Abstract

We analyze the influence of intrinsic polarization alignment on image quality and axial resolution employing a broadband 840 nm light source with an optical bandwidth of 160 nm and an output power of 12 mW tailored for spectral-domain optical coherence microscopy (SD-OCM) applications. Three superluminescent diodes (SLEDs) are integrated into a 14-pin butterfly module using a free-space micro-optical bench architecture, maintaining a constant polarization state across the full spectral output. We demonstrate superior imaging performance in comparison to traditionally coupled-SLED broadband light sources in a teleost model organism in-vivo.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
  2. W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
    [Crossref]
  3. H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC: Cardiovascular Interventions 2(11), 1035–1046 (2009).
    [Crossref]
  4. Z. Chen, E. Rank, K. M. Meiburger, C. Sinz, A. Hodul, E. Zhang, E. Hoover, M. Minneman, J. Ensher, P. C. Beard, H. Kittler, R. A. Leitgeb, W. Drexler, and M. Liu, “Non-invasive multimodal optical coherence and photoacoustic tomography for human skin imaging,” Sci. Rep. 7(1), 17975 (2017).
    [Crossref]
  5. B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Opt. Lett. 21(22), 1839–1841 (1996).
    [Crossref]
  6. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
    [Crossref]
  7. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
    [Crossref]
  8. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [Crossref]
  9. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [Crossref]
  10. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
    [Crossref]
  11. D. C. Adler, T. H. Ko, A. K. Konorev, D. S. Mamedov, V. V. Prokhorov, J. G. Fujimoto, and S. D. Yakubovich, “Broadband radiation source based on quantum-well superluminescent diodes for high-resolution optical coherent tomography,” Quantum Electron. 34(10), 915–918 (2004).
    [Crossref]
  12. T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Opt. Express 12(10), 2112–2119 (2004).
    [Crossref]
  13. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003).
    [Crossref]
  14. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
    [Crossref]
  15. Y. Wang, J. Nelson, Z. Chen, B. Reiser, R. Chuck, and R. Windeler, “Optimal wavelength for ultrahigh-resolution optical coherence tomography,” Opt. Express 11(12), 1411–1417 (2003).
    [Crossref]
  16. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer International Publishing, 2015), 2nd ed.
  17. A. Unterhuber, B. Považay, A. Müller, O. B. Jensen, M. Duelk, T. Le, P. M. Petersen, C. Velez, M. Esmaeelpour, P. E. Andersen, and W. Drexler, “Simultaneous dual wavelength eye-tracked ultrahigh resolution retinal and choroidal optical coherence tomography,” Opt. Lett. 38(21), 4312–4315 (2013).
    [Crossref]
  18. M. Tawfieq, A. K. Hansen, O. B. Jensen, D. Marti, B. Sumpf, and P. E. Andersen, “Intensity Noise Transfer Through a Diode-Pumped Titanium Sapphire Laser System,” IEEE J. Quantum Electron. 54(1), 1–9 (2018).
    [Crossref]
  19. W. J. Brown, S. Kim, and A. Wax, “Noise characterization of supercontinuum sources for low-coherence interferometry applications,” J. Opt. Soc. Am. A 31(12), 2703–2710 (2014).
    [Crossref]
  20. R. Haindl, “Multibeam Doppler Optical Coherence Tomography,” Ph.D. thesis, Medical University of Vienna, Vienna (2017).
  21. R. Haindl, W. Trasischker, A. Wartak, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Total retinal blood flow measurement by three beam Doppler optical coherence tomography,” Biomed. Opt. Express 7(2), 287–301 (2016).
    [Crossref]
  22. C. P. Hendon, T. H. Lye, X. Yao, Y. Gan, and C. C. Marboe, “Optical coherence tomography imaging of cardiac substrates,” Quant. Imaging Med. Surg. 9(5), 882–904 (2019).
    [Crossref]
  23. S. Gloor, A. H. Bachmann, M. Epitaux, T. von Niederhäusern, P. Vorreau, N. Matuschek, K. Hsu, M. Duelk, and C. Vélez, “High-speed miniaturized swept sources based on resonant MEMS mirrors and diffraction gratings,” Proc. SPIE 8571, 85712X (2013).
    [Crossref]
  24. M. Duelk and K. Hsu, SLEDs and Swept Source Laser Technology for OCT, Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer International Publishing, 2015), chap. 18, pp. 527–561, 2nd ed.
  25. S. Gloor, J. Dahdah, N. Primerov, T. von Niederhäusern, M. Duelk, and C. Velez, “840-nm combined-SLED source integrated in 14-pin butterfly module with 140-nm bandwidth,” Proc. SPIE 11078, 110780W (2019).
    [Crossref]
  26. R. Haindl, S. Preisser, M. Andreana, W. Rohringer, C. Sturtzel, M. Distel, Z. Chen, E. Rank, B. Fischer, W. Drexler, and M. Liu, “Dual modality reflection mode optical coherence and photoacoustic microscopy using an akinetic sensor,” Opt. Lett. 42(21), 4319–4322 (2017).
    [Crossref]
  27. R. Haindl, A. J. Deloria, C. Sturtzel, H. Sattmann, W. Rohringer, B. Fischer, M. Andreana, A. Unterhuber, T. Schwerte, M. Distel, W. Drexler, R. Leitgeb, and M. Liu, “Functional optical coherence tomography and photoacoustic microscopy imaging for zebrafish larvae,” Biomed. Opt. Express 11(4), 2137–2151 (2020).
    [Crossref]
  28. D. J. Harper, M. Augustin, A. Lichtenegger, P. Eugui, C. Reyes, M. Glösmann, C. K. Hitzenberger, and B. Baumann, “White light polarization sensitive optical coherence tomography for sub-micron axial resolution and spectroscopic contrast in the murine retina,” Biomed. Opt. Express 9(5), 2115–2129 (2018).
    [Crossref]
  29. S. Jiao and M. Ruggeri, “Polarization effect on the depth resolution of optical coherence tomography,” J. Biomed. Opt. 13(6), 060503 (2008).
    [Crossref]
  30. Z. Yu, T. Chen, X. Zhang, D. Fu, X. Liao, J. Shen, X. Liu, B. Zhang, X. S. Xie, X. D. Su, J. Chen, and Y. Huang, “Label-free chemical imaging in vivo: Three-dimensional non-invasive microscopic observation of amphioxus notochord through stimulated Raman scattering (SRS),” Chem. Sci. 3(8), 2646–2654 (2012).
    [Crossref]
  31. E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison,” J. Biophotonics 1(2), 129–139 (2008).
    [Crossref]
  32. F. Beer, A. Wartak, R. Haindl, M. Gröschl, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Conical scan pattern for enhanced visualization of the human cornea using polarization-sensitive OCT,” Biomed. Opt. Express 8(6), 2906–2923 (2017).
    [Crossref]
  33. M. Villiger, E. Z. Zhang, S. Nadkarni, W.-Y. Oh, B. E. Bouma, and B. J. Vakoc, “Artifacts in polarization-sensitive optical coherence tomography caused by polarization mode dispersion,” Opt. Lett. 38(6), 923–925 (2013).
    [Crossref]
  34. M. Pircher, E. Götzinger, B. Baumann, and C. K. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
    [Crossref]
  35. E. Z. Zhang, W.-Y. Oh, M. L. Villiger, L. Chen, B. E. Bouma, and B. J. Vakoc, “Numerical compensation of system polarization mode dispersion in polarization-sensitive optical coherence tomography,” Opt. Express 21(1), 1163–1180 (2013).
    [Crossref]
  36. M. Villiger, E. Z. Zhang, S. K. Nadkarni, W.-Y. Oh, B. J. Vakoc, and B. E. Bouma, “Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging,” Opt. Express 21(14), 16353–16369 (2013).
    [Crossref]
  37. B. Braaf, K. A. Vermeer, M. de Groot, K. V. Vienola, and J. F. de Boer, “Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions,” Biomed. Opt. Express 5(8), 2736–2758 (2014).
    [Crossref]
  38. M. Yamanari, S. Tsuda, T. Kokubun, Y. Shiga, K. Omodaka, Y. Yokoyama, N. Himori, M. Ryu, S. Kunimatsu-Sanuki, H. Takahashi, K. Maruyama, H. Kunikata, and T. Nakazawa, “Fiber-based polarization-sensitive OCT for birefringence imaging of the anterior eye segment,” Biomed. Opt. Express 6(2), 369–389 (2015).
    [Crossref]

2020 (1)

2019 (2)

C. P. Hendon, T. H. Lye, X. Yao, Y. Gan, and C. C. Marboe, “Optical coherence tomography imaging of cardiac substrates,” Quant. Imaging Med. Surg. 9(5), 882–904 (2019).
[Crossref]

S. Gloor, J. Dahdah, N. Primerov, T. von Niederhäusern, M. Duelk, and C. Velez, “840-nm combined-SLED source integrated in 14-pin butterfly module with 140-nm bandwidth,” Proc. SPIE 11078, 110780W (2019).
[Crossref]

2018 (2)

2017 (3)

2016 (1)

2015 (1)

2014 (3)

2013 (5)

2012 (1)

Z. Yu, T. Chen, X. Zhang, D. Fu, X. Liao, J. Shen, X. Liu, B. Zhang, X. S. Xie, X. D. Su, J. Chen, and Y. Huang, “Label-free chemical imaging in vivo: Three-dimensional non-invasive microscopic observation of amphioxus notochord through stimulated Raman scattering (SRS),” Chem. Sci. 3(8), 2646–2654 (2012).
[Crossref]

2009 (1)

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC: Cardiovascular Interventions 2(11), 1035–1046 (2009).
[Crossref]

2008 (2)

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison,” J. Biophotonics 1(2), 129–139 (2008).
[Crossref]

S. Jiao and M. Ruggeri, “Polarization effect on the depth resolution of optical coherence tomography,” J. Biomed. Opt. 13(6), 060503 (2008).
[Crossref]

2007 (1)

M. Pircher, E. Götzinger, B. Baumann, and C. K. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
[Crossref]

2006 (1)

2004 (2)

D. C. Adler, T. H. Ko, A. K. Konorev, D. S. Mamedov, V. V. Prokhorov, J. G. Fujimoto, and S. D. Yakubovich, “Broadband radiation source based on quantum-well superluminescent diodes for high-resolution optical coherent tomography,” Quantum Electron. 34(10), 915–918 (2004).
[Crossref]

T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Opt. Express 12(10), 2112–2119 (2004).
[Crossref]

2003 (5)

2001 (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref]

1999 (1)

1996 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Adler, D. C.

T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Opt. Express 12(10), 2112–2119 (2004).
[Crossref]

D. C. Adler, T. H. Ko, A. K. Konorev, D. S. Mamedov, V. V. Prokhorov, J. G. Fujimoto, and S. D. Yakubovich, “Broadband radiation source based on quantum-well superluminescent diodes for high-resolution optical coherent tomography,” Quantum Electron. 34(10), 915–918 (2004).
[Crossref]

Andersen, P. E.

Andreana, M.

Augustin, M.

Bachmann, A. H.

S. Gloor, A. H. Bachmann, M. Epitaux, T. von Niederhäusern, P. Vorreau, N. Matuschek, K. Hsu, M. Duelk, and C. Vélez, “High-speed miniaturized swept sources based on resonant MEMS mirrors and diffraction gratings,” Proc. SPIE 8571, 85712X (2013).
[Crossref]

Baumann, B.

Beard, P. C.

Z. Chen, E. Rank, K. M. Meiburger, C. Sinz, A. Hodul, E. Zhang, E. Hoover, M. Minneman, J. Ensher, P. C. Beard, H. Kittler, R. A. Leitgeb, W. Drexler, and M. Liu, “Non-invasive multimodal optical coherence and photoacoustic tomography for human skin imaging,” Sci. Rep. 7(1), 17975 (2017).
[Crossref]

Beer, F.

Bezerra, H. G.

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC: Cardiovascular Interventions 2(11), 1035–1046 (2009).
[Crossref]

Bilinsky, I. P.

Boppart, S. A.

Boudoux, C.

Bouma, B. E.

Braaf, B.

Brown, W. J.

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Chen, J.

Z. Yu, T. Chen, X. Zhang, D. Fu, X. Liao, J. Shen, X. Liu, B. Zhang, X. S. Xie, X. D. Su, J. Chen, and Y. Huang, “Label-free chemical imaging in vivo: Three-dimensional non-invasive microscopic observation of amphioxus notochord through stimulated Raman scattering (SRS),” Chem. Sci. 3(8), 2646–2654 (2012).
[Crossref]

Chen, L.

Chen, T.

Z. Yu, T. Chen, X. Zhang, D. Fu, X. Liao, J. Shen, X. Liu, B. Zhang, X. S. Xie, X. D. Su, J. Chen, and Y. Huang, “Label-free chemical imaging in vivo: Three-dimensional non-invasive microscopic observation of amphioxus notochord through stimulated Raman scattering (SRS),” Chem. Sci. 3(8), 2646–2654 (2012).
[Crossref]

Chen, Z.

Choma, M.

Chuck, R.

Costa, M. A.

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC: Cardiovascular Interventions 2(11), 1035–1046 (2009).
[Crossref]

Dahdah, J.

S. Gloor, J. Dahdah, N. Primerov, T. von Niederhäusern, M. Duelk, and C. Velez, “840-nm combined-SLED source integrated in 14-pin butterfly module with 140-nm bandwidth,” Proc. SPIE 11078, 110780W (2019).
[Crossref]

de Boer, J. F.

de Groot, M.

Deloria, A. J.

Distel, M.

Drexler, W.

R. Haindl, A. J. Deloria, C. Sturtzel, H. Sattmann, W. Rohringer, B. Fischer, M. Andreana, A. Unterhuber, T. Schwerte, M. Distel, W. Drexler, R. Leitgeb, and M. Liu, “Functional optical coherence tomography and photoacoustic microscopy imaging for zebrafish larvae,” Biomed. Opt. Express 11(4), 2137–2151 (2020).
[Crossref]

Z. Chen, E. Rank, K. M. Meiburger, C. Sinz, A. Hodul, E. Zhang, E. Hoover, M. Minneman, J. Ensher, P. C. Beard, H. Kittler, R. A. Leitgeb, W. Drexler, and M. Liu, “Non-invasive multimodal optical coherence and photoacoustic tomography for human skin imaging,” Sci. Rep. 7(1), 17975 (2017).
[Crossref]

R. Haindl, S. Preisser, M. Andreana, W. Rohringer, C. Sturtzel, M. Distel, Z. Chen, E. Rank, B. Fischer, W. Drexler, and M. Liu, “Dual modality reflection mode optical coherence and photoacoustic microscopy using an akinetic sensor,” Opt. Lett. 42(21), 4319–4322 (2017).
[Crossref]

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref]

A. Unterhuber, B. Považay, A. Müller, O. B. Jensen, M. Duelk, T. Le, P. M. Petersen, C. Velez, M. Esmaeelpour, P. E. Andersen, and W. Drexler, “Simultaneous dual wavelength eye-tracked ultrahigh resolution retinal and choroidal optical coherence tomography,” Opt. Lett. 38(21), 4312–4315 (2013).
[Crossref]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
[Crossref]

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer International Publishing, 2015), 2nd ed.

Duelk, M.

S. Gloor, J. Dahdah, N. Primerov, T. von Niederhäusern, M. Duelk, and C. Velez, “840-nm combined-SLED source integrated in 14-pin butterfly module with 140-nm bandwidth,” Proc. SPIE 11078, 110780W (2019).
[Crossref]

A. Unterhuber, B. Považay, A. Müller, O. B. Jensen, M. Duelk, T. Le, P. M. Petersen, C. Velez, M. Esmaeelpour, P. E. Andersen, and W. Drexler, “Simultaneous dual wavelength eye-tracked ultrahigh resolution retinal and choroidal optical coherence tomography,” Opt. Lett. 38(21), 4312–4315 (2013).
[Crossref]

S. Gloor, A. H. Bachmann, M. Epitaux, T. von Niederhäusern, P. Vorreau, N. Matuschek, K. Hsu, M. Duelk, and C. Vélez, “High-speed miniaturized swept sources based on resonant MEMS mirrors and diffraction gratings,” Proc. SPIE 8571, 85712X (2013).
[Crossref]

M. Duelk and K. Hsu, SLEDs and Swept Source Laser Technology for OCT, Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer International Publishing, 2015), chap. 18, pp. 527–561, 2nd ed.

Ensher, J.

Z. Chen, E. Rank, K. M. Meiburger, C. Sinz, A. Hodul, E. Zhang, E. Hoover, M. Minneman, J. Ensher, P. C. Beard, H. Kittler, R. A. Leitgeb, W. Drexler, and M. Liu, “Non-invasive multimodal optical coherence and photoacoustic tomography for human skin imaging,” Sci. Rep. 7(1), 17975 (2017).
[Crossref]

Epitaux, M.

S. Gloor, A. H. Bachmann, M. Epitaux, T. von Niederhäusern, P. Vorreau, N. Matuschek, K. Hsu, M. Duelk, and C. Vélez, “High-speed miniaturized swept sources based on resonant MEMS mirrors and diffraction gratings,” Proc. SPIE 8571, 85712X (2013).
[Crossref]

Esmaeelpour, M.

Eugui, P.

Fercher, A.

Fischer, B.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Fu, D.

Z. Yu, T. Chen, X. Zhang, D. Fu, X. Liao, J. Shen, X. Liu, B. Zhang, X. S. Xie, X. D. Su, J. Chen, and Y. Huang, “Label-free chemical imaging in vivo: Three-dimensional non-invasive microscopic observation of amphioxus notochord through stimulated Raman scattering (SRS),” Chem. Sci. 3(8), 2646–2654 (2012).
[Crossref]

Fujimoto, J. G.

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[Crossref]

D. C. Adler, T. H. Ko, A. K. Konorev, D. S. Mamedov, V. V. Prokhorov, J. G. Fujimoto, and S. D. Yakubovich, “Broadband radiation source based on quantum-well superluminescent diodes for high-resolution optical coherent tomography,” Quantum Electron. 34(10), 915–918 (2004).
[Crossref]

T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Opt. Express 12(10), 2112–2119 (2004).
[Crossref]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
[Crossref]

B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Opt. Lett. 21(22), 1839–1841 (1996).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer International Publishing, 2015), 2nd ed.

Gan, Y.

C. P. Hendon, T. H. Lye, X. Yao, Y. Gan, and C. C. Marboe, “Optical coherence tomography imaging of cardiac substrates,” Quant. Imaging Med. Surg. 9(5), 882–904 (2019).
[Crossref]

Ghanta, R. K.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref]

Gloor, S.

S. Gloor, J. Dahdah, N. Primerov, T. von Niederhäusern, M. Duelk, and C. Velez, “840-nm combined-SLED source integrated in 14-pin butterfly module with 140-nm bandwidth,” Proc. SPIE 11078, 110780W (2019).
[Crossref]

S. Gloor, A. H. Bachmann, M. Epitaux, T. von Niederhäusern, P. Vorreau, N. Matuschek, K. Hsu, M. Duelk, and C. Vélez, “High-speed miniaturized swept sources based on resonant MEMS mirrors and diffraction gratings,” Proc. SPIE 8571, 85712X (2013).
[Crossref]

Glösmann, M.

Golubovic, B.

Götzinger, E.

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison,” J. Biophotonics 1(2), 129–139 (2008).
[Crossref]

M. Pircher, E. Götzinger, B. Baumann, and C. K. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
[Crossref]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Gröschl, M.

Guagliumi, G.

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC: Cardiovascular Interventions 2(11), 1035–1046 (2009).
[Crossref]

Haindl, R.

Hansen, A. K.

M. Tawfieq, A. K. Hansen, O. B. Jensen, D. Marti, B. Sumpf, and P. E. Andersen, “Intensity Noise Transfer Through a Diode-Pumped Titanium Sapphire Laser System,” IEEE J. Quantum Electron. 54(1), 1–9 (2018).
[Crossref]

Harper, D. J.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Hendon, C. P.

C. P. Hendon, T. H. Lye, X. Yao, Y. Gan, and C. C. Marboe, “Optical coherence tomography imaging of cardiac substrates,” Quant. Imaging Med. Surg. 9(5), 882–904 (2019).
[Crossref]

Himori, N.

Hirn, C.

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison,” J. Biophotonics 1(2), 129–139 (2008).
[Crossref]

Hitzenberger, C.

Hitzenberger, C. K.

Hodul, A.

Z. Chen, E. Rank, K. M. Meiburger, C. Sinz, A. Hodul, E. Zhang, E. Hoover, M. Minneman, J. Ensher, P. C. Beard, H. Kittler, R. A. Leitgeb, W. Drexler, and M. Liu, “Non-invasive multimodal optical coherence and photoacoustic tomography for human skin imaging,” Sci. Rep. 7(1), 17975 (2017).
[Crossref]

Hoover, E.

Z. Chen, E. Rank, K. M. Meiburger, C. Sinz, A. Hodul, E. Zhang, E. Hoover, M. Minneman, J. Ensher, P. C. Beard, H. Kittler, R. A. Leitgeb, W. Drexler, and M. Liu, “Non-invasive multimodal optical coherence and photoacoustic tomography for human skin imaging,” Sci. Rep. 7(1), 17975 (2017).
[Crossref]

Hsu, K.

S. Gloor, A. H. Bachmann, M. Epitaux, T. von Niederhäusern, P. Vorreau, N. Matuschek, K. Hsu, M. Duelk, and C. Vélez, “High-speed miniaturized swept sources based on resonant MEMS mirrors and diffraction gratings,” Proc. SPIE 8571, 85712X (2013).
[Crossref]

M. Duelk and K. Hsu, SLEDs and Swept Source Laser Technology for OCT, Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer International Publishing, 2015), chap. 18, pp. 527–561, 2nd ed.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Huang, Y.

Z. Yu, T. Chen, X. Zhang, D. Fu, X. Liao, J. Shen, X. Liu, B. Zhang, X. S. Xie, X. D. Su, J. Chen, and Y. Huang, “Label-free chemical imaging in vivo: Three-dimensional non-invasive microscopic observation of amphioxus notochord through stimulated Raman scattering (SRS),” Chem. Sci. 3(8), 2646–2654 (2012).
[Crossref]

Huber, R.

Ippen, E. P.

Izatt, J.

Jensen, O. B.

Jiao, S.

S. Jiao and M. Ruggeri, “Polarization effect on the depth resolution of optical coherence tomography,” J. Biomed. Opt. 13(6), 060503 (2008).
[Crossref]

Kamali, T.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref]

Kärtner, F. X.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
[Crossref]

Kim, S.

Kittler, H.

Z. Chen, E. Rank, K. M. Meiburger, C. Sinz, A. Hodul, E. Zhang, E. Hoover, M. Minneman, J. Ensher, P. C. Beard, H. Kittler, R. A. Leitgeb, W. Drexler, and M. Liu, “Non-invasive multimodal optical coherence and photoacoustic tomography for human skin imaging,” Sci. Rep. 7(1), 17975 (2017).
[Crossref]

Ko, T. H.

T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Opt. Express 12(10), 2112–2119 (2004).
[Crossref]

D. C. Adler, T. H. Ko, A. K. Konorev, D. S. Mamedov, V. V. Prokhorov, J. G. Fujimoto, and S. D. Yakubovich, “Broadband radiation source based on quantum-well superluminescent diodes for high-resolution optical coherent tomography,” Quantum Electron. 34(10), 915–918 (2004).
[Crossref]

Kokubun, T.

Konorev, A. K.

D. C. Adler, T. H. Ko, A. K. Konorev, D. S. Mamedov, V. V. Prokhorov, J. G. Fujimoto, and S. D. Yakubovich, “Broadband radiation source based on quantum-well superluminescent diodes for high-resolution optical coherent tomography,” Quantum Electron. 34(10), 915–918 (2004).
[Crossref]

Kumar, A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref]

Kunikata, H.

Kunimatsu-Sanuki, S.

Le, T.

Leitgeb, R.

Leitgeb, R. A.

Z. Chen, E. Rank, K. M. Meiburger, C. Sinz, A. Hodul, E. Zhang, E. Hoover, M. Minneman, J. Ensher, P. C. Beard, H. Kittler, R. A. Leitgeb, W. Drexler, and M. Liu, “Non-invasive multimodal optical coherence and photoacoustic tomography for human skin imaging,” Sci. Rep. 7(1), 17975 (2017).
[Crossref]

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref]

Li, X. D.

Liao, X.

Z. Yu, T. Chen, X. Zhang, D. Fu, X. Liao, J. Shen, X. Liu, B. Zhang, X. S. Xie, X. D. Su, J. Chen, and Y. Huang, “Label-free chemical imaging in vivo: Three-dimensional non-invasive microscopic observation of amphioxus notochord through stimulated Raman scattering (SRS),” Chem. Sci. 3(8), 2646–2654 (2012).
[Crossref]

Lichtenegger, A.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Liu, M.

R. Haindl, A. J. Deloria, C. Sturtzel, H. Sattmann, W. Rohringer, B. Fischer, M. Andreana, A. Unterhuber, T. Schwerte, M. Distel, W. Drexler, R. Leitgeb, and M. Liu, “Functional optical coherence tomography and photoacoustic microscopy imaging for zebrafish larvae,” Biomed. Opt. Express 11(4), 2137–2151 (2020).
[Crossref]

Z. Chen, E. Rank, K. M. Meiburger, C. Sinz, A. Hodul, E. Zhang, E. Hoover, M. Minneman, J. Ensher, P. C. Beard, H. Kittler, R. A. Leitgeb, W. Drexler, and M. Liu, “Non-invasive multimodal optical coherence and photoacoustic tomography for human skin imaging,” Sci. Rep. 7(1), 17975 (2017).
[Crossref]

R. Haindl, S. Preisser, M. Andreana, W. Rohringer, C. Sturtzel, M. Distel, Z. Chen, E. Rank, B. Fischer, W. Drexler, and M. Liu, “Dual modality reflection mode optical coherence and photoacoustic microscopy using an akinetic sensor,” Opt. Lett. 42(21), 4319–4322 (2017).
[Crossref]

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref]

Liu, X.

Z. Yu, T. Chen, X. Zhang, D. Fu, X. Liao, J. Shen, X. Liu, B. Zhang, X. S. Xie, X. D. Su, J. Chen, and Y. Huang, “Label-free chemical imaging in vivo: Three-dimensional non-invasive microscopic observation of amphioxus notochord through stimulated Raman scattering (SRS),” Chem. Sci. 3(8), 2646–2654 (2012).
[Crossref]

Lye, T. H.

C. P. Hendon, T. H. Lye, X. Yao, Y. Gan, and C. C. Marboe, “Optical coherence tomography imaging of cardiac substrates,” Quant. Imaging Med. Surg. 9(5), 882–904 (2019).
[Crossref]

Mamedov, D.

Mamedov, D. S.

D. C. Adler, T. H. Ko, A. K. Konorev, D. S. Mamedov, V. V. Prokhorov, J. G. Fujimoto, and S. D. Yakubovich, “Broadband radiation source based on quantum-well superluminescent diodes for high-resolution optical coherent tomography,” Quantum Electron. 34(10), 915–918 (2004).
[Crossref]

Marboe, C. C.

C. P. Hendon, T. H. Lye, X. Yao, Y. Gan, and C. C. Marboe, “Optical coherence tomography imaging of cardiac substrates,” Quant. Imaging Med. Surg. 9(5), 882–904 (2019).
[Crossref]

Marti, D.

M. Tawfieq, A. K. Hansen, O. B. Jensen, D. Marti, B. Sumpf, and P. E. Andersen, “Intensity Noise Transfer Through a Diode-Pumped Titanium Sapphire Laser System,” IEEE J. Quantum Electron. 54(1), 1–9 (2018).
[Crossref]

Maruyama, K.

Matuschek, N.

S. Gloor, A. H. Bachmann, M. Epitaux, T. von Niederhäusern, P. Vorreau, N. Matuschek, K. Hsu, M. Duelk, and C. Vélez, “High-speed miniaturized swept sources based on resonant MEMS mirrors and diffraction gratings,” Proc. SPIE 8571, 85712X (2013).
[Crossref]

Meiburger, K. M.

Z. Chen, E. Rank, K. M. Meiburger, C. Sinz, A. Hodul, E. Zhang, E. Hoover, M. Minneman, J. Ensher, P. C. Beard, H. Kittler, R. A. Leitgeb, W. Drexler, and M. Liu, “Non-invasive multimodal optical coherence and photoacoustic tomography for human skin imaging,” Sci. Rep. 7(1), 17975 (2017).
[Crossref]

Minneman, M.

Z. Chen, E. Rank, K. M. Meiburger, C. Sinz, A. Hodul, E. Zhang, E. Hoover, M. Minneman, J. Ensher, P. C. Beard, H. Kittler, R. A. Leitgeb, W. Drexler, and M. Liu, “Non-invasive multimodal optical coherence and photoacoustic tomography for human skin imaging,” Sci. Rep. 7(1), 17975 (2017).
[Crossref]

Morgner, U.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
[Crossref]

Müller, A.

Nadkarni, S.

Nadkarni, S. K.

Nakazawa, T.

Nelson, J.

Oh, W.-Y.

Omodaka, K.

Park, B. H.

Petersen, P. M.

Pierce, M. C.

Pircher, M.

F. Beer, A. Wartak, R. Haindl, M. Gröschl, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Conical scan pattern for enhanced visualization of the human cornea using polarization-sensitive OCT,” Biomed. Opt. Express 8(6), 2906–2923 (2017).
[Crossref]

R. Haindl, W. Trasischker, A. Wartak, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Total retinal blood flow measurement by three beam Doppler optical coherence tomography,” Biomed. Opt. Express 7(2), 287–301 (2016).
[Crossref]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison,” J. Biophotonics 1(2), 129–139 (2008).
[Crossref]

M. Pircher, E. Götzinger, B. Baumann, and C. K. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
[Crossref]

Pitris, C.

Považay, B.

Preisser, S.

Primerov, N.

S. Gloor, J. Dahdah, N. Primerov, T. von Niederhäusern, M. Duelk, and C. Velez, “840-nm combined-SLED source integrated in 14-pin butterfly module with 140-nm bandwidth,” Proc. SPIE 11078, 110780W (2019).
[Crossref]

Prokhorov, V.

Prokhorov, V. V.

D. C. Adler, T. H. Ko, A. K. Konorev, D. S. Mamedov, V. V. Prokhorov, J. G. Fujimoto, and S. D. Yakubovich, “Broadband radiation source based on quantum-well superluminescent diodes for high-resolution optical coherent tomography,” Quantum Electron. 34(10), 915–918 (2004).
[Crossref]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Rank, E.

R. Haindl, S. Preisser, M. Andreana, W. Rohringer, C. Sturtzel, M. Distel, Z. Chen, E. Rank, B. Fischer, W. Drexler, and M. Liu, “Dual modality reflection mode optical coherence and photoacoustic microscopy using an akinetic sensor,” Opt. Lett. 42(21), 4319–4322 (2017).
[Crossref]

Z. Chen, E. Rank, K. M. Meiburger, C. Sinz, A. Hodul, E. Zhang, E. Hoover, M. Minneman, J. Ensher, P. C. Beard, H. Kittler, R. A. Leitgeb, W. Drexler, and M. Liu, “Non-invasive multimodal optical coherence and photoacoustic tomography for human skin imaging,” Sci. Rep. 7(1), 17975 (2017).
[Crossref]

Reiser, B.

Reyes, C.

Rohringer, W.

Rollins, A. M.

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC: Cardiovascular Interventions 2(11), 1035–1046 (2009).
[Crossref]

Ruggeri, M.

S. Jiao and M. Ruggeri, “Polarization effect on the depth resolution of optical coherence tomography,” J. Biomed. Opt. 13(6), 060503 (2008).
[Crossref]

Ryu, M.

Sarunic, M.

Sattmann, H.

Schuman, J. S.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Schwerte, T.

Shen, J.

Z. Yu, T. Chen, X. Zhang, D. Fu, X. Liao, J. Shen, X. Liu, B. Zhang, X. S. Xie, X. D. Su, J. Chen, and Y. Huang, “Label-free chemical imaging in vivo: Three-dimensional non-invasive microscopic observation of amphioxus notochord through stimulated Raman scattering (SRS),” Chem. Sci. 3(8), 2646–2654 (2012).
[Crossref]

Shidlovski, V.

Shiga, Y.

Simon, D. I.

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC: Cardiovascular Interventions 2(11), 1035–1046 (2009).
[Crossref]

Sinz, C.

Z. Chen, E. Rank, K. M. Meiburger, C. Sinz, A. Hodul, E. Zhang, E. Hoover, M. Minneman, J. Ensher, P. C. Beard, H. Kittler, R. A. Leitgeb, W. Drexler, and M. Liu, “Non-invasive multimodal optical coherence and photoacoustic tomography for human skin imaging,” Sci. Rep. 7(1), 17975 (2017).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Sturtzel, C.

Su, X. D.

Z. Yu, T. Chen, X. Zhang, D. Fu, X. Liao, J. Shen, X. Liu, B. Zhang, X. S. Xie, X. D. Su, J. Chen, and Y. Huang, “Label-free chemical imaging in vivo: Three-dimensional non-invasive microscopic observation of amphioxus notochord through stimulated Raman scattering (SRS),” Chem. Sci. 3(8), 2646–2654 (2012).
[Crossref]

Sumpf, B.

M. Tawfieq, A. K. Hansen, O. B. Jensen, D. Marti, B. Sumpf, and P. E. Andersen, “Intensity Noise Transfer Through a Diode-Pumped Titanium Sapphire Laser System,” IEEE J. Quantum Electron. 54(1), 1–9 (2018).
[Crossref]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Takahashi, H.

Tawfieq, M.

M. Tawfieq, A. K. Hansen, O. B. Jensen, D. Marti, B. Sumpf, and P. E. Andersen, “Intensity Noise Transfer Through a Diode-Pumped Titanium Sapphire Laser System,” IEEE J. Quantum Electron. 54(1), 1–9 (2018).
[Crossref]

Tearney, G. J.

Trasischker, W.

Tsuda, S.

Unterhuber, A.

Vakoc, B. J.

Vass, C.

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison,” J. Biophotonics 1(2), 129–139 (2008).
[Crossref]

Velez, C.

Vélez, C.

S. Gloor, A. H. Bachmann, M. Epitaux, T. von Niederhäusern, P. Vorreau, N. Matuschek, K. Hsu, M. Duelk, and C. Vélez, “High-speed miniaturized swept sources based on resonant MEMS mirrors and diffraction gratings,” Proc. SPIE 8571, 85712X (2013).
[Crossref]

Vermeer, K. A.

Vienola, K. V.

Villiger, M.

Villiger, M. L.

von Niederhäusern, T.

S. Gloor, J. Dahdah, N. Primerov, T. von Niederhäusern, M. Duelk, and C. Velez, “840-nm combined-SLED source integrated in 14-pin butterfly module with 140-nm bandwidth,” Proc. SPIE 11078, 110780W (2019).
[Crossref]

S. Gloor, A. H. Bachmann, M. Epitaux, T. von Niederhäusern, P. Vorreau, N. Matuschek, K. Hsu, M. Duelk, and C. Vélez, “High-speed miniaturized swept sources based on resonant MEMS mirrors and diffraction gratings,” Proc. SPIE 8571, 85712X (2013).
[Crossref]

Vorreau, P.

S. Gloor, A. H. Bachmann, M. Epitaux, T. von Niederhäusern, P. Vorreau, N. Matuschek, K. Hsu, M. Duelk, and C. Vélez, “High-speed miniaturized swept sources based on resonant MEMS mirrors and diffraction gratings,” Proc. SPIE 8571, 85712X (2013).
[Crossref]

Wang, Y.

Wartak, A.

Wax, A.

Windeler, R.

Wojtkowski, M.

Xie, X. S.

Z. Yu, T. Chen, X. Zhang, D. Fu, X. Liao, J. Shen, X. Liu, B. Zhang, X. S. Xie, X. D. Su, J. Chen, and Y. Huang, “Label-free chemical imaging in vivo: Three-dimensional non-invasive microscopic observation of amphioxus notochord through stimulated Raman scattering (SRS),” Chem. Sci. 3(8), 2646–2654 (2012).
[Crossref]

Yakubovich, S.

Yakubovich, S. D.

D. C. Adler, T. H. Ko, A. K. Konorev, D. S. Mamedov, V. V. Prokhorov, J. G. Fujimoto, and S. D. Yakubovich, “Broadband radiation source based on quantum-well superluminescent diodes for high-resolution optical coherent tomography,” Quantum Electron. 34(10), 915–918 (2004).
[Crossref]

Yamanari, M.

Yang, C.

Yao, X.

C. P. Hendon, T. H. Lye, X. Yao, Y. Gan, and C. C. Marboe, “Optical coherence tomography imaging of cardiac substrates,” Quant. Imaging Med. Surg. 9(5), 882–904 (2019).
[Crossref]

Yokoyama, Y.

Yu, Z.

Z. Yu, T. Chen, X. Zhang, D. Fu, X. Liao, J. Shen, X. Liu, B. Zhang, X. S. Xie, X. D. Su, J. Chen, and Y. Huang, “Label-free chemical imaging in vivo: Three-dimensional non-invasive microscopic observation of amphioxus notochord through stimulated Raman scattering (SRS),” Chem. Sci. 3(8), 2646–2654 (2012).
[Crossref]

Yun, S. H.

Zhang, B.

Z. Yu, T. Chen, X. Zhang, D. Fu, X. Liao, J. Shen, X. Liu, B. Zhang, X. S. Xie, X. D. Su, J. Chen, and Y. Huang, “Label-free chemical imaging in vivo: Three-dimensional non-invasive microscopic observation of amphioxus notochord through stimulated Raman scattering (SRS),” Chem. Sci. 3(8), 2646–2654 (2012).
[Crossref]

Zhang, E.

Z. Chen, E. Rank, K. M. Meiburger, C. Sinz, A. Hodul, E. Zhang, E. Hoover, M. Minneman, J. Ensher, P. C. Beard, H. Kittler, R. A. Leitgeb, W. Drexler, and M. Liu, “Non-invasive multimodal optical coherence and photoacoustic tomography for human skin imaging,” Sci. Rep. 7(1), 17975 (2017).
[Crossref]

Zhang, E. Z.

Zhang, X.

Z. Yu, T. Chen, X. Zhang, D. Fu, X. Liao, J. Shen, X. Liu, B. Zhang, X. S. Xie, X. D. Su, J. Chen, and Y. Huang, “Label-free chemical imaging in vivo: Three-dimensional non-invasive microscopic observation of amphioxus notochord through stimulated Raman scattering (SRS),” Chem. Sci. 3(8), 2646–2654 (2012).
[Crossref]

Biomed. Opt. Express (6)

R. Haindl, W. Trasischker, A. Wartak, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Total retinal blood flow measurement by three beam Doppler optical coherence tomography,” Biomed. Opt. Express 7(2), 287–301 (2016).
[Crossref]

R. Haindl, A. J. Deloria, C. Sturtzel, H. Sattmann, W. Rohringer, B. Fischer, M. Andreana, A. Unterhuber, T. Schwerte, M. Distel, W. Drexler, R. Leitgeb, and M. Liu, “Functional optical coherence tomography and photoacoustic microscopy imaging for zebrafish larvae,” Biomed. Opt. Express 11(4), 2137–2151 (2020).
[Crossref]

D. J. Harper, M. Augustin, A. Lichtenegger, P. Eugui, C. Reyes, M. Glösmann, C. K. Hitzenberger, and B. Baumann, “White light polarization sensitive optical coherence tomography for sub-micron axial resolution and spectroscopic contrast in the murine retina,” Biomed. Opt. Express 9(5), 2115–2129 (2018).
[Crossref]

F. Beer, A. Wartak, R. Haindl, M. Gröschl, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Conical scan pattern for enhanced visualization of the human cornea using polarization-sensitive OCT,” Biomed. Opt. Express 8(6), 2906–2923 (2017).
[Crossref]

B. Braaf, K. A. Vermeer, M. de Groot, K. V. Vienola, and J. F. de Boer, “Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions,” Biomed. Opt. Express 5(8), 2736–2758 (2014).
[Crossref]

M. Yamanari, S. Tsuda, T. Kokubun, Y. Shiga, K. Omodaka, Y. Yokoyama, N. Himori, M. Ryu, S. Kunimatsu-Sanuki, H. Takahashi, K. Maruyama, H. Kunikata, and T. Nakazawa, “Fiber-based polarization-sensitive OCT for birefringence imaging of the anterior eye segment,” Biomed. Opt. Express 6(2), 369–389 (2015).
[Crossref]

Chem. Sci. (1)

Z. Yu, T. Chen, X. Zhang, D. Fu, X. Liao, J. Shen, X. Liu, B. Zhang, X. S. Xie, X. D. Su, J. Chen, and Y. Huang, “Label-free chemical imaging in vivo: Three-dimensional non-invasive microscopic observation of amphioxus notochord through stimulated Raman scattering (SRS),” Chem. Sci. 3(8), 2646–2654 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Tawfieq, A. K. Hansen, O. B. Jensen, D. Marti, B. Sumpf, and P. E. Andersen, “Intensity Noise Transfer Through a Diode-Pumped Titanium Sapphire Laser System,” IEEE J. Quantum Electron. 54(1), 1–9 (2018).
[Crossref]

J. Biomed. Opt. (3)

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref]

M. Pircher, E. Götzinger, B. Baumann, and C. K. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
[Crossref]

S. Jiao and M. Ruggeri, “Polarization effect on the depth resolution of optical coherence tomography,” J. Biomed. Opt. 13(6), 060503 (2008).
[Crossref]

J. Biophotonics (1)

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison,” J. Biophotonics 1(2), 129–139 (2008).
[Crossref]

J. Opt. Soc. Am. A (1)

JACC: Cardiovascular Interventions (1)

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC: Cardiovascular Interventions 2(11), 1035–1046 (2009).
[Crossref]

Nat. Med. (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref]

Opt. Express (7)

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[Crossref]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[Crossref]

T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Opt. Express 12(10), 2112–2119 (2004).
[Crossref]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[Crossref]

Y. Wang, J. Nelson, Z. Chen, B. Reiser, R. Chuck, and R. Windeler, “Optimal wavelength for ultrahigh-resolution optical coherence tomography,” Opt. Express 11(12), 1411–1417 (2003).
[Crossref]

E. Z. Zhang, W.-Y. Oh, M. L. Villiger, L. Chen, B. E. Bouma, and B. J. Vakoc, “Numerical compensation of system polarization mode dispersion in polarization-sensitive optical coherence tomography,” Opt. Express 21(1), 1163–1180 (2013).
[Crossref]

M. Villiger, E. Z. Zhang, S. K. Nadkarni, W.-Y. Oh, B. J. Vakoc, and B. E. Bouma, “Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging,” Opt. Express 21(14), 16353–16369 (2013).
[Crossref]

Opt. Lett. (7)

M. Villiger, E. Z. Zhang, S. Nadkarni, W.-Y. Oh, B. E. Bouma, and B. J. Vakoc, “Artifacts in polarization-sensitive optical coherence tomography caused by polarization mode dispersion,” Opt. Lett. 38(6), 923–925 (2013).
[Crossref]

R. Haindl, S. Preisser, M. Andreana, W. Rohringer, C. Sturtzel, M. Distel, Z. Chen, E. Rank, B. Fischer, W. Drexler, and M. Liu, “Dual modality reflection mode optical coherence and photoacoustic microscopy using an akinetic sensor,” Opt. Lett. 42(21), 4319–4322 (2017).
[Crossref]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003).
[Crossref]

A. Unterhuber, B. Považay, A. Müller, O. B. Jensen, M. Duelk, T. Le, P. M. Petersen, C. Velez, M. Esmaeelpour, P. E. Andersen, and W. Drexler, “Simultaneous dual wavelength eye-tracked ultrahigh resolution retinal and choroidal optical coherence tomography,” Opt. Lett. 38(21), 4312–4315 (2013).
[Crossref]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
[Crossref]

B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Opt. Lett. 21(22), 1839–1841 (1996).
[Crossref]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
[Crossref]

Proc. SPIE (2)

S. Gloor, J. Dahdah, N. Primerov, T. von Niederhäusern, M. Duelk, and C. Velez, “840-nm combined-SLED source integrated in 14-pin butterfly module with 140-nm bandwidth,” Proc. SPIE 11078, 110780W (2019).
[Crossref]

S. Gloor, A. H. Bachmann, M. Epitaux, T. von Niederhäusern, P. Vorreau, N. Matuschek, K. Hsu, M. Duelk, and C. Vélez, “High-speed miniaturized swept sources based on resonant MEMS mirrors and diffraction gratings,” Proc. SPIE 8571, 85712X (2013).
[Crossref]

Quant. Imaging Med. Surg. (1)

C. P. Hendon, T. H. Lye, X. Yao, Y. Gan, and C. C. Marboe, “Optical coherence tomography imaging of cardiac substrates,” Quant. Imaging Med. Surg. 9(5), 882–904 (2019).
[Crossref]

Quantum Electron. (1)

D. C. Adler, T. H. Ko, A. K. Konorev, D. S. Mamedov, V. V. Prokhorov, J. G. Fujimoto, and S. D. Yakubovich, “Broadband radiation source based on quantum-well superluminescent diodes for high-resolution optical coherent tomography,” Quantum Electron. 34(10), 915–918 (2004).
[Crossref]

Sci. Rep. (1)

Z. Chen, E. Rank, K. M. Meiburger, C. Sinz, A. Hodul, E. Zhang, E. Hoover, M. Minneman, J. Ensher, P. C. Beard, H. Kittler, R. A. Leitgeb, W. Drexler, and M. Liu, “Non-invasive multimodal optical coherence and photoacoustic tomography for human skin imaging,” Sci. Rep. 7(1), 17975 (2017).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Other (3)

R. Haindl, “Multibeam Doppler Optical Coherence Tomography,” Ph.D. thesis, Medical University of Vienna, Vienna (2017).

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer International Publishing, 2015), 2nd ed.

M. Duelk and K. Hsu, SLEDs and Swept Source Laser Technology for OCT, Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer International Publishing, 2015), chap. 18, pp. 527–561, 2nd ed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Ultra-high-resolution SD-OCM system. (a) System sketch. (b) 14-pin butterfly combi-SLED module (yellow ellipse) on OEM driver board EBD9200. (c) Open combi-SLED module with 3 SLEDs (D$_1$, D$_2$, D$_3$); DM: Dichroic mirror; L$_1$ to L$_3$: Collimation lenses; F: Optical fiber; L: Focusing lens; PD: Monitoring photodiode; Green, yellow and magenta dotted arrows: Optical beam path for the individual diodes D$_1$, D$_2$ and D$_3$ respectively; Red dotted arrow: Common optical beam path.
Fig. 2.
Fig. 2. ASE spectrum and calculated coherence function. (a, b): Linear ASE spectrum of the EBD29 and EBS30. (c, d): calculated linear coherence function of the EBD29 and EBS30. The corresponding bandwidths and calculated axial resolutions can be found in Table 1.
Fig. 3.
Fig. 3. Polarization dependent spectral intensity variations of the EBD29 and EBS30 SLEDs measured with a commercial spectrometer (AVS-USB2000, Avantes). (a, b) Spectral intensity for the EBD29 and EBS30. Polarization state 1: magenta; Polarization state 2: blue; Polarization state 3: green. (c, d) Ratio between polarization state 1 and 3 (magenta), 1 and 2 (blue), 2 and 3 (green) for the EBD29 and EBS30.
Fig. 4.
Fig. 4. Input polarization dependent OCM coherence function. The coherence functions are acquired at 500 µm distance to the zero delay. (a, b) Coherence function of the EBD29 and EBS30. Magenta: input polarization 1; blue: input polarization 2.
Fig. 5.
Fig. 5. Interference pattern and coherence function for the EBD29 and EBS30 light sources for different quarter-wave plate orientations. (a) Graphical illustration for horizontally polarized light (H) traversing a quarter-wave plate ($\lambda /4$, 45° fast-axis orientation) a second time after being reflected by a mirror. V: vertically polarized light; Circular arrow: chirality of circularly polarized light. (b) Color coding for various fast-axis orientations of the quarter-wave plate. (c, d) Interference pattern produced by the EBD29 and EBS30 light source for three quarter-wave plate orientations. (e, f) Coherence functions produced by the EBD29 and EBS30 light source for three quarter-wave plate orientations. The coherence functions are acquired at 500 µm distance to the zero delay.
Fig. 6.
Fig. 6. Averaged (10x) intensity B-scans of a zebrafish larva acquired for two polarization states with two light sources. Fiber polarization controller position 1 corresponds to a horizontal linear and position 2 to a circular polarization state. The polarization states are measured for the EBD29 light source with a PAX5710IR1-T TXP polarimeter. (a, b) Polarization state 1 and 2 acquired with the EBD29 light source. (c, d) Polarization state 1 and 2 acquired with the EBS30 light source. Blue marks: regions of interest; Yellow arrows: artifacts caused by PSF side lobes; Magenta arrows: polarization dependent PSF side lobe amplitudes; Green arrows: same speckle in all images; Green star: highest visibility for polarization state dependent signal amplitudes; Magenta triangles: caudal vein (left) and dorsal aorta (right); YS: yolk sack; MT: myotomes (large muscle segments); NC: notochord; SC: spinal cord

Tables (2)

Tables Icon

Table 1. OCM specifications for the combi-SLED (EBD29) and classical three SLED light source (EBS30).

Tables Icon

Table 2. Comparison of currently available broadband OCM and OCT SLED light sources. EBS- and M-T- sources are benchtop solutions. The BLM2-D-840-B-10 is a two SLED driver board light source, which is compact and light weight, but offers considerably lower bandwidth and lower output power than the SLED driver board solutions (EBD290002-00 and cBLMD-T-850-HP). Green: optimal specifications for OCM; Blue: polarization matched output; Yellow: average specifications for OCM; Magenta: bulky or low-end specifications for OCM.

Metrics