.

T. Hirano, K. Chanwimol, J. Weichsel, T. Tepelus, and S. Sadda, “Distinct retinal capillary plexuses in normal eyes as observed in optical coherence tomography angiography axial profile analysis,” Sci. Rep. 8(1), 9380 (2018).
[Crossref]

Huang, D.

J. Campbell, M. Zhang, T. Hwang, S. Bailey, D. Wilson, Y. Jia, and D. Huang, “Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Hunter, J. J.

E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. 114(3), 586–591 (2017).
[Crossref]

Hwang, T.

J. Campbell, M. Zhang, T. Hwang, S. Bailey, D. Wilson, Y. Jia, and D. Huang, “Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref]

Iftimia, N.

M. Mujat, A. Patel, N. Iftimia, J. D. Akula, A. B. Fulton, and R. D. Ferguson, “High-resolution retinal imaging: enhancement techniques,” in Ophthalmic Technologies XXV, vol. 9307 (International Society for Optics and Photonics, 2015), p. 930703.

Jalbert, I.

I. Jalbert, F. Stapleton, E. Papas, D. Sweeney, and M. Coroneo, “In vivo confocal microscopy of the human cornea,” Br. J. Ophthalmol. 87(2), 225–236 (2003).
[Crossref]

Jarosz, J.

Jia, Y.

J. Campbell, M. Zhang, T. Hwang, S. Bailey, D. Wilson, Y. Jia, and D. Huang, “Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref]

Jonnal, R. S.

R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, S.-H. Lee, J. S. Werner, and D. T. Miller, “The cellular origins of the outer retinal bands in optical coherence tomography images,” Invest. Ophthalmol. Visual Sci. 55(12), 7904–7918 (2014).
[Crossref]

Kampik, A.

M. Kernt, R. E. Cheuteu, S. Cserhati, F. Seidensticker, R. G. Liegl, J. Lang, C. Haritoglou, A. Kampik, M. W. Ulbig, and A. S. Neubauer, “Pain and accuracy of focal laser treatment for diabetic macular edema using a retinal navigated laser (navilas),” Clin. Ophthalmol. 6, 289 (2012).
[Crossref]

Kawakami, T.

E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. 114(3), 586–591 (2017).
[Crossref]

Kelley, L.

Kernt, M.

M. Kernt, R. E. Cheuteu, S. Cserhati, F. Seidensticker, R. G. Liegl, J. Lang, C. Haritoglou, A. Kampik, M. W. Ulbig, and A. S. Neubauer, “Pain and accuracy of focal laser treatment for diabetic macular edema using a retinal navigated laser (navilas),” Clin. Ophthalmol. 6, 289 (2012).
[Crossref]

Kocaoglu, O. P.

Z. Liu, O. P. Kocaoglu, and D. T. Miller, “3D imaging of retinal pigment epithelial cells in the living human retina,” Invest. Ophthalmol. Visual Sci. 57(9), OCT533 (2016).
[Crossref]

R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, S.-H. Lee, J. S. Werner, and D. T. Miller, “The cellular origins of the outer retinal bands in optical coherence tomography images,” Invest. Ophthalmol. Visual Sci. 55(12), 7904–7918 (2014).
[Crossref]

Kunze, C.

Kurokawa, K.

Z. Liu, K. Kurokawa, F. Zhang, J. J. Lee, and D. T. Miller, “Imaging and quantifying ganglion cells and other transparent neurons in the living human retina,” Proc. Natl. Acad. Sci. 114(48), 12803–12808 (2017).
[Crossref]

Lang, J.

M. Kernt, R. E. Cheuteu, S. Cserhati, F. Seidensticker, R. G. Liegl, J. Lang, C. Haritoglou, A. Kampik, M. W. Ulbig, and A. S. Neubauer, “Pain and accuracy of focal laser treatment for diabetic macular edema using a retinal navigated laser (navilas),” Clin. Ophthalmol. 6, 289 (2012).
[Crossref]

Langlo, C. S.

D. Scoles, Y. N. Sulai, C. S. Langlo, G. A. Fishman, C. A. Curcio, J. Carroll, and A. Dubra, “In vivo imaging of human cone photoreceptor inner segments,” Invest. Ophthalmol. Visual Sci. 55(7), 4244–4251 (2014).
[Crossref]

Latchney, L. R.

E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. 114(3), 586–591 (2017).
[Crossref]

Lavia, C.

C. Lavia, P. Mecê, M. Nassisi, S. Bonnin, J. Marie-Louise, A. Couturier, A. Erginay, R. Tadayoni, and A. Gaudric, “Retinal capillary plexus pattern and density from fovea to periphery measured in healthy eyes with swept-source optical coherence tomography angiography,” Sci. Rep. 10(1), 1474 (2020).
[Crossref]

Lazareva, A.

Lee, J. J.

Z. Liu, K. Kurokawa, F. Zhang, J. J. Lee, and D. T. Miller, “Imaging and quantifying ganglion cells and other transparent neurons in the living human retina,” Proc. Natl. Acad. Sci. 114(48), 12803–12808 (2017).
[Crossref]

Lee, S.-H.

R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, S.-H. Lee, J. S. Werner, and D. T. Miller, “The cellular origins of the outer retinal bands in optical coherence tomography images,” Invest. Ophthalmol. Visual Sci. 55(12), 7904–7918 (2014).
[Crossref]

Liatsis, P.

Liegl, R. G.

M. Kernt, R. E. Cheuteu, S. Cserhati, F. Seidensticker, R. G. Liegl, J. Lang, C. Haritoglou, A. Kampik, M. W. Ulbig, and A. S. Neubauer, “Pain and accuracy of focal laser treatment for diabetic macular edema using a retinal navigated laser (navilas),” Clin. Ophthalmol. 6, 289 (2012).
[Crossref]

Liesfeld, B.

B. Liesfeld, K.-U. Amthor, D. Dowell, U. Weber, and W. Teiwes, “Navigating comfortably across the retina,” in World Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009, Munich, Germany (Springer, 2009), pp. 243–246.

Lim, D.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Liu, L.

Y. Zhang, L. Liu, W. Gong, H. Yu, W. Wang, C. Zhao, P. Wang, and T. Ueda, “Autofocus system and evaluation methodologies: a literature review,” Sens. Mater. 30, 1165–1174 (2018).
[Crossref]

Liu, Z.

Z. Liu, K. Kurokawa, F. Zhang, J. J. Lee, and D. T. Miller, “Imaging and quantifying ganglion cells and other transparent neurons in the living human retina,” Proc. Natl. Acad. Sci. 114(48), 12803–12808 (2017).
[Crossref]

Z. Liu, O. P. Kocaoglu, and D. T. Miller, “3D imaging of retinal pigment epithelial cells in the living human retina,” Invest. Ophthalmol. Visual Sci. 57(9), OCT533 (2016).
[Crossref]

Luo, T.

Marghoob, A.

M. Rajadhyaksha, A. Marghoob, A. Rossi, A. C. Halpern, and K. S. Nehal, “Reflectance confocal microscopy of skin in vivo: From bench to bedside,” Lasers Surg. Med. 49(1), 7–19 (2017).
[Crossref]

Marie-Louise, J.

C. Lavia, P. Mecê, M. Nassisi, S. Bonnin, J. Marie-Louise, A. Couturier, A. Erginay, R. Tadayoni, and A. Gaudric, “Retinal capillary plexus pattern and density from fovea to periphery measured in healthy eyes with swept-source optical coherence tomography angiography,” Sci. Rep. 10(1), 1474 (2020).
[Crossref]

Mece, P.

S. Meimon, E. G. Salas, P. Mecě, K. Grieve, J. A. Sahel, and M. Paques, “Manipulation of the illumination geometry on adaptive optics (AO) flood illumination ophthalmoscope (FIO) for dark field imaging of the retina,” Invest. Ophthalmol. Visual Sci. 59, 4641 (2018).
[Crossref]

Mecê, P.

C. Lavia, P. Mecê, M. Nassisi, S. Bonnin, J. Marie-Louise, A. Couturier, A. Erginay, R. Tadayoni, and A. Gaudric, “Retinal capillary plexus pattern and density from fovea to periphery measured in healthy eyes with swept-source optical coherence tomography angiography,” Sci. Rep. 10(1), 1474 (2020).
[Crossref]

P. Mecê, J. Scholler, K. Groux, and C. Boccara, “High-resolution in-vivo human retinal imaging using full-field oct with optical stabilization of axial motion,” Biomed. Opt. Express 11(1), 492–504 (2020).
[Crossref]

P. Mecê, E. Gofas Salas, C. Petit, K. Grieve, C. Chabrier, M. Paques, and S. Meimon, “Visualizing and enhancing axial resolution in nonconfocal adaptive optics ophthalmoscopy,” Proc. SPIE 10858, 108580P (2019).
[Crossref]

E. Gofas-Salas, P. Mecê, L. Mugnier, A. M. Bonnefois, C. Petit, K. Grieve, J. Sahel, M. Paques, and S. Meimon, “Near infrared adaptive optics flood illumination retinal angiography,” Biomed. Opt. Express 10(6), 2730–2743 (2019).
[Crossref]

P. Mecê, E. Gofas-Salas, C. Petit, F. Cassaing, J. Sahel, M. Paques, K. Grieve, and S. Meimon, “Higher adaptive optics loop rate enhances axial resolution in nonconfocal ophthalmoscopes,” Opt. Lett. 44(9), 2208–2211 (2019).
[Crossref]

E. Gofas-Salas, P. Mecê, C. Petit, J. Jarosz, L. M. Mugnier, A. M. Bonnefois, K. Grieve, J. Sahel, M. Paques, and S. Meimon, “High loop rate adaptive optics flood illumination ophthalmoscope with structured illumination capability,” Appl. Opt. 57(20), 5635–5642 (2018).
[Crossref]

P. Mecê, J. Jarosz, J.-M. Conan, C. Petit, K. Grieve, M. Paques, and S. Meimon, “Fixational eye movement: a negligible source of dynamic aberration,” Biomed. Opt. Express 9(2), 717–727 (2018).
[Crossref]

P. Mecê, C. Petit, E. G. Salas, L. Mugnier, K. Grieve, C. Chabrier, J. A. Sahel, M. Paques, and S. Meimon, “What can adaptive optics do for laser photocoagulation?” Invest. Ophthalmol. Visual Sci. 59, 6194 (2018).
[Crossref]

J. Jarosz, P. Mecê, J.-M. Conan, C. Petit, M. Paques, and S. Meimon, “High temporal resolution aberrometry in a 50-eye population and implications for adaptive optics error budget,” Biomed. Opt. Express 8(4), 2088–2105 (2017).
[Crossref]

P. Mecê, “Optical Incoherence Tomography (OIT) software,” (2020). https://doi.org/10.5281/zenodo.3888203 .

P. Mecê, K. Groux, J. Scholler, O. Thouvenin, M. Fink, K. Grieve, and C. Boccara, “Curved-full-field oct for high-resolution imaging of living human retina over a large field-of-view,” arXiv preprint arXiv:2001.06893 (2020).

P. Mecê, “4D exploration of the retina for adaptive optics-assisted laser photocoagulation,” (2018). https://www.researchgate.net/publication/342123596 .

Meimon, S.

P. Mecê, E. Gofas Salas, C. Petit, K. Grieve, C. Chabrier, M. Paques, and S. Meimon, “Visualizing and enhancing axial resolution in nonconfocal adaptive optics ophthalmoscopy,” Proc. SPIE 10858, 108580P (2019).
[Crossref]

P. Mecê, E. Gofas-Salas, C. Petit, F. Cassaing, J. Sahel, M. Paques, K. Grieve, and S. Meimon, “Higher adaptive optics loop rate enhances axial resolution in nonconfocal ophthalmoscopes,” Opt. Lett. 44(9), 2208–2211 (2019).
[Crossref]

E. Gofas-Salas, P. Mecê, L. Mugnier, A. M. Bonnefois, C. Petit, K. Grieve, J. Sahel, M. Paques, and S. Meimon, “Near infrared adaptive optics flood illumination retinal angiography,” Biomed. Opt. Express 10(6), 2730–2743 (2019).
[Crossref]

E. Gofas-Salas, P. Mecê, C. Petit, J. Jarosz, L. M. Mugnier, A. M. Bonnefois, K. Grieve, J. Sahel, M. Paques, and S. Meimon, “High loop rate adaptive optics flood illumination ophthalmoscope with structured illumination capability,” Appl. Opt. 57(20), 5635–5642 (2018).
[Crossref]

P. Mecê, J. Jarosz, J.-M. Conan, C. Petit, K. Grieve, M. Paques, and S. Meimon, “Fixational eye movement: a negligible source of dynamic aberration,” Biomed. Opt. Express 9(2), 717–727 (2018).
[Crossref]

S. Meimon, E. G. Salas, P. Mecě, K. Grieve, J. A. Sahel, and M. Paques, “Manipulation of the illumination geometry on adaptive optics (AO) flood illumination ophthalmoscope (FIO) for dark field imaging of the retina,” Invest. Ophthalmol. Visual Sci. 59, 4641 (2018).
[Crossref]

P. Mecê, C. Petit, E. G. Salas, L. Mugnier, K. Grieve, C. Chabrier, J. A. Sahel, M. Paques, and S. Meimon, “What can adaptive optics do for laser photocoagulation?” Invest. Ophthalmol. Visual Sci. 59, 6194 (2018).
[Crossref]

J. Jarosz, P. Mecê, J.-M. Conan, C. Petit, M. Paques, and S. Meimon, “High temporal resolution aberrometry in a 50-eye population and implications for adaptive optics error budget,” Biomed. Opt. Express 8(4), 2088–2105 (2017).
[Crossref]

Mertz, J.

Miller, D. T.

Z. Liu, K. Kurokawa, F. Zhang, J. J. Lee, and D. T. Miller, “Imaging and quantifying ganglion cells and other transparent neurons in the living human retina,” Proc. Natl. Acad. Sci. 114(48), 12803–12808 (2017).
[Crossref]

Z. Liu, O. P. Kocaoglu, and D. T. Miller, “3D imaging of retinal pigment epithelial cells in the living human retina,” Invest. Ophthalmol. Visual Sci. 57(9), OCT533 (2016).
[Crossref]

R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, S.-H. Lee, J. S. Werner, and D. T. Miller, “The cellular origins of the outer retinal bands in optical coherence tomography images,” Invest. Ophthalmol. Visual Sci. 55(12), 7904–7918 (2014).
[Crossref]

Miura, M.

Mugnier, L.

E. Gofas-Salas, P. Mecê, L. Mugnier, A. M. Bonnefois, C. Petit, K. Grieve, J. Sahel, M. Paques, and S. Meimon, “Near infrared adaptive optics flood illumination retinal angiography,” Biomed. Opt. Express 10(6), 2730–2743 (2019).
[Crossref]

P. Mecê, C. Petit, E. G. Salas, L. Mugnier, K. Grieve, C. Chabrier, J. A. Sahel, M. Paques, and S. Meimon, “What can adaptive optics do for laser photocoagulation?” Invest. Ophthalmol. Visual Sci. 59, 6194 (2018).
[Crossref]

D. Gratadour, L. Mugnier, and D. Rouan, “Sub-pixel image registration with a maximum likelihood estimator-application to the first adaptive optics observations of arp 220 in the l band,” Astron. Astrophys. 443(1), 357–365 (2005).

Mugnier, L. M.

Mujat, M.

M. Mujat, A. Patel, N. Iftimia, J. D. Akula, A. B. Fulton, and R. D. Ferguson, “High-resolution retinal imaging: enhancement techniques,” in Ophthalmic Technologies XXV, vol. 9307 (International Society for Optics and Photonics, 2015), p. 930703.

Nassisi, M.

C. Lavia, P. Mecê, M. Nassisi, S. Bonnin, J. Marie-Louise, A. Couturier, A. Erginay, R. Tadayoni, and A. Gaudric, “Retinal capillary plexus pattern and density from fovea to periphery measured in healthy eyes with swept-source optical coherence tomography angiography,” Sci. Rep. 10(1), 1474 (2020).
[Crossref]

Nehal, K. S.

M. Rajadhyaksha, A. Marghoob, A. Rossi, A. C. Halpern, and K. S. Nehal, “Reflectance confocal microscopy of skin in vivo: From bench to bedside,” Lasers Surg. Med. 49(1), 7–19 (2017).
[Crossref]

Neubauer, A. S.

M. Kernt, R. E. Cheuteu, S. Cserhati, F. Seidensticker, R. G. Liegl, J. Lang, C. Haritoglou, A. Kampik, M. W. Ulbig, and A. S. Neubauer, “Pain and accuracy of focal laser treatment for diabetic macular edema using a retinal navigated laser (navilas),” Clin. Ophthalmol. 6, 289 (2012).
[Crossref]

Nozato, K.

E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. 114(3), 586–591 (2017).
[Crossref]

Papas, E.

I. Jalbert, F. Stapleton, E. Papas, D. Sweeney, and M. Coroneo, “In vivo confocal microscopy of the human cornea,” Br. J. Ophthalmol. 87(2), 225–236 (2003).
[Crossref]

Paques, M.

E. Gofas-Salas, P. Mecê, L. Mugnier, A. M. Bonnefois, C. Petit, K. Grieve, J. Sahel, M. Paques, and S. Meimon, “Near infrared adaptive optics flood illumination retinal angiography,” Biomed. Opt. Express 10(6), 2730–2743 (2019).
[Crossref]

P. Mecê, E. Gofas-Salas, C. Petit, F. Cassaing, J. Sahel, M. Paques, K. Grieve, and S. Meimon, “Higher adaptive optics loop rate enhances axial resolution in nonconfocal ophthalmoscopes,” Opt. Lett. 44(9), 2208–2211 (2019).
[Crossref]

P. Mecê, E. Gofas Salas, C. Petit, K. Grieve, C. Chabrier, M. Paques, and S. Meimon, “Visualizing and enhancing axial resolution in nonconfocal adaptive optics ophthalmoscopy,” Proc. SPIE 10858, 108580P (2019).
[Crossref]

P. Mecê, J. Jarosz, J.-M. Conan, C. Petit, K. Grieve, M. Paques, and S. Meimon, “Fixational eye movement: a negligible source of dynamic aberration,” Biomed. Opt. Express 9(2), 717–727 (2018).
[Crossref]

E. Gofas-Salas, P. Mecê, C. Petit, J. Jarosz, L. M. Mugnier, A. M. Bonnefois, K. Grieve, J. Sahel, M. Paques, and S. Meimon, “High loop rate adaptive optics flood illumination ophthalmoscope with structured illumination capability,” Appl. Opt. 57(20), 5635–5642 (2018).
[Crossref]

K. Grieve, E. Gofas-Salas, R. D. Ferguson, J. A. Sahel, M. Paques, and E. A. Rossi, “In vivo near-infrared autofluorescence imaging of retinal pigment epithelial cells with 757 nm excitation,” Biomed. Opt. Express 9(12), 5946–5961 (2018).
[Crossref]

P. Mecê, C. Petit, E. G. Salas, L. Mugnier, K. Grieve, C. Chabrier, J. A. Sahel, M. Paques, and S. Meimon, “What can adaptive optics do for laser photocoagulation?” Invest. Ophthalmol. Visual Sci. 59, 6194 (2018).
[Crossref]

S. Meimon, E. G. Salas, P. Mecě, K. Grieve, J. A. Sahel, and M. Paques, “Manipulation of the illumination geometry on adaptive optics (AO) flood illumination ophthalmoscope (FIO) for dark field imaging of the retina,” Invest. Ophthalmol. Visual Sci. 59, 4641 (2018).
[Crossref]

M. Paques, E. Philippakis, C. Bonnet, S. Falah, S. Ayello-Scheer, S. Zwillinger, J.-F. Girmens, and B. Dupas, “Indocyanine-green-guided targeted laser photocoagulation of capillary macroaneurysms in macular oedema: a pilot study,” Br. J. Ophthalmol. 101(2), 170–174 (2017).
[Crossref]

S. Fouquet, O. Vacca, F. Sennlaub, and M. Paques, “The 3D retinal capillary circulation in pigs reveals a predominant serial organization,” Invest. Ophthalmol. Visual Sci. 58(13), 5754–5763 (2017).
[Crossref]

J. Jarosz, P. Mecê, J.-M. Conan, C. Petit, M. Paques, and S. Meimon, “High temporal resolution aberrometry in a 50-eye population and implications for adaptive optics error budget,” Biomed. Opt. Express 8(4), 2088–2105 (2017).
[Crossref]

Patel, A.

M. Mujat, A. Patel, N. Iftimia, J. D. Akula, A. B. Fulton, and R. D. Ferguson, “High-resolution retinal imaging: enhancement techniques,” in Ophthalmic Technologies XXV, vol. 9307 (International Society for Optics and Photonics, 2015), p. 930703.

Petit, C.

P. Mecê, E. Gofas Salas, C. Petit, K. Grieve, C. Chabrier, M. Paques, and S. Meimon, “Visualizing and enhancing axial resolution in nonconfocal adaptive optics ophthalmoscopy,” Proc. SPIE 10858, 108580P (2019).
[Crossref]

P. Mecê, E. Gofas-Salas, C. Petit, F. Cassaing, J. Sahel, M. Paques, K. Grieve, and S. Meimon, “Higher adaptive optics loop rate enhances axial resolution in nonconfocal ophthalmoscopes,” Opt. Lett. 44(9), 2208–2211 (2019).
[Crossref]

E. Gofas-Salas, P. Mecê, L. Mugnier, A. M. Bonnefois, C. Petit, K. Grieve, J. Sahel, M. Paques, and S. Meimon, “Near infrared adaptive optics flood illumination retinal angiography,” Biomed. Opt. Express 10(6), 2730–2743 (2019).
[Crossref]

E. Gofas-Salas, P. Mecê, C. Petit, J. Jarosz, L. M. Mugnier, A. M. Bonnefois, K. Grieve, J. Sahel, M. Paques, and S. Meimon, “High loop rate adaptive optics flood illumination ophthalmoscope with structured illumination capability,” Appl. Opt. 57(20), 5635–5642 (2018).
[Crossref]

P. Mecê, J. Jarosz, J.-M. Conan, C. Petit, K. Grieve, M. Paques, and S. Meimon, “Fixational eye movement: a negligible source of dynamic aberration,” Biomed. Opt. Express 9(2), 717–727 (2018).
[Crossref]

P. Mecê, C. Petit, E. G. Salas, L. Mugnier, K. Grieve, C. Chabrier, J. A. Sahel, M. Paques, and S. Meimon, “What can adaptive optics do for laser photocoagulation?” Invest. Ophthalmol. Visual Sci. 59, 6194 (2018).
[Crossref]

J. Jarosz, P. Mecê, J.-M. Conan, C. Petit, M. Paques, and S. Meimon, “High temporal resolution aberrometry in a 50-eye population and implications for adaptive optics error budget,” Biomed. Opt. Express 8(4), 2088–2105 (2017).
[Crossref]

Philippakis, E.

M. Paques, E. Philippakis, C. Bonnet, S. Falah, S. Ayello-Scheer, S. Zwillinger, J.-F. Girmens, and B. Dupas, “Indocyanine-green-guided targeted laser photocoagulation of capillary macroaneurysms in macular oedema: a pilot study,” Br. J. Ophthalmol. 101(2), 170–174 (2017).
[Crossref]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Queener, H.

Rajadhyaksha, M.

M. Rajadhyaksha, A. Marghoob, A. Rossi, A. C. Halpern, and K. S. Nehal, “Reflectance confocal microscopy of skin in vivo: From bench to bedside,” Lasers Surg. Med. 49(1), 7–19 (2017).
[Crossref]

Raskauskas, P.

Rauscher, F. G.

Romero-Borja, F.

Roorda, A.

Rossi, A.

M. Rajadhyaksha, A. Marghoob, A. Rossi, A. C. Halpern, and K. S. Nehal, “Reflectance confocal microscopy of skin in vivo: From bench to bedside,” Lasers Surg. Med. 49(1), 7–19 (2017).
[Crossref]

Rossi, E. A.

K. Grieve, E. Gofas-Salas, R. D. Ferguson, J. A. Sahel, M. Paques, and E. A. Rossi, “In vivo near-infrared autofluorescence imaging of retinal pigment epithelial cells with 757 nm excitation,” Biomed. Opt. Express 9(12), 5946–5961 (2018).
[Crossref]

E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. 114(3), 586–591 (2017).
[Crossref]

Rouan, D.

D. Gratadour, L. Mugnier, and D. Rouan, “Sub-pixel image registration with a maximum likelihood estimator-application to the first adaptive optics observations of arp 220 in the l band,” Astron. Astrophys. 443(1), 357–365 (2005).

Sadda, S.

T. Hirano, K. Chanwimol, J. Weichsel, T. Tepelus, and S. Sadda, “Distinct retinal capillary plexuses in normal eyes as observed in optical coherence tomography angiography axial profile analysis,” Sci. Rep. 8(1), 9380 (2018).
[Crossref]

Sahel, J.

Sahel, J. A.

K. Grieve, E. Gofas-Salas, R. D. Ferguson, J. A. Sahel, M. Paques, and E. A. Rossi, “In vivo near-infrared autofluorescence imaging of retinal pigment epithelial cells with 757 nm excitation,” Biomed. Opt. Express 9(12), 5946–5961 (2018).
[Crossref]

P. Mecê, C. Petit, E. G. Salas, L. Mugnier, K. Grieve, C. Chabrier, J. A. Sahel, M. Paques, and S. Meimon, “What can adaptive optics do for laser photocoagulation?” Invest. Ophthalmol. Visual Sci. 59, 6194 (2018).
[Crossref]

S. Meimon, E. G. Salas, P. Mecě, K. Grieve, J. A. Sahel, and M. Paques, “Manipulation of the illumination geometry on adaptive optics (AO) flood illumination ophthalmoscope (FIO) for dark field imaging of the retina,” Invest. Ophthalmol. Visual Sci. 59, 4641 (2018).
[Crossref]

Saito, K.

E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. 114(3), 586–591 (2017).
[Crossref]

Salas, E. G.

S. Meimon, E. G. Salas, P. Mecě, K. Grieve, J. A. Sahel, and M. Paques, “Manipulation of the illumination geometry on adaptive optics (AO) flood illumination ophthalmoscope (FIO) for dark field imaging of the retina,” Invest. Ophthalmol. Visual Sci. 59, 4641 (2018).
[Crossref]

P. Mecê, C. Petit, E. G. Salas, L. Mugnier, K. Grieve, C. Chabrier, J. A. Sahel, M. Paques, and S. Meimon, “What can adaptive optics do for laser photocoagulation?” Invest. Ophthalmol. Visual Sci. 59, 6194 (2018).
[Crossref]

Sampson, D. M.

Sapoznik, K. A.

S. A. Burns, A. E. Elsner, K. A. Sapoznik, R. L. Warner, and T. J. Gast, “Adaptive optics imaging of the human retina,” Prog. Retinal Eye Res. 68, 1–30 (2019).
[Crossref]

K. A. Sapoznik, T. Luo, A. De Castro, L. Sawides, R. L. Warner, and S. A. Burns, “Enhanced retinal vasculature imaging with a rapidly configurable aperture,” Biomed. Opt. Express 9(3), 1323–1333 (2018).
[Crossref]

Sawides, L.

Schallek, J.

Scholler, J.

P. Mecê, J. Scholler, K. Groux, and C. Boccara, “High-resolution in-vivo human retinal imaging using full-field oct with optical stabilization of axial motion,” Biomed. Opt. Express 11(1), 492–504 (2020).
[Crossref]

P. Mecê, K. Groux, J. Scholler, O. Thouvenin, M. Fink, K. Grieve, and C. Boccara, “Curved-full-field oct for high-resolution imaging of living human retina over a large field-of-view,” arXiv preprint arXiv:2001.06893 (2020).

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Schwarz, C.

E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. 114(3), 586–591 (2017).
[Crossref]

Scoles, D.

D. Scoles, Y. N. Sulai, C. S. Langlo, G. A. Fishman, C. A. Curcio, J. Carroll, and A. Dubra, “In vivo imaging of human cone photoreceptor inner segments,” Invest. Ophthalmol. Visual Sci. 55(7), 4244–4251 (2014).
[Crossref]

Seidensticker, F.

M. Kernt, R. E. Cheuteu, S. Cserhati, F. Seidensticker, R. G. Liegl, J. Lang, C. Haritoglou, A. Kampik, M. W. Ulbig, and A. S. Neubauer, “Pain and accuracy of focal laser treatment for diabetic macular edema using a retinal navigated laser (navilas),” Clin. Ophthalmol. 6, 289 (2012).
[Crossref]

Sennlaub, F.

S. Fouquet, O. Vacca, F. Sennlaub, and M. Paques, “The 3D retinal capillary circulation in pigs reveals a predominant serial organization,” Invest. Ophthalmol. Visual Sci. 58(13), 5754–5763 (2017).
[Crossref]

Sharma, R.

E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. 114(3), 586–591 (2017).
[Crossref]

Stapleton, F.

I. Jalbert, F. Stapleton, E. Papas, D. Sweeney, and M. Coroneo, “In vivo confocal microscopy of the human cornea,” Br. J. Ophthalmol. 87(2), 225–236 (2003).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Sulai, Y. N.

D. Scoles, Y. N. Sulai, C. S. Langlo, G. A. Fishman, C. A. Curcio, J. Carroll, and A. Dubra, “In vivo imaging of human cone photoreceptor inner segments,” Invest. Ophthalmol. Visual Sci. 55(7), 4244–4251 (2014).
[Crossref]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Sweeney, D.

I. Jalbert, F. Stapleton, E. Papas, D. Sweeney, and M. Coroneo, “In vivo confocal microscopy of the human cornea,” Br. J. Ophthalmol. 87(2), 225–236 (2003).
[Crossref]

Tadayoni, R.

C. Lavia, P. Mecê, M. Nassisi, S. Bonnin, J. Marie-Louise, A. Couturier, A. Erginay, R. Tadayoni, and A. Gaudric, “Retinal capillary plexus pattern and density from fovea to periphery measured in healthy eyes with swept-source optical coherence tomography angiography,” Sci. Rep. 10(1), 1474 (2020).
[Crossref]

Tarima, S.

R. F. Cooper, M. A. Wilk, S. Tarima, and J. Carroll, “Evaluating descriptive metrics of the human cone mosaic,” Invest. Ophthalmol. Visual Sci. 57(7), 2992–3001 (2016).
[Crossref]

Teiwes, W.

B. Liesfeld, K.-U. Amthor, D. Dowell, U. Weber, and W. Teiwes, “Navigating comfortably across the retina,” in World Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009, Munich, Germany (Springer, 2009), pp. 243–246.

Tepelus, T.

T. Hirano, K. Chanwimol, J. Weichsel, T. Tepelus, and S. Sadda, “Distinct retinal capillary plexuses in normal eyes as observed in optical coherence tomography angiography axial profile analysis,” Sci. Rep. 8(1), 9380 (2018).
[Crossref]

Thouvenin, O.

P. Mecê, K. Groux, J. Scholler, O. Thouvenin, M. Fink, K. Grieve, and C. Boccara, “Curved-full-field oct for high-resolution imaging of living human retina over a large field-of-view,” arXiv preprint arXiv:2001.06893 (2020).

Ueda, T.

Y. Zhang, L. Liu, W. Gong, H. Yu, W. Wang, C. Zhao, P. Wang, and T. Ueda, “Autofocus system and evaluation methodologies: a literature review,” Sens. Mater. 30, 1165–1174 (2018).
[Crossref]

Ulbig, M. W.

M. Kernt, R. E. Cheuteu, S. Cserhati, F. Seidensticker, R. G. Liegl, J. Lang, C. Haritoglou, A. Kampik, M. W. Ulbig, and A. S. Neubauer, “Pain and accuracy of focal laser treatment for diabetic macular edema using a retinal navigated laser (navilas),” Clin. Ophthalmol. 6, 289 (2012).
[Crossref]

Vacca, O.

S. Fouquet, O. Vacca, F. Sennlaub, and M. Paques, “The 3D retinal capillary circulation in pigs reveals a predominant serial organization,” Invest. Ophthalmol. Visual Sci. 58(13), 5754–5763 (2017).
[Crossref]

Van Nasdale, D. A.

Walker, J.

Walters, S.

E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. 114(3), 586–591 (2017).
[Crossref]

Wang, P.

Y. Zhang, L. Liu, W. Gong, H. Yu, W. Wang, C. Zhao, P. Wang, and T. Ueda, “Autofocus system and evaluation methodologies: a literature review,” Sens. Mater. 30, 1165–1174 (2018).
[Crossref]

Wang, W.

Y. Zhang, L. Liu, W. Gong, H. Yu, W. Wang, C. Zhao, P. Wang, and T. Ueda, “Autofocus system and evaluation methodologies: a literature review,” Sens. Mater. 30, 1165–1174 (2018).
[Crossref]

Warner, R. L.

S. A. Burns, A. E. Elsner, K. A. Sapoznik, R. L. Warner, and T. J. Gast, “Adaptive optics imaging of the human retina,” Prog. Retinal Eye Res. 68, 1–30 (2019).
[Crossref]

K. A. Sapoznik, T. Luo, A. De Castro, L. Sawides, R. L. Warner, and S. A. Burns, “Enhanced retinal vasculature imaging with a rapidly configurable aperture,” Biomed. Opt. Express 9(3), 1323–1333 (2018).
[Crossref]

Weber, U.

B. Liesfeld, K.-U. Amthor, D. Dowell, U. Weber, and W. Teiwes, “Navigating comfortably across the retina,” in World Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009, Munich, Germany (Springer, 2009), pp. 243–246.

Weichsel, J.

T. Hirano, K. Chanwimol, J. Weichsel, T. Tepelus, and S. Sadda, “Distinct retinal capillary plexuses in normal eyes as observed in optical coherence tomography angiography axial profile analysis,” Sci. Rep. 8(1), 9380 (2018).
[Crossref]

Werner, J. S.

R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, S.-H. Lee, J. S. Werner, and D. T. Miller, “The cellular origins of the outer retinal bands in optical coherence tomography images,” Invest. Ophthalmol. Visual Sci. 55(12), 7904–7918 (2014).
[Crossref]

Wilk, M. A.

R. F. Cooper, M. A. Wilk, S. Tarima, and J. Carroll, “Evaluating descriptive metrics of the human cone mosaic,” Invest. Ophthalmol. Visual Sci. 57(7), 2992–3001 (2016).
[Crossref]

Williams, D.

Williams, D. R.

E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. 114(3), 586–591 (2017).
[Crossref]

Wilson, D.

J. Campbell, M. Zhang, T. Hwang, S. Bailey, D. Wilson, Y. Jia, and D. Huang, “Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref]

Wing, G.

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).

Yang, Q.

E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. 114(3), 586–591 (2017).
[Crossref]

Yu, H.

Y. Zhang, L. Liu, W. Gong, H. Yu, W. Wang, C. Zhao, P. Wang, and T. Ueda, “Autofocus system and evaluation methodologies: a literature review,” Sens. Mater. 30, 1165–1174 (2018).
[Crossref]

Zawadzki, R. J.

R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, S.-H. Lee, J. S. Werner, and D. T. Miller, “The cellular origins of the outer retinal bands in optical coherence tomography images,” Invest. Ophthalmol. Visual Sci. 55(12), 7904–7918 (2014).
[Crossref]

Zhang, F.

Z. Liu, K. Kurokawa, F. Zhang, J. J. Lee, and D. T. Miller, “Imaging and quantifying ganglion cells and other transparent neurons in the living human retina,” Proc. Natl. Acad. Sci. 114(48), 12803–12808 (2017).
[Crossref]

Zhang, J.

E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. 114(3), 586–591 (2017).
[Crossref]

Zhang, M.

J. Campbell, M. Zhang, T. Hwang, S. Bailey, D. Wilson, Y. Jia, and D. Huang, “Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref]

Zhang, Y.

Y. Zhang, L. Liu, W. Gong, H. Yu, W. Wang, C. Zhao, P. Wang, and T. Ueda, “Autofocus system and evaluation methodologies: a literature review,” Sens. Mater. 30, 1165–1174 (2018).
[Crossref]

Zhao, C.

Y. Zhang, L. Liu, W. Gong, H. Yu, W. Wang, C. Zhao, P. Wang, and T. Ueda, “Autofocus system and evaluation methodologies: a literature review,” Sens. Mater. 30, 1165–1174 (2018).
[Crossref]

Zhou, Q.

Zwillinger, S.

M. Paques, E. Philippakis, C. Bonnet, S. Falah, S. Ayello-Scheer, S. Zwillinger, J.-F. Girmens, and B. Dupas, “Indocyanine-green-guided targeted laser photocoagulation of capillary macroaneurysms in macular oedema: a pilot study,” Br. J. Ophthalmol. 101(2), 170–174 (2017).
[Crossref]

Annu. Rev. Vis. Sci. (1)

A. Roorda and J. L. Duncan, “Adaptive optics ophthalmoscopy,” Annu. Rev. Vis. Sci. 1(1), 19–50 (2015).
[Crossref]

Appl. Opt. (1)

Astron. Astrophys. (1)

D. Gratadour, L. Mugnier, and D. Rouan, “Sub-pixel image registration with a maximum likelihood estimator-application to the first adaptive optics observations of arp 220 in the l band,” Astron. Astrophys. 443(1), 357–365 (2005).

Biomed. Opt. Express (8)

J. Jarosz, P. Mecê, J.-M. Conan, C. Petit, M. Paques, and S. Meimon, “High temporal resolution aberrometry in a 50-eye population and implications for adaptive optics error budget,” Biomed. Opt. Express 8(4), 2088–2105 (2017).
[Crossref]

D. Alonso-Caneiro, D. M. Sampson, A. L. Chew, M. J. Collins, and F. K. Chen, “Use of focus measure operators for characterization of flood illumination adaptive optics ophthalmoscopy image quality,” Biomed. Opt. Express 9(2), 679–693 (2018).
[Crossref]

P. Mecê, J. Jarosz, J.-M. Conan, C. Petit, K. Grieve, M. Paques, and S. Meimon, “Fixational eye movement: a negligible source of dynamic aberration,” Biomed. Opt. Express 9(2), 717–727 (2018).
[Crossref]

K. A. Sapoznik, T. Luo, A. De Castro, L. Sawides, R. L. Warner, and S. A. Burns, “Enhanced retinal vasculature imaging with a rapidly configurable aperture,” Biomed. Opt. Express 9(3), 1323–1333 (2018).
[Crossref]

K. Grieve, E. Gofas-Salas, R. D. Ferguson, J. A. Sahel, M. Paques, and E. A. Rossi, “In vivo near-infrared autofluorescence imaging of retinal pigment epithelial cells with 757 nm excitation,” Biomed. Opt. Express 9(12), 5946–5961 (2018).
[Crossref]

T. Y. Chui, D. A. Van Nasdale, and S. A. Burns, “The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 3(10), 2537–2549 (2012).
[Crossref]

E. Gofas-Salas, P. Mecê, L. Mugnier, A. M. Bonnefois, C. Petit, K. Grieve, J. Sahel, M. Paques, and S. Meimon, “Near infrared adaptive optics flood illumination retinal angiography,” Biomed. Opt. Express 10(6), 2730–2743 (2019).
[Crossref]

P. Mecê, J. Scholler, K. Groux, and C. Boccara, “High-resolution in-vivo human retinal imaging using full-field oct with optical stabilization of axial motion,” Biomed. Opt. Express 11(1), 492–504 (2020).
[Crossref]

Br. J. Ophthalmol. (2)

M. Paques, E. Philippakis, C. Bonnet, S. Falah, S. Ayello-Scheer, S. Zwillinger, J.-F. Girmens, and B. Dupas, “Indocyanine-green-guided targeted laser photocoagulation of capillary macroaneurysms in macular oedema: a pilot study,” Br. J. Ophthalmol. 101(2), 170–174 (2017).
[Crossref]

I. Jalbert, F. Stapleton, E. Papas, D. Sweeney, and M. Coroneo, “In vivo confocal microscopy of the human cornea,” Br. J. Ophthalmol. 87(2), 225–236 (2003).
[Crossref]

Clin. Ophthalmol. (1)

M. Kernt, R. E. Cheuteu, S. Cserhati, F. Seidensticker, R. G. Liegl, J. Lang, C. Haritoglou, A. Kampik, M. W. Ulbig, and A. S. Neubauer, “Pain and accuracy of focal laser treatment for diabetic macular edema using a retinal navigated laser (navilas),” Clin. Ophthalmol. 6, 289 (2012).
[Crossref]

Invest. Ophthalmol. Visual Sci. (7)

R. S. Jonnal, O. P. Kocaoglu, R. J. Zawadzki, S.-H. Lee, J. S. Werner, and D. T. Miller, “The cellular origins of the outer retinal bands in optical coherence tomography images,” Invest. Ophthalmol. Visual Sci. 55(12), 7904–7918 (2014).
[Crossref]

P. Mecê, C. Petit, E. G. Salas, L. Mugnier, K. Grieve, C. Chabrier, J. A. Sahel, M. Paques, and S. Meimon, “What can adaptive optics do for laser photocoagulation?” Invest. Ophthalmol. Visual Sci. 59, 6194 (2018).
[Crossref]

S. Meimon, E. G. Salas, P. Mecě, K. Grieve, J. A. Sahel, and M. Paques, “Manipulation of the illumination geometry on adaptive optics (AO) flood illumination ophthalmoscope (FIO) for dark field imaging of the retina,” Invest. Ophthalmol. Visual Sci. 59, 4641 (2018).
[Crossref]

S. Fouquet, O. Vacca, F. Sennlaub, and M. Paques, “The 3D retinal capillary circulation in pigs reveals a predominant serial organization,” Invest. Ophthalmol. Visual Sci. 58(13), 5754–5763 (2017).
[Crossref]

R. F. Cooper, M. A. Wilk, S. Tarima, and J. Carroll, “Evaluating descriptive metrics of the human cone mosaic,” Invest. Ophthalmol. Visual Sci. 57(7), 2992–3001 (2016).
[Crossref]

Z. Liu, O. P. Kocaoglu, and D. T. Miller, “3D imaging of retinal pigment epithelial cells in the living human retina,” Invest. Ophthalmol. Visual Sci. 57(9), OCT533 (2016).
[Crossref]

D. Scoles, Y. N. Sulai, C. S. Langlo, G. A. Fishman, C. A. Curcio, J. Carroll, and A. Dubra, “In vivo imaging of human cone photoreceptor inner segments,” Invest. Ophthalmol. Visual Sci. 55(7), 4244–4251 (2014).
[Crossref]

J. Comp. Neurol. (1)

C. A. Curcio and K. A. Allen, “Topography of ganglion cells in human retina,” J. Comp. Neurol. 300(1), 5–25 (1990).
[Crossref]

J. Opt. Soc. Am. A (1)

Lasers Surg. Med. (1)

M. Rajadhyaksha, A. Marghoob, A. Rossi, A. C. Halpern, and K. S. Nehal, “Reflectance confocal microscopy of skin in vivo: From bench to bedside,” Lasers Surg. Med. 49(1), 7–19 (2017).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Proc. Natl. Acad. Sci. (2)

Z. Liu, K. Kurokawa, F. Zhang, J. J. Lee, and D. T. Miller, “Imaging and quantifying ganglion cells and other transparent neurons in the living human retina,” Proc. Natl. Acad. Sci. 114(48), 12803–12808 (2017).
[Crossref]

E. A. Rossi, C. E. Granger, R. Sharma, Q. Yang, K. Saito, C. Schwarz, S. Walters, K. Nozato, J. Zhang, T. Kawakami, W. Fischer, L. R. Latchney, J. J. Hunter, M. M. Chung, and D. R. Williams, “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. 114(3), 586–591 (2017).
[Crossref]

Proc. SPIE (1)

P. Mecê, E. Gofas Salas, C. Petit, K. Grieve, C. Chabrier, M. Paques, and S. Meimon, “Visualizing and enhancing axial resolution in nonconfocal adaptive optics ophthalmoscopy,” Proc. SPIE 10858, 108580P (2019).
[Crossref]

Prog. Retinal Eye Res. (1)

S. A. Burns, A. E. Elsner, K. A. Sapoznik, R. L. Warner, and T. J. Gast, “Adaptive optics imaging of the human retina,” Prog. Retinal Eye Res. 68, 1–30 (2019).
[Crossref]

Sci. Rep. (3)

J. Campbell, M. Zhang, T. Hwang, S. Bailey, D. Wilson, Y. Jia, and D. Huang, “Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography,” Sci. Rep. 7(1), 42201 (2017).
[Crossref]

C. Lavia, P. Mecê, M. Nassisi, S. Bonnin, J. Marie-Louise, A. Couturier, A. Erginay, R. Tadayoni, and A. Gaudric, “Retinal capillary plexus pattern and density from fovea to periphery measured in healthy eyes with swept-source optical coherence tomography angiography,” Sci. Rep. 10(1), 1474 (2020).
[Crossref]

T. Hirano, K. Chanwimol, J. Weichsel, T. Tepelus, and S. Sadda, “Distinct retinal capillary plexuses in normal eyes as observed in optical coherence tomography angiography axial profile analysis,” Sci. Rep. 8(1), 9380 (2018).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Sens. Mater. (1)

Y. Zhang, L. Liu, W. Gong, H. Yu, W. Wang, C. Zhao, P. Wang, and T. Ueda, “Autofocus system and evaluation methodologies: a literature review,” Sens. Mater. 30, 1165–1174 (2018).
[Crossref]

Other (6)

P. Mecê, “Optical Incoherence Tomography (OIT) software,” (2020). https://doi.org/10.5281/zenodo.3888203 .

M. Mujat, A. Patel, N. Iftimia, J. D. Akula, A. B. Fulton, and R. D. Ferguson, “High-resolution retinal imaging: enhancement techniques,” in Ophthalmic Technologies XXV, vol. 9307 (International Society for Optics and Photonics, 2015), p. 930703.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).

P. Mecê, “4D exploration of the retina for adaptive optics-assisted laser photocoagulation,” (2018). https://www.researchgate.net/publication/342123596 .

P. Mecê, K. Groux, J. Scholler, O. Thouvenin, M. Fink, K. Grieve, and C. Boccara, “Curved-full-field oct for high-resolution imaging of living human retina over a large field-of-view,” arXiv preprint arXiv:2001.06893 (2020).

B. Liesfeld, K.-U. Amthor, D. Dowell, U. Weber, and W. Teiwes, “Navigating comfortably across the retina,” in World Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009, Munich, Germany (Springer, 2009), pp. 243–246.

Supplementary Material (4)

NameDescription
» Visualization 1       Animation depicting the energy measurement step necessary to generate the OIT cross-section. The energy measurement is applied after image filtering. Note that, for sake of clarity, the Z-stack is only represented with 4 en-face images from different
» Visualization 2       Interconnecting capillaries are visible in OIT cross-section generated with AO-FIO. Upper image: ROI used to compute the OIT cross-section. Lower image: Corresponding OIT cross-section. Arrows highlight the three-dimensional position of interconnecti
» Visualization 3       The fly-through focus movies for bright-field AO-SLO and split-detection AO-SLO modalities and their respective OIT cross-sections at 7° Nasal.
» Visualization 4       The fly-through focus movies for bright-field AO-SLO and split-detection AO-SLO modalities and their respective OIT cross-sections at 7° Temporal.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. a. Area of the en-face image where the OIT method was applied. b. Generated OIT cross-sections without spatial filtering. c,d. Generated OIT cross-section after applying a high-pass spatial filtering with a normalized cut-off frequency of 10% and 50% respectively. Note that, although at 50% a better axial sectioning is achieved, the OIT cross-section presents a better contrast for 10% cut-off frequency. e. The axial sectioning capacity, given in terms of depth of field ($\frac {2\lambda }{NA^2}$) at the diffraction limit, as a function of the normalized cut-off frequency. f. The contrast of OIT cross-section as a function of the normalized cut-off frequency.
Fig. 2.
Fig. 2. a-c Tomographic retinal cross-sections generated by, respectively, AO-SLO OIT, OCT, and AO-FIO OIT for the same subject and retinal location, where the main retinal layers can be identified. d,e En-face retinal images, from the original Z-stack, obtained when precisely positioning the focal plane at the layers labelled NFL, (1), (2) and IS/OS, guided by OIT cross-sectional images. White-dashed rectangle: Area of the en-face image where OIT cross-sections were extracted. Red arrows: vessel location. AO-FIO en-face images had their background subtracted [1]. (a,b,c) Log scale. Scale bar: $50 \mu m$.
Fig. 3.
Fig. 3. a,b En-face retinal images obtained using respectively confocal and autofluorescence AO-SLO. The AO-SLO focal plane was adjusted to the COST focal position prior to acquisition using the previously generated OIT cross-section (Fig. 2(a)). The RPE signal is masked in the confocal channel by highly reflective photoreceptor signal due to poor axial resolution, hence the need for autofluorescence. PSD of en-face zoomed images (orange dashed-square) are also given. c. PSD radial average of previously presented zoomed areas outlining the spatial frequency of the photoreceptor and RPE mosaics respectively. Scale bar: $50 \mu m$.
Fig. 4.
Fig. 4. a-c Tomographic retinal cross-sections generated by, respectively, confocal, split detection, and motion contrast techniques in AO-SLO for the same subject at 7$^o$ Nasal where the NFL is dense and four vascular plexuses can be seen. d-f En-face retinal images from the original Z-stack obtained when precisely positioning the focal plane at the layers labeled RPCP, SVP, IVP and DVP, with the help of OIT method, using respectively confocal, split-detection and motion contrast techniques. g Composite perfusion map image, revealing the 3D organization of the retinal vascular network. White-dashed rectangle: Area of the en-face image where OIT cross-sections were extracted. (a) Log scale. (b,c) Linear scale. Scale bar: $100 \mu m$.
Fig. 5.
Fig. 5. a-c Tomographic retinal cross-sections generated by, respectively, confocal, split detection, and motion contrast techniques in AO-SLO for the same subject at 7$^o$ Temporal where NFL is less thick and three vascular plexuses can be seen. d-f En-face retinal images obtained when precisely positioning the focal plane at the layers labeled NFL, SVP, IVP and DVP, with the help of the OIT cross-section, using respectively confocal, split-detection and motion contrast techniques. g Composite perfusion map image, revealing the 3D organization of the retinal vascular network. White-dashed rectangle: Area of the en-face image where OIT cross-sections were extracted. (a) Log scale. (b,c) Linear scale. Scale bar: $100 \mu m$.
Fig. 6.
Fig. 6. En-face retinal images obtained after precisely positioning the focal plane at layers IS and IS/OS with the help of OIT cross-section images in Figs. 4,5. (a,e) Confocal AO-SLO at IS focal position. (b,f) Split-detection AO-SLO at IS focal position. (c,g) Confocal AO-SLO at IS/OS focal position. (d,h) Split-detection AO-SLO at IS/OS focal position. (i,j) PSD at Nasal and Temporal position respectively. Pale green column outlines the photoreceptor mosaic spatial frequency, where one can notice a gain in contrast when focusing at the IS focus position in the case of split-detection mode, compared to the IS/OS focus position; and the opposite in the case of confocal mode. Scale bar: $50 \mu m$.
Fig. 7.
Fig. 7. (a,b) Split-detection retinal images obtained when precisely positioning the focal plane at the SVP layer at 7$^o$ Temporal (a) and 7$^o$ Nasal (b). Yellow arrows outline a few examples of putative midget retinal ganglion cells. The red arrow highlights an example of putative parasol retinal ganglion cell.(c,d) are respectively split-detection images from the same retinal region but at IS and SVP focal positions respectively, where photoreceptor IS mosaic and RGC are visible. (e,f) are the PSD of respectively (c,d), where the spatial frequency signature of photoreceptor and ganglion cell are visible. Scale bar: $50 \mu m$.

Tables (1)

Tables Icon

Table 1. Axial distance between vascular plexuses measured through OIT cross-sections. Four and three plexuses are found at 7 o nasal and 7 o temporal respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E R O I = u v | I R O I ~ ( u , v ) | 2

Metrics