Abstract

We have measured the ocular transverse chromatic aberration (TCA) in 11 subjects using 2D-two-color Vernier alignment, for two pupil diameters, in a polychromatic adaptive optics (AO) system. TCA measurements were performed for two pupil diameters: for a small pupil (2-mm), referred to as ‘optical TCA’ (oTCA), and for a large pupil (6-mm), referred to ‘perceived TCA’ (pTCA). Also, the TCA was measured through both natural aberrations (HOAs) and AO-corrected aberrations. Computer simulations of pTCA incorporated longitudinal chromatic aberration (LCA), the patient’s HOAs measured with Hartmann-Shack, and the Stiles-Crawford effect (SCE), measured objectively by laser ray tracing. The oTCA and the simulated pTCA (no aberrations) were shifted nasally 1.20 arcmin and 1.40 arcmin respectively. The experimental pTCA (-0.27 arcmin horizontally and -0.62 vertically) was well predicted (81%) by simulations when both the individual HOAs and SCE were considered. Both HOAs and SCE interact with oTCA, reducing it in magnitude and changing its orientation. The results indicate that estimations of polychromatic image quality should incorporate patient’s specific data of HOAs, LCA, TCA & SCE.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
    [Crossref]
  2. L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
    [Crossref]
  3. L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optometry Vision Sci. 68(8), 599–607 (1991).
    [Crossref]
  4. W. N. Charman and J. A. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16(9), 999–1005 (1976).
    [Crossref]
  5. L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optometry Vision Sci. 80(1), 26–35 (2003).
    [Crossref]
  6. R. E. Bedford and G. Wyszecki, “Axial Chromatic Aberration of the Human Eye,” J. Opt. Soc. Am. 47(6), 564 (1957).
    [Crossref]
  7. P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” J. Opt. Soc. Am. A 5(12), 2087–2092 (1988).
    [Crossref]
  8. P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26, 361–366 (1986).
    [Crossref]
  9. G. Wald and D. R. Griffin, “The Change in Refractive Power of the Human Eye in Dim and Bright Light,” J. Opt. Soc. Am. 37(5), 321–336 (1947).
  10. M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
    [Crossref]
  11. S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
    [Crossref]
  12. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
    [Crossref]
  13. Y. U. Ogboso and H. E. Bedell, “Magnitude of lateral chromatic aberration across the retina of the human eye,” J. Opt. Soc. Am. A 4(8), 1666–1672 (1987).
    [Crossref]
  14. P. Simonet and M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30(2), 187–206 (1990).
    [Crossref]
  15. S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
    [Crossref]
  16. W. M. Harmening, P. Tiruveedhula, A. Roorda, and L. C. Sincich, “Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye,” Biomed. Opt. Express 3(9), 2066–2077 (2012).
    [Crossref]
  17. C. M. Privitera, R. Sabesan, S. Winter, P. Tiruveedhula, and A. Roorda, “Eye-tracking technology for real-time monitoring of transverse chromatic aberration,” Opt. Lett. 41(8), 1728–1731 (2016).
    [Crossref]
  18. M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle psi in a population of young adult eyes,” J Opt Soc Am A Opt Image Sci Vis 12(10), 2348–2357 (1995).
    [Crossref]
  19. W. S. Stiles, B. H. Crawford, and J. H. Parsons, “The luminous efficiency of rays entering the eye pupil at different points,” Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character 112, 428–450 (1933).
  20. S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
    [Crossref]
  21. Y. Ming, A. Bradley, L. N. Thibos, and Z. Xiaoxiao, “The effect of pupil size on chromostereopsis and chromatic diplopia: Interaction between the Stiles-Crawford effect and chromatic aberrations,” Vision Res. 32(11), 2121–2128 (1992).
    [Crossref]
  22. S. Marcos, C. Benedi, M. Vinas, C. Dorronsoro, S. A. Burns, and E. Peli, “Visual benefit of correcting high order aberrationsin blue or green light: an optical effect?” ARVO abstract 2018 (2018).
  23. X. Zhang, A. Bradley, and L. N. Thibos, “Achromatizing the human eye: the problem of chromatic parallax,” J. Opt. Soc. Am. A 8(4), 686–691 (1991).
    [Crossref]
  24. X. Jiang, J. A. Kuchenbecker, P. Touch, and R. Sabesan, “Measuring and compensating for ocular longitudinal chromatic aberration,” Optica 6(8), 981–990 (2019).
    [Crossref]
  25. N. Suchkov, E. J. Fernández, and P. Artal, “Impact of longitudinal chromatic aberration on through-focus visual acuity,” Opt. Express 27(24), 35935–35947 (2019).
    [Crossref]
  26. H. A. Weeber and P. A. Piers, “Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration,” J. Refract. Surg. 28(1), 48–52 (2012).
    [Crossref]
  27. J. Loicq, N. Willet, and D. Gatinel, LCA correction in diffractive intraocular lenses: an innovative optical design (Conference Presentation), SPIE BiOS (SPIE, 2020), Vol. 11231.
  28. S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
    [Crossref]
  29. G.-Y. Yoon and D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19(2), 266–275 (2002).
    [Crossref]
  30. S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
    [Crossref]
  31. S. Marcos, C. Benedí-García, S. Aissati, A. M. Gonzalez-Ramos, C. M. Lago, A. Radhkrishnan, M. Romero, S. Vedhakrishnan, L. Sawides, and M. Vinas, “VioBio lab adaptive optics: technology and applications by women vision scientists,” Ophthalmic Physiol Opt 40(2), 75–87 (2020).
    [Crossref]
  32. S. Marcos and S. A. Burns, “Cone directionality from laser ray tracing in normal and LASIK patients,” J. Mod. Opt. 56(20), 2181–2188 (2009).
    [Crossref]
  33. M. Vinas, S. Aissati, M. Romero, C. Benedi-Garcia, N. Garzon, F. Poyales, C. Dorronsoro, and S. Marcos, “Pre-operative simulation of post-operative multifocal vision,” Biomed. Opt. Express 10(11), 5801–5817 (2019).
    [Crossref]
  34. M. Vinas, C. Benedi-Garcia, S. Aissati, D. Pascual, V. Akondi, C. Dorronsoro, and S. Marcos, “Visual simulators replicate vision with multifocal lenses,” Sci. Rep. 9(1), 1539 (2019).
    [Crossref]
  35. M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, A. Radhakrishnan, and S. Marcos, “Testing vision with angular and radial multifocal designs using Adaptive Optics,” Vision Res. 132, 85–96 (2017).
    [Crossref]
  36. M. Vinas, C. Dorronsoro, A. Radhakrishnan, C. Benedi-Garcia, E. A. LaVilla, J. Schwiegerling, and S. Marcos, “Comparison of vision through surface modulated and spatial light modulated multifocal optics,” Biomed. Opt. Express 8(4), 2055–2068 (2017).
    [Crossref]
  37. Fianium, “Fianium Supercontinuum source,” (retrieved 2012), retrieved http://fianium.com/ .
  38. F. C. Delori, R. H. Webb, and D. H. Sliney, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A 24(5), 1250–1265 (2007).
    [Crossref]
  39. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for Reporting the Optical Aberrations of Eyes,” in Vision Science and its Applications, OSA Technical Digest (Optical Society of America, 2000), SuC1.
  40. E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest Ophthalmol Vis Sci 42, 1396–1403 (2001).
  41. J.-M. Gorrand and F. Delori, “A reflectometric technique for assessing photorecelptor alignment,” Vision Res. 35(7), 999–1010 (1995).
    [Crossref]
  42. S. Marcos and S. A. Burns, “Cone spacing and waveguide properties from cone directionality measurements,” J. Opt. Soc. Am. A 16(5), 995–1004 (1999).
    [Crossref]
  43. J. C. He, S. Marcos, and S. A. Burns, “Comparison of cone directionality determined by psychophysical and reflectometric techniques,” J. Opt. Soc. Am. A 16(10), 2363–2369 (1999).
    [Crossref]
  44. D. A. Atchison, D. H. Scott, A. Joblin, and G. Smith, “Influence of Stiles–Crawford effect apodization on spatial visual performance with decentered pupils,” J. Opt. Soc. Am. A 18(6), 1201–1211 (2001).
    [Crossref]
  45. A. Bradley, L. Thibos, and D. Still, “Visual acuity measured with clinical Maxwellian-view systems: effects of beam entry location,” Optometry Vision Sci. 67(11), 811–817 (1990).
    [Crossref]
  46. L. N. Thibos, “Calculation of the influence of lateral chromatic aberration on image quality across the visual field,” J. Opt. Soc. Am. A 4(8), 1673–1680 (1987).
    [Crossref]
  47. M. Tscherning, Physiological Optics (Keystone,1924).
  48. J. J. Vos, “Some New Aspects of Color Stereoscopy,” J. Opt. Soc. Am. 50(8), 785–790 (1960).
    [Crossref]
  49. M. C. Rynders, “The Stiles-Crawford effect and an experimentaldetermination of its impact on vision,” (Indiana University, Bloomington, Ph.D. thesis, 1994).
  50. L. Sawides, P. de Gracia, C. Dorronsoro, M. A. Webster, and S. Marcos, “Vision Is Adapted to the Natural Level of Blur Present in the Retinal Image,” PLOS ONE6(11), e27031 (2011).
    [Crossref]
  51. S. A. Burns, S. Wu, F. Delori, and A. E. Elsner, “Direct measurement of human-cone-photoreceptor alignment,” J. Opt. Soc. Am. A 12(10), 2329–2338 (1995).
    [Crossref]
  52. R. A. Applegate and V. Lakshminarayanan, “Parametric representation of Stiles–Crawford functions: normal variation of peak location and directionality,” J. Opt. Soc. Am. A 10(7), 1611–1623 (1993).
    [Crossref]
  53. S. Marcos and S. A. Burns, “On the symmetry between eyes of wavefront aberration and cone directionality,” Vision Res. 40(18), 2437–2447 (2000).
    [Crossref]
  54. P. Rosales and S. Marcos, “Customized computer models of eyes with intraocular lenses,” Opt. Express 15(5), 2204–2218 (2007).
    [Crossref]
  55. M. Sun, P. Pérez-Merino, E. Martinez-Enriquez, M. Velasco-Ocana, and S. Marcos, “Full 3-D OCT-based pseudophakic custom computer eye model,” Biomed. Opt. Express 7(3), 1074–1088 (2016).
    [Crossref]
  56. M. Nakajima, T. Hiraoka, T. Yamamoto, S. Takagi, Y. Hirohara, T. Oshika, and T. Mihashi, “Differences of Longitudinal Chromatic Aberration (LCA) between Eyes with Intraocular Lenses from Different Manufacturers,” PLoS One 11(6), e0156227 (2016).
    [Crossref]
  57. M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
    [Crossref]
  58. J. Loicq, N. Willet, and D. Gatinel, “Topography and longitudinal chromatic aberration characterizations of refractive-diffractive multifocal intraocular lenses,” J. Cataract Refractive Surg. 45(11), 1650–1659 (2019).
    [Crossref]

2020 (1)

S. Marcos, C. Benedí-García, S. Aissati, A. M. Gonzalez-Ramos, C. M. Lago, A. Radhkrishnan, M. Romero, S. Vedhakrishnan, L. Sawides, and M. Vinas, “VioBio lab adaptive optics: technology and applications by women vision scientists,” Ophthalmic Physiol Opt 40(2), 75–87 (2020).
[Crossref]

2019 (5)

M. Vinas, S. Aissati, M. Romero, C. Benedi-Garcia, N. Garzon, F. Poyales, C. Dorronsoro, and S. Marcos, “Pre-operative simulation of post-operative multifocal vision,” Biomed. Opt. Express 10(11), 5801–5817 (2019).
[Crossref]

M. Vinas, C. Benedi-Garcia, S. Aissati, D. Pascual, V. Akondi, C. Dorronsoro, and S. Marcos, “Visual simulators replicate vision with multifocal lenses,” Sci. Rep. 9(1), 1539 (2019).
[Crossref]

X. Jiang, J. A. Kuchenbecker, P. Touch, and R. Sabesan, “Measuring and compensating for ocular longitudinal chromatic aberration,” Optica 6(8), 981–990 (2019).
[Crossref]

N. Suchkov, E. J. Fernández, and P. Artal, “Impact of longitudinal chromatic aberration on through-focus visual acuity,” Opt. Express 27(24), 35935–35947 (2019).
[Crossref]

J. Loicq, N. Willet, and D. Gatinel, “Topography and longitudinal chromatic aberration characterizations of refractive-diffractive multifocal intraocular lenses,” J. Cataract Refractive Surg. 45(11), 1650–1659 (2019).
[Crossref]

2017 (4)

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref]

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, A. Radhakrishnan, and S. Marcos, “Testing vision with angular and radial multifocal designs using Adaptive Optics,” Vision Res. 132, 85–96 (2017).
[Crossref]

M. Vinas, C. Dorronsoro, A. Radhakrishnan, C. Benedi-Garcia, E. A. LaVilla, J. Schwiegerling, and S. Marcos, “Comparison of vision through surface modulated and spatial light modulated multifocal optics,” Biomed. Opt. Express 8(4), 2055–2068 (2017).
[Crossref]

2016 (4)

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref]

C. M. Privitera, R. Sabesan, S. Winter, P. Tiruveedhula, and A. Roorda, “Eye-tracking technology for real-time monitoring of transverse chromatic aberration,” Opt. Lett. 41(8), 1728–1731 (2016).
[Crossref]

M. Sun, P. Pérez-Merino, E. Martinez-Enriquez, M. Velasco-Ocana, and S. Marcos, “Full 3-D OCT-based pseudophakic custom computer eye model,” Biomed. Opt. Express 7(3), 1074–1088 (2016).
[Crossref]

M. Nakajima, T. Hiraoka, T. Yamamoto, S. Takagi, Y. Hirohara, T. Oshika, and T. Mihashi, “Differences of Longitudinal Chromatic Aberration (LCA) between Eyes with Intraocular Lenses from Different Manufacturers,” PLoS One 11(6), e0156227 (2016).
[Crossref]

2015 (1)

2012 (2)

W. M. Harmening, P. Tiruveedhula, A. Roorda, and L. C. Sincich, “Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye,” Biomed. Opt. Express 3(9), 2066–2077 (2012).
[Crossref]

H. A. Weeber and P. A. Piers, “Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration,” J. Refract. Surg. 28(1), 48–52 (2012).
[Crossref]

2009 (1)

S. Marcos and S. A. Burns, “Cone directionality from laser ray tracing in normal and LASIK patients,” J. Mod. Opt. 56(20), 2181–2188 (2009).
[Crossref]

2008 (1)

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
[Crossref]

2007 (2)

2003 (1)

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optometry Vision Sci. 80(1), 26–35 (2003).
[Crossref]

2002 (2)

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[Crossref]

G.-Y. Yoon and D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19(2), 266–275 (2002).
[Crossref]

2001 (3)

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest Ophthalmol Vis Sci 42, 1396–1403 (2001).

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref]

D. A. Atchison, D. H. Scott, A. Joblin, and G. Smith, “Influence of Stiles–Crawford effect apodization on spatial visual performance with decentered pupils,” J. Opt. Soc. Am. A 18(6), 1201–1211 (2001).
[Crossref]

2000 (1)

S. Marcos and S. A. Burns, “On the symmetry between eyes of wavefront aberration and cone directionality,” Vision Res. 40(18), 2437–2447 (2000).
[Crossref]

1999 (3)

1995 (3)

J.-M. Gorrand and F. Delori, “A reflectometric technique for assessing photorecelptor alignment,” Vision Res. 35(7), 999–1010 (1995).
[Crossref]

M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle psi in a population of young adult eyes,” J Opt Soc Am A Opt Image Sci Vis 12(10), 2348–2357 (1995).
[Crossref]

S. A. Burns, S. Wu, F. Delori, and A. E. Elsner, “Direct measurement of human-cone-photoreceptor alignment,” J. Opt. Soc. Am. A 12(10), 2329–2338 (1995).
[Crossref]

1993 (1)

1992 (2)

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
[Crossref]

Y. Ming, A. Bradley, L. N. Thibos, and Z. Xiaoxiao, “The effect of pupil size on chromostereopsis and chromatic diplopia: Interaction between the Stiles-Crawford effect and chromatic aberrations,” Vision Res. 32(11), 2121–2128 (1992).
[Crossref]

1991 (2)

X. Zhang, A. Bradley, and L. N. Thibos, “Achromatizing the human eye: the problem of chromatic parallax,” J. Opt. Soc. Am. A 8(4), 686–691 (1991).
[Crossref]

L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optometry Vision Sci. 68(8), 599–607 (1991).
[Crossref]

1990 (3)

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref]

P. Simonet and M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30(2), 187–206 (1990).
[Crossref]

A. Bradley, L. Thibos, and D. Still, “Visual acuity measured with clinical Maxwellian-view systems: effects of beam entry location,” Optometry Vision Sci. 67(11), 811–817 (1990).
[Crossref]

1988 (1)

1987 (2)

1986 (1)

P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26, 361–366 (1986).
[Crossref]

1976 (1)

W. N. Charman and J. A. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16(9), 999–1005 (1976).
[Crossref]

1960 (1)

1957 (1)

1947 (1)

Aissati, S.

S. Marcos, C. Benedí-García, S. Aissati, A. M. Gonzalez-Ramos, C. M. Lago, A. Radhkrishnan, M. Romero, S. Vedhakrishnan, L. Sawides, and M. Vinas, “VioBio lab adaptive optics: technology and applications by women vision scientists,” Ophthalmic Physiol Opt 40(2), 75–87 (2020).
[Crossref]

M. Vinas, S. Aissati, M. Romero, C. Benedi-Garcia, N. Garzon, F. Poyales, C. Dorronsoro, and S. Marcos, “Pre-operative simulation of post-operative multifocal vision,” Biomed. Opt. Express 10(11), 5801–5817 (2019).
[Crossref]

M. Vinas, C. Benedi-Garcia, S. Aissati, D. Pascual, V. Akondi, C. Dorronsoro, and S. Marcos, “Visual simulators replicate vision with multifocal lenses,” Sci. Rep. 9(1), 1539 (2019).
[Crossref]

Akondi, V.

M. Vinas, C. Benedi-Garcia, S. Aissati, D. Pascual, V. Akondi, C. Dorronsoro, and S. Marcos, “Visual simulators replicate vision with multifocal lenses,” Sci. Rep. 9(1), 1539 (2019).
[Crossref]

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref]

Applegate, R. A.

R. A. Applegate and V. Lakshminarayanan, “Parametric representation of Stiles–Crawford functions: normal variation of peak location and directionality,” J. Opt. Soc. Am. A 10(7), 1611–1623 (1993).
[Crossref]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for Reporting the Optical Aberrations of Eyes,” in Vision Science and its Applications, OSA Technical Digest (Optical Society of America, 2000), SuC1.

Artal, P.

N. Suchkov, E. J. Fernández, and P. Artal, “Impact of longitudinal chromatic aberration on through-focus visual acuity,” Opt. Express 27(24), 35935–35947 (2019).
[Crossref]

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Atchison, D. A.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

D. A. Atchison, D. H. Scott, A. Joblin, and G. Smith, “Influence of Stiles–Crawford effect apodization on spatial visual performance with decentered pupils,” J. Opt. Soc. Am. A 18(6), 1201–1211 (2001).
[Crossref]

Baraibar, B.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref]

Barbero, S.

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest Ophthalmol Vis Sci 42, 1396–1403 (2001).

Bedell, H. E.

Bedford, R. E.

Benedi, C.

S. Marcos, C. Benedi, M. Vinas, C. Dorronsoro, S. A. Burns, and E. Peli, “Visual benefit of correcting high order aberrationsin blue or green light: an optical effect?” ARVO abstract 2018 (2018).

Benedi-Garcia, C.

Benedí-García, C.

S. Marcos, C. Benedí-García, S. Aissati, A. M. Gonzalez-Ramos, C. M. Lago, A. Radhkrishnan, M. Romero, S. Vedhakrishnan, L. Sawides, and M. Vinas, “VioBio lab adaptive optics: technology and applications by women vision scientists,” Ophthalmic Physiol Opt 40(2), 75–87 (2020).
[Crossref]

Bradley, A.

Y. Ming, A. Bradley, L. N. Thibos, and Z. Xiaoxiao, “The effect of pupil size on chromostereopsis and chromatic diplopia: Interaction between the Stiles-Crawford effect and chromatic aberrations,” Vision Res. 32(11), 2121–2128 (1992).
[Crossref]

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
[Crossref]

L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optometry Vision Sci. 68(8), 599–607 (1991).
[Crossref]

X. Zhang, A. Bradley, and L. N. Thibos, “Achromatizing the human eye: the problem of chromatic parallax,” J. Opt. Soc. Am. A 8(4), 686–691 (1991).
[Crossref]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref]

A. Bradley, L. Thibos, and D. Still, “Visual acuity measured with clinical Maxwellian-view systems: effects of beam entry location,” Optometry Vision Sci. 67(11), 811–817 (1990).
[Crossref]

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” J. Opt. Soc. Am. A 5(12), 2087–2092 (1988).
[Crossref]

P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26, 361–366 (1986).
[Crossref]

Burns, S. A.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

S. Marcos and S. A. Burns, “Cone directionality from laser ray tracing in normal and LASIK patients,” J. Mod. Opt. 56(20), 2181–2188 (2009).
[Crossref]

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[Crossref]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref]

S. Marcos and S. A. Burns, “On the symmetry between eyes of wavefront aberration and cone directionality,” Vision Res. 40(18), 2437–2447 (2000).
[Crossref]

J. C. He, S. Marcos, and S. A. Burns, “Comparison of cone directionality determined by psychophysical and reflectometric techniques,” J. Opt. Soc. Am. A 16(10), 2363–2369 (1999).
[Crossref]

S. Marcos and S. A. Burns, “Cone spacing and waveguide properties from cone directionality measurements,” J. Opt. Soc. Am. A 16(5), 995–1004 (1999).
[Crossref]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[Crossref]

S. A. Burns, S. Wu, F. Delori, and A. E. Elsner, “Direct measurement of human-cone-photoreceptor alignment,” J. Opt. Soc. Am. A 12(10), 2329–2338 (1995).
[Crossref]

S. Marcos, C. Benedi, M. Vinas, C. Dorronsoro, S. A. Burns, and E. Peli, “Visual benefit of correcting high order aberrationsin blue or green light: an optical effect?” ARVO abstract 2018 (2018).

Campbell, M.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Campbell, M. C. W.

P. Simonet and M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30(2), 187–206 (1990).
[Crossref]

Carroll, J.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Charman, W. N.

W. N. Charman and J. A. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16(9), 999–1005 (1976).
[Crossref]

Chisholm, W.

M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle psi in a population of young adult eyes,” J Opt Soc Am A Opt Image Sci Vis 12(10), 2348–2357 (1995).
[Crossref]

Choi, S. S.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Cortes, D.

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, A. Radhakrishnan, and S. Marcos, “Testing vision with angular and radial multifocal designs using Adaptive Optics,” Vision Res. 132, 85–96 (2017).
[Crossref]

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
[Crossref]

Crawford, B. H.

W. S. Stiles, B. H. Crawford, and J. H. Parsons, “The luminous efficiency of rays entering the eye pupil at different points,” Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character 112, 428–450 (1933).

de Gracia, P.

L. Sawides, P. de Gracia, C. Dorronsoro, M. A. Webster, and S. Marcos, “Vision Is Adapted to the Natural Level of Blur Present in the Retinal Image,” PLOS ONE6(11), e27031 (2011).
[Crossref]

Delori, F.

S. A. Burns, S. Wu, F. Delori, and A. E. Elsner, “Direct measurement of human-cone-photoreceptor alignment,” J. Opt. Soc. Am. A 12(10), 2329–2338 (1995).
[Crossref]

J.-M. Gorrand and F. Delori, “A reflectometric technique for assessing photorecelptor alignment,” Vision Res. 35(7), 999–1010 (1995).
[Crossref]

Delori, F. C.

Diaz-Santana, L.

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optometry Vision Sci. 80(1), 26–35 (2003).
[Crossref]

Doble, N.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Dorronsoro, C.

M. Vinas, S. Aissati, M. Romero, C. Benedi-Garcia, N. Garzon, F. Poyales, C. Dorronsoro, and S. Marcos, “Pre-operative simulation of post-operative multifocal vision,” Biomed. Opt. Express 10(11), 5801–5817 (2019).
[Crossref]

M. Vinas, C. Benedi-Garcia, S. Aissati, D. Pascual, V. Akondi, C. Dorronsoro, and S. Marcos, “Visual simulators replicate vision with multifocal lenses,” Sci. Rep. 9(1), 1539 (2019).
[Crossref]

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, A. Radhakrishnan, and S. Marcos, “Testing vision with angular and radial multifocal designs using Adaptive Optics,” Vision Res. 132, 85–96 (2017).
[Crossref]

M. Vinas, C. Dorronsoro, A. Radhakrishnan, C. Benedi-Garcia, E. A. LaVilla, J. Schwiegerling, and S. Marcos, “Comparison of vision through surface modulated and spatial light modulated multifocal optics,” Biomed. Opt. Express 8(4), 2055–2068 (2017).
[Crossref]

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref]

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
[Crossref]

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
[Crossref]

S. Marcos, C. Benedi, M. Vinas, C. Dorronsoro, S. A. Burns, and E. Peli, “Visual benefit of correcting high order aberrationsin blue or green light: an optical effect?” ARVO abstract 2018 (2018).

L. Sawides, P. de Gracia, C. Dorronsoro, M. A. Webster, and S. Marcos, “Vision Is Adapted to the Natural Level of Blur Present in the Retinal Image,” PLOS ONE6(11), e27031 (2011).
[Crossref]

Dubis, A. M.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Dubra, A.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Elsner, A.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Elsner, A. E.

Fernández, E. J.

Gambra, E.

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
[Crossref]

Garzon, N.

M. Vinas, S. Aissati, M. Romero, C. Benedi-Garcia, N. Garzon, F. Poyales, C. Dorronsoro, and S. Marcos, “Pre-operative simulation of post-operative multifocal vision,” Biomed. Opt. Express 10(11), 5801–5817 (2019).
[Crossref]

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref]

Gatinel, D.

J. Loicq, N. Willet, and D. Gatinel, “Topography and longitudinal chromatic aberration characterizations of refractive-diffractive multifocal intraocular lenses,” J. Cataract Refractive Surg. 45(11), 1650–1659 (2019).
[Crossref]

J. Loicq, N. Willet, and D. Gatinel, LCA correction in diffractive intraocular lenses: an innovative optical design (Conference Presentation), SPIE BiOS (SPIE, 2020), Vol. 11231.

Gonzalez, V.

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, A. Radhakrishnan, and S. Marcos, “Testing vision with angular and radial multifocal designs using Adaptive Optics,” Vision Res. 132, 85–96 (2017).
[Crossref]

Gonzalez-Ramos, A.

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref]

Gonzalez-Ramos, A. M.

S. Marcos, C. Benedí-García, S. Aissati, A. M. Gonzalez-Ramos, C. M. Lago, A. Radhkrishnan, M. Romero, S. Vedhakrishnan, L. Sawides, and M. Vinas, “VioBio lab adaptive optics: technology and applications by women vision scientists,” Ophthalmic Physiol Opt 40(2), 75–87 (2020).
[Crossref]

Gorrand, J.-M.

J.-M. Gorrand and F. Delori, “A reflectometric technique for assessing photorecelptor alignment,” Vision Res. 35(7), 999–1010 (1995).
[Crossref]

Griffin, D. R.

Hampson, K. M.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Harmening, W. M.

He, J. C.

Hiraoka, T.

M. Nakajima, T. Hiraoka, T. Yamamoto, S. Takagi, Y. Hirohara, T. Oshika, and T. Mihashi, “Differences of Longitudinal Chromatic Aberration (LCA) between Eyes with Intraocular Lenses from Different Manufacturers,” PLoS One 11(6), e0156227 (2016).
[Crossref]

Hirohara, Y.

M. Nakajima, T. Hiraoka, T. Yamamoto, S. Takagi, Y. Hirohara, T. Oshika, and T. Mihashi, “Differences of Longitudinal Chromatic Aberration (LCA) between Eyes with Intraocular Lenses from Different Manufacturers,” PLoS One 11(6), e0156227 (2016).
[Crossref]

Howarth, P. A.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref]

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” J. Opt. Soc. Am. A 5(12), 2087–2092 (1988).
[Crossref]

P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26, 361–366 (1986).
[Crossref]

Hunter, J.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Jennings, J. A.

W. N. Charman and J. A. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16(9), 999–1005 (1976).
[Crossref]

Jiang, X.

Joblin, A.

Jonnal, R.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Kuchenbecker, J. A.

Lago, C. M.

S. Marcos, C. Benedí-García, S. Aissati, A. M. Gonzalez-Ramos, C. M. Lago, A. Radhkrishnan, M. Romero, S. Vedhakrishnan, L. Sawides, and M. Vinas, “VioBio lab adaptive optics: technology and applications by women vision scientists,” Ophthalmic Physiol Opt 40(2), 75–87 (2020).
[Crossref]

Lakshminarayanan, V.

Lara-Saucedo, D.

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optometry Vision Sci. 80(1), 26–35 (2003).
[Crossref]

LaVilla, E. A.

Legras, R.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Lidkea, B.

M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle psi in a population of young adult eyes,” J Opt Soc Am A Opt Image Sci Vis 12(10), 2348–2357 (1995).
[Crossref]

Llorente, L.

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optometry Vision Sci. 80(1), 26–35 (2003).
[Crossref]

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest Ophthalmol Vis Sci 42, 1396–1403 (2001).

Lloves, J. M.

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest Ophthalmol Vis Sci 42, 1396–1403 (2001).

Loicq, J.

J. Loicq, N. Willet, and D. Gatinel, “Topography and longitudinal chromatic aberration characterizations of refractive-diffractive multifocal intraocular lenses,” J. Cataract Refractive Surg. 45(11), 1650–1659 (2019).
[Crossref]

J. Loicq, N. Willet, and D. Gatinel, LCA correction in diffractive intraocular lenses: an innovative optical design (Conference Presentation), SPIE BiOS (SPIE, 2020), Vol. 11231.

Lundstrom, L.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Lundström, L.

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref]

Marcos, S.

S. Marcos, C. Benedí-García, S. Aissati, A. M. Gonzalez-Ramos, C. M. Lago, A. Radhkrishnan, M. Romero, S. Vedhakrishnan, L. Sawides, and M. Vinas, “VioBio lab adaptive optics: technology and applications by women vision scientists,” Ophthalmic Physiol Opt 40(2), 75–87 (2020).
[Crossref]

M. Vinas, C. Benedi-Garcia, S. Aissati, D. Pascual, V. Akondi, C. Dorronsoro, and S. Marcos, “Visual simulators replicate vision with multifocal lenses,” Sci. Rep. 9(1), 1539 (2019).
[Crossref]

M. Vinas, S. Aissati, M. Romero, C. Benedi-Garcia, N. Garzon, F. Poyales, C. Dorronsoro, and S. Marcos, “Pre-operative simulation of post-operative multifocal vision,” Biomed. Opt. Express 10(11), 5801–5817 (2019).
[Crossref]

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, A. Radhakrishnan, and S. Marcos, “Testing vision with angular and radial multifocal designs using Adaptive Optics,” Vision Res. 132, 85–96 (2017).
[Crossref]

M. Vinas, C. Dorronsoro, A. Radhakrishnan, C. Benedi-Garcia, E. A. LaVilla, J. Schwiegerling, and S. Marcos, “Comparison of vision through surface modulated and spatial light modulated multifocal optics,” Biomed. Opt. Express 8(4), 2055–2068 (2017).
[Crossref]

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref]

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

M. Sun, P. Pérez-Merino, E. Martinez-Enriquez, M. Velasco-Ocana, and S. Marcos, “Full 3-D OCT-based pseudophakic custom computer eye model,” Biomed. Opt. Express 7(3), 1074–1088 (2016).
[Crossref]

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
[Crossref]

S. Marcos and S. A. Burns, “Cone directionality from laser ray tracing in normal and LASIK patients,” J. Mod. Opt. 56(20), 2181–2188 (2009).
[Crossref]

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
[Crossref]

P. Rosales and S. Marcos, “Customized computer models of eyes with intraocular lenses,” Opt. Express 15(5), 2204–2218 (2007).
[Crossref]

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optometry Vision Sci. 80(1), 26–35 (2003).
[Crossref]

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[Crossref]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref]

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest Ophthalmol Vis Sci 42, 1396–1403 (2001).

S. Marcos and S. A. Burns, “On the symmetry between eyes of wavefront aberration and cone directionality,” Vision Res. 40(18), 2437–2447 (2000).
[Crossref]

J. C. He, S. Marcos, and S. A. Burns, “Comparison of cone directionality determined by psychophysical and reflectometric techniques,” J. Opt. Soc. Am. A 16(10), 2363–2369 (1999).
[Crossref]

S. Marcos and S. A. Burns, “Cone spacing and waveguide properties from cone directionality measurements,” J. Opt. Soc. Am. A 16(5), 995–1004 (1999).
[Crossref]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[Crossref]

S. Marcos, C. Benedi, M. Vinas, C. Dorronsoro, S. A. Burns, and E. Peli, “Visual benefit of correcting high order aberrationsin blue or green light: an optical effect?” ARVO abstract 2018 (2018).

L. Sawides, P. de Gracia, C. Dorronsoro, M. A. Webster, and S. Marcos, “Vision Is Adapted to the Natural Level of Blur Present in the Retinal Image,” PLOS ONE6(11), e27031 (2011).
[Crossref]

Martinez-Enriquez, E.

McLellan, J. S.

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[Crossref]

Merigan, W. H.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Metha, A.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Mihashi, T.

M. Nakajima, T. Hiraoka, T. Yamamoto, S. Takagi, Y. Hirohara, T. Oshika, and T. Mihashi, “Differences of Longitudinal Chromatic Aberration (LCA) between Eyes with Intraocular Lenses from Different Manufacturers,” PLoS One 11(6), e0156227 (2016).
[Crossref]

Miller, D. T.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Ming, Y.

Y. Ming, A. Bradley, L. N. Thibos, and Z. Xiaoxiao, “The effect of pupil size on chromostereopsis and chromatic diplopia: Interaction between the Stiles-Crawford effect and chromatic aberrations,” Vision Res. 32(11), 2121–2128 (1992).
[Crossref]

Moreno-Barriuso, E.

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest Ophthalmol Vis Sci 42, 1396–1403 (2001).

Moreno-Barriusop, E.

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[Crossref]

Nakajima, M.

M. Nakajima, T. Hiraoka, T. Yamamoto, S. Takagi, Y. Hirohara, T. Oshika, and T. Mihashi, “Differences of Longitudinal Chromatic Aberration (LCA) between Eyes with Intraocular Lenses from Different Manufacturers,” PLoS One 11(6), e0156227 (2016).
[Crossref]

Navarro, R.

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest Ophthalmol Vis Sci 42, 1396–1403 (2001).

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[Crossref]

Ogboso, Y. U.

Oshika, T.

M. Nakajima, T. Hiraoka, T. Yamamoto, S. Takagi, Y. Hirohara, T. Oshika, and T. Mihashi, “Differences of Longitudinal Chromatic Aberration (LCA) between Eyes with Intraocular Lenses from Different Manufacturers,” PLoS One 11(6), e0156227 (2016).
[Crossref]

Palczewska, G.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Paques, M.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Parsons, J. H.

W. S. Stiles, B. H. Crawford, and J. H. Parsons, “The luminous efficiency of rays entering the eye pupil at different points,” Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character 112, 428–450 (1933).

Pascual, D.

M. Vinas, C. Benedi-Garcia, S. Aissati, D. Pascual, V. Akondi, C. Dorronsoro, and S. Marcos, “Visual simulators replicate vision with multifocal lenses,” Sci. Rep. 9(1), 1539 (2019).
[Crossref]

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
[Crossref]

Peli, E.

S. Marcos, C. Benedi, M. Vinas, C. Dorronsoro, S. A. Burns, and E. Peli, “Visual benefit of correcting high order aberrationsin blue or green light: an optical effect?” ARVO abstract 2018 (2018).

Pérez-Merino, P.

Piers, P. A.

H. A. Weeber and P. A. Piers, “Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration,” J. Refract. Surg. 28(1), 48–52 (2012).
[Crossref]

Poyales, F.

M. Vinas, S. Aissati, M. Romero, C. Benedi-Garcia, N. Garzon, F. Poyales, C. Dorronsoro, and S. Marcos, “Pre-operative simulation of post-operative multifocal vision,” Biomed. Opt. Express 10(11), 5801–5817 (2019).
[Crossref]

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref]

Prieto, P. M.

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[Crossref]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref]

Privitera, C.

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref]

Privitera, C. M.

Radhakrishnan, A.

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, A. Radhakrishnan, and S. Marcos, “Testing vision with angular and radial multifocal designs using Adaptive Optics,” Vision Res. 132, 85–96 (2017).
[Crossref]

M. Vinas, C. Dorronsoro, A. Radhakrishnan, C. Benedi-Garcia, E. A. LaVilla, J. Schwiegerling, and S. Marcos, “Comparison of vision through surface modulated and spatial light modulated multifocal optics,” Biomed. Opt. Express 8(4), 2055–2068 (2017).
[Crossref]

Radhkrishnan, A.

S. Marcos, C. Benedí-García, S. Aissati, A. M. Gonzalez-Ramos, C. M. Lago, A. Radhkrishnan, M. Romero, S. Vedhakrishnan, L. Sawides, and M. Vinas, “VioBio lab adaptive optics: technology and applications by women vision scientists,” Ophthalmic Physiol Opt 40(2), 75–87 (2020).
[Crossref]

Romero, M.

S. Marcos, C. Benedí-García, S. Aissati, A. M. Gonzalez-Ramos, C. M. Lago, A. Radhkrishnan, M. Romero, S. Vedhakrishnan, L. Sawides, and M. Vinas, “VioBio lab adaptive optics: technology and applications by women vision scientists,” Ophthalmic Physiol Opt 40(2), 75–87 (2020).
[Crossref]

M. Vinas, S. Aissati, M. Romero, C. Benedi-Garcia, N. Garzon, F. Poyales, C. Dorronsoro, and S. Marcos, “Pre-operative simulation of post-operative multifocal vision,” Biomed. Opt. Express 10(11), 5801–5817 (2019).
[Crossref]

Roorda, A.

Rosales, P.

Rynders, M.

M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle psi in a population of young adult eyes,” J Opt Soc Am A Opt Image Sci Vis 12(10), 2348–2357 (1995).
[Crossref]

Rynders, M. C.

M. C. Rynders, “The Stiles-Crawford effect and an experimentaldetermination of its impact on vision,” (Indiana University, Bloomington, Ph.D. thesis, 1994).

Sabesan, R.

Sawides, L.

S. Marcos, C. Benedí-García, S. Aissati, A. M. Gonzalez-Ramos, C. M. Lago, A. Radhkrishnan, M. Romero, S. Vedhakrishnan, L. Sawides, and M. Vinas, “VioBio lab adaptive optics: technology and applications by women vision scientists,” Ophthalmic Physiol Opt 40(2), 75–87 (2020).
[Crossref]

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
[Crossref]

L. Sawides, P. de Gracia, C. Dorronsoro, M. A. Webster, and S. Marcos, “Vision Is Adapted to the Natural Level of Blur Present in the Retinal Image,” PLOS ONE6(11), e27031 (2011).
[Crossref]

Schallek, J.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Schwiegerling, J.

Schwiegerling, J. T.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for Reporting the Optical Aberrations of Eyes,” in Vision Science and its Applications, OSA Technical Digest (Optical Society of America, 2000), SuC1.

Scott, D. H.

Simonet, P.

P. Simonet and M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30(2), 187–206 (1990).
[Crossref]

Sincich, L. C.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

W. M. Harmening, P. Tiruveedhula, A. Roorda, and L. C. Sincich, “Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye,” Biomed. Opt. Express 3(9), 2066–2077 (2012).
[Crossref]

Sliney, D. H.

Smith, G.

Smithson, H. E.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Stiles, W. S.

W. S. Stiles, B. H. Crawford, and J. H. Parsons, “The luminous efficiency of rays entering the eye pupil at different points,” Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character 112, 428–450 (1933).

Still, D.

A. Bradley, L. Thibos, and D. Still, “Visual acuity measured with clinical Maxwellian-view systems: effects of beam entry location,” Optometry Vision Sci. 67(11), 811–817 (1990).
[Crossref]

Still, D. L.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref]

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” J. Opt. Soc. Am. A 5(12), 2087–2092 (1988).
[Crossref]

Suchkov, N.

Sun, M.

Takagi, S.

M. Nakajima, T. Hiraoka, T. Yamamoto, S. Takagi, Y. Hirohara, T. Oshika, and T. Mihashi, “Differences of Longitudinal Chromatic Aberration (LCA) between Eyes with Intraocular Lenses from Different Manufacturers,” PLoS One 11(6), e0156227 (2016).
[Crossref]

Thibos, L.

A. Bradley, L. Thibos, and D. Still, “Visual acuity measured with clinical Maxwellian-view systems: effects of beam entry location,” Optometry Vision Sci. 67(11), 811–817 (1990).
[Crossref]

Thibos, L. N.

M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle psi in a population of young adult eyes,” J Opt Soc Am A Opt Image Sci Vis 12(10), 2348–2357 (1995).
[Crossref]

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
[Crossref]

Y. Ming, A. Bradley, L. N. Thibos, and Z. Xiaoxiao, “The effect of pupil size on chromostereopsis and chromatic diplopia: Interaction between the Stiles-Crawford effect and chromatic aberrations,” Vision Res. 32(11), 2121–2128 (1992).
[Crossref]

X. Zhang, A. Bradley, and L. N. Thibos, “Achromatizing the human eye: the problem of chromatic parallax,” J. Opt. Soc. Am. A 8(4), 686–691 (1991).
[Crossref]

L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optometry Vision Sci. 68(8), 599–607 (1991).
[Crossref]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref]

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” J. Opt. Soc. Am. A 5(12), 2087–2092 (1988).
[Crossref]

L. N. Thibos, “Calculation of the influence of lateral chromatic aberration on image quality across the visual field,” J. Opt. Soc. Am. A 4(8), 1673–1680 (1987).
[Crossref]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for Reporting the Optical Aberrations of Eyes,” in Vision Science and its Applications, OSA Technical Digest (Optical Society of America, 2000), SuC1.

Tiruveedhula, P.

Touch, P.

Tscherning, M.

M. Tscherning, Physiological Optics (Keystone,1924).

Unsbo, P.

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref]

Vedhakrishnan, S.

S. Marcos, C. Benedí-García, S. Aissati, A. M. Gonzalez-Ramos, C. M. Lago, A. Radhkrishnan, M. Romero, S. Vedhakrishnan, L. Sawides, and M. Vinas, “VioBio lab adaptive optics: technology and applications by women vision scientists,” Ophthalmic Physiol Opt 40(2), 75–87 (2020).
[Crossref]

Velasco-Ocana, M.

Vinas, M.

S. Marcos, C. Benedí-García, S. Aissati, A. M. Gonzalez-Ramos, C. M. Lago, A. Radhkrishnan, M. Romero, S. Vedhakrishnan, L. Sawides, and M. Vinas, “VioBio lab adaptive optics: technology and applications by women vision scientists,” Ophthalmic Physiol Opt 40(2), 75–87 (2020).
[Crossref]

M. Vinas, S. Aissati, M. Romero, C. Benedi-Garcia, N. Garzon, F. Poyales, C. Dorronsoro, and S. Marcos, “Pre-operative simulation of post-operative multifocal vision,” Biomed. Opt. Express 10(11), 5801–5817 (2019).
[Crossref]

M. Vinas, C. Benedi-Garcia, S. Aissati, D. Pascual, V. Akondi, C. Dorronsoro, and S. Marcos, “Visual simulators replicate vision with multifocal lenses,” Sci. Rep. 9(1), 1539 (2019).
[Crossref]

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, A. Radhakrishnan, and S. Marcos, “Testing vision with angular and radial multifocal designs using Adaptive Optics,” Vision Res. 132, 85–96 (2017).
[Crossref]

M. Vinas, C. Dorronsoro, A. Radhakrishnan, C. Benedi-Garcia, E. A. LaVilla, J. Schwiegerling, and S. Marcos, “Comparison of vision through surface modulated and spatial light modulated multifocal optics,” Biomed. Opt. Express 8(4), 2055–2068 (2017).
[Crossref]

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref]

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
[Crossref]

S. Marcos, C. Benedi, M. Vinas, C. Dorronsoro, S. A. Burns, and E. Peli, “Visual benefit of correcting high order aberrationsin blue or green light: an optical effect?” ARVO abstract 2018 (2018).

Vos, J. J.

Wald, G.

Webb, R.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for Reporting the Optical Aberrations of Eyes,” in Vision Science and its Applications, OSA Technical Digest (Optical Society of America, 2000), SuC1.

Webb, R. H.

Webster, M. A.

L. Sawides, P. de Gracia, C. Dorronsoro, M. A. Webster, and S. Marcos, “Vision Is Adapted to the Natural Level of Blur Present in the Retinal Image,” PLOS ONE6(11), e27031 (2011).
[Crossref]

Weeber, H. A.

H. A. Weeber and P. A. Piers, “Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration,” J. Refract. Surg. 28(1), 48–52 (2012).
[Crossref]

Werner, J. S.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Willet, N.

J. Loicq, N. Willet, and D. Gatinel, “Topography and longitudinal chromatic aberration characterizations of refractive-diffractive multifocal intraocular lenses,” J. Cataract Refractive Surg. 45(11), 1650–1659 (2019).
[Crossref]

J. Loicq, N. Willet, and D. Gatinel, LCA correction in diffractive intraocular lenses: an innovative optical design (Conference Presentation), SPIE BiOS (SPIE, 2020), Vol. 11231.

Williams, D. R.

Winter, S.

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref]

C. M. Privitera, R. Sabesan, S. Winter, P. Tiruveedhula, and A. Roorda, “Eye-tracking technology for real-time monitoring of transverse chromatic aberration,” Opt. Lett. 41(8), 1728–1731 (2016).
[Crossref]

Wu, S.

Wyszecki, G.

Xiaoxiao, Z.

Y. Ming, A. Bradley, L. N. Thibos, and Z. Xiaoxiao, “The effect of pupil size on chromostereopsis and chromatic diplopia: Interaction between the Stiles-Crawford effect and chromatic aberrations,” Vision Res. 32(11), 2121–2128 (1992).
[Crossref]

Yamamoto, T.

M. Nakajima, T. Hiraoka, T. Yamamoto, S. Takagi, Y. Hirohara, T. Oshika, and T. Mihashi, “Differences of Longitudinal Chromatic Aberration (LCA) between Eyes with Intraocular Lenses from Different Manufacturers,” PLoS One 11(6), e0156227 (2016).
[Crossref]

Ye, M.

Yoon, G.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Yoon, G.-Y.

Young, L. K.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Zhang, X.

Zhang, X. X.

L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optometry Vision Sci. 68(8), 599–607 (1991).
[Crossref]

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” J. Opt. Soc. Am. A 5(12), 2087–2092 (1988).
[Crossref]

Zhang, Y.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

Appl. Opt. (1)

Biomed. Opt. Express (5)

Invest Ophthalmol Vis Sci (1)

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest Ophthalmol Vis Sci 42, 1396–1403 (2001).

J Opt Soc Am A Opt Image Sci Vis (1)

M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle psi in a population of young adult eyes,” J Opt Soc Am A Opt Image Sci Vis 12(10), 2348–2357 (1995).
[Crossref]

J. Cataract Refractive Surg. (1)

J. Loicq, N. Willet, and D. Gatinel, “Topography and longitudinal chromatic aberration characterizations of refractive-diffractive multifocal intraocular lenses,” J. Cataract Refractive Surg. 45(11), 1650–1659 (2019).
[Crossref]

J. Mod. Opt. (1)

S. Marcos and S. A. Burns, “Cone directionality from laser ray tracing in normal and LASIK patients,” J. Mod. Opt. 56(20), 2181–2188 (2009).
[Crossref]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (11)

X. Zhang, A. Bradley, and L. N. Thibos, “Achromatizing the human eye: the problem of chromatic parallax,” J. Opt. Soc. Am. A 8(4), 686–691 (1991).
[Crossref]

D. A. Atchison, D. H. Scott, A. Joblin, and G. Smith, “Influence of Stiles–Crawford effect apodization on spatial visual performance with decentered pupils,” J. Opt. Soc. Am. A 18(6), 1201–1211 (2001).
[Crossref]

G.-Y. Yoon and D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19(2), 266–275 (2002).
[Crossref]

F. C. Delori, R. H. Webb, and D. H. Sliney, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A 24(5), 1250–1265 (2007).
[Crossref]

S. Marcos and S. A. Burns, “Cone spacing and waveguide properties from cone directionality measurements,” J. Opt. Soc. Am. A 16(5), 995–1004 (1999).
[Crossref]

J. C. He, S. Marcos, and S. A. Burns, “Comparison of cone directionality determined by psychophysical and reflectometric techniques,” J. Opt. Soc. Am. A 16(10), 2363–2369 (1999).
[Crossref]

Y. U. Ogboso and H. E. Bedell, “Magnitude of lateral chromatic aberration across the retina of the human eye,” J. Opt. Soc. Am. A 4(8), 1666–1672 (1987).
[Crossref]

L. N. Thibos, “Calculation of the influence of lateral chromatic aberration on image quality across the visual field,” J. Opt. Soc. Am. A 4(8), 1673–1680 (1987).
[Crossref]

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” J. Opt. Soc. Am. A 5(12), 2087–2092 (1988).
[Crossref]

R. A. Applegate and V. Lakshminarayanan, “Parametric representation of Stiles–Crawford functions: normal variation of peak location and directionality,” J. Opt. Soc. Am. A 10(7), 1611–1623 (1993).
[Crossref]

S. A. Burns, S. Wu, F. Delori, and A. E. Elsner, “Direct measurement of human-cone-photoreceptor alignment,” J. Opt. Soc. Am. A 12(10), 2329–2338 (1995).
[Crossref]

J. Refract. Surg. (2)

H. A. Weeber and P. A. Piers, “Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration,” J. Refract. Surg. 28(1), 48–52 (2012).
[Crossref]

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref]

J. Vis. (2)

S. Marcos, L. Sawides, E. Gambra, and C. Dorronsoro, “Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities,” J. Vis. 8(13), 1 (2008).
[Crossref]

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref]

Nature (1)

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[Crossref]

Ophthalmic Physiol Opt (1)

S. Marcos, C. Benedí-García, S. Aissati, A. M. Gonzalez-Ramos, C. M. Lago, A. Radhkrishnan, M. Romero, S. Vedhakrishnan, L. Sawides, and M. Vinas, “VioBio lab adaptive optics: technology and applications by women vision scientists,” Ophthalmic Physiol Opt 40(2), 75–87 (2020).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Optica (1)

Optometry Vision Sci. (3)

L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optometry Vision Sci. 68(8), 599–607 (1991).
[Crossref]

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optometry Vision Sci. 80(1), 26–35 (2003).
[Crossref]

A. Bradley, L. Thibos, and D. Still, “Visual acuity measured with clinical Maxwellian-view systems: effects of beam entry location,” Optometry Vision Sci. 67(11), 811–817 (1990).
[Crossref]

PLoS One (1)

M. Nakajima, T. Hiraoka, T. Yamamoto, S. Takagi, Y. Hirohara, T. Oshika, and T. Mihashi, “Differences of Longitudinal Chromatic Aberration (LCA) between Eyes with Intraocular Lenses from Different Manufacturers,” PLoS One 11(6), e0156227 (2016).
[Crossref]

Sci. Rep. (1)

M. Vinas, C. Benedi-Garcia, S. Aissati, D. Pascual, V. Akondi, C. Dorronsoro, and S. Marcos, “Visual simulators replicate vision with multifocal lenses,” Sci. Rep. 9(1), 1539 (2019).
[Crossref]

Vision Res. (11)

M. Vinas, C. Dorronsoro, V. Gonzalez, D. Cortes, A. Radhakrishnan, and S. Marcos, “Testing vision with angular and radial multifocal designs using Adaptive Optics,” Vision Res. 132, 85–96 (2017).
[Crossref]

P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26, 361–366 (1986).
[Crossref]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref]

W. N. Charman and J. A. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16(9), 999–1005 (1976).
[Crossref]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref]

P. Simonet and M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30(2), 187–206 (1990).
[Crossref]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[Crossref]

Y. Ming, A. Bradley, L. N. Thibos, and Z. Xiaoxiao, “The effect of pupil size on chromostereopsis and chromatic diplopia: Interaction between the Stiles-Crawford effect and chromatic aberrations,” Vision Res. 32(11), 2121–2128 (1992).
[Crossref]

J.-M. Gorrand and F. Delori, “A reflectometric technique for assessing photorecelptor alignment,” Vision Res. 35(7), 999–1010 (1995).
[Crossref]

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref]

S. Marcos and S. A. Burns, “On the symmetry between eyes of wavefront aberration and cone directionality,” Vision Res. 40(18), 2437–2447 (2000).
[Crossref]

Other (8)

Fianium, “Fianium Supercontinuum source,” (retrieved 2012), retrieved http://fianium.com/ .

S. Marcos, C. Benedi, M. Vinas, C. Dorronsoro, S. A. Burns, and E. Peli, “Visual benefit of correcting high order aberrationsin blue or green light: an optical effect?” ARVO abstract 2018 (2018).

J. Loicq, N. Willet, and D. Gatinel, LCA correction in diffractive intraocular lenses: an innovative optical design (Conference Presentation), SPIE BiOS (SPIE, 2020), Vol. 11231.

W. S. Stiles, B. H. Crawford, and J. H. Parsons, “The luminous efficiency of rays entering the eye pupil at different points,” Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character 112, 428–450 (1933).

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for Reporting the Optical Aberrations of Eyes,” in Vision Science and its Applications, OSA Technical Digest (Optical Society of America, 2000), SuC1.

M. Tscherning, Physiological Optics (Keystone,1924).

M. C. Rynders, “The Stiles-Crawford effect and an experimentaldetermination of its impact on vision,” (Indiana University, Bloomington, Ph.D. thesis, 1994).

L. Sawides, P. de Gracia, C. Dorronsoro, M. A. Webster, and S. Marcos, “Vision Is Adapted to the Natural Level of Blur Present in the Retinal Image,” PLOS ONE6(11), e27031 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (A) Visual stimuli and Vernier alignment method for the measurement of TCA. The stimulus consists of a small red square in the middle of a larger blue square, with a cross of black bars placed on top of both squares (A, Left) The black bars in the center are purposely misaligned. The subject uses a keyboard (A, Middle) to shift the bars in the central field until they appear to be aligned with the bars in the periphery (A, Right). The TCA is estimated from the shift produced by the subject in the horizontal and vertical lines to achieve the alignment. (B) Image of the stimulus captured in the retinal plane of an artificial eye placed in the position of the subject.
Fig. 2.
Fig. 2. (A) Laser Ray Tracing retinal aerial images at entry position locations (-2,0) and (+2,0) and calculations of the aerial image intensity (integrated within the area marked by the red circle, of 20-pixel radius, centered at the position of the image maximum intensity). (B) Arial Image intensity as function of entry pupil, for an LRT series of 37 images. Each square represents average intensity across four repeated measurements. (C) Gaussian fitting of the LRT aerial image intensities (according to Eq. (1)). The asterisk marks the coordinates of the Stiles-Crawford peak. Positive horizontal coordinates stand for nasal displacements and vertical coordinates stand for superior displacements from the pupil center.
Fig. 3.
Fig. 3. Illustration of the calculations of the computational pTCA-HOA obtained from estimated Point Spread Functions (PSFs) and Line Spread Functions (LSFx,LSFy) in red and blue for 6-mm pupils, vectorially added to the measured oTCA-AO (2 mm, AO-correction). Calculations of computational pTCA-HOA-SCE and pTCA-AO-SCE are performed similarly, including the SCE (simulated applying a Gaussian pupil mask), with or without aberrations respectively, to calculate the corresponding LSFx,LSFy to add to the oTCA-AO.
Fig. 4.
Fig. 4. (A) Wave aberrations maps for HOA for different wavelengths in one of the subjects (S#3) for natural aberrations (upper row) and for AO-correction (lower row). (B) Root Mean Square (RMS) wavefront error for different wavelengths, with natural aberrations (solid bars) and AO-correction at 880 nm (patterned bars), averaged across subjects and wavelengths (for wavelengths between 490 and 880 nm). Data are for 6-mm pupil diameters.
Fig. 5.
Fig. 5. Psychophysical LCA (490-680 nm) range, in 5 subjects (S#1-S#5) and averaged across subjects. Data are for natural aberrations (solid bars) and AO-correction (patterned bars).
Fig. 6.
Fig. 6. (A) Optical TCA (oTCA, 2 mm), with natural aberrations (oTCA-HOA, small red circles) and AO-correction (oTCA-AO, small green circles), for all subjects. Error bars stand for standard deviation of repeated measurements. (B) Perceived TCA (pTCA, 6 mm), with natural aberrations (pTCA-HOA, large red circles) and AO-correction (pTCA-AO, large green circles), for all subjects. Error bars stand for standard deviation of repeated measurements. Note: One subject not shown because of falling outside the axis range (-4 to 4 arc min). (C) Average (across subjects) coordinates for oTCA (small circles) and pTCA (large circles), for natural aberrations (red symbols) and AO-correction (green symols). Error bars stand for standard deviations across subjects. (D) Absolute TCA magnitude differences, for different conditions: changing the pupil size (pTCA-oTCA) under natural aberration (red solid bar), AO-correction (green solid bar); correcting aberrations, for a given pupil diameter (6 mm, pTCA-HOA – pTCA-AO, blue solid bar and 2 mm, oTCA-HOA – oTCA-AO, blue patterned bar). Error bars stand for standard deviations across subjects.
Fig. 7.
Fig. 7. A. 2D-Gaussian fitting of the LRT aerial image intensities (according to Eq.1) for all subjects. The asterisk marks the coordinates of the Stiles-Crawford peak. Positive horizontal coordinates stand for nasal displacements and vertical coordinates stand for superior displacements from the pupil center. The x- and y- axis ranges (pupil coordinates) are shown for S#1, and are similar for all subjects. B. SCE peak positions in nine eyes of the study positive horizontal coordinates stand for nasal displacement, and positive vertical coordinates for superior displacement. Each eye is depicted by different symbol shape. Error bars (standard deviations of estimations from five repeated LRT series) are smaller than the symbols (0.04 ± 0.01 mm).
Fig. 8.
Fig. 8. Illustration for one subject (S#3) of the estimated effects of HOA and SCE on the perceived TCA. (A) Estimated shifts in the peak of the LSF in the horizontal and vertical coordinates for blue and red when considering the HOA and SCE, with respect to the LSF peaks for blue and red in absence of HOA and SCE, taken at the 0,0 coordinate for red and shifted by the experimental value of oTCA-AO for blue. The coordinate shift by HOA is represented by the symbol “×”, the coordinate shift by HOA + SCE is represented by “+”, and the coordinate shift by SCE is represented by “o”. (B) Computational pTCA, calculated from the vectorial difference of the blue and red peak coordinates: pTCA-HOA from the difference of the coordinates represented by “×”, pTCA-HOA-SCE from the difference of the coordinates represented by “+”, pTCA-AO-SCE from the difference of the coordinates represented by “o”. The experimental oTCA-HOA, oTCA-AO, pTCA-HOA and pTCA-AO are also shown.
Fig. 9.
Fig. 9. (A) Experimental pTCA-HOA (large red circles) and computational pTCA-HOA (HOAs only, represented by red “×”). (B) Experimental pTCA-HOA (large red circles) and computational pTCA-HOA-SCE (HOAs and SCE, represented by red “+”). (C) Experimental pTCA-AO (large green circle) and computational pTCA-SCE (no HOAs, SCE only, represented by green ○). The gray lines link the symbols of experimental and computational data for each subject (in A, B, C). (D) Experimental pTCA-HOA, pTCA-AO and oTCA-AO and computational pTCA-HOA, pTCA-HOA-SCE, pTCA-AO and pTCA-AO-SCE, averaged across subjects. In all the graphs, the red symbols correspond to the HOAs condition, and the green symbols correspond to the AO-correction. Error bars stand for standard Errors across subjects (for horizontal and vertical coordinates).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = B + I m a x 10 ρ [ ( x x 0 ) 2 + ( y y 0 ) 2 ]

Metrics