Abstract

3D pitch rotation of microparticles and cells assumes importance in a wide variety of applications in biology, physics, chemistry and medicine. Applications such as cell imaging and injection benefit from pitch-rotational manipulation. Generation of such motion in single beam optical tweezers has remained elusive due to the complexities of generating high enough ellipticity perpendicular to the direction of propagation. Further, trapping a perfectly spherical object at two locations and subsequent pitch rotation hasn’t yet been demonstrated to be possible. Here, we use hexagonal-shaped upconverting particles and single cells trapped close to a gold-coated glass cover slip in a sample chamber to generate complete 360 degree and continuous pitch motion even with a single optical tweezer beam. The tweezers beam passing through the gold surface is partially absorbed and generates a hot-spot to produce circulatory convective flows in the vicinity which rotates the objects. The rotation rate can be controlled by the intensity of the laser light. Thus such a simple configuration can turn the particle in the pitch sense. The circulatory flows in this technique have a diameter of about 5 μm which is smaller than those reported using acousto-fluidic techniques.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref]
  2. I. D. Vlaminck and C. Dekker, “Recent advances in magnetic tweezers,” Annu. Rev. Biophys. 41(1), 453–472 (2012).
    [Crossref]
  3. A. P. Fields and A. E. Cohen, “Electrokinetic trapping at the one nanometer limit,” Proc. Natl. Acad. Sci. U. S. A. 108(22), 8937–8942 (2011).
    [Crossref]
  4. D. Ahmed, A. Ozcelik, N. Bojanala, N. Nama, A. Upadhyay, Y. Chen, W. Hanna-Rose, and T. J. Huang, “Rotational manipulation of single cells and organisms using acoustic waves,” Nat. Commun. 7(1), 11085 (2016).
    [Crossref]
  5. J. Zhang, S. Yang, C. Chen, J. H. Hartman, P.-H. Huang, L. Wang, Z. Tian, S. P. Zhang, D. Faulkenberry, J. N. Meyer, and T. J. Huang, “Surface acoustic waves enable rotational manipulation of caenorhabditis elegans,” Lab Chip 19(6), 984–992 (2019).
    [Crossref]
  6. S. Hong, Q. Pan, and L. P. Lee, “Single-cell level co-culture platform for intercellular communication,” Integr. Biol. 4(4), 374–380 (2012).
    [Crossref]
  7. I. Pushkarsky, Y. Liu, W. Weaver, T. W. Su, O. Mudanyali, A. Ozcan, and D. D. Carlo, “Automated single-cell motility analysis on a chip using lensfree microscopy,” Sci. Rep. 4(1), 4717 (2015).
    [Crossref]
  8. A. G. Fraser, R. S. Kamath, P. Zipperlen, M. Martinez-Compos, M. Sohrman, and J. Ahringer, “Functional genomic analysis of C. elegans chromosome I by systematic RNA interference,” Nature 408(6810), 325–330 (2000).
    [Crossref]
  9. C. C. Ide, N. Valmas, M. A. Hilliard, and H. Lu, “Laterally orienting c. elegans using geometry at microscale for high-throughput visual screens in neurodegeneration and neuronal development studies,” PLoS One 7(4), e35037 (2012).
    [Crossref]
  10. C. B. Rohde, F. Zeng, R. Gonzalez-Rubio, M. Angel, and M. F. Yanik, “Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution,” Proc. Natl. Acad. Sci. U. S. A. 104(35), 13891–13895 (2007).
    [Crossref]
  11. A. F. Coskun, I. Sencan, T. W. Su, and A. Ozcan, “Laterally orienting c. elegans using geometry at microscale for high-throughput visual screens in neurodegeneration and neuronal development studies,” PLoS One 6(1), e15955 (2011).
    [Crossref]
  12. S. K. Mohanty, A. Uppal, and P. K. Gupta, “Self-rotation of red blood cells in optical tweezers: prospects for high throughput malaria diagnosis,” Biotechnol. Lett. 26(12), 971–974 (2004).
    [Crossref]
  13. R. Elbez, B. H. McNaughton, L. Patel, K. J. Pienta, and R. Kopelman, “Nanoparticle induced cell magneto-rotation: monitoring morphology stress and drug sensitivity of a suspended single cancer cell,” PLoS One 6(12), e28475 (2011).
    [Crossref]
  14. C. G. Galbraith and G. A. Galbraith, “Super-resolution microscopy at a glance,” J. Cell Sci. 124(10), 1607–1611 (2011).
    [Crossref]
  15. B. Roy, A. Ramaiya, and E. Schaffer, “Determination of pitch rotation in a spherical birefringent microparticle,” J. Opt. 20(3), 035603 (2018).
    [Crossref]
  16. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
    [Crossref]
  17. A. Ramaiya, B. Roy, M. Bugiel, and E. Schaffer, “Kinesin rotates unidirectionally and generates torque while walking on microtubules,” Proc. Natl. Acad. Sci. U. S. A. 114(41), 10894–10899 (2017).
    [Crossref]
  18. R. Vaippully, D. Bhatt, A. D. Ranjan, and B. Roy, “Study of adhesivity of surfaces using rotational optical tweezers,” Phys. Scr. 94(10), 105008 (2019).
    [Crossref]
  19. Y. V. Lee, D. Wu, Y. Fang, Y. Peng, and B. Tian, “Tracking longitudinal rotation of silicon nanowires for biointerfaces,” Nano Lett. 20(5), 3852–3857 (2020).
    [Crossref]
  20. L. Huang, P. Zhao, and W. Wang, “3D cell electrorotation and imaging for measuring multiple cellular biophysical properties,” Lab Chip 18(16), 2359–2368 (2018).
    [Crossref]
  21. M. Habaza, M. Kirschbaum, C. Guernth Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Dusch, and N. T. Shaked, “Rapid 3D refractive’ index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv. Sci. 4(2), 1600205 (2017).
    [Crossref]
  22. A. L. Porta and M. Wang, “Optical torque wrench: Angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett. 92(19), 190801 (2004).
    [Crossref]
  23. M. Lokesh, R. Vaippully, and B. Roy, “Active generation of pitch degree of rotational motion in optical tweezers,” Asian. J. Phys. 29, 177–182 (2020).
  24. M. Habaza, B. Gilboa, Y. Roichman, and N. T. Shaked, “Tomographic phase microscopy with 180 rotation of live cells in suspension by holographic optical tweezers,” Opt. Lett. 40(8), 1881–1884 (2015).
    [Crossref]
  25. D. Wolfson, M. Steck, M. Persson, G. McNerney, A. Popovich, M. Gokso, and T. Huser, “Rapid 3D fluorescence imaging of individual opticallytrapped living immune cells,” J. Biophotonics 8(3), 208–216 (2015).
    [Crossref]
  26. G. Vizsnyiczai, A. Buzas, B. L. Aekbote, T. Fekete, I. Grexa, P. Ormos, and L. Kelemen, “Multiview microscopy of single cells through microstructure-based indirect optical manipulation,” Biomed. Opt. Express 11(2), 945–962 (2020).
    [Crossref]
  27. S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, “High-efficiency optical transfer of torque to a nematic liquid crystal droplet,” Appl. Phys. Lett. 82(26), 4657–4659 (2003).
    [Crossref]
  28. E. Flores-Flores, S. A. Torres-Hurtado, R. Páez, U. Ruiz, G. Beltrán-Párez, S. L. Neale, J. C. Ramirez-San-Juan, and R. Ramos-García, “Trapping and manipulation of microparticles using laser-induced convection currents and photophoresis,” Biomed. Opt. Express 6(10), 4079–4087 (2015).
    [Crossref]
  29. P. Rodríguez-Sevilla, Y. Zhang, N. de Sousa, M. I. Marques, F. Sanz-Rodríguez, D. Jaque, X. Liu, and P. Haro-Gonzalez, “Optical torques on upconverting particles for intracellular microrheometry,” Nano Lett. 16(12), 8005–8014 (2016).
    [Crossref]
  30. J.-H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-Unkel, K. Berg-Sørensen, L. Oddershede, and R. Metzler, “In vivo anomalous diffusion and weak ergodicity breaking of lipid granules,” Phys. Rev. Lett. 106(4), 048103 (2011).
    [Crossref]
  31. E. Ortiz-Rivero, K. Prorok, M. Skowickl, D. Lu, A. Bednarkiewicz, D. Jaque, and P. Haro-Gonzalez, “Single-cell biodetection by upconverting microspinners,” Small 15(46), 1904154 (2019).
    [Crossref]
  32. M. Gunaseelan, S. Yamini, G. Kumar, and J. Senthilselvan, “Highly efficient upconversion luminescence in hexagonal NaYF4:Yb3+, Er3+ nanocrystals synthesized by a novel reverse microemulsion method,” Opt. Mater. 75, 174–186 (2018).
    [Crossref]

2020 (3)

Y. V. Lee, D. Wu, Y. Fang, Y. Peng, and B. Tian, “Tracking longitudinal rotation of silicon nanowires for biointerfaces,” Nano Lett. 20(5), 3852–3857 (2020).
[Crossref]

M. Lokesh, R. Vaippully, and B. Roy, “Active generation of pitch degree of rotational motion in optical tweezers,” Asian. J. Phys. 29, 177–182 (2020).

G. Vizsnyiczai, A. Buzas, B. L. Aekbote, T. Fekete, I. Grexa, P. Ormos, and L. Kelemen, “Multiview microscopy of single cells through microstructure-based indirect optical manipulation,” Biomed. Opt. Express 11(2), 945–962 (2020).
[Crossref]

2019 (3)

E. Ortiz-Rivero, K. Prorok, M. Skowickl, D. Lu, A. Bednarkiewicz, D. Jaque, and P. Haro-Gonzalez, “Single-cell biodetection by upconverting microspinners,” Small 15(46), 1904154 (2019).
[Crossref]

R. Vaippully, D. Bhatt, A. D. Ranjan, and B. Roy, “Study of adhesivity of surfaces using rotational optical tweezers,” Phys. Scr. 94(10), 105008 (2019).
[Crossref]

J. Zhang, S. Yang, C. Chen, J. H. Hartman, P.-H. Huang, L. Wang, Z. Tian, S. P. Zhang, D. Faulkenberry, J. N. Meyer, and T. J. Huang, “Surface acoustic waves enable rotational manipulation of caenorhabditis elegans,” Lab Chip 19(6), 984–992 (2019).
[Crossref]

2018 (3)

B. Roy, A. Ramaiya, and E. Schaffer, “Determination of pitch rotation in a spherical birefringent microparticle,” J. Opt. 20(3), 035603 (2018).
[Crossref]

L. Huang, P. Zhao, and W. Wang, “3D cell electrorotation and imaging for measuring multiple cellular biophysical properties,” Lab Chip 18(16), 2359–2368 (2018).
[Crossref]

M. Gunaseelan, S. Yamini, G. Kumar, and J. Senthilselvan, “Highly efficient upconversion luminescence in hexagonal NaYF4:Yb3+, Er3+ nanocrystals synthesized by a novel reverse microemulsion method,” Opt. Mater. 75, 174–186 (2018).
[Crossref]

2017 (2)

M. Habaza, M. Kirschbaum, C. Guernth Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Dusch, and N. T. Shaked, “Rapid 3D refractive’ index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv. Sci. 4(2), 1600205 (2017).
[Crossref]

A. Ramaiya, B. Roy, M. Bugiel, and E. Schaffer, “Kinesin rotates unidirectionally and generates torque while walking on microtubules,” Proc. Natl. Acad. Sci. U. S. A. 114(41), 10894–10899 (2017).
[Crossref]

2016 (2)

P. Rodríguez-Sevilla, Y. Zhang, N. de Sousa, M. I. Marques, F. Sanz-Rodríguez, D. Jaque, X. Liu, and P. Haro-Gonzalez, “Optical torques on upconverting particles for intracellular microrheometry,” Nano Lett. 16(12), 8005–8014 (2016).
[Crossref]

D. Ahmed, A. Ozcelik, N. Bojanala, N. Nama, A. Upadhyay, Y. Chen, W. Hanna-Rose, and T. J. Huang, “Rotational manipulation of single cells and organisms using acoustic waves,” Nat. Commun. 7(1), 11085 (2016).
[Crossref]

2015 (4)

I. Pushkarsky, Y. Liu, W. Weaver, T. W. Su, O. Mudanyali, A. Ozcan, and D. D. Carlo, “Automated single-cell motility analysis on a chip using lensfree microscopy,” Sci. Rep. 4(1), 4717 (2015).
[Crossref]

E. Flores-Flores, S. A. Torres-Hurtado, R. Páez, U. Ruiz, G. Beltrán-Párez, S. L. Neale, J. C. Ramirez-San-Juan, and R. Ramos-García, “Trapping and manipulation of microparticles using laser-induced convection currents and photophoresis,” Biomed. Opt. Express 6(10), 4079–4087 (2015).
[Crossref]

M. Habaza, B. Gilboa, Y. Roichman, and N. T. Shaked, “Tomographic phase microscopy with 180 rotation of live cells in suspension by holographic optical tweezers,” Opt. Lett. 40(8), 1881–1884 (2015).
[Crossref]

D. Wolfson, M. Steck, M. Persson, G. McNerney, A. Popovich, M. Gokso, and T. Huser, “Rapid 3D fluorescence imaging of individual opticallytrapped living immune cells,” J. Biophotonics 8(3), 208–216 (2015).
[Crossref]

2012 (3)

S. Hong, Q. Pan, and L. P. Lee, “Single-cell level co-culture platform for intercellular communication,” Integr. Biol. 4(4), 374–380 (2012).
[Crossref]

I. D. Vlaminck and C. Dekker, “Recent advances in magnetic tweezers,” Annu. Rev. Biophys. 41(1), 453–472 (2012).
[Crossref]

C. C. Ide, N. Valmas, M. A. Hilliard, and H. Lu, “Laterally orienting c. elegans using geometry at microscale for high-throughput visual screens in neurodegeneration and neuronal development studies,” PLoS One 7(4), e35037 (2012).
[Crossref]

2011 (5)

A. F. Coskun, I. Sencan, T. W. Su, and A. Ozcan, “Laterally orienting c. elegans using geometry at microscale for high-throughput visual screens in neurodegeneration and neuronal development studies,” PLoS One 6(1), e15955 (2011).
[Crossref]

R. Elbez, B. H. McNaughton, L. Patel, K. J. Pienta, and R. Kopelman, “Nanoparticle induced cell magneto-rotation: monitoring morphology stress and drug sensitivity of a suspended single cancer cell,” PLoS One 6(12), e28475 (2011).
[Crossref]

C. G. Galbraith and G. A. Galbraith, “Super-resolution microscopy at a glance,” J. Cell Sci. 124(10), 1607–1611 (2011).
[Crossref]

A. P. Fields and A. E. Cohen, “Electrokinetic trapping at the one nanometer limit,” Proc. Natl. Acad. Sci. U. S. A. 108(22), 8937–8942 (2011).
[Crossref]

J.-H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-Unkel, K. Berg-Sørensen, L. Oddershede, and R. Metzler, “In vivo anomalous diffusion and weak ergodicity breaking of lipid granules,” Phys. Rev. Lett. 106(4), 048103 (2011).
[Crossref]

2007 (1)

C. B. Rohde, F. Zeng, R. Gonzalez-Rubio, M. Angel, and M. F. Yanik, “Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution,” Proc. Natl. Acad. Sci. U. S. A. 104(35), 13891–13895 (2007).
[Crossref]

2004 (2)

S. K. Mohanty, A. Uppal, and P. K. Gupta, “Self-rotation of red blood cells in optical tweezers: prospects for high throughput malaria diagnosis,” Biotechnol. Lett. 26(12), 971–974 (2004).
[Crossref]

A. L. Porta and M. Wang, “Optical torque wrench: Angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett. 92(19), 190801 (2004).
[Crossref]

2003 (2)

S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, “High-efficiency optical transfer of torque to a nematic liquid crystal droplet,” Appl. Phys. Lett. 82(26), 4657–4659 (2003).
[Crossref]

D. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref]

2000 (1)

A. G. Fraser, R. S. Kamath, P. Zipperlen, M. Martinez-Compos, M. Sohrman, and J. Ahringer, “Functional genomic analysis of C. elegans chromosome I by systematic RNA interference,” Nature 408(6810), 325–330 (2000).
[Crossref]

1998 (1)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[Crossref]

Aekbote, B. L.

Ahmed, D.

D. Ahmed, A. Ozcelik, N. Bojanala, N. Nama, A. Upadhyay, Y. Chen, W. Hanna-Rose, and T. J. Huang, “Rotational manipulation of single cells and organisms using acoustic waves,” Nat. Commun. 7(1), 11085 (2016).
[Crossref]

Ahringer, J.

A. G. Fraser, R. S. Kamath, P. Zipperlen, M. Martinez-Compos, M. Sohrman, and J. Ahringer, “Functional genomic analysis of C. elegans chromosome I by systematic RNA interference,” Nature 408(6810), 325–330 (2000).
[Crossref]

Angel, M.

C. B. Rohde, F. Zeng, R. Gonzalez-Rubio, M. Angel, and M. F. Yanik, “Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution,” Proc. Natl. Acad. Sci. U. S. A. 104(35), 13891–13895 (2007).
[Crossref]

Barkai, E.

J.-H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-Unkel, K. Berg-Sørensen, L. Oddershede, and R. Metzler, “In vivo anomalous diffusion and weak ergodicity breaking of lipid granules,” Phys. Rev. Lett. 106(4), 048103 (2011).
[Crossref]

Barnea, I.

M. Habaza, M. Kirschbaum, C. Guernth Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Dusch, and N. T. Shaked, “Rapid 3D refractive’ index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv. Sci. 4(2), 1600205 (2017).
[Crossref]

Bednarkiewicz, A.

E. Ortiz-Rivero, K. Prorok, M. Skowickl, D. Lu, A. Bednarkiewicz, D. Jaque, and P. Haro-Gonzalez, “Single-cell biodetection by upconverting microspinners,” Small 15(46), 1904154 (2019).
[Crossref]

Beltrán-Párez, G.

Berg-Sørensen, K.

J.-H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-Unkel, K. Berg-Sørensen, L. Oddershede, and R. Metzler, “In vivo anomalous diffusion and weak ergodicity breaking of lipid granules,” Phys. Rev. Lett. 106(4), 048103 (2011).
[Crossref]

Bhatt, D.

R. Vaippully, D. Bhatt, A. D. Ranjan, and B. Roy, “Study of adhesivity of surfaces using rotational optical tweezers,” Phys. Scr. 94(10), 105008 (2019).
[Crossref]

Bojanala, N.

D. Ahmed, A. Ozcelik, N. Bojanala, N. Nama, A. Upadhyay, Y. Chen, W. Hanna-Rose, and T. J. Huang, “Rotational manipulation of single cells and organisms using acoustic waves,” Nat. Commun. 7(1), 11085 (2016).
[Crossref]

Bugiel, M.

A. Ramaiya, B. Roy, M. Bugiel, and E. Schaffer, “Kinesin rotates unidirectionally and generates torque while walking on microtubules,” Proc. Natl. Acad. Sci. U. S. A. 114(41), 10894–10899 (2017).
[Crossref]

Burov, S.

J.-H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-Unkel, K. Berg-Sørensen, L. Oddershede, and R. Metzler, “In vivo anomalous diffusion and weak ergodicity breaking of lipid granules,” Phys. Rev. Lett. 106(4), 048103 (2011).
[Crossref]

Buzas, A.

Carlo, D. D.

I. Pushkarsky, Y. Liu, W. Weaver, T. W. Su, O. Mudanyali, A. Ozcan, and D. D. Carlo, “Automated single-cell motility analysis on a chip using lensfree microscopy,” Sci. Rep. 4(1), 4717 (2015).
[Crossref]

Chen, C.

J. Zhang, S. Yang, C. Chen, J. H. Hartman, P.-H. Huang, L. Wang, Z. Tian, S. P. Zhang, D. Faulkenberry, J. N. Meyer, and T. J. Huang, “Surface acoustic waves enable rotational manipulation of caenorhabditis elegans,” Lab Chip 19(6), 984–992 (2019).
[Crossref]

Chen, Y.

D. Ahmed, A. Ozcelik, N. Bojanala, N. Nama, A. Upadhyay, Y. Chen, W. Hanna-Rose, and T. J. Huang, “Rotational manipulation of single cells and organisms using acoustic waves,” Nat. Commun. 7(1), 11085 (2016).
[Crossref]

Cohen, A. E.

A. P. Fields and A. E. Cohen, “Electrokinetic trapping at the one nanometer limit,” Proc. Natl. Acad. Sci. U. S. A. 108(22), 8937–8942 (2011).
[Crossref]

Coskun, A. F.

A. F. Coskun, I. Sencan, T. W. Su, and A. Ozcan, “Laterally orienting c. elegans using geometry at microscale for high-throughput visual screens in neurodegeneration and neuronal development studies,” PLoS One 6(1), e15955 (2011).
[Crossref]

Dardikman, G.

M. Habaza, M. Kirschbaum, C. Guernth Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Dusch, and N. T. Shaked, “Rapid 3D refractive’ index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv. Sci. 4(2), 1600205 (2017).
[Crossref]

de Sousa, N.

P. Rodríguez-Sevilla, Y. Zhang, N. de Sousa, M. I. Marques, F. Sanz-Rodríguez, D. Jaque, X. Liu, and P. Haro-Gonzalez, “Optical torques on upconverting particles for intracellular microrheometry,” Nano Lett. 16(12), 8005–8014 (2016).
[Crossref]

Dekker, C.

I. D. Vlaminck and C. Dekker, “Recent advances in magnetic tweezers,” Annu. Rev. Biophys. 41(1), 453–472 (2012).
[Crossref]

Dusch, C.

M. Habaza, M. Kirschbaum, C. Guernth Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Dusch, and N. T. Shaked, “Rapid 3D refractive’ index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv. Sci. 4(2), 1600205 (2017).
[Crossref]

Elbez, R.

R. Elbez, B. H. McNaughton, L. Patel, K. J. Pienta, and R. Kopelman, “Nanoparticle induced cell magneto-rotation: monitoring morphology stress and drug sensitivity of a suspended single cancer cell,” PLoS One 6(12), e28475 (2011).
[Crossref]

Fang, Y.

Y. V. Lee, D. Wu, Y. Fang, Y. Peng, and B. Tian, “Tracking longitudinal rotation of silicon nanowires for biointerfaces,” Nano Lett. 20(5), 3852–3857 (2020).
[Crossref]

Faulkenberry, D.

J. Zhang, S. Yang, C. Chen, J. H. Hartman, P.-H. Huang, L. Wang, Z. Tian, S. P. Zhang, D. Faulkenberry, J. N. Meyer, and T. J. Huang, “Surface acoustic waves enable rotational manipulation of caenorhabditis elegans,” Lab Chip 19(6), 984–992 (2019).
[Crossref]

Fekete, T.

Fields, A. P.

A. P. Fields and A. E. Cohen, “Electrokinetic trapping at the one nanometer limit,” Proc. Natl. Acad. Sci. U. S. A. 108(22), 8937–8942 (2011).
[Crossref]

Flores-Flores, E.

Fraser, A. G.

A. G. Fraser, R. S. Kamath, P. Zipperlen, M. Martinez-Compos, M. Sohrman, and J. Ahringer, “Functional genomic analysis of C. elegans chromosome I by systematic RNA interference,” Nature 408(6810), 325–330 (2000).
[Crossref]

Friese, M. E. J.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[Crossref]

Galbraith, C. G.

C. G. Galbraith and G. A. Galbraith, “Super-resolution microscopy at a glance,” J. Cell Sci. 124(10), 1607–1611 (2011).
[Crossref]

Galbraith, G. A.

C. G. Galbraith and G. A. Galbraith, “Super-resolution microscopy at a glance,” J. Cell Sci. 124(10), 1607–1611 (2011).
[Crossref]

Gilboa, B.

Gokso, M.

D. Wolfson, M. Steck, M. Persson, G. McNerney, A. Popovich, M. Gokso, and T. Huser, “Rapid 3D fluorescence imaging of individual opticallytrapped living immune cells,” J. Biophotonics 8(3), 208–216 (2015).
[Crossref]

Gonzalez-Rubio, R.

C. B. Rohde, F. Zeng, R. Gonzalez-Rubio, M. Angel, and M. F. Yanik, “Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution,” Proc. Natl. Acad. Sci. U. S. A. 104(35), 13891–13895 (2007).
[Crossref]

Grexa, I.

Grier, D.

D. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref]

Guernth Marschner, C.

M. Habaza, M. Kirschbaum, C. Guernth Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Dusch, and N. T. Shaked, “Rapid 3D refractive’ index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv. Sci. 4(2), 1600205 (2017).
[Crossref]

Gunaseelan, M.

M. Gunaseelan, S. Yamini, G. Kumar, and J. Senthilselvan, “Highly efficient upconversion luminescence in hexagonal NaYF4:Yb3+, Er3+ nanocrystals synthesized by a novel reverse microemulsion method,” Opt. Mater. 75, 174–186 (2018).
[Crossref]

Gupta, P. K.

S. K. Mohanty, A. Uppal, and P. K. Gupta, “Self-rotation of red blood cells in optical tweezers: prospects for high throughput malaria diagnosis,” Biotechnol. Lett. 26(12), 971–974 (2004).
[Crossref]

Habaza, M.

M. Habaza, M. Kirschbaum, C. Guernth Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Dusch, and N. T. Shaked, “Rapid 3D refractive’ index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv. Sci. 4(2), 1600205 (2017).
[Crossref]

M. Habaza, B. Gilboa, Y. Roichman, and N. T. Shaked, “Tomographic phase microscopy with 180 rotation of live cells in suspension by holographic optical tweezers,” Opt. Lett. 40(8), 1881–1884 (2015).
[Crossref]

Hanna-Rose, W.

D. Ahmed, A. Ozcelik, N. Bojanala, N. Nama, A. Upadhyay, Y. Chen, W. Hanna-Rose, and T. J. Huang, “Rotational manipulation of single cells and organisms using acoustic waves,” Nat. Commun. 7(1), 11085 (2016).
[Crossref]

Haro-Gonzalez, P.

E. Ortiz-Rivero, K. Prorok, M. Skowickl, D. Lu, A. Bednarkiewicz, D. Jaque, and P. Haro-Gonzalez, “Single-cell biodetection by upconverting microspinners,” Small 15(46), 1904154 (2019).
[Crossref]

P. Rodríguez-Sevilla, Y. Zhang, N. de Sousa, M. I. Marques, F. Sanz-Rodríguez, D. Jaque, X. Liu, and P. Haro-Gonzalez, “Optical torques on upconverting particles for intracellular microrheometry,” Nano Lett. 16(12), 8005–8014 (2016).
[Crossref]

Hartman, J. H.

J. Zhang, S. Yang, C. Chen, J. H. Hartman, P.-H. Huang, L. Wang, Z. Tian, S. P. Zhang, D. Faulkenberry, J. N. Meyer, and T. J. Huang, “Surface acoustic waves enable rotational manipulation of caenorhabditis elegans,” Lab Chip 19(6), 984–992 (2019).
[Crossref]

Hasegawa, I.

S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, “High-efficiency optical transfer of torque to a nematic liquid crystal droplet,” Appl. Phys. Lett. 82(26), 4657–4659 (2003).
[Crossref]

Heckenberg, N. R.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[Crossref]

Hilliard, M. A.

C. C. Ide, N. Valmas, M. A. Hilliard, and H. Lu, “Laterally orienting c. elegans using geometry at microscale for high-throughput visual screens in neurodegeneration and neuronal development studies,” PLoS One 7(4), e35037 (2012).
[Crossref]

Hong, S.

S. Hong, Q. Pan, and L. P. Lee, “Single-cell level co-culture platform for intercellular communication,” Integr. Biol. 4(4), 374–380 (2012).
[Crossref]

Huang, L.

L. Huang, P. Zhao, and W. Wang, “3D cell electrorotation and imaging for measuring multiple cellular biophysical properties,” Lab Chip 18(16), 2359–2368 (2018).
[Crossref]

Huang, P.-H.

J. Zhang, S. Yang, C. Chen, J. H. Hartman, P.-H. Huang, L. Wang, Z. Tian, S. P. Zhang, D. Faulkenberry, J. N. Meyer, and T. J. Huang, “Surface acoustic waves enable rotational manipulation of caenorhabditis elegans,” Lab Chip 19(6), 984–992 (2019).
[Crossref]

Huang, T. J.

J. Zhang, S. Yang, C. Chen, J. H. Hartman, P.-H. Huang, L. Wang, Z. Tian, S. P. Zhang, D. Faulkenberry, J. N. Meyer, and T. J. Huang, “Surface acoustic waves enable rotational manipulation of caenorhabditis elegans,” Lab Chip 19(6), 984–992 (2019).
[Crossref]

D. Ahmed, A. Ozcelik, N. Bojanala, N. Nama, A. Upadhyay, Y. Chen, W. Hanna-Rose, and T. J. Huang, “Rotational manipulation of single cells and organisms using acoustic waves,” Nat. Commun. 7(1), 11085 (2016).
[Crossref]

Huser, T.

D. Wolfson, M. Steck, M. Persson, G. McNerney, A. Popovich, M. Gokso, and T. Huser, “Rapid 3D fluorescence imaging of individual opticallytrapped living immune cells,” J. Biophotonics 8(3), 208–216 (2015).
[Crossref]

Ide, C. C.

C. C. Ide, N. Valmas, M. A. Hilliard, and H. Lu, “Laterally orienting c. elegans using geometry at microscale for high-throughput visual screens in neurodegeneration and neuronal development studies,” PLoS One 7(4), e35037 (2012).
[Crossref]

Jaque, D.

E. Ortiz-Rivero, K. Prorok, M. Skowickl, D. Lu, A. Bednarkiewicz, D. Jaque, and P. Haro-Gonzalez, “Single-cell biodetection by upconverting microspinners,” Small 15(46), 1904154 (2019).
[Crossref]

P. Rodríguez-Sevilla, Y. Zhang, N. de Sousa, M. I. Marques, F. Sanz-Rodríguez, D. Jaque, X. Liu, and P. Haro-Gonzalez, “Optical torques on upconverting particles for intracellular microrheometry,” Nano Lett. 16(12), 8005–8014 (2016).
[Crossref]

Jeon, J.-H.

J.-H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-Unkel, K. Berg-Sørensen, L. Oddershede, and R. Metzler, “In vivo anomalous diffusion and weak ergodicity breaking of lipid granules,” Phys. Rev. Lett. 106(4), 048103 (2011).
[Crossref]

Juodkazis, S.

S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, “High-efficiency optical transfer of torque to a nematic liquid crystal droplet,” Appl. Phys. Lett. 82(26), 4657–4659 (2003).
[Crossref]

Kamath, R. S.

A. G. Fraser, R. S. Kamath, P. Zipperlen, M. Martinez-Compos, M. Sohrman, and J. Ahringer, “Functional genomic analysis of C. elegans chromosome I by systematic RNA interference,” Nature 408(6810), 325–330 (2000).
[Crossref]

Kelemen, L.

Kirschbaum, M.

M. Habaza, M. Kirschbaum, C. Guernth Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Dusch, and N. T. Shaked, “Rapid 3D refractive’ index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv. Sci. 4(2), 1600205 (2017).
[Crossref]

Kopelman, R.

R. Elbez, B. H. McNaughton, L. Patel, K. J. Pienta, and R. Kopelman, “Nanoparticle induced cell magneto-rotation: monitoring morphology stress and drug sensitivity of a suspended single cancer cell,” PLoS One 6(12), e28475 (2011).
[Crossref]

Korenstein, R.

M. Habaza, M. Kirschbaum, C. Guernth Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Dusch, and N. T. Shaked, “Rapid 3D refractive’ index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv. Sci. 4(2), 1600205 (2017).
[Crossref]

Kumar, G.

M. Gunaseelan, S. Yamini, G. Kumar, and J. Senthilselvan, “Highly efficient upconversion luminescence in hexagonal NaYF4:Yb3+, Er3+ nanocrystals synthesized by a novel reverse microemulsion method,” Opt. Mater. 75, 174–186 (2018).
[Crossref]

Lee, L. P.

S. Hong, Q. Pan, and L. P. Lee, “Single-cell level co-culture platform for intercellular communication,” Integr. Biol. 4(4), 374–380 (2012).
[Crossref]

Lee, Y. V.

Y. V. Lee, D. Wu, Y. Fang, Y. Peng, and B. Tian, “Tracking longitudinal rotation of silicon nanowires for biointerfaces,” Nano Lett. 20(5), 3852–3857 (2020).
[Crossref]

Liu, X.

P. Rodríguez-Sevilla, Y. Zhang, N. de Sousa, M. I. Marques, F. Sanz-Rodríguez, D. Jaque, X. Liu, and P. Haro-Gonzalez, “Optical torques on upconverting particles for intracellular microrheometry,” Nano Lett. 16(12), 8005–8014 (2016).
[Crossref]

Liu, Y.

I. Pushkarsky, Y. Liu, W. Weaver, T. W. Su, O. Mudanyali, A. Ozcan, and D. D. Carlo, “Automated single-cell motility analysis on a chip using lensfree microscopy,” Sci. Rep. 4(1), 4717 (2015).
[Crossref]

Lokesh, M.

M. Lokesh, R. Vaippully, and B. Roy, “Active generation of pitch degree of rotational motion in optical tweezers,” Asian. J. Phys. 29, 177–182 (2020).

Lu, D.

E. Ortiz-Rivero, K. Prorok, M. Skowickl, D. Lu, A. Bednarkiewicz, D. Jaque, and P. Haro-Gonzalez, “Single-cell biodetection by upconverting microspinners,” Small 15(46), 1904154 (2019).
[Crossref]

Lu, H.

C. C. Ide, N. Valmas, M. A. Hilliard, and H. Lu, “Laterally orienting c. elegans using geometry at microscale for high-throughput visual screens in neurodegeneration and neuronal development studies,” PLoS One 7(4), e35037 (2012).
[Crossref]

Marques, M. I.

P. Rodríguez-Sevilla, Y. Zhang, N. de Sousa, M. I. Marques, F. Sanz-Rodríguez, D. Jaque, X. Liu, and P. Haro-Gonzalez, “Optical torques on upconverting particles for intracellular microrheometry,” Nano Lett. 16(12), 8005–8014 (2016).
[Crossref]

Martinez-Compos, M.

A. G. Fraser, R. S. Kamath, P. Zipperlen, M. Martinez-Compos, M. Sohrman, and J. Ahringer, “Functional genomic analysis of C. elegans chromosome I by systematic RNA interference,” Nature 408(6810), 325–330 (2000).
[Crossref]

Matsuo, S.

S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, “High-efficiency optical transfer of torque to a nematic liquid crystal droplet,” Appl. Phys. Lett. 82(26), 4657–4659 (2003).
[Crossref]

McNaughton, B. H.

R. Elbez, B. H. McNaughton, L. Patel, K. J. Pienta, and R. Kopelman, “Nanoparticle induced cell magneto-rotation: monitoring morphology stress and drug sensitivity of a suspended single cancer cell,” PLoS One 6(12), e28475 (2011).
[Crossref]

McNerney, G.

D. Wolfson, M. Steck, M. Persson, G. McNerney, A. Popovich, M. Gokso, and T. Huser, “Rapid 3D fluorescence imaging of individual opticallytrapped living immune cells,” J. Biophotonics 8(3), 208–216 (2015).
[Crossref]

Metzler, R.

J.-H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-Unkel, K. Berg-Sørensen, L. Oddershede, and R. Metzler, “In vivo anomalous diffusion and weak ergodicity breaking of lipid granules,” Phys. Rev. Lett. 106(4), 048103 (2011).
[Crossref]

Meyer, J. N.

J. Zhang, S. Yang, C. Chen, J. H. Hartman, P.-H. Huang, L. Wang, Z. Tian, S. P. Zhang, D. Faulkenberry, J. N. Meyer, and T. J. Huang, “Surface acoustic waves enable rotational manipulation of caenorhabditis elegans,” Lab Chip 19(6), 984–992 (2019).
[Crossref]

Misawa, H.

S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, “High-efficiency optical transfer of torque to a nematic liquid crystal droplet,” Appl. Phys. Lett. 82(26), 4657–4659 (2003).
[Crossref]

Mohanty, S. K.

S. K. Mohanty, A. Uppal, and P. K. Gupta, “Self-rotation of red blood cells in optical tweezers: prospects for high throughput malaria diagnosis,” Biotechnol. Lett. 26(12), 971–974 (2004).
[Crossref]

Mudanyali, O.

I. Pushkarsky, Y. Liu, W. Weaver, T. W. Su, O. Mudanyali, A. Ozcan, and D. D. Carlo, “Automated single-cell motility analysis on a chip using lensfree microscopy,” Sci. Rep. 4(1), 4717 (2015).
[Crossref]

Murazawa, N.

S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, “High-efficiency optical transfer of torque to a nematic liquid crystal droplet,” Appl. Phys. Lett. 82(26), 4657–4659 (2003).
[Crossref]

Nama, N.

D. Ahmed, A. Ozcelik, N. Bojanala, N. Nama, A. Upadhyay, Y. Chen, W. Hanna-Rose, and T. J. Huang, “Rotational manipulation of single cells and organisms using acoustic waves,” Nat. Commun. 7(1), 11085 (2016).
[Crossref]

Neale, S. L.

Nieminen, T. A.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[Crossref]

Oddershede, L.

J.-H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-Unkel, K. Berg-Sørensen, L. Oddershede, and R. Metzler, “In vivo anomalous diffusion and weak ergodicity breaking of lipid granules,” Phys. Rev. Lett. 106(4), 048103 (2011).
[Crossref]

Ormos, P.

Ortiz-Rivero, E.

E. Ortiz-Rivero, K. Prorok, M. Skowickl, D. Lu, A. Bednarkiewicz, D. Jaque, and P. Haro-Gonzalez, “Single-cell biodetection by upconverting microspinners,” Small 15(46), 1904154 (2019).
[Crossref]

Ozcan, A.

I. Pushkarsky, Y. Liu, W. Weaver, T. W. Su, O. Mudanyali, A. Ozcan, and D. D. Carlo, “Automated single-cell motility analysis on a chip using lensfree microscopy,” Sci. Rep. 4(1), 4717 (2015).
[Crossref]

A. F. Coskun, I. Sencan, T. W. Su, and A. Ozcan, “Laterally orienting c. elegans using geometry at microscale for high-throughput visual screens in neurodegeneration and neuronal development studies,” PLoS One 6(1), e15955 (2011).
[Crossref]

Ozcelik, A.

D. Ahmed, A. Ozcelik, N. Bojanala, N. Nama, A. Upadhyay, Y. Chen, W. Hanna-Rose, and T. J. Huang, “Rotational manipulation of single cells and organisms using acoustic waves,” Nat. Commun. 7(1), 11085 (2016).
[Crossref]

Páez, R.

Pan, Q.

S. Hong, Q. Pan, and L. P. Lee, “Single-cell level co-culture platform for intercellular communication,” Integr. Biol. 4(4), 374–380 (2012).
[Crossref]

Patel, L.

R. Elbez, B. H. McNaughton, L. Patel, K. J. Pienta, and R. Kopelman, “Nanoparticle induced cell magneto-rotation: monitoring morphology stress and drug sensitivity of a suspended single cancer cell,” PLoS One 6(12), e28475 (2011).
[Crossref]

Peng, Y.

Y. V. Lee, D. Wu, Y. Fang, Y. Peng, and B. Tian, “Tracking longitudinal rotation of silicon nanowires for biointerfaces,” Nano Lett. 20(5), 3852–3857 (2020).
[Crossref]

Persson, M.

D. Wolfson, M. Steck, M. Persson, G. McNerney, A. Popovich, M. Gokso, and T. Huser, “Rapid 3D fluorescence imaging of individual opticallytrapped living immune cells,” J. Biophotonics 8(3), 208–216 (2015).
[Crossref]

Pienta, K. J.

R. Elbez, B. H. McNaughton, L. Patel, K. J. Pienta, and R. Kopelman, “Nanoparticle induced cell magneto-rotation: monitoring morphology stress and drug sensitivity of a suspended single cancer cell,” PLoS One 6(12), e28475 (2011).
[Crossref]

Popovich, A.

D. Wolfson, M. Steck, M. Persson, G. McNerney, A. Popovich, M. Gokso, and T. Huser, “Rapid 3D fluorescence imaging of individual opticallytrapped living immune cells,” J. Biophotonics 8(3), 208–216 (2015).
[Crossref]

Porta, A. L.

A. L. Porta and M. Wang, “Optical torque wrench: Angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett. 92(19), 190801 (2004).
[Crossref]

Prorok, K.

E. Ortiz-Rivero, K. Prorok, M. Skowickl, D. Lu, A. Bednarkiewicz, D. Jaque, and P. Haro-Gonzalez, “Single-cell biodetection by upconverting microspinners,” Small 15(46), 1904154 (2019).
[Crossref]

Pushkarsky, I.

I. Pushkarsky, Y. Liu, W. Weaver, T. W. Su, O. Mudanyali, A. Ozcan, and D. D. Carlo, “Automated single-cell motility analysis on a chip using lensfree microscopy,” Sci. Rep. 4(1), 4717 (2015).
[Crossref]

Ramaiya, A.

B. Roy, A. Ramaiya, and E. Schaffer, “Determination of pitch rotation in a spherical birefringent microparticle,” J. Opt. 20(3), 035603 (2018).
[Crossref]

A. Ramaiya, B. Roy, M. Bugiel, and E. Schaffer, “Kinesin rotates unidirectionally and generates torque while walking on microtubules,” Proc. Natl. Acad. Sci. U. S. A. 114(41), 10894–10899 (2017).
[Crossref]

Ramirez-San-Juan, J. C.

Ramos-García, R.

Ranjan, A. D.

R. Vaippully, D. Bhatt, A. D. Ranjan, and B. Roy, “Study of adhesivity of surfaces using rotational optical tweezers,” Phys. Scr. 94(10), 105008 (2019).
[Crossref]

Rodríguez-Sevilla, P.

P. Rodríguez-Sevilla, Y. Zhang, N. de Sousa, M. I. Marques, F. Sanz-Rodríguez, D. Jaque, X. Liu, and P. Haro-Gonzalez, “Optical torques on upconverting particles for intracellular microrheometry,” Nano Lett. 16(12), 8005–8014 (2016).
[Crossref]

Rohde, C. B.

C. B. Rohde, F. Zeng, R. Gonzalez-Rubio, M. Angel, and M. F. Yanik, “Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution,” Proc. Natl. Acad. Sci. U. S. A. 104(35), 13891–13895 (2007).
[Crossref]

Roichman, Y.

Roy, B.

M. Lokesh, R. Vaippully, and B. Roy, “Active generation of pitch degree of rotational motion in optical tweezers,” Asian. J. Phys. 29, 177–182 (2020).

R. Vaippully, D. Bhatt, A. D. Ranjan, and B. Roy, “Study of adhesivity of surfaces using rotational optical tweezers,” Phys. Scr. 94(10), 105008 (2019).
[Crossref]

B. Roy, A. Ramaiya, and E. Schaffer, “Determination of pitch rotation in a spherical birefringent microparticle,” J. Opt. 20(3), 035603 (2018).
[Crossref]

A. Ramaiya, B. Roy, M. Bugiel, and E. Schaffer, “Kinesin rotates unidirectionally and generates torque while walking on microtubules,” Proc. Natl. Acad. Sci. U. S. A. 114(41), 10894–10899 (2017).
[Crossref]

Rubinsztein-Dunlop, H.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[Crossref]

Ruiz, U.

Sanz-Rodríguez, F.

P. Rodríguez-Sevilla, Y. Zhang, N. de Sousa, M. I. Marques, F. Sanz-Rodríguez, D. Jaque, X. Liu, and P. Haro-Gonzalez, “Optical torques on upconverting particles for intracellular microrheometry,” Nano Lett. 16(12), 8005–8014 (2016).
[Crossref]

Schaffer, E.

B. Roy, A. Ramaiya, and E. Schaffer, “Determination of pitch rotation in a spherical birefringent microparticle,” J. Opt. 20(3), 035603 (2018).
[Crossref]

A. Ramaiya, B. Roy, M. Bugiel, and E. Schaffer, “Kinesin rotates unidirectionally and generates torque while walking on microtubules,” Proc. Natl. Acad. Sci. U. S. A. 114(41), 10894–10899 (2017).
[Crossref]

Selhuber-Unkel, C.

J.-H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-Unkel, K. Berg-Sørensen, L. Oddershede, and R. Metzler, “In vivo anomalous diffusion and weak ergodicity breaking of lipid granules,” Phys. Rev. Lett. 106(4), 048103 (2011).
[Crossref]

Sencan, I.

A. F. Coskun, I. Sencan, T. W. Su, and A. Ozcan, “Laterally orienting c. elegans using geometry at microscale for high-throughput visual screens in neurodegeneration and neuronal development studies,” PLoS One 6(1), e15955 (2011).
[Crossref]

Senthilselvan, J.

M. Gunaseelan, S. Yamini, G. Kumar, and J. Senthilselvan, “Highly efficient upconversion luminescence in hexagonal NaYF4:Yb3+, Er3+ nanocrystals synthesized by a novel reverse microemulsion method,” Opt. Mater. 75, 174–186 (2018).
[Crossref]

Shaked, N. T.

M. Habaza, M. Kirschbaum, C. Guernth Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Dusch, and N. T. Shaked, “Rapid 3D refractive’ index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv. Sci. 4(2), 1600205 (2017).
[Crossref]

M. Habaza, B. Gilboa, Y. Roichman, and N. T. Shaked, “Tomographic phase microscopy with 180 rotation of live cells in suspension by holographic optical tweezers,” Opt. Lett. 40(8), 1881–1884 (2015).
[Crossref]

Skowickl, M.

E. Ortiz-Rivero, K. Prorok, M. Skowickl, D. Lu, A. Bednarkiewicz, D. Jaque, and P. Haro-Gonzalez, “Single-cell biodetection by upconverting microspinners,” Small 15(46), 1904154 (2019).
[Crossref]

Sohrman, M.

A. G. Fraser, R. S. Kamath, P. Zipperlen, M. Martinez-Compos, M. Sohrman, and J. Ahringer, “Functional genomic analysis of C. elegans chromosome I by systematic RNA interference,” Nature 408(6810), 325–330 (2000).
[Crossref]

Steck, M.

D. Wolfson, M. Steck, M. Persson, G. McNerney, A. Popovich, M. Gokso, and T. Huser, “Rapid 3D fluorescence imaging of individual opticallytrapped living immune cells,” J. Biophotonics 8(3), 208–216 (2015).
[Crossref]

Su, T. W.

I. Pushkarsky, Y. Liu, W. Weaver, T. W. Su, O. Mudanyali, A. Ozcan, and D. D. Carlo, “Automated single-cell motility analysis on a chip using lensfree microscopy,” Sci. Rep. 4(1), 4717 (2015).
[Crossref]

A. F. Coskun, I. Sencan, T. W. Su, and A. Ozcan, “Laterally orienting c. elegans using geometry at microscale for high-throughput visual screens in neurodegeneration and neuronal development studies,” PLoS One 6(1), e15955 (2011).
[Crossref]

Tejedor, V.

J.-H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-Unkel, K. Berg-Sørensen, L. Oddershede, and R. Metzler, “In vivo anomalous diffusion and weak ergodicity breaking of lipid granules,” Phys. Rev. Lett. 106(4), 048103 (2011).
[Crossref]

Tian, B.

Y. V. Lee, D. Wu, Y. Fang, Y. Peng, and B. Tian, “Tracking longitudinal rotation of silicon nanowires for biointerfaces,” Nano Lett. 20(5), 3852–3857 (2020).
[Crossref]

Tian, Z.

J. Zhang, S. Yang, C. Chen, J. H. Hartman, P.-H. Huang, L. Wang, Z. Tian, S. P. Zhang, D. Faulkenberry, J. N. Meyer, and T. J. Huang, “Surface acoustic waves enable rotational manipulation of caenorhabditis elegans,” Lab Chip 19(6), 984–992 (2019).
[Crossref]

Torres-Hurtado, S. A.

Upadhyay, A.

D. Ahmed, A. Ozcelik, N. Bojanala, N. Nama, A. Upadhyay, Y. Chen, W. Hanna-Rose, and T. J. Huang, “Rotational manipulation of single cells and organisms using acoustic waves,” Nat. Commun. 7(1), 11085 (2016).
[Crossref]

Uppal, A.

S. K. Mohanty, A. Uppal, and P. K. Gupta, “Self-rotation of red blood cells in optical tweezers: prospects for high throughput malaria diagnosis,” Biotechnol. Lett. 26(12), 971–974 (2004).
[Crossref]

Vaippully, R.

M. Lokesh, R. Vaippully, and B. Roy, “Active generation of pitch degree of rotational motion in optical tweezers,” Asian. J. Phys. 29, 177–182 (2020).

R. Vaippully, D. Bhatt, A. D. Ranjan, and B. Roy, “Study of adhesivity of surfaces using rotational optical tweezers,” Phys. Scr. 94(10), 105008 (2019).
[Crossref]

Valmas, N.

C. C. Ide, N. Valmas, M. A. Hilliard, and H. Lu, “Laterally orienting c. elegans using geometry at microscale for high-throughput visual screens in neurodegeneration and neuronal development studies,” PLoS One 7(4), e35037 (2012).
[Crossref]

Vizsnyiczai, G.

Vlaminck, I. D.

I. D. Vlaminck and C. Dekker, “Recent advances in magnetic tweezers,” Annu. Rev. Biophys. 41(1), 453–472 (2012).
[Crossref]

Wang, L.

J. Zhang, S. Yang, C. Chen, J. H. Hartman, P.-H. Huang, L. Wang, Z. Tian, S. P. Zhang, D. Faulkenberry, J. N. Meyer, and T. J. Huang, “Surface acoustic waves enable rotational manipulation of caenorhabditis elegans,” Lab Chip 19(6), 984–992 (2019).
[Crossref]

Wang, M.

A. L. Porta and M. Wang, “Optical torque wrench: Angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett. 92(19), 190801 (2004).
[Crossref]

Wang, W.

L. Huang, P. Zhao, and W. Wang, “3D cell electrorotation and imaging for measuring multiple cellular biophysical properties,” Lab Chip 18(16), 2359–2368 (2018).
[Crossref]

Weaver, W.

I. Pushkarsky, Y. Liu, W. Weaver, T. W. Su, O. Mudanyali, A. Ozcan, and D. D. Carlo, “Automated single-cell motility analysis on a chip using lensfree microscopy,” Sci. Rep. 4(1), 4717 (2015).
[Crossref]

Wolfson, D.

D. Wolfson, M. Steck, M. Persson, G. McNerney, A. Popovich, M. Gokso, and T. Huser, “Rapid 3D fluorescence imaging of individual opticallytrapped living immune cells,” J. Biophotonics 8(3), 208–216 (2015).
[Crossref]

Wu, D.

Y. V. Lee, D. Wu, Y. Fang, Y. Peng, and B. Tian, “Tracking longitudinal rotation of silicon nanowires for biointerfaces,” Nano Lett. 20(5), 3852–3857 (2020).
[Crossref]

Yamini, S.

M. Gunaseelan, S. Yamini, G. Kumar, and J. Senthilselvan, “Highly efficient upconversion luminescence in hexagonal NaYF4:Yb3+, Er3+ nanocrystals synthesized by a novel reverse microemulsion method,” Opt. Mater. 75, 174–186 (2018).
[Crossref]

Yang, S.

J. Zhang, S. Yang, C. Chen, J. H. Hartman, P.-H. Huang, L. Wang, Z. Tian, S. P. Zhang, D. Faulkenberry, J. N. Meyer, and T. J. Huang, “Surface acoustic waves enable rotational manipulation of caenorhabditis elegans,” Lab Chip 19(6), 984–992 (2019).
[Crossref]

Yanik, M. F.

C. B. Rohde, F. Zeng, R. Gonzalez-Rubio, M. Angel, and M. F. Yanik, “Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution,” Proc. Natl. Acad. Sci. U. S. A. 104(35), 13891–13895 (2007).
[Crossref]

Zeng, F.

C. B. Rohde, F. Zeng, R. Gonzalez-Rubio, M. Angel, and M. F. Yanik, “Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution,” Proc. Natl. Acad. Sci. U. S. A. 104(35), 13891–13895 (2007).
[Crossref]

Zhang, J.

J. Zhang, S. Yang, C. Chen, J. H. Hartman, P.-H. Huang, L. Wang, Z. Tian, S. P. Zhang, D. Faulkenberry, J. N. Meyer, and T. J. Huang, “Surface acoustic waves enable rotational manipulation of caenorhabditis elegans,” Lab Chip 19(6), 984–992 (2019).
[Crossref]

Zhang, S. P.

J. Zhang, S. Yang, C. Chen, J. H. Hartman, P.-H. Huang, L. Wang, Z. Tian, S. P. Zhang, D. Faulkenberry, J. N. Meyer, and T. J. Huang, “Surface acoustic waves enable rotational manipulation of caenorhabditis elegans,” Lab Chip 19(6), 984–992 (2019).
[Crossref]

Zhang, Y.

P. Rodríguez-Sevilla, Y. Zhang, N. de Sousa, M. I. Marques, F. Sanz-Rodríguez, D. Jaque, X. Liu, and P. Haro-Gonzalez, “Optical torques on upconverting particles for intracellular microrheometry,” Nano Lett. 16(12), 8005–8014 (2016).
[Crossref]

Zhao, P.

L. Huang, P. Zhao, and W. Wang, “3D cell electrorotation and imaging for measuring multiple cellular biophysical properties,” Lab Chip 18(16), 2359–2368 (2018).
[Crossref]

Zipperlen, P.

A. G. Fraser, R. S. Kamath, P. Zipperlen, M. Martinez-Compos, M. Sohrman, and J. Ahringer, “Functional genomic analysis of C. elegans chromosome I by systematic RNA interference,” Nature 408(6810), 325–330 (2000).
[Crossref]

Adv. Sci. (1)

M. Habaza, M. Kirschbaum, C. Guernth Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Dusch, and N. T. Shaked, “Rapid 3D refractive’ index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv. Sci. 4(2), 1600205 (2017).
[Crossref]

Annu. Rev. Biophys. (1)

I. D. Vlaminck and C. Dekker, “Recent advances in magnetic tweezers,” Annu. Rev. Biophys. 41(1), 453–472 (2012).
[Crossref]

Appl. Phys. Lett. (1)

S. Juodkazis, S. Matsuo, N. Murazawa, I. Hasegawa, and H. Misawa, “High-efficiency optical transfer of torque to a nematic liquid crystal droplet,” Appl. Phys. Lett. 82(26), 4657–4659 (2003).
[Crossref]

Asian. J. Phys. (1)

M. Lokesh, R. Vaippully, and B. Roy, “Active generation of pitch degree of rotational motion in optical tweezers,” Asian. J. Phys. 29, 177–182 (2020).

Biomed. Opt. Express (2)

Biotechnol. Lett. (1)

S. K. Mohanty, A. Uppal, and P. K. Gupta, “Self-rotation of red blood cells in optical tweezers: prospects for high throughput malaria diagnosis,” Biotechnol. Lett. 26(12), 971–974 (2004).
[Crossref]

Integr. Biol. (1)

S. Hong, Q. Pan, and L. P. Lee, “Single-cell level co-culture platform for intercellular communication,” Integr. Biol. 4(4), 374–380 (2012).
[Crossref]

J. Biophotonics (1)

D. Wolfson, M. Steck, M. Persson, G. McNerney, A. Popovich, M. Gokso, and T. Huser, “Rapid 3D fluorescence imaging of individual opticallytrapped living immune cells,” J. Biophotonics 8(3), 208–216 (2015).
[Crossref]

J. Cell Sci. (1)

C. G. Galbraith and G. A. Galbraith, “Super-resolution microscopy at a glance,” J. Cell Sci. 124(10), 1607–1611 (2011).
[Crossref]

J. Opt. (1)

B. Roy, A. Ramaiya, and E. Schaffer, “Determination of pitch rotation in a spherical birefringent microparticle,” J. Opt. 20(3), 035603 (2018).
[Crossref]

Lab Chip (2)

J. Zhang, S. Yang, C. Chen, J. H. Hartman, P.-H. Huang, L. Wang, Z. Tian, S. P. Zhang, D. Faulkenberry, J. N. Meyer, and T. J. Huang, “Surface acoustic waves enable rotational manipulation of caenorhabditis elegans,” Lab Chip 19(6), 984–992 (2019).
[Crossref]

L. Huang, P. Zhao, and W. Wang, “3D cell electrorotation and imaging for measuring multiple cellular biophysical properties,” Lab Chip 18(16), 2359–2368 (2018).
[Crossref]

Nano Lett. (2)

P. Rodríguez-Sevilla, Y. Zhang, N. de Sousa, M. I. Marques, F. Sanz-Rodríguez, D. Jaque, X. Liu, and P. Haro-Gonzalez, “Optical torques on upconverting particles for intracellular microrheometry,” Nano Lett. 16(12), 8005–8014 (2016).
[Crossref]

Y. V. Lee, D. Wu, Y. Fang, Y. Peng, and B. Tian, “Tracking longitudinal rotation of silicon nanowires for biointerfaces,” Nano Lett. 20(5), 3852–3857 (2020).
[Crossref]

Nat. Commun. (1)

D. Ahmed, A. Ozcelik, N. Bojanala, N. Nama, A. Upadhyay, Y. Chen, W. Hanna-Rose, and T. J. Huang, “Rotational manipulation of single cells and organisms using acoustic waves,” Nat. Commun. 7(1), 11085 (2016).
[Crossref]

Nature (3)

D. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref]

A. G. Fraser, R. S. Kamath, P. Zipperlen, M. Martinez-Compos, M. Sohrman, and J. Ahringer, “Functional genomic analysis of C. elegans chromosome I by systematic RNA interference,” Nature 408(6810), 325–330 (2000).
[Crossref]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (1)

M. Gunaseelan, S. Yamini, G. Kumar, and J. Senthilselvan, “Highly efficient upconversion luminescence in hexagonal NaYF4:Yb3+, Er3+ nanocrystals synthesized by a novel reverse microemulsion method,” Opt. Mater. 75, 174–186 (2018).
[Crossref]

Phys. Rev. Lett. (2)

A. L. Porta and M. Wang, “Optical torque wrench: Angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett. 92(19), 190801 (2004).
[Crossref]

J.-H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-Unkel, K. Berg-Sørensen, L. Oddershede, and R. Metzler, “In vivo anomalous diffusion and weak ergodicity breaking of lipid granules,” Phys. Rev. Lett. 106(4), 048103 (2011).
[Crossref]

Phys. Scr. (1)

R. Vaippully, D. Bhatt, A. D. Ranjan, and B. Roy, “Study of adhesivity of surfaces using rotational optical tweezers,” Phys. Scr. 94(10), 105008 (2019).
[Crossref]

PLoS One (3)

A. F. Coskun, I. Sencan, T. W. Su, and A. Ozcan, “Laterally orienting c. elegans using geometry at microscale for high-throughput visual screens in neurodegeneration and neuronal development studies,” PLoS One 6(1), e15955 (2011).
[Crossref]

R. Elbez, B. H. McNaughton, L. Patel, K. J. Pienta, and R. Kopelman, “Nanoparticle induced cell magneto-rotation: monitoring morphology stress and drug sensitivity of a suspended single cancer cell,” PLoS One 6(12), e28475 (2011).
[Crossref]

C. C. Ide, N. Valmas, M. A. Hilliard, and H. Lu, “Laterally orienting c. elegans using geometry at microscale for high-throughput visual screens in neurodegeneration and neuronal development studies,” PLoS One 7(4), e35037 (2012).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (3)

C. B. Rohde, F. Zeng, R. Gonzalez-Rubio, M. Angel, and M. F. Yanik, “Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution,” Proc. Natl. Acad. Sci. U. S. A. 104(35), 13891–13895 (2007).
[Crossref]

A. P. Fields and A. E. Cohen, “Electrokinetic trapping at the one nanometer limit,” Proc. Natl. Acad. Sci. U. S. A. 108(22), 8937–8942 (2011).
[Crossref]

A. Ramaiya, B. Roy, M. Bugiel, and E. Schaffer, “Kinesin rotates unidirectionally and generates torque while walking on microtubules,” Proc. Natl. Acad. Sci. U. S. A. 114(41), 10894–10899 (2017).
[Crossref]

Sci. Rep. (1)

I. Pushkarsky, Y. Liu, W. Weaver, T. W. Su, O. Mudanyali, A. Ozcan, and D. D. Carlo, “Automated single-cell motility analysis on a chip using lensfree microscopy,” Sci. Rep. 4(1), 4717 (2015).
[Crossref]

Small (1)

E. Ortiz-Rivero, K. Prorok, M. Skowickl, D. Lu, A. Bednarkiewicz, D. Jaque, and P. Haro-Gonzalez, “Single-cell biodetection by upconverting microspinners,” Small 15(46), 1904154 (2019).
[Crossref]

Supplementary Material (4)

NameDescription
» Visualization 1       This video shows the pitch rotation of a hexagonal shaped particle
» Visualization 2       Illustrative figure of pitch motion of hexagonal-shaped particle
» Visualization 3       cluster of polystyrene particle being turned by the convection currents
» Visualization 4       dictyostelium cells being turned by convective flows

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic diagram of the apparatus. Shown in the inset is the formation of the hot-spot due to the presence of the trapping laser, and the subsequent pitch rotation of the particle (b) Direction of rotation of the particle at the sides of the hot-spot.
Fig. 2.
Fig. 2. Results of 2-D COMSOL simulations for a single laser beam incident via the bottom gold coated surface into the sample chamber at x=0 for a spot size of 3 $\mu$m. The laser propagates in z from 0 to 100 $\mu$m. (a) The cartoon of the simulation (b) Simulation performed with gold thickness 30 nm and power 30 mW. (c) The thickness of the gold layer on glass cover slip is 15 nm, while 40 mW of laser light is made incident on the surface from below (d) Thickness of gold is 15 nm while 10 mW of laser light is incident (e) Thickness of gold is 20 nm while 40 mW of laser light is incident (f) Thickness of gold is 25 nm while 40 mW of laser light is incident. The color bar indicates the magnitude of the water velocity in m/sec. Arrows indicate the direction of water motion.
Fig. 3.
Fig. 3. Pitch rotation of particles (a) (see Visualization 1, (b) (see Visualization 2. The hexagonal shaped UCNP spinning, (c) A cluster of polystyrene particles stably confined and spinning due to convective flows (see Visualization 3). The thickness of the gold layer was 25 nm while the laser power was about 10 mW in (a) and 30 nm with power 20 mW in (b) and (c) at the sample plane.
Fig. 4.
Fig. 4. This figure indicates the time series for the total intensity of forward scattered light while the UCNP particle is executing pitch motion.
Fig. 5.
Fig. 5. The sequence of images shows the pitch rotation of an individual dictyostelium cell as performed with thermo-optical tweezers (See Visualization 4). The red and yellow arrows indicate regions on the rear side of the cell while the black arrow indicates a region in the front side of the cell. It thus confirms that the cell is rotating in the pitch sense.
Fig. 6.
Fig. 6. Variation of rotation rate of the UCNP particle as a function of laser power.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

δ ρ δ t + . ( ρ u ) = 0
ρ δ u δ t + ρ ( u . u ) = p + . ( μ ( u + ( u ) T ) 2 3 μ ( . u ) I ) + F
ρ C p ( δ T δ t + ( u . ) T ) = ( . q ) + Q

Metrics