Abstract

Orthokeratology (O-K) is a common procedure that uses rigid contact lenses to reshape the cornea while worn overnight. Beyond the correction of refractive error, it has been suggested that this approach can also be used to reduce myopia progression, possibly because it induces changes in peripheral optics. As this hypothesis remains unproven, the aim of the present study was to explore changes in peripheral retinal optical quality in a group of myopic children following O-K treatment. We provide a comprehensive description of optical characteristics in a group of myopes before and after achieving stable corneal reshaping using overnight O-K lenses. These characteristics extended across the central visual field (60° horizontal x 36° vertical) as measured with a custom Hartmman-Shack wavefront sensor. After corneal reshaping, peripheral refraction was found to be asymmetrically distributed, with a myopic relative refraction of approximately 3D in the temporal retina. Astigmatism and higher order aberrations also increased in the temporal side. Based on corneal topography following treatment, subjects were divided into two groups: Centred Treatment (CT, decentration ∈ [−0.5 + 0.5] mm) and Slightly Decentred Treatment (subjects with more decentred lenses). The process was also modelled by ray-tracing simulation. The results indicate that increased myopia in the temporal retina is caused by the decentration of lenses towards the temporal side. Peripheral optics differ significantly following O-K lens treatment, but further research is required to determine whether this is likely to affect myopia progression.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. R. Fricke, M. Jong, K. S. Naidoo, P. Sankaridurg, T. J. Naduvilath, S. M. Ho, T. Y. Wong, and S. Resnikoff, “Global prevalence of visual impairment associated with myopic macular degeneration and temporal trends from 2000 through 2050: systematic review, meta-analysis and modelling,” Br. J. Ophthalmol. 102(7), 855–862 (2018).
    [Crossref]
  2. C. W. Pan, C. Y. Cheng, S. M. Saw, J. J. Wang, and T. Y. Wong, “Myopia and age-related cataract: a systematic review and meta-analysis,” Am. J. Ophthalmol. 156(5), 1021–1033.e1 (2013).
    [Crossref]
  3. M. W. Marcus, M. M. de Vries, F. G. Junoy Montolio, and N. M. Jansonius, “Myopia as a risk factor for open-angle glaucoma: a systematic review and meta-analysis,” Ophthalmology 118(10), 1989–1994.e2 (2011).
    [Crossref]
  4. J. M. Lakawicz, W. J. Bottega, H. F. Fine, and J. L. Prenner, “On the mechanics of myopia and its influence on retinal detachment,” Biomech. Model. Mechanobiol. (2019)
  5. J. Cooper and A. V. Tkatchenko, “A review of current concepts of the etiology and treatment of myopia,” Eye Contact Lens 44(4), 231–247 (2018).
    [Crossref]
  6. P. K. Verkicharla, M. Suheimat, K. L. Schmid, and D. A. Atchison, “Peripheral refraction, peripheral eye length, and retinal shape in myopia,” Optom. Vis. Sci. 93(9), 1072–1078 (2016).
    [Crossref]
  7. K. D. Singh, N. S. Logan, and B. Gilmartin, “Three-dimensional modeling of the human eye based on magnetic resonance imaging,” Invest. Ophthalmol. Visual Sci. 47(6), 2272–2279 (2006).
    [Crossref]
  8. C. C. Sng, X. Y. Lin, G. Gazzard, B. Chang, M. Dirani, A. Chia, P. Selvaraj, K. Ian, B. Drobe, T. Y. Wong, and S. M. Saw, “Peripheral refraction and refractive error in Singapore Chinese children,” Invest. Ophthalmol. Visual Sci. 52(2), 1181–1190 (2011).
    [Crossref]
  9. J. Shen, F. Spors, D. Egan, and C. Liu, “Peripheral refraction and image blur in four meridians in emmetropes and myopes,” Clin. Ophthalmol. 12, 345–358 (2018).
    [Crossref]
  10. S. M. Li, S. Y. Li, L. R. Liu, Y. H. Zhou, Z. Yang, M. T. Kang, H. Li, X. Y. Yang, Y. P. Wang, S. Y. Zhan, P. Mitchell, N. Wang, and D. A. AtchisonG. Anyang Childhood Eye Study, “Peripheral refraction in 7- and 14-year-old children in central China: the Anyang Childhood Eye Study,” Br. J. Ophthalmol. 99(5), 674–679 (2015).
    [Crossref]
  11. A. O. Juan Tabernero, M. Dominik Fischer, A. R. Bruckmann, U. Schiefer, and F. Schaeffel, “Peripheral refraction profiles in subjects with low foveal refractive errors,” Optometry and Vision Science 88(3), E388–E394 (2011).
    [Crossref]
  12. F. R. J. Hoogerheide and W. P. H. Hoogenboom, “Acquired myopia in young pilots,” Ophthalmologica 163(4), 209–215 (1971).
    [Crossref]
  13. A. Ehsaei, E. A. Mallen, C. M. Chisholm, and I. E. Pacey, “Cross-sectional sample of peripheral refraction in four meridians in myopes and emmetropes,” Invest. Ophthalmol. Visual Sci. 52(10), 7574–7585 (2011).
    [Crossref]
  14. D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46(8-9), 1450–1458 (2006).
    [Crossref]
  15. C.-s. K. Earl, L. Smith, Ramkumar Ramamirtham, Ying Qiao-Grider, and L.-F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Visual Sci. 46(11), 3695–3972 (2005).
    [Crossref]
  16. B. Arumugam, L. F. Hung, C. H. To, P. Sankaridurg, and E. L. Smith, “The effects of the relative strength of simultaneous competing defocus signals on emmetropization in infant rhesus monkeys,” Invest. Ophthalmol. Visual Sci. 57(10), 3949–3960 (2016).
    [Crossref]
  17. D. Y. Tse and C. H. To, “Graded competing regional myopic and hyperopic defocus produce summated emmetropization set points in chick,” Invest. Ophthalmol. Visual Sci. 52(11), 8056–8062 (2011).
    [Crossref]
  18. D. Y. Tse, C. S. Lam, J. A. Guggenheim, C. Lam, K. K. Li, Q. Liu, and C. H. To, “Simultaneous defocus integration during refractive development,” Invest. Ophthalmol. Visual Sci. 48(12), 5352–5359 (2007).
    [Crossref]
  19. H. E. Bowrey, G. Zeng, D. Y. Tse, A. J. Leotta, Y. Wu, C. H. To, C. F. Wildsoet, and S. A. McFadden, “The effect of spectacle lenses containing peripheral defocus on refractive error and horizontal eye shape in the guinea pig,” Invest. Ophthalmol. Visual Sci. 58(5), 2705–2714 (2017).
    [Crossref]
  20. P. Sankaridurg, R. C. Bakaraju, T. Naduvilath, X. Chen, R. Weng, D. Tilia, P. Xu, W. Li, F. Conrad, E. L. Smith, and K. Ehrmann, “Myopia control with novel central and peripheral plus contact lenses and extended depth of focus contact lenses: 2 year results from a randomised clinical trial,” Ophthalmic. Physiol. Opt. (2019)
  21. P. Sankaridurg, B. Holden, E. Smith, T. Naduvilath, X. Chen, P. L. de la Jara, A. Martinez, J. Kwan, A. Ho, K. Frick, and J. Ge, “Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results,” Invest. Ophthalmol. Visual Sci. 52(13), 9362–9367 (2011).
    [Crossref]
  22. C. S. Lam, W. C. Tang, D. Y. Tse, Y. Y. Tang, and C. H. To, “Defocus Incorporated Soft Contact (DISC) lens slows myopia progression in Hong Kong Chinese schoolchildren: a 2-year randomised clinical trial,” Br. J. Ophthalmol. 98(1), 40–45 (2014).
    [Crossref]
  23. H. Kanda, T. Oshika, T. Hiraoka, S. Hasebe, K. Ohno-Matsui, S. Ishiko, O. Hieda, H. Torii, S. R. Varnas, and T. Fujikado, “Effect of spectacle lenses designed to reduce relative peripheral hyperopia on myopia progression in Japanese children: a 2-year multicenter randomized controlled trial,” Jpn. J. Ophthalmol. 62(5), 537–543 (2018).
    [Crossref]
  24. J. Kim, D. H. Lim, S. H. Han, and T. Y. Chung, “Predictive factors associated with axial length growth and myopia progression in orthokeratology,” PLoS One 14(6), e0218140 (2019).
    [Crossref]
  25. B. Wang, R. K. Naidu, and X. Qu, “Factors related to axial length elongation and myopia progression in orthokeratology practice,” PLoS One 12(4), e0175913 (2017).
    [Crossref]
  26. Y. Zhong, Z. Chen, F. Xue, H. Miao, and X. Zhou, “Central and peripheral corneal power change in myopic orthokeratology and its relationship with 2-year axial length change,” Invest. Ophthalmol. Visual Sci. 56(8), 4514–4519 (2015).
    [Crossref]
  27. J. M. Gonzalez-Meijome, S. C. Peixoto-de-Matos, M. Faria-Ribeiro, D. P. Lopes-Ferreira, J. Jorge, J. Legerton, and A. Queiros, “Strategies to regulate myopia progression with contact lenses: a review,” Eye Contact Lens 42(1), 24–34 (2016).
    [Crossref]
  28. P. Kang and H. Swarbrick, “The influence of different OK lens designs on peripheral refraction,” Optom. Vis. Sci. 93(9), 1112–1119 (2016).
    [Crossref]
  29. W. K. Kim, B. J. Kim, I. H. Ryu, J. K. Kim, and S. W. Kim, “Corneal epithelial and stromal thickness changes in myopic orthokeratology and their relationship with refractive change,” PLoS One 13(9), e0203652 (2018).
    [Crossref]
  30. W. N. Charman, J. Mountford, D. A. Atchison, and E. L. Markwell, “Peripheral refraction in orthokeratology patients,” Optom. Vis. Sci. 83(9), 641–648 (2006).
    [Crossref]
  31. Y. Hu, C. Wen, Z. Li, W. Zhao, X. Ding, and X. Yang, “Areal summed corneal power shift is an important determinant for axial length elongation in myopic children treated with overnight orthokeratology,” Br. J. Ophthalmol. (2019)
  32. A. Mathur and D. A. Atchison, “Effect of orthokeratology on peripheral aberrations of the eye,” Optom. Vis. Sci. 86(5), E476–E484 (2009).
    [Crossref]
  33. A. Queiros, J. M. Gonzalez-Meijome, J. Jorge, C. Villa-Collar, and A. R. Gutierrez, “Peripheral refraction in myopic patients after orthokeratology,” Optom. Vis. Sci. 87(5), 323–329 (2010).
    [Crossref]
  34. J. M. Gonzalez-Meijome, M. A. Faria-Ribeiro, D. P. Lopes-Ferreira, P. Fernandes, G. Carracedo, and A. Queiros, “Changes in peripheral refractive profile after orthokeratology for different degrees of myopia,” Curr. Eye Res. 41(2), 199–207 (2016).
    [Crossref]
  35. J. Paune, S. Thivent, J. Armengol, L. Quevedo, M. Faria-Ribeiro, and J. M. Gonzalez-Meijome, “Changes in peripheral refraction, higher-order aberrations, and accommodative lag with a radial refractive gradient contact lens in young myopes,” Eye Contact Lens 42(6), 380–387 (2016).
    [Crossref]
  36. A. Queiros, A. Amorim-de-Sousa, D. Lopes-Ferreira, C. Villa-Collar, A. R. Gutierrez, and J. M. Gonzalez-Meijome, “Relative peripheral refraction across 4 meridians after orthokeratology and LASIK surgery,” Eye Vis. (Lond.) 5(1), 12 (2018).
    [Crossref]
  37. T. Kratzer, “(New) Approaches to reduce progression of myopia with spectacles from Carl Zeiss Vision,” Acta Ophthalmol. 90(s249), 2012 (2012).
    [Crossref]
  38. W. Lan, Z. Lin, Z. Yang, and P. Artal, “Two-dimensional peripheral refraction and retinal image quality in emmetropic children,” Sci. Rep. 9(1), 16203 (2019).
    [Crossref]
  39. L. L. Bart Jaeken and P. Artal, “Fast scanning peripheral wave-front sensor for the human eye,” Opt. Express 19(8), 7903–7913 (2011).
    [Crossref]
  40. Y. Zhong, Z. Chen, F. Xue, J. Zhou, L. Niu, and X. Zhou, “Corneal power change is predictive of myopia progression in orthokeratology,” Optom. Vis. Sci. 91(4), 404–411 (2014).
    [Crossref]
  41. R. Navarro, J. Santamaria, and J. Bescos, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2(8), 1273–1281 (1985).
    [Crossref]
  42. D. A. Atchison, “Higher order aberrations across the horizontal visual field,” J. Biomed. Opt. 11(3), 034026 (2006).
    [Crossref]
  43. T. Gu, B. Gong, D. Lu, W. Lin, N. Li, Q. He, and R. Wei, “Influence of corneal topographic parameters in the decentration of orthokeratology,” Eye Contact Lens 45(6), 372–376 (2019).
    [Crossref]
  44. Z. Chen, F. Xue, J. Zhou, X. Qu, and X. Zhou, “Prediction of orthokeratology lens decentration with corneal elevation,” Optom. Vis. Sci. 94(9), 903–907 (2017).
    [Crossref]
  45. T. Hiraoka, T. Mihashi, C. Okamoto, F. Okamoto, Y. Hirohara, and T. Oshika, “Influence of induced decentered orthokeratology lens on ocular higher-order wavefront aberrations and contrast sensitivity function,” J. Cataract Refractive Surg. 35(11), 1918–1926 (2009).
    [Crossref]
  46. A. Wang and C. Yang, “Influence of overnight orthokeratology lens treatment zone decentration on myopia progression,” J. Ophthalmol. 2019, 2596953 (2019).
    [Crossref]
  47. R. Chen, Y. Chen, M. Lipson, P. Kang, H. Lian, Y. Zhao, C. McAlinden, and J. Huang, “The effect of treatment zone decentration on myopic progression during or-thokeratology,” Curr. Eye Res. 45(5), 645–651 (2020).
    [Crossref]

2020 (1)

R. Chen, Y. Chen, M. Lipson, P. Kang, H. Lian, Y. Zhao, C. McAlinden, and J. Huang, “The effect of treatment zone decentration on myopic progression during or-thokeratology,” Curr. Eye Res. 45(5), 645–651 (2020).
[Crossref]

2019 (4)

A. Wang and C. Yang, “Influence of overnight orthokeratology lens treatment zone decentration on myopia progression,” J. Ophthalmol. 2019, 2596953 (2019).
[Crossref]

T. Gu, B. Gong, D. Lu, W. Lin, N. Li, Q. He, and R. Wei, “Influence of corneal topographic parameters in the decentration of orthokeratology,” Eye Contact Lens 45(6), 372–376 (2019).
[Crossref]

J. Kim, D. H. Lim, S. H. Han, and T. Y. Chung, “Predictive factors associated with axial length growth and myopia progression in orthokeratology,” PLoS One 14(6), e0218140 (2019).
[Crossref]

W. Lan, Z. Lin, Z. Yang, and P. Artal, “Two-dimensional peripheral refraction and retinal image quality in emmetropic children,” Sci. Rep. 9(1), 16203 (2019).
[Crossref]

2018 (6)

A. Queiros, A. Amorim-de-Sousa, D. Lopes-Ferreira, C. Villa-Collar, A. R. Gutierrez, and J. M. Gonzalez-Meijome, “Relative peripheral refraction across 4 meridians after orthokeratology and LASIK surgery,” Eye Vis. (Lond.) 5(1), 12 (2018).
[Crossref]

W. K. Kim, B. J. Kim, I. H. Ryu, J. K. Kim, and S. W. Kim, “Corneal epithelial and stromal thickness changes in myopic orthokeratology and their relationship with refractive change,” PLoS One 13(9), e0203652 (2018).
[Crossref]

H. Kanda, T. Oshika, T. Hiraoka, S. Hasebe, K. Ohno-Matsui, S. Ishiko, O. Hieda, H. Torii, S. R. Varnas, and T. Fujikado, “Effect of spectacle lenses designed to reduce relative peripheral hyperopia on myopia progression in Japanese children: a 2-year multicenter randomized controlled trial,” Jpn. J. Ophthalmol. 62(5), 537–543 (2018).
[Crossref]

T. R. Fricke, M. Jong, K. S. Naidoo, P. Sankaridurg, T. J. Naduvilath, S. M. Ho, T. Y. Wong, and S. Resnikoff, “Global prevalence of visual impairment associated with myopic macular degeneration and temporal trends from 2000 through 2050: systematic review, meta-analysis and modelling,” Br. J. Ophthalmol. 102(7), 855–862 (2018).
[Crossref]

J. Cooper and A. V. Tkatchenko, “A review of current concepts of the etiology and treatment of myopia,” Eye Contact Lens 44(4), 231–247 (2018).
[Crossref]

J. Shen, F. Spors, D. Egan, and C. Liu, “Peripheral refraction and image blur in four meridians in emmetropes and myopes,” Clin. Ophthalmol. 12, 345–358 (2018).
[Crossref]

2017 (3)

H. E. Bowrey, G. Zeng, D. Y. Tse, A. J. Leotta, Y. Wu, C. H. To, C. F. Wildsoet, and S. A. McFadden, “The effect of spectacle lenses containing peripheral defocus on refractive error and horizontal eye shape in the guinea pig,” Invest. Ophthalmol. Visual Sci. 58(5), 2705–2714 (2017).
[Crossref]

B. Wang, R. K. Naidu, and X. Qu, “Factors related to axial length elongation and myopia progression in orthokeratology practice,” PLoS One 12(4), e0175913 (2017).
[Crossref]

Z. Chen, F. Xue, J. Zhou, X. Qu, and X. Zhou, “Prediction of orthokeratology lens decentration with corneal elevation,” Optom. Vis. Sci. 94(9), 903–907 (2017).
[Crossref]

2016 (6)

J. M. Gonzalez-Meijome, S. C. Peixoto-de-Matos, M. Faria-Ribeiro, D. P. Lopes-Ferreira, J. Jorge, J. Legerton, and A. Queiros, “Strategies to regulate myopia progression with contact lenses: a review,” Eye Contact Lens 42(1), 24–34 (2016).
[Crossref]

P. Kang and H. Swarbrick, “The influence of different OK lens designs on peripheral refraction,” Optom. Vis. Sci. 93(9), 1112–1119 (2016).
[Crossref]

J. M. Gonzalez-Meijome, M. A. Faria-Ribeiro, D. P. Lopes-Ferreira, P. Fernandes, G. Carracedo, and A. Queiros, “Changes in peripheral refractive profile after orthokeratology for different degrees of myopia,” Curr. Eye Res. 41(2), 199–207 (2016).
[Crossref]

J. Paune, S. Thivent, J. Armengol, L. Quevedo, M. Faria-Ribeiro, and J. M. Gonzalez-Meijome, “Changes in peripheral refraction, higher-order aberrations, and accommodative lag with a radial refractive gradient contact lens in young myopes,” Eye Contact Lens 42(6), 380–387 (2016).
[Crossref]

B. Arumugam, L. F. Hung, C. H. To, P. Sankaridurg, and E. L. Smith, “The effects of the relative strength of simultaneous competing defocus signals on emmetropization in infant rhesus monkeys,” Invest. Ophthalmol. Visual Sci. 57(10), 3949–3960 (2016).
[Crossref]

P. K. Verkicharla, M. Suheimat, K. L. Schmid, and D. A. Atchison, “Peripheral refraction, peripheral eye length, and retinal shape in myopia,” Optom. Vis. Sci. 93(9), 1072–1078 (2016).
[Crossref]

2015 (2)

S. M. Li, S. Y. Li, L. R. Liu, Y. H. Zhou, Z. Yang, M. T. Kang, H. Li, X. Y. Yang, Y. P. Wang, S. Y. Zhan, P. Mitchell, N. Wang, and D. A. AtchisonG. Anyang Childhood Eye Study, “Peripheral refraction in 7- and 14-year-old children in central China: the Anyang Childhood Eye Study,” Br. J. Ophthalmol. 99(5), 674–679 (2015).
[Crossref]

Y. Zhong, Z. Chen, F. Xue, H. Miao, and X. Zhou, “Central and peripheral corneal power change in myopic orthokeratology and its relationship with 2-year axial length change,” Invest. Ophthalmol. Visual Sci. 56(8), 4514–4519 (2015).
[Crossref]

2014 (2)

Y. Zhong, Z. Chen, F. Xue, J. Zhou, L. Niu, and X. Zhou, “Corneal power change is predictive of myopia progression in orthokeratology,” Optom. Vis. Sci. 91(4), 404–411 (2014).
[Crossref]

C. S. Lam, W. C. Tang, D. Y. Tse, Y. Y. Tang, and C. H. To, “Defocus Incorporated Soft Contact (DISC) lens slows myopia progression in Hong Kong Chinese schoolchildren: a 2-year randomised clinical trial,” Br. J. Ophthalmol. 98(1), 40–45 (2014).
[Crossref]

2013 (1)

C. W. Pan, C. Y. Cheng, S. M. Saw, J. J. Wang, and T. Y. Wong, “Myopia and age-related cataract: a systematic review and meta-analysis,” Am. J. Ophthalmol. 156(5), 1021–1033.e1 (2013).
[Crossref]

2012 (1)

T. Kratzer, “(New) Approaches to reduce progression of myopia with spectacles from Carl Zeiss Vision,” Acta Ophthalmol. 90(s249), 2012 (2012).
[Crossref]

2011 (7)

L. L. Bart Jaeken and P. Artal, “Fast scanning peripheral wave-front sensor for the human eye,” Opt. Express 19(8), 7903–7913 (2011).
[Crossref]

M. W. Marcus, M. M. de Vries, F. G. Junoy Montolio, and N. M. Jansonius, “Myopia as a risk factor for open-angle glaucoma: a systematic review and meta-analysis,” Ophthalmology 118(10), 1989–1994.e2 (2011).
[Crossref]

A. O. Juan Tabernero, M. Dominik Fischer, A. R. Bruckmann, U. Schiefer, and F. Schaeffel, “Peripheral refraction profiles in subjects with low foveal refractive errors,” Optometry and Vision Science 88(3), E388–E394 (2011).
[Crossref]

C. C. Sng, X. Y. Lin, G. Gazzard, B. Chang, M. Dirani, A. Chia, P. Selvaraj, K. Ian, B. Drobe, T. Y. Wong, and S. M. Saw, “Peripheral refraction and refractive error in Singapore Chinese children,” Invest. Ophthalmol. Visual Sci. 52(2), 1181–1190 (2011).
[Crossref]

P. Sankaridurg, B. Holden, E. Smith, T. Naduvilath, X. Chen, P. L. de la Jara, A. Martinez, J. Kwan, A. Ho, K. Frick, and J. Ge, “Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results,” Invest. Ophthalmol. Visual Sci. 52(13), 9362–9367 (2011).
[Crossref]

D. Y. Tse and C. H. To, “Graded competing regional myopic and hyperopic defocus produce summated emmetropization set points in chick,” Invest. Ophthalmol. Visual Sci. 52(11), 8056–8062 (2011).
[Crossref]

A. Ehsaei, E. A. Mallen, C. M. Chisholm, and I. E. Pacey, “Cross-sectional sample of peripheral refraction in four meridians in myopes and emmetropes,” Invest. Ophthalmol. Visual Sci. 52(10), 7574–7585 (2011).
[Crossref]

2010 (1)

A. Queiros, J. M. Gonzalez-Meijome, J. Jorge, C. Villa-Collar, and A. R. Gutierrez, “Peripheral refraction in myopic patients after orthokeratology,” Optom. Vis. Sci. 87(5), 323–329 (2010).
[Crossref]

2009 (2)

T. Hiraoka, T. Mihashi, C. Okamoto, F. Okamoto, Y. Hirohara, and T. Oshika, “Influence of induced decentered orthokeratology lens on ocular higher-order wavefront aberrations and contrast sensitivity function,” J. Cataract Refractive Surg. 35(11), 1918–1926 (2009).
[Crossref]

A. Mathur and D. A. Atchison, “Effect of orthokeratology on peripheral aberrations of the eye,” Optom. Vis. Sci. 86(5), E476–E484 (2009).
[Crossref]

2007 (1)

D. Y. Tse, C. S. Lam, J. A. Guggenheim, C. Lam, K. K. Li, Q. Liu, and C. H. To, “Simultaneous defocus integration during refractive development,” Invest. Ophthalmol. Visual Sci. 48(12), 5352–5359 (2007).
[Crossref]

2006 (4)

D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46(8-9), 1450–1458 (2006).
[Crossref]

K. D. Singh, N. S. Logan, and B. Gilmartin, “Three-dimensional modeling of the human eye based on magnetic resonance imaging,” Invest. Ophthalmol. Visual Sci. 47(6), 2272–2279 (2006).
[Crossref]

W. N. Charman, J. Mountford, D. A. Atchison, and E. L. Markwell, “Peripheral refraction in orthokeratology patients,” Optom. Vis. Sci. 83(9), 641–648 (2006).
[Crossref]

D. A. Atchison, “Higher order aberrations across the horizontal visual field,” J. Biomed. Opt. 11(3), 034026 (2006).
[Crossref]

2005 (1)

C.-s. K. Earl, L. Smith, Ramkumar Ramamirtham, Ying Qiao-Grider, and L.-F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Visual Sci. 46(11), 3695–3972 (2005).
[Crossref]

1985 (1)

1971 (1)

F. R. J. Hoogerheide and W. P. H. Hoogenboom, “Acquired myopia in young pilots,” Ophthalmologica 163(4), 209–215 (1971).
[Crossref]

Amorim-de-Sousa, A.

A. Queiros, A. Amorim-de-Sousa, D. Lopes-Ferreira, C. Villa-Collar, A. R. Gutierrez, and J. M. Gonzalez-Meijome, “Relative peripheral refraction across 4 meridians after orthokeratology and LASIK surgery,” Eye Vis. (Lond.) 5(1), 12 (2018).
[Crossref]

Armengol, J.

J. Paune, S. Thivent, J. Armengol, L. Quevedo, M. Faria-Ribeiro, and J. M. Gonzalez-Meijome, “Changes in peripheral refraction, higher-order aberrations, and accommodative lag with a radial refractive gradient contact lens in young myopes,” Eye Contact Lens 42(6), 380–387 (2016).
[Crossref]

Artal, P.

W. Lan, Z. Lin, Z. Yang, and P. Artal, “Two-dimensional peripheral refraction and retinal image quality in emmetropic children,” Sci. Rep. 9(1), 16203 (2019).
[Crossref]

L. L. Bart Jaeken and P. Artal, “Fast scanning peripheral wave-front sensor for the human eye,” Opt. Express 19(8), 7903–7913 (2011).
[Crossref]

Arumugam, B.

B. Arumugam, L. F. Hung, C. H. To, P. Sankaridurg, and E. L. Smith, “The effects of the relative strength of simultaneous competing defocus signals on emmetropization in infant rhesus monkeys,” Invest. Ophthalmol. Visual Sci. 57(10), 3949–3960 (2016).
[Crossref]

Atchison, D. A.

P. K. Verkicharla, M. Suheimat, K. L. Schmid, and D. A. Atchison, “Peripheral refraction, peripheral eye length, and retinal shape in myopia,” Optom. Vis. Sci. 93(9), 1072–1078 (2016).
[Crossref]

S. M. Li, S. Y. Li, L. R. Liu, Y. H. Zhou, Z. Yang, M. T. Kang, H. Li, X. Y. Yang, Y. P. Wang, S. Y. Zhan, P. Mitchell, N. Wang, and D. A. AtchisonG. Anyang Childhood Eye Study, “Peripheral refraction in 7- and 14-year-old children in central China: the Anyang Childhood Eye Study,” Br. J. Ophthalmol. 99(5), 674–679 (2015).
[Crossref]

A. Mathur and D. A. Atchison, “Effect of orthokeratology on peripheral aberrations of the eye,” Optom. Vis. Sci. 86(5), E476–E484 (2009).
[Crossref]

D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46(8-9), 1450–1458 (2006).
[Crossref]

W. N. Charman, J. Mountford, D. A. Atchison, and E. L. Markwell, “Peripheral refraction in orthokeratology patients,” Optom. Vis. Sci. 83(9), 641–648 (2006).
[Crossref]

D. A. Atchison, “Higher order aberrations across the horizontal visual field,” J. Biomed. Opt. 11(3), 034026 (2006).
[Crossref]

Bakaraju, R. C.

P. Sankaridurg, R. C. Bakaraju, T. Naduvilath, X. Chen, R. Weng, D. Tilia, P. Xu, W. Li, F. Conrad, E. L. Smith, and K. Ehrmann, “Myopia control with novel central and peripheral plus contact lenses and extended depth of focus contact lenses: 2 year results from a randomised clinical trial,” Ophthalmic. Physiol. Opt. (2019)

Bart Jaeken, L. L.

Bescos, J.

Bottega, W. J.

J. M. Lakawicz, W. J. Bottega, H. F. Fine, and J. L. Prenner, “On the mechanics of myopia and its influence on retinal detachment,” Biomech. Model. Mechanobiol. (2019)

Bowrey, H. E.

H. E. Bowrey, G. Zeng, D. Y. Tse, A. J. Leotta, Y. Wu, C. H. To, C. F. Wildsoet, and S. A. McFadden, “The effect of spectacle lenses containing peripheral defocus on refractive error and horizontal eye shape in the guinea pig,” Invest. Ophthalmol. Visual Sci. 58(5), 2705–2714 (2017).
[Crossref]

Bruckmann, A. R.

A. O. Juan Tabernero, M. Dominik Fischer, A. R. Bruckmann, U. Schiefer, and F. Schaeffel, “Peripheral refraction profiles in subjects with low foveal refractive errors,” Optometry and Vision Science 88(3), E388–E394 (2011).
[Crossref]

Carracedo, G.

J. M. Gonzalez-Meijome, M. A. Faria-Ribeiro, D. P. Lopes-Ferreira, P. Fernandes, G. Carracedo, and A. Queiros, “Changes in peripheral refractive profile after orthokeratology for different degrees of myopia,” Curr. Eye Res. 41(2), 199–207 (2016).
[Crossref]

Chang, B.

C. C. Sng, X. Y. Lin, G. Gazzard, B. Chang, M. Dirani, A. Chia, P. Selvaraj, K. Ian, B. Drobe, T. Y. Wong, and S. M. Saw, “Peripheral refraction and refractive error in Singapore Chinese children,” Invest. Ophthalmol. Visual Sci. 52(2), 1181–1190 (2011).
[Crossref]

Charman, W. N.

W. N. Charman, J. Mountford, D. A. Atchison, and E. L. Markwell, “Peripheral refraction in orthokeratology patients,” Optom. Vis. Sci. 83(9), 641–648 (2006).
[Crossref]

Chen, R.

R. Chen, Y. Chen, M. Lipson, P. Kang, H. Lian, Y. Zhao, C. McAlinden, and J. Huang, “The effect of treatment zone decentration on myopic progression during or-thokeratology,” Curr. Eye Res. 45(5), 645–651 (2020).
[Crossref]

Chen, X.

P. Sankaridurg, B. Holden, E. Smith, T. Naduvilath, X. Chen, P. L. de la Jara, A. Martinez, J. Kwan, A. Ho, K. Frick, and J. Ge, “Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results,” Invest. Ophthalmol. Visual Sci. 52(13), 9362–9367 (2011).
[Crossref]

P. Sankaridurg, R. C. Bakaraju, T. Naduvilath, X. Chen, R. Weng, D. Tilia, P. Xu, W. Li, F. Conrad, E. L. Smith, and K. Ehrmann, “Myopia control with novel central and peripheral plus contact lenses and extended depth of focus contact lenses: 2 year results from a randomised clinical trial,” Ophthalmic. Physiol. Opt. (2019)

Chen, Y.

R. Chen, Y. Chen, M. Lipson, P. Kang, H. Lian, Y. Zhao, C. McAlinden, and J. Huang, “The effect of treatment zone decentration on myopic progression during or-thokeratology,” Curr. Eye Res. 45(5), 645–651 (2020).
[Crossref]

Chen, Z.

Z. Chen, F. Xue, J. Zhou, X. Qu, and X. Zhou, “Prediction of orthokeratology lens decentration with corneal elevation,” Optom. Vis. Sci. 94(9), 903–907 (2017).
[Crossref]

Y. Zhong, Z. Chen, F. Xue, H. Miao, and X. Zhou, “Central and peripheral corneal power change in myopic orthokeratology and its relationship with 2-year axial length change,” Invest. Ophthalmol. Visual Sci. 56(8), 4514–4519 (2015).
[Crossref]

Y. Zhong, Z. Chen, F. Xue, J. Zhou, L. Niu, and X. Zhou, “Corneal power change is predictive of myopia progression in orthokeratology,” Optom. Vis. Sci. 91(4), 404–411 (2014).
[Crossref]

Cheng, C. Y.

C. W. Pan, C. Y. Cheng, S. M. Saw, J. J. Wang, and T. Y. Wong, “Myopia and age-related cataract: a systematic review and meta-analysis,” Am. J. Ophthalmol. 156(5), 1021–1033.e1 (2013).
[Crossref]

Chia, A.

C. C. Sng, X. Y. Lin, G. Gazzard, B. Chang, M. Dirani, A. Chia, P. Selvaraj, K. Ian, B. Drobe, T. Y. Wong, and S. M. Saw, “Peripheral refraction and refractive error in Singapore Chinese children,” Invest. Ophthalmol. Visual Sci. 52(2), 1181–1190 (2011).
[Crossref]

Chisholm, C. M.

A. Ehsaei, E. A. Mallen, C. M. Chisholm, and I. E. Pacey, “Cross-sectional sample of peripheral refraction in four meridians in myopes and emmetropes,” Invest. Ophthalmol. Visual Sci. 52(10), 7574–7585 (2011).
[Crossref]

Chung, T. Y.

J. Kim, D. H. Lim, S. H. Han, and T. Y. Chung, “Predictive factors associated with axial length growth and myopia progression in orthokeratology,” PLoS One 14(6), e0218140 (2019).
[Crossref]

Conrad, F.

P. Sankaridurg, R. C. Bakaraju, T. Naduvilath, X. Chen, R. Weng, D. Tilia, P. Xu, W. Li, F. Conrad, E. L. Smith, and K. Ehrmann, “Myopia control with novel central and peripheral plus contact lenses and extended depth of focus contact lenses: 2 year results from a randomised clinical trial,” Ophthalmic. Physiol. Opt. (2019)

Cooper, J.

J. Cooper and A. V. Tkatchenko, “A review of current concepts of the etiology and treatment of myopia,” Eye Contact Lens 44(4), 231–247 (2018).
[Crossref]

de la Jara, P. L.

P. Sankaridurg, B. Holden, E. Smith, T. Naduvilath, X. Chen, P. L. de la Jara, A. Martinez, J. Kwan, A. Ho, K. Frick, and J. Ge, “Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results,” Invest. Ophthalmol. Visual Sci. 52(13), 9362–9367 (2011).
[Crossref]

de Vries, M. M.

M. W. Marcus, M. M. de Vries, F. G. Junoy Montolio, and N. M. Jansonius, “Myopia as a risk factor for open-angle glaucoma: a systematic review and meta-analysis,” Ophthalmology 118(10), 1989–1994.e2 (2011).
[Crossref]

Ding, X.

Y. Hu, C. Wen, Z. Li, W. Zhao, X. Ding, and X. Yang, “Areal summed corneal power shift is an important determinant for axial length elongation in myopic children treated with overnight orthokeratology,” Br. J. Ophthalmol. (2019)

Dirani, M.

C. C. Sng, X. Y. Lin, G. Gazzard, B. Chang, M. Dirani, A. Chia, P. Selvaraj, K. Ian, B. Drobe, T. Y. Wong, and S. M. Saw, “Peripheral refraction and refractive error in Singapore Chinese children,” Invest. Ophthalmol. Visual Sci. 52(2), 1181–1190 (2011).
[Crossref]

Dominik Fischer, M.

A. O. Juan Tabernero, M. Dominik Fischer, A. R. Bruckmann, U. Schiefer, and F. Schaeffel, “Peripheral refraction profiles in subjects with low foveal refractive errors,” Optometry and Vision Science 88(3), E388–E394 (2011).
[Crossref]

Drobe, B.

C. C. Sng, X. Y. Lin, G. Gazzard, B. Chang, M. Dirani, A. Chia, P. Selvaraj, K. Ian, B. Drobe, T. Y. Wong, and S. M. Saw, “Peripheral refraction and refractive error in Singapore Chinese children,” Invest. Ophthalmol. Visual Sci. 52(2), 1181–1190 (2011).
[Crossref]

Earl, C.-s. K.

C.-s. K. Earl, L. Smith, Ramkumar Ramamirtham, Ying Qiao-Grider, and L.-F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Visual Sci. 46(11), 3695–3972 (2005).
[Crossref]

Egan, D.

J. Shen, F. Spors, D. Egan, and C. Liu, “Peripheral refraction and image blur in four meridians in emmetropes and myopes,” Clin. Ophthalmol. 12, 345–358 (2018).
[Crossref]

Ehrmann, K.

P. Sankaridurg, R. C. Bakaraju, T. Naduvilath, X. Chen, R. Weng, D. Tilia, P. Xu, W. Li, F. Conrad, E. L. Smith, and K. Ehrmann, “Myopia control with novel central and peripheral plus contact lenses and extended depth of focus contact lenses: 2 year results from a randomised clinical trial,” Ophthalmic. Physiol. Opt. (2019)

Ehsaei, A.

A. Ehsaei, E. A. Mallen, C. M. Chisholm, and I. E. Pacey, “Cross-sectional sample of peripheral refraction in four meridians in myopes and emmetropes,” Invest. Ophthalmol. Visual Sci. 52(10), 7574–7585 (2011).
[Crossref]

Faria-Ribeiro, M.

J. Paune, S. Thivent, J. Armengol, L. Quevedo, M. Faria-Ribeiro, and J. M. Gonzalez-Meijome, “Changes in peripheral refraction, higher-order aberrations, and accommodative lag with a radial refractive gradient contact lens in young myopes,” Eye Contact Lens 42(6), 380–387 (2016).
[Crossref]

J. M. Gonzalez-Meijome, S. C. Peixoto-de-Matos, M. Faria-Ribeiro, D. P. Lopes-Ferreira, J. Jorge, J. Legerton, and A. Queiros, “Strategies to regulate myopia progression with contact lenses: a review,” Eye Contact Lens 42(1), 24–34 (2016).
[Crossref]

Faria-Ribeiro, M. A.

J. M. Gonzalez-Meijome, M. A. Faria-Ribeiro, D. P. Lopes-Ferreira, P. Fernandes, G. Carracedo, and A. Queiros, “Changes in peripheral refractive profile after orthokeratology for different degrees of myopia,” Curr. Eye Res. 41(2), 199–207 (2016).
[Crossref]

Fernandes, P.

J. M. Gonzalez-Meijome, M. A. Faria-Ribeiro, D. P. Lopes-Ferreira, P. Fernandes, G. Carracedo, and A. Queiros, “Changes in peripheral refractive profile after orthokeratology for different degrees of myopia,” Curr. Eye Res. 41(2), 199–207 (2016).
[Crossref]

Fine, H. F.

J. M. Lakawicz, W. J. Bottega, H. F. Fine, and J. L. Prenner, “On the mechanics of myopia and its influence on retinal detachment,” Biomech. Model. Mechanobiol. (2019)

Frick, K.

P. Sankaridurg, B. Holden, E. Smith, T. Naduvilath, X. Chen, P. L. de la Jara, A. Martinez, J. Kwan, A. Ho, K. Frick, and J. Ge, “Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results,” Invest. Ophthalmol. Visual Sci. 52(13), 9362–9367 (2011).
[Crossref]

Fricke, T. R.

T. R. Fricke, M. Jong, K. S. Naidoo, P. Sankaridurg, T. J. Naduvilath, S. M. Ho, T. Y. Wong, and S. Resnikoff, “Global prevalence of visual impairment associated with myopic macular degeneration and temporal trends from 2000 through 2050: systematic review, meta-analysis and modelling,” Br. J. Ophthalmol. 102(7), 855–862 (2018).
[Crossref]

Fujikado, T.

H. Kanda, T. Oshika, T. Hiraoka, S. Hasebe, K. Ohno-Matsui, S. Ishiko, O. Hieda, H. Torii, S. R. Varnas, and T. Fujikado, “Effect of spectacle lenses designed to reduce relative peripheral hyperopia on myopia progression in Japanese children: a 2-year multicenter randomized controlled trial,” Jpn. J. Ophthalmol. 62(5), 537–543 (2018).
[Crossref]

Gazzard, G.

C. C. Sng, X. Y. Lin, G. Gazzard, B. Chang, M. Dirani, A. Chia, P. Selvaraj, K. Ian, B. Drobe, T. Y. Wong, and S. M. Saw, “Peripheral refraction and refractive error in Singapore Chinese children,” Invest. Ophthalmol. Visual Sci. 52(2), 1181–1190 (2011).
[Crossref]

Ge, J.

P. Sankaridurg, B. Holden, E. Smith, T. Naduvilath, X. Chen, P. L. de la Jara, A. Martinez, J. Kwan, A. Ho, K. Frick, and J. Ge, “Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results,” Invest. Ophthalmol. Visual Sci. 52(13), 9362–9367 (2011).
[Crossref]

Gilmartin, B.

K. D. Singh, N. S. Logan, and B. Gilmartin, “Three-dimensional modeling of the human eye based on magnetic resonance imaging,” Invest. Ophthalmol. Visual Sci. 47(6), 2272–2279 (2006).
[Crossref]

Gong, B.

T. Gu, B. Gong, D. Lu, W. Lin, N. Li, Q. He, and R. Wei, “Influence of corneal topographic parameters in the decentration of orthokeratology,” Eye Contact Lens 45(6), 372–376 (2019).
[Crossref]

Gonzalez-Meijome, J. M.

A. Queiros, A. Amorim-de-Sousa, D. Lopes-Ferreira, C. Villa-Collar, A. R. Gutierrez, and J. M. Gonzalez-Meijome, “Relative peripheral refraction across 4 meridians after orthokeratology and LASIK surgery,” Eye Vis. (Lond.) 5(1), 12 (2018).
[Crossref]

J. Paune, S. Thivent, J. Armengol, L. Quevedo, M. Faria-Ribeiro, and J. M. Gonzalez-Meijome, “Changes in peripheral refraction, higher-order aberrations, and accommodative lag with a radial refractive gradient contact lens in young myopes,” Eye Contact Lens 42(6), 380–387 (2016).
[Crossref]

J. M. Gonzalez-Meijome, S. C. Peixoto-de-Matos, M. Faria-Ribeiro, D. P. Lopes-Ferreira, J. Jorge, J. Legerton, and A. Queiros, “Strategies to regulate myopia progression with contact lenses: a review,” Eye Contact Lens 42(1), 24–34 (2016).
[Crossref]

J. M. Gonzalez-Meijome, M. A. Faria-Ribeiro, D. P. Lopes-Ferreira, P. Fernandes, G. Carracedo, and A. Queiros, “Changes in peripheral refractive profile after orthokeratology for different degrees of myopia,” Curr. Eye Res. 41(2), 199–207 (2016).
[Crossref]

A. Queiros, J. M. Gonzalez-Meijome, J. Jorge, C. Villa-Collar, and A. R. Gutierrez, “Peripheral refraction in myopic patients after orthokeratology,” Optom. Vis. Sci. 87(5), 323–329 (2010).
[Crossref]

Gu, T.

T. Gu, B. Gong, D. Lu, W. Lin, N. Li, Q. He, and R. Wei, “Influence of corneal topographic parameters in the decentration of orthokeratology,” Eye Contact Lens 45(6), 372–376 (2019).
[Crossref]

Guggenheim, J. A.

D. Y. Tse, C. S. Lam, J. A. Guggenheim, C. Lam, K. K. Li, Q. Liu, and C. H. To, “Simultaneous defocus integration during refractive development,” Invest. Ophthalmol. Visual Sci. 48(12), 5352–5359 (2007).
[Crossref]

Gutierrez, A. R.

A. Queiros, A. Amorim-de-Sousa, D. Lopes-Ferreira, C. Villa-Collar, A. R. Gutierrez, and J. M. Gonzalez-Meijome, “Relative peripheral refraction across 4 meridians after orthokeratology and LASIK surgery,” Eye Vis. (Lond.) 5(1), 12 (2018).
[Crossref]

A. Queiros, J. M. Gonzalez-Meijome, J. Jorge, C. Villa-Collar, and A. R. Gutierrez, “Peripheral refraction in myopic patients after orthokeratology,” Optom. Vis. Sci. 87(5), 323–329 (2010).
[Crossref]

Han, S. H.

J. Kim, D. H. Lim, S. H. Han, and T. Y. Chung, “Predictive factors associated with axial length growth and myopia progression in orthokeratology,” PLoS One 14(6), e0218140 (2019).
[Crossref]

Hasebe, S.

H. Kanda, T. Oshika, T. Hiraoka, S. Hasebe, K. Ohno-Matsui, S. Ishiko, O. Hieda, H. Torii, S. R. Varnas, and T. Fujikado, “Effect of spectacle lenses designed to reduce relative peripheral hyperopia on myopia progression in Japanese children: a 2-year multicenter randomized controlled trial,” Jpn. J. Ophthalmol. 62(5), 537–543 (2018).
[Crossref]

He, Q.

T. Gu, B. Gong, D. Lu, W. Lin, N. Li, Q. He, and R. Wei, “Influence of corneal topographic parameters in the decentration of orthokeratology,” Eye Contact Lens 45(6), 372–376 (2019).
[Crossref]

Hieda, O.

H. Kanda, T. Oshika, T. Hiraoka, S. Hasebe, K. Ohno-Matsui, S. Ishiko, O. Hieda, H. Torii, S. R. Varnas, and T. Fujikado, “Effect of spectacle lenses designed to reduce relative peripheral hyperopia on myopia progression in Japanese children: a 2-year multicenter randomized controlled trial,” Jpn. J. Ophthalmol. 62(5), 537–543 (2018).
[Crossref]

Hiraoka, T.

H. Kanda, T. Oshika, T. Hiraoka, S. Hasebe, K. Ohno-Matsui, S. Ishiko, O. Hieda, H. Torii, S. R. Varnas, and T. Fujikado, “Effect of spectacle lenses designed to reduce relative peripheral hyperopia on myopia progression in Japanese children: a 2-year multicenter randomized controlled trial,” Jpn. J. Ophthalmol. 62(5), 537–543 (2018).
[Crossref]

T. Hiraoka, T. Mihashi, C. Okamoto, F. Okamoto, Y. Hirohara, and T. Oshika, “Influence of induced decentered orthokeratology lens on ocular higher-order wavefront aberrations and contrast sensitivity function,” J. Cataract Refractive Surg. 35(11), 1918–1926 (2009).
[Crossref]

Hirohara, Y.

T. Hiraoka, T. Mihashi, C. Okamoto, F. Okamoto, Y. Hirohara, and T. Oshika, “Influence of induced decentered orthokeratology lens on ocular higher-order wavefront aberrations and contrast sensitivity function,” J. Cataract Refractive Surg. 35(11), 1918–1926 (2009).
[Crossref]

Ho, A.

P. Sankaridurg, B. Holden, E. Smith, T. Naduvilath, X. Chen, P. L. de la Jara, A. Martinez, J. Kwan, A. Ho, K. Frick, and J. Ge, “Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results,” Invest. Ophthalmol. Visual Sci. 52(13), 9362–9367 (2011).
[Crossref]

Ho, S. M.

T. R. Fricke, M. Jong, K. S. Naidoo, P. Sankaridurg, T. J. Naduvilath, S. M. Ho, T. Y. Wong, and S. Resnikoff, “Global prevalence of visual impairment associated with myopic macular degeneration and temporal trends from 2000 through 2050: systematic review, meta-analysis and modelling,” Br. J. Ophthalmol. 102(7), 855–862 (2018).
[Crossref]

Holden, B.

P. Sankaridurg, B. Holden, E. Smith, T. Naduvilath, X. Chen, P. L. de la Jara, A. Martinez, J. Kwan, A. Ho, K. Frick, and J. Ge, “Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results,” Invest. Ophthalmol. Visual Sci. 52(13), 9362–9367 (2011).
[Crossref]

Hoogenboom, W. P. H.

F. R. J. Hoogerheide and W. P. H. Hoogenboom, “Acquired myopia in young pilots,” Ophthalmologica 163(4), 209–215 (1971).
[Crossref]

Hoogerheide, F. R. J.

F. R. J. Hoogerheide and W. P. H. Hoogenboom, “Acquired myopia in young pilots,” Ophthalmologica 163(4), 209–215 (1971).
[Crossref]

Hu, Y.

Y. Hu, C. Wen, Z. Li, W. Zhao, X. Ding, and X. Yang, “Areal summed corneal power shift is an important determinant for axial length elongation in myopic children treated with overnight orthokeratology,” Br. J. Ophthalmol. (2019)

Huang, J.

R. Chen, Y. Chen, M. Lipson, P. Kang, H. Lian, Y. Zhao, C. McAlinden, and J. Huang, “The effect of treatment zone decentration on myopic progression during or-thokeratology,” Curr. Eye Res. 45(5), 645–651 (2020).
[Crossref]

Hung, L. F.

B. Arumugam, L. F. Hung, C. H. To, P. Sankaridurg, and E. L. Smith, “The effects of the relative strength of simultaneous competing defocus signals on emmetropization in infant rhesus monkeys,” Invest. Ophthalmol. Visual Sci. 57(10), 3949–3960 (2016).
[Crossref]

Hung, L.-F.

C.-s. K. Earl, L. Smith, Ramkumar Ramamirtham, Ying Qiao-Grider, and L.-F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Visual Sci. 46(11), 3695–3972 (2005).
[Crossref]

Ian, K.

C. C. Sng, X. Y. Lin, G. Gazzard, B. Chang, M. Dirani, A. Chia, P. Selvaraj, K. Ian, B. Drobe, T. Y. Wong, and S. M. Saw, “Peripheral refraction and refractive error in Singapore Chinese children,” Invest. Ophthalmol. Visual Sci. 52(2), 1181–1190 (2011).
[Crossref]

Ishiko, S.

H. Kanda, T. Oshika, T. Hiraoka, S. Hasebe, K. Ohno-Matsui, S. Ishiko, O. Hieda, H. Torii, S. R. Varnas, and T. Fujikado, “Effect of spectacle lenses designed to reduce relative peripheral hyperopia on myopia progression in Japanese children: a 2-year multicenter randomized controlled trial,” Jpn. J. Ophthalmol. 62(5), 537–543 (2018).
[Crossref]

Jansonius, N. M.

M. W. Marcus, M. M. de Vries, F. G. Junoy Montolio, and N. M. Jansonius, “Myopia as a risk factor for open-angle glaucoma: a systematic review and meta-analysis,” Ophthalmology 118(10), 1989–1994.e2 (2011).
[Crossref]

Jong, M.

T. R. Fricke, M. Jong, K. S. Naidoo, P. Sankaridurg, T. J. Naduvilath, S. M. Ho, T. Y. Wong, and S. Resnikoff, “Global prevalence of visual impairment associated with myopic macular degeneration and temporal trends from 2000 through 2050: systematic review, meta-analysis and modelling,” Br. J. Ophthalmol. 102(7), 855–862 (2018).
[Crossref]

Jorge, J.

J. M. Gonzalez-Meijome, S. C. Peixoto-de-Matos, M. Faria-Ribeiro, D. P. Lopes-Ferreira, J. Jorge, J. Legerton, and A. Queiros, “Strategies to regulate myopia progression with contact lenses: a review,” Eye Contact Lens 42(1), 24–34 (2016).
[Crossref]

A. Queiros, J. M. Gonzalez-Meijome, J. Jorge, C. Villa-Collar, and A. R. Gutierrez, “Peripheral refraction in myopic patients after orthokeratology,” Optom. Vis. Sci. 87(5), 323–329 (2010).
[Crossref]

Juan Tabernero, A. O.

A. O. Juan Tabernero, M. Dominik Fischer, A. R. Bruckmann, U. Schiefer, and F. Schaeffel, “Peripheral refraction profiles in subjects with low foveal refractive errors,” Optometry and Vision Science 88(3), E388–E394 (2011).
[Crossref]

Junoy Montolio, F. G.

M. W. Marcus, M. M. de Vries, F. G. Junoy Montolio, and N. M. Jansonius, “Myopia as a risk factor for open-angle glaucoma: a systematic review and meta-analysis,” Ophthalmology 118(10), 1989–1994.e2 (2011).
[Crossref]

Kanda, H.

H. Kanda, T. Oshika, T. Hiraoka, S. Hasebe, K. Ohno-Matsui, S. Ishiko, O. Hieda, H. Torii, S. R. Varnas, and T. Fujikado, “Effect of spectacle lenses designed to reduce relative peripheral hyperopia on myopia progression in Japanese children: a 2-year multicenter randomized controlled trial,” Jpn. J. Ophthalmol. 62(5), 537–543 (2018).
[Crossref]

Kang, M. T.

S. M. Li, S. Y. Li, L. R. Liu, Y. H. Zhou, Z. Yang, M. T. Kang, H. Li, X. Y. Yang, Y. P. Wang, S. Y. Zhan, P. Mitchell, N. Wang, and D. A. AtchisonG. Anyang Childhood Eye Study, “Peripheral refraction in 7- and 14-year-old children in central China: the Anyang Childhood Eye Study,” Br. J. Ophthalmol. 99(5), 674–679 (2015).
[Crossref]

Kang, P.

R. Chen, Y. Chen, M. Lipson, P. Kang, H. Lian, Y. Zhao, C. McAlinden, and J. Huang, “The effect of treatment zone decentration on myopic progression during or-thokeratology,” Curr. Eye Res. 45(5), 645–651 (2020).
[Crossref]

P. Kang and H. Swarbrick, “The influence of different OK lens designs on peripheral refraction,” Optom. Vis. Sci. 93(9), 1112–1119 (2016).
[Crossref]

Kim, B. J.

W. K. Kim, B. J. Kim, I. H. Ryu, J. K. Kim, and S. W. Kim, “Corneal epithelial and stromal thickness changes in myopic orthokeratology and their relationship with refractive change,” PLoS One 13(9), e0203652 (2018).
[Crossref]

Kim, J.

J. Kim, D. H. Lim, S. H. Han, and T. Y. Chung, “Predictive factors associated with axial length growth and myopia progression in orthokeratology,” PLoS One 14(6), e0218140 (2019).
[Crossref]

Kim, J. K.

W. K. Kim, B. J. Kim, I. H. Ryu, J. K. Kim, and S. W. Kim, “Corneal epithelial and stromal thickness changes in myopic orthokeratology and their relationship with refractive change,” PLoS One 13(9), e0203652 (2018).
[Crossref]

Kim, S. W.

W. K. Kim, B. J. Kim, I. H. Ryu, J. K. Kim, and S. W. Kim, “Corneal epithelial and stromal thickness changes in myopic orthokeratology and their relationship with refractive change,” PLoS One 13(9), e0203652 (2018).
[Crossref]

Kim, W. K.

W. K. Kim, B. J. Kim, I. H. Ryu, J. K. Kim, and S. W. Kim, “Corneal epithelial and stromal thickness changes in myopic orthokeratology and their relationship with refractive change,” PLoS One 13(9), e0203652 (2018).
[Crossref]

Kratzer, T.

T. Kratzer, “(New) Approaches to reduce progression of myopia with spectacles from Carl Zeiss Vision,” Acta Ophthalmol. 90(s249), 2012 (2012).
[Crossref]

Kwan, J.

P. Sankaridurg, B. Holden, E. Smith, T. Naduvilath, X. Chen, P. L. de la Jara, A. Martinez, J. Kwan, A. Ho, K. Frick, and J. Ge, “Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results,” Invest. Ophthalmol. Visual Sci. 52(13), 9362–9367 (2011).
[Crossref]

Lakawicz, J. M.

J. M. Lakawicz, W. J. Bottega, H. F. Fine, and J. L. Prenner, “On the mechanics of myopia and its influence on retinal detachment,” Biomech. Model. Mechanobiol. (2019)

Lam, C.

D. Y. Tse, C. S. Lam, J. A. Guggenheim, C. Lam, K. K. Li, Q. Liu, and C. H. To, “Simultaneous defocus integration during refractive development,” Invest. Ophthalmol. Visual Sci. 48(12), 5352–5359 (2007).
[Crossref]

Lam, C. S.

C. S. Lam, W. C. Tang, D. Y. Tse, Y. Y. Tang, and C. H. To, “Defocus Incorporated Soft Contact (DISC) lens slows myopia progression in Hong Kong Chinese schoolchildren: a 2-year randomised clinical trial,” Br. J. Ophthalmol. 98(1), 40–45 (2014).
[Crossref]

D. Y. Tse, C. S. Lam, J. A. Guggenheim, C. Lam, K. K. Li, Q. Liu, and C. H. To, “Simultaneous defocus integration during refractive development,” Invest. Ophthalmol. Visual Sci. 48(12), 5352–5359 (2007).
[Crossref]

Lan, W.

W. Lan, Z. Lin, Z. Yang, and P. Artal, “Two-dimensional peripheral refraction and retinal image quality in emmetropic children,” Sci. Rep. 9(1), 16203 (2019).
[Crossref]

Legerton, J.

J. M. Gonzalez-Meijome, S. C. Peixoto-de-Matos, M. Faria-Ribeiro, D. P. Lopes-Ferreira, J. Jorge, J. Legerton, and A. Queiros, “Strategies to regulate myopia progression with contact lenses: a review,” Eye Contact Lens 42(1), 24–34 (2016).
[Crossref]

Leotta, A. J.

H. E. Bowrey, G. Zeng, D. Y. Tse, A. J. Leotta, Y. Wu, C. H. To, C. F. Wildsoet, and S. A. McFadden, “The effect of spectacle lenses containing peripheral defocus on refractive error and horizontal eye shape in the guinea pig,” Invest. Ophthalmol. Visual Sci. 58(5), 2705–2714 (2017).
[Crossref]

Li, H.

S. M. Li, S. Y. Li, L. R. Liu, Y. H. Zhou, Z. Yang, M. T. Kang, H. Li, X. Y. Yang, Y. P. Wang, S. Y. Zhan, P. Mitchell, N. Wang, and D. A. AtchisonG. Anyang Childhood Eye Study, “Peripheral refraction in 7- and 14-year-old children in central China: the Anyang Childhood Eye Study,” Br. J. Ophthalmol. 99(5), 674–679 (2015).
[Crossref]

Li, K. K.

D. Y. Tse, C. S. Lam, J. A. Guggenheim, C. Lam, K. K. Li, Q. Liu, and C. H. To, “Simultaneous defocus integration during refractive development,” Invest. Ophthalmol. Visual Sci. 48(12), 5352–5359 (2007).
[Crossref]

Li, N.

T. Gu, B. Gong, D. Lu, W. Lin, N. Li, Q. He, and R. Wei, “Influence of corneal topographic parameters in the decentration of orthokeratology,” Eye Contact Lens 45(6), 372–376 (2019).
[Crossref]

Li, S. M.

S. M. Li, S. Y. Li, L. R. Liu, Y. H. Zhou, Z. Yang, M. T. Kang, H. Li, X. Y. Yang, Y. P. Wang, S. Y. Zhan, P. Mitchell, N. Wang, and D. A. AtchisonG. Anyang Childhood Eye Study, “Peripheral refraction in 7- and 14-year-old children in central China: the Anyang Childhood Eye Study,” Br. J. Ophthalmol. 99(5), 674–679 (2015).
[Crossref]

Li, S. Y.

S. M. Li, S. Y. Li, L. R. Liu, Y. H. Zhou, Z. Yang, M. T. Kang, H. Li, X. Y. Yang, Y. P. Wang, S. Y. Zhan, P. Mitchell, N. Wang, and D. A. AtchisonG. Anyang Childhood Eye Study, “Peripheral refraction in 7- and 14-year-old children in central China: the Anyang Childhood Eye Study,” Br. J. Ophthalmol. 99(5), 674–679 (2015).
[Crossref]

Li, W.

P. Sankaridurg, R. C. Bakaraju, T. Naduvilath, X. Chen, R. Weng, D. Tilia, P. Xu, W. Li, F. Conrad, E. L. Smith, and K. Ehrmann, “Myopia control with novel central and peripheral plus contact lenses and extended depth of focus contact lenses: 2 year results from a randomised clinical trial,” Ophthalmic. Physiol. Opt. (2019)

Li, Z.

Y. Hu, C. Wen, Z. Li, W. Zhao, X. Ding, and X. Yang, “Areal summed corneal power shift is an important determinant for axial length elongation in myopic children treated with overnight orthokeratology,” Br. J. Ophthalmol. (2019)

Lian, H.

R. Chen, Y. Chen, M. Lipson, P. Kang, H. Lian, Y. Zhao, C. McAlinden, and J. Huang, “The effect of treatment zone decentration on myopic progression during or-thokeratology,” Curr. Eye Res. 45(5), 645–651 (2020).
[Crossref]

Lim, D. H.

J. Kim, D. H. Lim, S. H. Han, and T. Y. Chung, “Predictive factors associated with axial length growth and myopia progression in orthokeratology,” PLoS One 14(6), e0218140 (2019).
[Crossref]

Lin, W.

T. Gu, B. Gong, D. Lu, W. Lin, N. Li, Q. He, and R. Wei, “Influence of corneal topographic parameters in the decentration of orthokeratology,” Eye Contact Lens 45(6), 372–376 (2019).
[Crossref]

Lin, X. Y.

C. C. Sng, X. Y. Lin, G. Gazzard, B. Chang, M. Dirani, A. Chia, P. Selvaraj, K. Ian, B. Drobe, T. Y. Wong, and S. M. Saw, “Peripheral refraction and refractive error in Singapore Chinese children,” Invest. Ophthalmol. Visual Sci. 52(2), 1181–1190 (2011).
[Crossref]

Lin, Z.

W. Lan, Z. Lin, Z. Yang, and P. Artal, “Two-dimensional peripheral refraction and retinal image quality in emmetropic children,” Sci. Rep. 9(1), 16203 (2019).
[Crossref]

Lipson, M.

R. Chen, Y. Chen, M. Lipson, P. Kang, H. Lian, Y. Zhao, C. McAlinden, and J. Huang, “The effect of treatment zone decentration on myopic progression during or-thokeratology,” Curr. Eye Res. 45(5), 645–651 (2020).
[Crossref]

Liu, C.

J. Shen, F. Spors, D. Egan, and C. Liu, “Peripheral refraction and image blur in four meridians in emmetropes and myopes,” Clin. Ophthalmol. 12, 345–358 (2018).
[Crossref]

Liu, L. R.

S. M. Li, S. Y. Li, L. R. Liu, Y. H. Zhou, Z. Yang, M. T. Kang, H. Li, X. Y. Yang, Y. P. Wang, S. Y. Zhan, P. Mitchell, N. Wang, and D. A. AtchisonG. Anyang Childhood Eye Study, “Peripheral refraction in 7- and 14-year-old children in central China: the Anyang Childhood Eye Study,” Br. J. Ophthalmol. 99(5), 674–679 (2015).
[Crossref]

Liu, Q.

D. Y. Tse, C. S. Lam, J. A. Guggenheim, C. Lam, K. K. Li, Q. Liu, and C. H. To, “Simultaneous defocus integration during refractive development,” Invest. Ophthalmol. Visual Sci. 48(12), 5352–5359 (2007).
[Crossref]

Logan, N. S.

K. D. Singh, N. S. Logan, and B. Gilmartin, “Three-dimensional modeling of the human eye based on magnetic resonance imaging,” Invest. Ophthalmol. Visual Sci. 47(6), 2272–2279 (2006).
[Crossref]

Lopes-Ferreira, D.

A. Queiros, A. Amorim-de-Sousa, D. Lopes-Ferreira, C. Villa-Collar, A. R. Gutierrez, and J. M. Gonzalez-Meijome, “Relative peripheral refraction across 4 meridians after orthokeratology and LASIK surgery,” Eye Vis. (Lond.) 5(1), 12 (2018).
[Crossref]

Lopes-Ferreira, D. P.

J. M. Gonzalez-Meijome, S. C. Peixoto-de-Matos, M. Faria-Ribeiro, D. P. Lopes-Ferreira, J. Jorge, J. Legerton, and A. Queiros, “Strategies to regulate myopia progression with contact lenses: a review,” Eye Contact Lens 42(1), 24–34 (2016).
[Crossref]

J. M. Gonzalez-Meijome, M. A. Faria-Ribeiro, D. P. Lopes-Ferreira, P. Fernandes, G. Carracedo, and A. Queiros, “Changes in peripheral refractive profile after orthokeratology for different degrees of myopia,” Curr. Eye Res. 41(2), 199–207 (2016).
[Crossref]

Lu, D.

T. Gu, B. Gong, D. Lu, W. Lin, N. Li, Q. He, and R. Wei, “Influence of corneal topographic parameters in the decentration of orthokeratology,” Eye Contact Lens 45(6), 372–376 (2019).
[Crossref]

Mallen, E. A.

A. Ehsaei, E. A. Mallen, C. M. Chisholm, and I. E. Pacey, “Cross-sectional sample of peripheral refraction in four meridians in myopes and emmetropes,” Invest. Ophthalmol. Visual Sci. 52(10), 7574–7585 (2011).
[Crossref]

Marcus, M. W.

M. W. Marcus, M. M. de Vries, F. G. Junoy Montolio, and N. M. Jansonius, “Myopia as a risk factor for open-angle glaucoma: a systematic review and meta-analysis,” Ophthalmology 118(10), 1989–1994.e2 (2011).
[Crossref]

Markwell, E. L.

W. N. Charman, J. Mountford, D. A. Atchison, and E. L. Markwell, “Peripheral refraction in orthokeratology patients,” Optom. Vis. Sci. 83(9), 641–648 (2006).
[Crossref]

Martinez, A.

P. Sankaridurg, B. Holden, E. Smith, T. Naduvilath, X. Chen, P. L. de la Jara, A. Martinez, J. Kwan, A. Ho, K. Frick, and J. Ge, “Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results,” Invest. Ophthalmol. Visual Sci. 52(13), 9362–9367 (2011).
[Crossref]

Mathur, A.

A. Mathur and D. A. Atchison, “Effect of orthokeratology on peripheral aberrations of the eye,” Optom. Vis. Sci. 86(5), E476–E484 (2009).
[Crossref]

McAlinden, C.

R. Chen, Y. Chen, M. Lipson, P. Kang, H. Lian, Y. Zhao, C. McAlinden, and J. Huang, “The effect of treatment zone decentration on myopic progression during or-thokeratology,” Curr. Eye Res. 45(5), 645–651 (2020).
[Crossref]

McFadden, S. A.

H. E. Bowrey, G. Zeng, D. Y. Tse, A. J. Leotta, Y. Wu, C. H. To, C. F. Wildsoet, and S. A. McFadden, “The effect of spectacle lenses containing peripheral defocus on refractive error and horizontal eye shape in the guinea pig,” Invest. Ophthalmol. Visual Sci. 58(5), 2705–2714 (2017).
[Crossref]

Miao, H.

Y. Zhong, Z. Chen, F. Xue, H. Miao, and X. Zhou, “Central and peripheral corneal power change in myopic orthokeratology and its relationship with 2-year axial length change,” Invest. Ophthalmol. Visual Sci. 56(8), 4514–4519 (2015).
[Crossref]

Mihashi, T.

T. Hiraoka, T. Mihashi, C. Okamoto, F. Okamoto, Y. Hirohara, and T. Oshika, “Influence of induced decentered orthokeratology lens on ocular higher-order wavefront aberrations and contrast sensitivity function,” J. Cataract Refractive Surg. 35(11), 1918–1926 (2009).
[Crossref]

Mitchell, P.

S. M. Li, S. Y. Li, L. R. Liu, Y. H. Zhou, Z. Yang, M. T. Kang, H. Li, X. Y. Yang, Y. P. Wang, S. Y. Zhan, P. Mitchell, N. Wang, and D. A. AtchisonG. Anyang Childhood Eye Study, “Peripheral refraction in 7- and 14-year-old children in central China: the Anyang Childhood Eye Study,” Br. J. Ophthalmol. 99(5), 674–679 (2015).
[Crossref]

Mountford, J.

W. N. Charman, J. Mountford, D. A. Atchison, and E. L. Markwell, “Peripheral refraction in orthokeratology patients,” Optom. Vis. Sci. 83(9), 641–648 (2006).
[Crossref]

Naduvilath, T.

P. Sankaridurg, B. Holden, E. Smith, T. Naduvilath, X. Chen, P. L. de la Jara, A. Martinez, J. Kwan, A. Ho, K. Frick, and J. Ge, “Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results,” Invest. Ophthalmol. Visual Sci. 52(13), 9362–9367 (2011).
[Crossref]

P. Sankaridurg, R. C. Bakaraju, T. Naduvilath, X. Chen, R. Weng, D. Tilia, P. Xu, W. Li, F. Conrad, E. L. Smith, and K. Ehrmann, “Myopia control with novel central and peripheral plus contact lenses and extended depth of focus contact lenses: 2 year results from a randomised clinical trial,” Ophthalmic. Physiol. Opt. (2019)

Naduvilath, T. J.

T. R. Fricke, M. Jong, K. S. Naidoo, P. Sankaridurg, T. J. Naduvilath, S. M. Ho, T. Y. Wong, and S. Resnikoff, “Global prevalence of visual impairment associated with myopic macular degeneration and temporal trends from 2000 through 2050: systematic review, meta-analysis and modelling,” Br. J. Ophthalmol. 102(7), 855–862 (2018).
[Crossref]

Naidoo, K. S.

T. R. Fricke, M. Jong, K. S. Naidoo, P. Sankaridurg, T. J. Naduvilath, S. M. Ho, T. Y. Wong, and S. Resnikoff, “Global prevalence of visual impairment associated with myopic macular degeneration and temporal trends from 2000 through 2050: systematic review, meta-analysis and modelling,” Br. J. Ophthalmol. 102(7), 855–862 (2018).
[Crossref]

Naidu, R. K.

B. Wang, R. K. Naidu, and X. Qu, “Factors related to axial length elongation and myopia progression in orthokeratology practice,” PLoS One 12(4), e0175913 (2017).
[Crossref]

Navarro, R.

Niu, L.

Y. Zhong, Z. Chen, F. Xue, J. Zhou, L. Niu, and X. Zhou, “Corneal power change is predictive of myopia progression in orthokeratology,” Optom. Vis. Sci. 91(4), 404–411 (2014).
[Crossref]

Ohno-Matsui, K.

H. Kanda, T. Oshika, T. Hiraoka, S. Hasebe, K. Ohno-Matsui, S. Ishiko, O. Hieda, H. Torii, S. R. Varnas, and T. Fujikado, “Effect of spectacle lenses designed to reduce relative peripheral hyperopia on myopia progression in Japanese children: a 2-year multicenter randomized controlled trial,” Jpn. J. Ophthalmol. 62(5), 537–543 (2018).
[Crossref]

Okamoto, C.

T. Hiraoka, T. Mihashi, C. Okamoto, F. Okamoto, Y. Hirohara, and T. Oshika, “Influence of induced decentered orthokeratology lens on ocular higher-order wavefront aberrations and contrast sensitivity function,” J. Cataract Refractive Surg. 35(11), 1918–1926 (2009).
[Crossref]

Okamoto, F.

T. Hiraoka, T. Mihashi, C. Okamoto, F. Okamoto, Y. Hirohara, and T. Oshika, “Influence of induced decentered orthokeratology lens on ocular higher-order wavefront aberrations and contrast sensitivity function,” J. Cataract Refractive Surg. 35(11), 1918–1926 (2009).
[Crossref]

Oshika, T.

H. Kanda, T. Oshika, T. Hiraoka, S. Hasebe, K. Ohno-Matsui, S. Ishiko, O. Hieda, H. Torii, S. R. Varnas, and T. Fujikado, “Effect of spectacle lenses designed to reduce relative peripheral hyperopia on myopia progression in Japanese children: a 2-year multicenter randomized controlled trial,” Jpn. J. Ophthalmol. 62(5), 537–543 (2018).
[Crossref]

T. Hiraoka, T. Mihashi, C. Okamoto, F. Okamoto, Y. Hirohara, and T. Oshika, “Influence of induced decentered orthokeratology lens on ocular higher-order wavefront aberrations and contrast sensitivity function,” J. Cataract Refractive Surg. 35(11), 1918–1926 (2009).
[Crossref]

Pacey, I. E.

A. Ehsaei, E. A. Mallen, C. M. Chisholm, and I. E. Pacey, “Cross-sectional sample of peripheral refraction in four meridians in myopes and emmetropes,” Invest. Ophthalmol. Visual Sci. 52(10), 7574–7585 (2011).
[Crossref]

Pan, C. W.

C. W. Pan, C. Y. Cheng, S. M. Saw, J. J. Wang, and T. Y. Wong, “Myopia and age-related cataract: a systematic review and meta-analysis,” Am. J. Ophthalmol. 156(5), 1021–1033.e1 (2013).
[Crossref]

Paune, J.

J. Paune, S. Thivent, J. Armengol, L. Quevedo, M. Faria-Ribeiro, and J. M. Gonzalez-Meijome, “Changes in peripheral refraction, higher-order aberrations, and accommodative lag with a radial refractive gradient contact lens in young myopes,” Eye Contact Lens 42(6), 380–387 (2016).
[Crossref]

Peixoto-de-Matos, S. C.

J. M. Gonzalez-Meijome, S. C. Peixoto-de-Matos, M. Faria-Ribeiro, D. P. Lopes-Ferreira, J. Jorge, J. Legerton, and A. Queiros, “Strategies to regulate myopia progression with contact lenses: a review,” Eye Contact Lens 42(1), 24–34 (2016).
[Crossref]

Prenner, J. L.

J. M. Lakawicz, W. J. Bottega, H. F. Fine, and J. L. Prenner, “On the mechanics of myopia and its influence on retinal detachment,” Biomech. Model. Mechanobiol. (2019)

Pritchard, N.

D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46(8-9), 1450–1458 (2006).
[Crossref]

Qiao-Grider, Ying

C.-s. K. Earl, L. Smith, Ramkumar Ramamirtham, Ying Qiao-Grider, and L.-F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Visual Sci. 46(11), 3695–3972 (2005).
[Crossref]

Qu, X.

Z. Chen, F. Xue, J. Zhou, X. Qu, and X. Zhou, “Prediction of orthokeratology lens decentration with corneal elevation,” Optom. Vis. Sci. 94(9), 903–907 (2017).
[Crossref]

B. Wang, R. K. Naidu, and X. Qu, “Factors related to axial length elongation and myopia progression in orthokeratology practice,” PLoS One 12(4), e0175913 (2017).
[Crossref]

Queiros, A.

A. Queiros, A. Amorim-de-Sousa, D. Lopes-Ferreira, C. Villa-Collar, A. R. Gutierrez, and J. M. Gonzalez-Meijome, “Relative peripheral refraction across 4 meridians after orthokeratology and LASIK surgery,” Eye Vis. (Lond.) 5(1), 12 (2018).
[Crossref]

J. M. Gonzalez-Meijome, S. C. Peixoto-de-Matos, M. Faria-Ribeiro, D. P. Lopes-Ferreira, J. Jorge, J. Legerton, and A. Queiros, “Strategies to regulate myopia progression with contact lenses: a review,” Eye Contact Lens 42(1), 24–34 (2016).
[Crossref]

J. M. Gonzalez-Meijome, M. A. Faria-Ribeiro, D. P. Lopes-Ferreira, P. Fernandes, G. Carracedo, and A. Queiros, “Changes in peripheral refractive profile after orthokeratology for different degrees of myopia,” Curr. Eye Res. 41(2), 199–207 (2016).
[Crossref]

A. Queiros, J. M. Gonzalez-Meijome, J. Jorge, C. Villa-Collar, and A. R. Gutierrez, “Peripheral refraction in myopic patients after orthokeratology,” Optom. Vis. Sci. 87(5), 323–329 (2010).
[Crossref]

Quevedo, L.

J. Paune, S. Thivent, J. Armengol, L. Quevedo, M. Faria-Ribeiro, and J. M. Gonzalez-Meijome, “Changes in peripheral refraction, higher-order aberrations, and accommodative lag with a radial refractive gradient contact lens in young myopes,” Eye Contact Lens 42(6), 380–387 (2016).
[Crossref]

Ramamirtham, Ramkumar

C.-s. K. Earl, L. Smith, Ramkumar Ramamirtham, Ying Qiao-Grider, and L.-F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Visual Sci. 46(11), 3695–3972 (2005).
[Crossref]

Resnikoff, S.

T. R. Fricke, M. Jong, K. S. Naidoo, P. Sankaridurg, T. J. Naduvilath, S. M. Ho, T. Y. Wong, and S. Resnikoff, “Global prevalence of visual impairment associated with myopic macular degeneration and temporal trends from 2000 through 2050: systematic review, meta-analysis and modelling,” Br. J. Ophthalmol. 102(7), 855–862 (2018).
[Crossref]

Ryu, I. H.

W. K. Kim, B. J. Kim, I. H. Ryu, J. K. Kim, and S. W. Kim, “Corneal epithelial and stromal thickness changes in myopic orthokeratology and their relationship with refractive change,” PLoS One 13(9), e0203652 (2018).
[Crossref]

Sankaridurg, P.

T. R. Fricke, M. Jong, K. S. Naidoo, P. Sankaridurg, T. J. Naduvilath, S. M. Ho, T. Y. Wong, and S. Resnikoff, “Global prevalence of visual impairment associated with myopic macular degeneration and temporal trends from 2000 through 2050: systematic review, meta-analysis and modelling,” Br. J. Ophthalmol. 102(7), 855–862 (2018).
[Crossref]

B. Arumugam, L. F. Hung, C. H. To, P. Sankaridurg, and E. L. Smith, “The effects of the relative strength of simultaneous competing defocus signals on emmetropization in infant rhesus monkeys,” Invest. Ophthalmol. Visual Sci. 57(10), 3949–3960 (2016).
[Crossref]

P. Sankaridurg, B. Holden, E. Smith, T. Naduvilath, X. Chen, P. L. de la Jara, A. Martinez, J. Kwan, A. Ho, K. Frick, and J. Ge, “Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results,” Invest. Ophthalmol. Visual Sci. 52(13), 9362–9367 (2011).
[Crossref]

P. Sankaridurg, R. C. Bakaraju, T. Naduvilath, X. Chen, R. Weng, D. Tilia, P. Xu, W. Li, F. Conrad, E. L. Smith, and K. Ehrmann, “Myopia control with novel central and peripheral plus contact lenses and extended depth of focus contact lenses: 2 year results from a randomised clinical trial,” Ophthalmic. Physiol. Opt. (2019)

Santamaria, J.

Saw, S. M.

C. W. Pan, C. Y. Cheng, S. M. Saw, J. J. Wang, and T. Y. Wong, “Myopia and age-related cataract: a systematic review and meta-analysis,” Am. J. Ophthalmol. 156(5), 1021–1033.e1 (2013).
[Crossref]

C. C. Sng, X. Y. Lin, G. Gazzard, B. Chang, M. Dirani, A. Chia, P. Selvaraj, K. Ian, B. Drobe, T. Y. Wong, and S. M. Saw, “Peripheral refraction and refractive error in Singapore Chinese children,” Invest. Ophthalmol. Visual Sci. 52(2), 1181–1190 (2011).
[Crossref]

Schaeffel, F.

A. O. Juan Tabernero, M. Dominik Fischer, A. R. Bruckmann, U. Schiefer, and F. Schaeffel, “Peripheral refraction profiles in subjects with low foveal refractive errors,” Optometry and Vision Science 88(3), E388–E394 (2011).
[Crossref]

Schiefer, U.

A. O. Juan Tabernero, M. Dominik Fischer, A. R. Bruckmann, U. Schiefer, and F. Schaeffel, “Peripheral refraction profiles in subjects with low foveal refractive errors,” Optometry and Vision Science 88(3), E388–E394 (2011).
[Crossref]

Schmid, K. L.

P. K. Verkicharla, M. Suheimat, K. L. Schmid, and D. A. Atchison, “Peripheral refraction, peripheral eye length, and retinal shape in myopia,” Optom. Vis. Sci. 93(9), 1072–1078 (2016).
[Crossref]

D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46(8-9), 1450–1458 (2006).
[Crossref]

Selvaraj, P.

C. C. Sng, X. Y. Lin, G. Gazzard, B. Chang, M. Dirani, A. Chia, P. Selvaraj, K. Ian, B. Drobe, T. Y. Wong, and S. M. Saw, “Peripheral refraction and refractive error in Singapore Chinese children,” Invest. Ophthalmol. Visual Sci. 52(2), 1181–1190 (2011).
[Crossref]

Shen, J.

J. Shen, F. Spors, D. Egan, and C. Liu, “Peripheral refraction and image blur in four meridians in emmetropes and myopes,” Clin. Ophthalmol. 12, 345–358 (2018).
[Crossref]

Singh, K. D.

K. D. Singh, N. S. Logan, and B. Gilmartin, “Three-dimensional modeling of the human eye based on magnetic resonance imaging,” Invest. Ophthalmol. Visual Sci. 47(6), 2272–2279 (2006).
[Crossref]

Smith, E.

P. Sankaridurg, B. Holden, E. Smith, T. Naduvilath, X. Chen, P. L. de la Jara, A. Martinez, J. Kwan, A. Ho, K. Frick, and J. Ge, “Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results,” Invest. Ophthalmol. Visual Sci. 52(13), 9362–9367 (2011).
[Crossref]

Smith, E. L.

B. Arumugam, L. F. Hung, C. H. To, P. Sankaridurg, and E. L. Smith, “The effects of the relative strength of simultaneous competing defocus signals on emmetropization in infant rhesus monkeys,” Invest. Ophthalmol. Visual Sci. 57(10), 3949–3960 (2016).
[Crossref]

P. Sankaridurg, R. C. Bakaraju, T. Naduvilath, X. Chen, R. Weng, D. Tilia, P. Xu, W. Li, F. Conrad, E. L. Smith, and K. Ehrmann, “Myopia control with novel central and peripheral plus contact lenses and extended depth of focus contact lenses: 2 year results from a randomised clinical trial,” Ophthalmic. Physiol. Opt. (2019)

Smith, L.

C.-s. K. Earl, L. Smith, Ramkumar Ramamirtham, Ying Qiao-Grider, and L.-F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Visual Sci. 46(11), 3695–3972 (2005).
[Crossref]

Sng, C. C.

C. C. Sng, X. Y. Lin, G. Gazzard, B. Chang, M. Dirani, A. Chia, P. Selvaraj, K. Ian, B. Drobe, T. Y. Wong, and S. M. Saw, “Peripheral refraction and refractive error in Singapore Chinese children,” Invest. Ophthalmol. Visual Sci. 52(2), 1181–1190 (2011).
[Crossref]

Spors, F.

J. Shen, F. Spors, D. Egan, and C. Liu, “Peripheral refraction and image blur in four meridians in emmetropes and myopes,” Clin. Ophthalmol. 12, 345–358 (2018).
[Crossref]

Suheimat, M.

P. K. Verkicharla, M. Suheimat, K. L. Schmid, and D. A. Atchison, “Peripheral refraction, peripheral eye length, and retinal shape in myopia,” Optom. Vis. Sci. 93(9), 1072–1078 (2016).
[Crossref]

Swarbrick, H.

P. Kang and H. Swarbrick, “The influence of different OK lens designs on peripheral refraction,” Optom. Vis. Sci. 93(9), 1112–1119 (2016).
[Crossref]

Tang, W. C.

C. S. Lam, W. C. Tang, D. Y. Tse, Y. Y. Tang, and C. H. To, “Defocus Incorporated Soft Contact (DISC) lens slows myopia progression in Hong Kong Chinese schoolchildren: a 2-year randomised clinical trial,” Br. J. Ophthalmol. 98(1), 40–45 (2014).
[Crossref]

Tang, Y. Y.

C. S. Lam, W. C. Tang, D. Y. Tse, Y. Y. Tang, and C. H. To, “Defocus Incorporated Soft Contact (DISC) lens slows myopia progression in Hong Kong Chinese schoolchildren: a 2-year randomised clinical trial,” Br. J. Ophthalmol. 98(1), 40–45 (2014).
[Crossref]

Thivent, S.

J. Paune, S. Thivent, J. Armengol, L. Quevedo, M. Faria-Ribeiro, and J. M. Gonzalez-Meijome, “Changes in peripheral refraction, higher-order aberrations, and accommodative lag with a radial refractive gradient contact lens in young myopes,” Eye Contact Lens 42(6), 380–387 (2016).
[Crossref]

Tilia, D.

P. Sankaridurg, R. C. Bakaraju, T. Naduvilath, X. Chen, R. Weng, D. Tilia, P. Xu, W. Li, F. Conrad, E. L. Smith, and K. Ehrmann, “Myopia control with novel central and peripheral plus contact lenses and extended depth of focus contact lenses: 2 year results from a randomised clinical trial,” Ophthalmic. Physiol. Opt. (2019)

Tkatchenko, A. V.

J. Cooper and A. V. Tkatchenko, “A review of current concepts of the etiology and treatment of myopia,” Eye Contact Lens 44(4), 231–247 (2018).
[Crossref]

To, C. H.

H. E. Bowrey, G. Zeng, D. Y. Tse, A. J. Leotta, Y. Wu, C. H. To, C. F. Wildsoet, and S. A. McFadden, “The effect of spectacle lenses containing peripheral defocus on refractive error and horizontal eye shape in the guinea pig,” Invest. Ophthalmol. Visual Sci. 58(5), 2705–2714 (2017).
[Crossref]

B. Arumugam, L. F. Hung, C. H. To, P. Sankaridurg, and E. L. Smith, “The effects of the relative strength of simultaneous competing defocus signals on emmetropization in infant rhesus monkeys,” Invest. Ophthalmol. Visual Sci. 57(10), 3949–3960 (2016).
[Crossref]

C. S. Lam, W. C. Tang, D. Y. Tse, Y. Y. Tang, and C. H. To, “Defocus Incorporated Soft Contact (DISC) lens slows myopia progression in Hong Kong Chinese schoolchildren: a 2-year randomised clinical trial,” Br. J. Ophthalmol. 98(1), 40–45 (2014).
[Crossref]

D. Y. Tse and C. H. To, “Graded competing regional myopic and hyperopic defocus produce summated emmetropization set points in chick,” Invest. Ophthalmol. Visual Sci. 52(11), 8056–8062 (2011).
[Crossref]

D. Y. Tse, C. S. Lam, J. A. Guggenheim, C. Lam, K. K. Li, Q. Liu, and C. H. To, “Simultaneous defocus integration during refractive development,” Invest. Ophthalmol. Visual Sci. 48(12), 5352–5359 (2007).
[Crossref]

Torii, H.

H. Kanda, T. Oshika, T. Hiraoka, S. Hasebe, K. Ohno-Matsui, S. Ishiko, O. Hieda, H. Torii, S. R. Varnas, and T. Fujikado, “Effect of spectacle lenses designed to reduce relative peripheral hyperopia on myopia progression in Japanese children: a 2-year multicenter randomized controlled trial,” Jpn. J. Ophthalmol. 62(5), 537–543 (2018).
[Crossref]

Tse, D. Y.

H. E. Bowrey, G. Zeng, D. Y. Tse, A. J. Leotta, Y. Wu, C. H. To, C. F. Wildsoet, and S. A. McFadden, “The effect of spectacle lenses containing peripheral defocus on refractive error and horizontal eye shape in the guinea pig,” Invest. Ophthalmol. Visual Sci. 58(5), 2705–2714 (2017).
[Crossref]

C. S. Lam, W. C. Tang, D. Y. Tse, Y. Y. Tang, and C. H. To, “Defocus Incorporated Soft Contact (DISC) lens slows myopia progression in Hong Kong Chinese schoolchildren: a 2-year randomised clinical trial,” Br. J. Ophthalmol. 98(1), 40–45 (2014).
[Crossref]

D. Y. Tse and C. H. To, “Graded competing regional myopic and hyperopic defocus produce summated emmetropization set points in chick,” Invest. Ophthalmol. Visual Sci. 52(11), 8056–8062 (2011).
[Crossref]

D. Y. Tse, C. S. Lam, J. A. Guggenheim, C. Lam, K. K. Li, Q. Liu, and C. H. To, “Simultaneous defocus integration during refractive development,” Invest. Ophthalmol. Visual Sci. 48(12), 5352–5359 (2007).
[Crossref]

Varnas, S. R.

H. Kanda, T. Oshika, T. Hiraoka, S. Hasebe, K. Ohno-Matsui, S. Ishiko, O. Hieda, H. Torii, S. R. Varnas, and T. Fujikado, “Effect of spectacle lenses designed to reduce relative peripheral hyperopia on myopia progression in Japanese children: a 2-year multicenter randomized controlled trial,” Jpn. J. Ophthalmol. 62(5), 537–543 (2018).
[Crossref]

Verkicharla, P. K.

P. K. Verkicharla, M. Suheimat, K. L. Schmid, and D. A. Atchison, “Peripheral refraction, peripheral eye length, and retinal shape in myopia,” Optom. Vis. Sci. 93(9), 1072–1078 (2016).
[Crossref]

Villa-Collar, C.

A. Queiros, A. Amorim-de-Sousa, D. Lopes-Ferreira, C. Villa-Collar, A. R. Gutierrez, and J. M. Gonzalez-Meijome, “Relative peripheral refraction across 4 meridians after orthokeratology and LASIK surgery,” Eye Vis. (Lond.) 5(1), 12 (2018).
[Crossref]

A. Queiros, J. M. Gonzalez-Meijome, J. Jorge, C. Villa-Collar, and A. R. Gutierrez, “Peripheral refraction in myopic patients after orthokeratology,” Optom. Vis. Sci. 87(5), 323–329 (2010).
[Crossref]

Wang, A.

A. Wang and C. Yang, “Influence of overnight orthokeratology lens treatment zone decentration on myopia progression,” J. Ophthalmol. 2019, 2596953 (2019).
[Crossref]

Wang, B.

B. Wang, R. K. Naidu, and X. Qu, “Factors related to axial length elongation and myopia progression in orthokeratology practice,” PLoS One 12(4), e0175913 (2017).
[Crossref]

Wang, J. J.

C. W. Pan, C. Y. Cheng, S. M. Saw, J. J. Wang, and T. Y. Wong, “Myopia and age-related cataract: a systematic review and meta-analysis,” Am. J. Ophthalmol. 156(5), 1021–1033.e1 (2013).
[Crossref]

Wang, N.

S. M. Li, S. Y. Li, L. R. Liu, Y. H. Zhou, Z. Yang, M. T. Kang, H. Li, X. Y. Yang, Y. P. Wang, S. Y. Zhan, P. Mitchell, N. Wang, and D. A. AtchisonG. Anyang Childhood Eye Study, “Peripheral refraction in 7- and 14-year-old children in central China: the Anyang Childhood Eye Study,” Br. J. Ophthalmol. 99(5), 674–679 (2015).
[Crossref]

Wang, Y. P.

S. M. Li, S. Y. Li, L. R. Liu, Y. H. Zhou, Z. Yang, M. T. Kang, H. Li, X. Y. Yang, Y. P. Wang, S. Y. Zhan, P. Mitchell, N. Wang, and D. A. AtchisonG. Anyang Childhood Eye Study, “Peripheral refraction in 7- and 14-year-old children in central China: the Anyang Childhood Eye Study,” Br. J. Ophthalmol. 99(5), 674–679 (2015).
[Crossref]

Wei, R.

T. Gu, B. Gong, D. Lu, W. Lin, N. Li, Q. He, and R. Wei, “Influence of corneal topographic parameters in the decentration of orthokeratology,” Eye Contact Lens 45(6), 372–376 (2019).
[Crossref]

Wen, C.

Y. Hu, C. Wen, Z. Li, W. Zhao, X. Ding, and X. Yang, “Areal summed corneal power shift is an important determinant for axial length elongation in myopic children treated with overnight orthokeratology,” Br. J. Ophthalmol. (2019)

Weng, R.

P. Sankaridurg, R. C. Bakaraju, T. Naduvilath, X. Chen, R. Weng, D. Tilia, P. Xu, W. Li, F. Conrad, E. L. Smith, and K. Ehrmann, “Myopia control with novel central and peripheral plus contact lenses and extended depth of focus contact lenses: 2 year results from a randomised clinical trial,” Ophthalmic. Physiol. Opt. (2019)

Wildsoet, C. F.

H. E. Bowrey, G. Zeng, D. Y. Tse, A. J. Leotta, Y. Wu, C. H. To, C. F. Wildsoet, and S. A. McFadden, “The effect of spectacle lenses containing peripheral defocus on refractive error and horizontal eye shape in the guinea pig,” Invest. Ophthalmol. Visual Sci. 58(5), 2705–2714 (2017).
[Crossref]

Wong, T. Y.

T. R. Fricke, M. Jong, K. S. Naidoo, P. Sankaridurg, T. J. Naduvilath, S. M. Ho, T. Y. Wong, and S. Resnikoff, “Global prevalence of visual impairment associated with myopic macular degeneration and temporal trends from 2000 through 2050: systematic review, meta-analysis and modelling,” Br. J. Ophthalmol. 102(7), 855–862 (2018).
[Crossref]

C. W. Pan, C. Y. Cheng, S. M. Saw, J. J. Wang, and T. Y. Wong, “Myopia and age-related cataract: a systematic review and meta-analysis,” Am. J. Ophthalmol. 156(5), 1021–1033.e1 (2013).
[Crossref]

C. C. Sng, X. Y. Lin, G. Gazzard, B. Chang, M. Dirani, A. Chia, P. Selvaraj, K. Ian, B. Drobe, T. Y. Wong, and S. M. Saw, “Peripheral refraction and refractive error in Singapore Chinese children,” Invest. Ophthalmol. Visual Sci. 52(2), 1181–1190 (2011).
[Crossref]

Wu, Y.

H. E. Bowrey, G. Zeng, D. Y. Tse, A. J. Leotta, Y. Wu, C. H. To, C. F. Wildsoet, and S. A. McFadden, “The effect of spectacle lenses containing peripheral defocus on refractive error and horizontal eye shape in the guinea pig,” Invest. Ophthalmol. Visual Sci. 58(5), 2705–2714 (2017).
[Crossref]

Xu, P.

P. Sankaridurg, R. C. Bakaraju, T. Naduvilath, X. Chen, R. Weng, D. Tilia, P. Xu, W. Li, F. Conrad, E. L. Smith, and K. Ehrmann, “Myopia control with novel central and peripheral plus contact lenses and extended depth of focus contact lenses: 2 year results from a randomised clinical trial,” Ophthalmic. Physiol. Opt. (2019)

Xue, F.

Z. Chen, F. Xue, J. Zhou, X. Qu, and X. Zhou, “Prediction of orthokeratology lens decentration with corneal elevation,” Optom. Vis. Sci. 94(9), 903–907 (2017).
[Crossref]

Y. Zhong, Z. Chen, F. Xue, H. Miao, and X. Zhou, “Central and peripheral corneal power change in myopic orthokeratology and its relationship with 2-year axial length change,” Invest. Ophthalmol. Visual Sci. 56(8), 4514–4519 (2015).
[Crossref]

Y. Zhong, Z. Chen, F. Xue, J. Zhou, L. Niu, and X. Zhou, “Corneal power change is predictive of myopia progression in orthokeratology,” Optom. Vis. Sci. 91(4), 404–411 (2014).
[Crossref]

Yang, C.

A. Wang and C. Yang, “Influence of overnight orthokeratology lens treatment zone decentration on myopia progression,” J. Ophthalmol. 2019, 2596953 (2019).
[Crossref]

Yang, X.

Y. Hu, C. Wen, Z. Li, W. Zhao, X. Ding, and X. Yang, “Areal summed corneal power shift is an important determinant for axial length elongation in myopic children treated with overnight orthokeratology,” Br. J. Ophthalmol. (2019)

Yang, X. Y.

S. M. Li, S. Y. Li, L. R. Liu, Y. H. Zhou, Z. Yang, M. T. Kang, H. Li, X. Y. Yang, Y. P. Wang, S. Y. Zhan, P. Mitchell, N. Wang, and D. A. AtchisonG. Anyang Childhood Eye Study, “Peripheral refraction in 7- and 14-year-old children in central China: the Anyang Childhood Eye Study,” Br. J. Ophthalmol. 99(5), 674–679 (2015).
[Crossref]

Yang, Z.

W. Lan, Z. Lin, Z. Yang, and P. Artal, “Two-dimensional peripheral refraction and retinal image quality in emmetropic children,” Sci. Rep. 9(1), 16203 (2019).
[Crossref]

S. M. Li, S. Y. Li, L. R. Liu, Y. H. Zhou, Z. Yang, M. T. Kang, H. Li, X. Y. Yang, Y. P. Wang, S. Y. Zhan, P. Mitchell, N. Wang, and D. A. AtchisonG. Anyang Childhood Eye Study, “Peripheral refraction in 7- and 14-year-old children in central China: the Anyang Childhood Eye Study,” Br. J. Ophthalmol. 99(5), 674–679 (2015).
[Crossref]

Zeng, G.

H. E. Bowrey, G. Zeng, D. Y. Tse, A. J. Leotta, Y. Wu, C. H. To, C. F. Wildsoet, and S. A. McFadden, “The effect of spectacle lenses containing peripheral defocus on refractive error and horizontal eye shape in the guinea pig,” Invest. Ophthalmol. Visual Sci. 58(5), 2705–2714 (2017).
[Crossref]

Zhan, S. Y.

S. M. Li, S. Y. Li, L. R. Liu, Y. H. Zhou, Z. Yang, M. T. Kang, H. Li, X. Y. Yang, Y. P. Wang, S. Y. Zhan, P. Mitchell, N. Wang, and D. A. AtchisonG. Anyang Childhood Eye Study, “Peripheral refraction in 7- and 14-year-old children in central China: the Anyang Childhood Eye Study,” Br. J. Ophthalmol. 99(5), 674–679 (2015).
[Crossref]

Zhao, W.

Y. Hu, C. Wen, Z. Li, W. Zhao, X. Ding, and X. Yang, “Areal summed corneal power shift is an important determinant for axial length elongation in myopic children treated with overnight orthokeratology,” Br. J. Ophthalmol. (2019)

Zhao, Y.

R. Chen, Y. Chen, M. Lipson, P. Kang, H. Lian, Y. Zhao, C. McAlinden, and J. Huang, “The effect of treatment zone decentration on myopic progression during or-thokeratology,” Curr. Eye Res. 45(5), 645–651 (2020).
[Crossref]

Zhong, Y.

Y. Zhong, Z. Chen, F. Xue, H. Miao, and X. Zhou, “Central and peripheral corneal power change in myopic orthokeratology and its relationship with 2-year axial length change,” Invest. Ophthalmol. Visual Sci. 56(8), 4514–4519 (2015).
[Crossref]

Y. Zhong, Z. Chen, F. Xue, J. Zhou, L. Niu, and X. Zhou, “Corneal power change is predictive of myopia progression in orthokeratology,” Optom. Vis. Sci. 91(4), 404–411 (2014).
[Crossref]

Zhou, J.

Z. Chen, F. Xue, J. Zhou, X. Qu, and X. Zhou, “Prediction of orthokeratology lens decentration with corneal elevation,” Optom. Vis. Sci. 94(9), 903–907 (2017).
[Crossref]

Y. Zhong, Z. Chen, F. Xue, J. Zhou, L. Niu, and X. Zhou, “Corneal power change is predictive of myopia progression in orthokeratology,” Optom. Vis. Sci. 91(4), 404–411 (2014).
[Crossref]

Zhou, X.

Z. Chen, F. Xue, J. Zhou, X. Qu, and X. Zhou, “Prediction of orthokeratology lens decentration with corneal elevation,” Optom. Vis. Sci. 94(9), 903–907 (2017).
[Crossref]

Y. Zhong, Z. Chen, F. Xue, H. Miao, and X. Zhou, “Central and peripheral corneal power change in myopic orthokeratology and its relationship with 2-year axial length change,” Invest. Ophthalmol. Visual Sci. 56(8), 4514–4519 (2015).
[Crossref]

Y. Zhong, Z. Chen, F. Xue, J. Zhou, L. Niu, and X. Zhou, “Corneal power change is predictive of myopia progression in orthokeratology,” Optom. Vis. Sci. 91(4), 404–411 (2014).
[Crossref]

Zhou, Y. H.

S. M. Li, S. Y. Li, L. R. Liu, Y. H. Zhou, Z. Yang, M. T. Kang, H. Li, X. Y. Yang, Y. P. Wang, S. Y. Zhan, P. Mitchell, N. Wang, and D. A. AtchisonG. Anyang Childhood Eye Study, “Peripheral refraction in 7- and 14-year-old children in central China: the Anyang Childhood Eye Study,” Br. J. Ophthalmol. 99(5), 674–679 (2015).
[Crossref]

Acta Ophthalmol. (1)

T. Kratzer, “(New) Approaches to reduce progression of myopia with spectacles from Carl Zeiss Vision,” Acta Ophthalmol. 90(s249), 2012 (2012).
[Crossref]

Am. J. Ophthalmol. (1)

C. W. Pan, C. Y. Cheng, S. M. Saw, J. J. Wang, and T. Y. Wong, “Myopia and age-related cataract: a systematic review and meta-analysis,” Am. J. Ophthalmol. 156(5), 1021–1033.e1 (2013).
[Crossref]

Br. J. Ophthalmol. (3)

T. R. Fricke, M. Jong, K. S. Naidoo, P. Sankaridurg, T. J. Naduvilath, S. M. Ho, T. Y. Wong, and S. Resnikoff, “Global prevalence of visual impairment associated with myopic macular degeneration and temporal trends from 2000 through 2050: systematic review, meta-analysis and modelling,” Br. J. Ophthalmol. 102(7), 855–862 (2018).
[Crossref]

S. M. Li, S. Y. Li, L. R. Liu, Y. H. Zhou, Z. Yang, M. T. Kang, H. Li, X. Y. Yang, Y. P. Wang, S. Y. Zhan, P. Mitchell, N. Wang, and D. A. AtchisonG. Anyang Childhood Eye Study, “Peripheral refraction in 7- and 14-year-old children in central China: the Anyang Childhood Eye Study,” Br. J. Ophthalmol. 99(5), 674–679 (2015).
[Crossref]

C. S. Lam, W. C. Tang, D. Y. Tse, Y. Y. Tang, and C. H. To, “Defocus Incorporated Soft Contact (DISC) lens slows myopia progression in Hong Kong Chinese schoolchildren: a 2-year randomised clinical trial,” Br. J. Ophthalmol. 98(1), 40–45 (2014).
[Crossref]

Clin. Ophthalmol. (1)

J. Shen, F. Spors, D. Egan, and C. Liu, “Peripheral refraction and image blur in four meridians in emmetropes and myopes,” Clin. Ophthalmol. 12, 345–358 (2018).
[Crossref]

Curr. Eye Res. (2)

J. M. Gonzalez-Meijome, M. A. Faria-Ribeiro, D. P. Lopes-Ferreira, P. Fernandes, G. Carracedo, and A. Queiros, “Changes in peripheral refractive profile after orthokeratology for different degrees of myopia,” Curr. Eye Res. 41(2), 199–207 (2016).
[Crossref]

R. Chen, Y. Chen, M. Lipson, P. Kang, H. Lian, Y. Zhao, C. McAlinden, and J. Huang, “The effect of treatment zone decentration on myopic progression during or-thokeratology,” Curr. Eye Res. 45(5), 645–651 (2020).
[Crossref]

Eye Contact Lens (4)

T. Gu, B. Gong, D. Lu, W. Lin, N. Li, Q. He, and R. Wei, “Influence of corneal topographic parameters in the decentration of orthokeratology,” Eye Contact Lens 45(6), 372–376 (2019).
[Crossref]

J. Paune, S. Thivent, J. Armengol, L. Quevedo, M. Faria-Ribeiro, and J. M. Gonzalez-Meijome, “Changes in peripheral refraction, higher-order aberrations, and accommodative lag with a radial refractive gradient contact lens in young myopes,” Eye Contact Lens 42(6), 380–387 (2016).
[Crossref]

J. M. Gonzalez-Meijome, S. C. Peixoto-de-Matos, M. Faria-Ribeiro, D. P. Lopes-Ferreira, J. Jorge, J. Legerton, and A. Queiros, “Strategies to regulate myopia progression with contact lenses: a review,” Eye Contact Lens 42(1), 24–34 (2016).
[Crossref]

J. Cooper and A. V. Tkatchenko, “A review of current concepts of the etiology and treatment of myopia,” Eye Contact Lens 44(4), 231–247 (2018).
[Crossref]

Eye Vis. (Lond.) (1)

A. Queiros, A. Amorim-de-Sousa, D. Lopes-Ferreira, C. Villa-Collar, A. R. Gutierrez, and J. M. Gonzalez-Meijome, “Relative peripheral refraction across 4 meridians after orthokeratology and LASIK surgery,” Eye Vis. (Lond.) 5(1), 12 (2018).
[Crossref]

Invest. Ophthalmol. Visual Sci. (10)

P. Sankaridurg, B. Holden, E. Smith, T. Naduvilath, X. Chen, P. L. de la Jara, A. Martinez, J. Kwan, A. Ho, K. Frick, and J. Ge, “Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results,” Invest. Ophthalmol. Visual Sci. 52(13), 9362–9367 (2011).
[Crossref]

K. D. Singh, N. S. Logan, and B. Gilmartin, “Three-dimensional modeling of the human eye based on magnetic resonance imaging,” Invest. Ophthalmol. Visual Sci. 47(6), 2272–2279 (2006).
[Crossref]

C. C. Sng, X. Y. Lin, G. Gazzard, B. Chang, M. Dirani, A. Chia, P. Selvaraj, K. Ian, B. Drobe, T. Y. Wong, and S. M. Saw, “Peripheral refraction and refractive error in Singapore Chinese children,” Invest. Ophthalmol. Visual Sci. 52(2), 1181–1190 (2011).
[Crossref]

A. Ehsaei, E. A. Mallen, C. M. Chisholm, and I. E. Pacey, “Cross-sectional sample of peripheral refraction in four meridians in myopes and emmetropes,” Invest. Ophthalmol. Visual Sci. 52(10), 7574–7585 (2011).
[Crossref]

C.-s. K. Earl, L. Smith, Ramkumar Ramamirtham, Ying Qiao-Grider, and L.-F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Visual Sci. 46(11), 3695–3972 (2005).
[Crossref]

B. Arumugam, L. F. Hung, C. H. To, P. Sankaridurg, and E. L. Smith, “The effects of the relative strength of simultaneous competing defocus signals on emmetropization in infant rhesus monkeys,” Invest. Ophthalmol. Visual Sci. 57(10), 3949–3960 (2016).
[Crossref]

D. Y. Tse and C. H. To, “Graded competing regional myopic and hyperopic defocus produce summated emmetropization set points in chick,” Invest. Ophthalmol. Visual Sci. 52(11), 8056–8062 (2011).
[Crossref]

D. Y. Tse, C. S. Lam, J. A. Guggenheim, C. Lam, K. K. Li, Q. Liu, and C. H. To, “Simultaneous defocus integration during refractive development,” Invest. Ophthalmol. Visual Sci. 48(12), 5352–5359 (2007).
[Crossref]

H. E. Bowrey, G. Zeng, D. Y. Tse, A. J. Leotta, Y. Wu, C. H. To, C. F. Wildsoet, and S. A. McFadden, “The effect of spectacle lenses containing peripheral defocus on refractive error and horizontal eye shape in the guinea pig,” Invest. Ophthalmol. Visual Sci. 58(5), 2705–2714 (2017).
[Crossref]

Y. Zhong, Z. Chen, F. Xue, H. Miao, and X. Zhou, “Central and peripheral corneal power change in myopic orthokeratology and its relationship with 2-year axial length change,” Invest. Ophthalmol. Visual Sci. 56(8), 4514–4519 (2015).
[Crossref]

J. Biomed. Opt. (1)

D. A. Atchison, “Higher order aberrations across the horizontal visual field,” J. Biomed. Opt. 11(3), 034026 (2006).
[Crossref]

J. Cataract Refractive Surg. (1)

T. Hiraoka, T. Mihashi, C. Okamoto, F. Okamoto, Y. Hirohara, and T. Oshika, “Influence of induced decentered orthokeratology lens on ocular higher-order wavefront aberrations and contrast sensitivity function,” J. Cataract Refractive Surg. 35(11), 1918–1926 (2009).
[Crossref]

J. Ophthalmol. (1)

A. Wang and C. Yang, “Influence of overnight orthokeratology lens treatment zone decentration on myopia progression,” J. Ophthalmol. 2019, 2596953 (2019).
[Crossref]

J. Opt. Soc. Am. A (1)

Jpn. J. Ophthalmol. (1)

H. Kanda, T. Oshika, T. Hiraoka, S. Hasebe, K. Ohno-Matsui, S. Ishiko, O. Hieda, H. Torii, S. R. Varnas, and T. Fujikado, “Effect of spectacle lenses designed to reduce relative peripheral hyperopia on myopia progression in Japanese children: a 2-year multicenter randomized controlled trial,” Jpn. J. Ophthalmol. 62(5), 537–543 (2018).
[Crossref]

Ophthalmologica (1)

F. R. J. Hoogerheide and W. P. H. Hoogenboom, “Acquired myopia in young pilots,” Ophthalmologica 163(4), 209–215 (1971).
[Crossref]

Ophthalmology (1)

M. W. Marcus, M. M. de Vries, F. G. Junoy Montolio, and N. M. Jansonius, “Myopia as a risk factor for open-angle glaucoma: a systematic review and meta-analysis,” Ophthalmology 118(10), 1989–1994.e2 (2011).
[Crossref]

Opt. Express (1)

Optom. Vis. Sci. (7)

P. K. Verkicharla, M. Suheimat, K. L. Schmid, and D. A. Atchison, “Peripheral refraction, peripheral eye length, and retinal shape in myopia,” Optom. Vis. Sci. 93(9), 1072–1078 (2016).
[Crossref]

P. Kang and H. Swarbrick, “The influence of different OK lens designs on peripheral refraction,” Optom. Vis. Sci. 93(9), 1112–1119 (2016).
[Crossref]

W. N. Charman, J. Mountford, D. A. Atchison, and E. L. Markwell, “Peripheral refraction in orthokeratology patients,” Optom. Vis. Sci. 83(9), 641–648 (2006).
[Crossref]

A. Mathur and D. A. Atchison, “Effect of orthokeratology on peripheral aberrations of the eye,” Optom. Vis. Sci. 86(5), E476–E484 (2009).
[Crossref]

A. Queiros, J. M. Gonzalez-Meijome, J. Jorge, C. Villa-Collar, and A. R. Gutierrez, “Peripheral refraction in myopic patients after orthokeratology,” Optom. Vis. Sci. 87(5), 323–329 (2010).
[Crossref]

Y. Zhong, Z. Chen, F. Xue, J. Zhou, L. Niu, and X. Zhou, “Corneal power change is predictive of myopia progression in orthokeratology,” Optom. Vis. Sci. 91(4), 404–411 (2014).
[Crossref]

Z. Chen, F. Xue, J. Zhou, X. Qu, and X. Zhou, “Prediction of orthokeratology lens decentration with corneal elevation,” Optom. Vis. Sci. 94(9), 903–907 (2017).
[Crossref]

Optometry and Vision Science (1)

A. O. Juan Tabernero, M. Dominik Fischer, A. R. Bruckmann, U. Schiefer, and F. Schaeffel, “Peripheral refraction profiles in subjects with low foveal refractive errors,” Optometry and Vision Science 88(3), E388–E394 (2011).
[Crossref]

PLoS One (3)

W. K. Kim, B. J. Kim, I. H. Ryu, J. K. Kim, and S. W. Kim, “Corneal epithelial and stromal thickness changes in myopic orthokeratology and their relationship with refractive change,” PLoS One 13(9), e0203652 (2018).
[Crossref]

J. Kim, D. H. Lim, S. H. Han, and T. Y. Chung, “Predictive factors associated with axial length growth and myopia progression in orthokeratology,” PLoS One 14(6), e0218140 (2019).
[Crossref]

B. Wang, R. K. Naidu, and X. Qu, “Factors related to axial length elongation and myopia progression in orthokeratology practice,” PLoS One 12(4), e0175913 (2017).
[Crossref]

Sci. Rep. (1)

W. Lan, Z. Lin, Z. Yang, and P. Artal, “Two-dimensional peripheral refraction and retinal image quality in emmetropic children,” Sci. Rep. 9(1), 16203 (2019).
[Crossref]

Vision Res. (1)

D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46(8-9), 1450–1458 (2006).
[Crossref]

Other (3)

P. Sankaridurg, R. C. Bakaraju, T. Naduvilath, X. Chen, R. Weng, D. Tilia, P. Xu, W. Li, F. Conrad, E. L. Smith, and K. Ehrmann, “Myopia control with novel central and peripheral plus contact lenses and extended depth of focus contact lenses: 2 year results from a randomised clinical trial,” Ophthalmic. Physiol. Opt. (2019)

J. M. Lakawicz, W. J. Bottega, H. F. Fine, and J. L. Prenner, “On the mechanics of myopia and its influence on retinal detachment,” Biomech. Model. Mechanobiol. (2019)

Y. Hu, C. Wen, Z. Li, W. Zhao, X. Ding, and X. Yang, “Areal summed corneal power shift is an important determinant for axial length elongation in myopic children treated with overnight orthokeratology,” Br. J. Ophthalmol. (2019)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic of 2-D refraction map segmentation. The map was divided into 8 regions, based on 2 circles of radius 20° or 25° and a central horizontal line (y = 0°). The regions were labelled UZ1 (upper zone 1), UZ2, UZ3, UZ4 and LZ1 (lower zone 1) and LZ2, LZ3, LZ4 (for superior retina or inferior retina from temporal side to nasal side, respectively). Values beyond the superior 16° were removed to achieve a more uniformly distributed matrix.
Fig. 2.
Fig. 2. Relative peripheral refraction before and after treatment with O-K lenses. Panels a and b represent the refraction map before and after subjects were treated, respectively. Panel c represents the differences in a and b (after - before). Panels d–f represents the averaged refraction in each retinal region (segmented as described in Fig. 1). The symmetry of refraction between corresponding regions (e.g. UZ2 vs UZ3, UZ2 vs LZ2) was examined by paired t-tests. A red line indicates a significant difference; a blue line indicates an insignificant difference.
Fig. 3.
Fig. 3. Averaged refraction maps of image quality and higher-order aberrations of all subjects. Left column: pre-fitting maps. Middle column: post-fitting maps. Right column: difference maps (post-fitting map minus pre-fitting map).
Fig. 4.
Fig. 4. Relative peripheral refraction map for the Centred Treatment (CT, upper) and Slightly Decentred Treatment groups (SDT, lower). Panels a and b: pre-fitting map; c and d: post-fitting map; e and f: difference map. *p < 0.05.
Fig. 5.
Fig. 5. Simulation of change of relative peripheral refraction (RPR) based on ray-tracing model at differing magnitudes of decentration (RPR with O-K lens minus RPR without O-K lens on front corneal surface) in the schematic eye model proposed by Navarro et al [41]. a: decentre = −0.2 mm (as in the averaged decentration magnitude of the Centred Treatment group, CT); b: decentre= −0.85 mm (as in the averaged decentration magnitude of the Slightly Decentred Treatment group, SDT); c & d: change of RPR in central horizontal meridian in modelling (brown line) and measured data (blue line) with situation as CT (left) or SDT (right). The gray dash line is the original of peripheral refraction profile of Navarro eye model.
Fig. 6.
Fig. 6. Change of Relative peripheral refraction in central horizontal meridian at differing levels of decentration. Left: 2-D demonstration of change of RPR in the temporal retina as a function of O-K lens decentration. Right: 2-D demonstration of change of RPR in the nasal retina as a function of O-K lens decentration.

Metrics