Abstract

In this study, we demonstrate a novel self-navigated motion correction method that suppresses eye motion and blinking artifacts on wide-field optical coherence tomographic angiography (OCTA) without requiring any hardware modification. Highly efficient GPU-based, real-time OCTA image acquisition and processing software was developed to detect eye motion artifacts. The algorithm includes an instantaneous motion index that evaluates the strength of motion artifact on en face OCTA images. Areas with suprathreshold motion and eye blinking artifacts are automatically rescanned in real-time. Both healthy eyes and eyes with diabetic retinopathy were imaged, and the self-navigated motion correction performance was demonstrated.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref]
  2. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
    [Crossref]
  3. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
    [Crossref]
  4. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008).
    [Crossref]
  5. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
    [Crossref]
  6. L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986).
    [Crossref]
  7. Q. S. You, Y. Guo, J. Wang, X. Wei, A. Camino, P. Zang, C. J. Flaxel, S. T. Bailey, D. Huang, and Y. Jia, “Detection of clinically unsuspected retinal neovascularization with wide-field optical coherence tomography angiography,” Retina 40(5), 891–897 (2020).
    [Crossref]
  8. R. G. Small and P. L. Hildebrand, “Preferred practice patterns,” Ophthalmology 103(12), 1987–1988 (1996).
    [Crossref]
  9. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
    [Crossref]
  10. L. R. De Pretto, E. M. Moult, A. Y. Alibhai, O. M. Carrasco-Zevallos, S. Chen, B. Lee, A. J. Witkin, C. R. Baumal, E. Reichel, A. Z. de Freitas, J. S. Duker, N. K. Waheed, and J. G. Fujimoto, “Controlling for Artifacts in Widefield Optical Coherence Tomography Angiography Measurements of Non-Perfusion Area,” Sci. Rep. 9(1), 9096 (2019).
    [Crossref]
  11. X. Wei, T. T. Hormel, Y. Guo, and Y. Jia, “75-degree non-mydriatic single-volume optical coherence tomographic angiography,” Biomed. Opt. Express 10(12), 6286–6295 (2019).
    [Crossref]
  12. Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
    [Crossref]
  13. R. F. Spaide, J. G. Fujimoto, and N. K. Waheed, “Image artifacts in optical coherence angiography,” Retina 35(11), 2163–2180 (2015).
    [Crossref]
  14. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
    [Crossref]
  15. Z. Zhi, W. Qin, J. Wang, W. Wei, and R. K. Wang, “4D optical coherence tomography-based micro-angiography achieved by 1.6-MHz FDML swept source,” Opt. Lett. 40(8), 1779–1782 (2015).
    [Crossref]
  16. J. Xu, C. Zhang, J. Xu, K. Wong, and K. Tsia, “Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch,” Opt. Lett. 39(3), 622–625 (2014).
    [Crossref]
  17. J. Kang, P. Feng, X. Wei, E. Y. Lam, K. K. Tsia, and K. K. Wong, “102-nm, 44.5-MHz inertial-free swept source by mode-locked fiber laser and time stretch technique for optical coherence tomography,” Opt. Express 26(4), 4370–4381 (2018).
    [Crossref]
  18. P. Zang, G. Liu, M. Zhang, C. Dongye, J. Wang, A. D. Pechauer, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram,” Biomed. Opt. Express 7(7), 2823–2836 (2016).
    [Crossref]
  19. M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express 3(6), 1182–1199 (2012).
    [Crossref]
  20. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. Lin, J. Schuman, C. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
    [Crossref]
  21. R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” in Ophthalmic Technologies XVII, (International Society for Optics and Photonics, 2007), 642607.
  22. S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, (Springer, 2009), 100–107.
  23. H. C. Hendargo, R. Estrada, S. J. Chiu, C. Tomasi, S. Farsiu, and J. A. Izatt, “Automated non-rigid registration and mosaicing for robust imaging of distinct retinal capillary beds using speckle variance optical coherence tomography,” Biomed. Opt. Express 4(6), 803–821 (2013).
    [Crossref]
  24. A. Camino, Y. Jia, G. Liu, J. Wang, and D. Huang, “Regression-based algorithm for bulk motion subtraction in optical coherence tomography angiography,” Biomed. Opt. Express 8(6), 3053–3066 (2017).
    [Crossref]
  25. J. Wang, A. Camino, X. Hua, L. Liu, D. Huang, T. S. Hwang, and Y. Jia, “Invariant features-based automated registration and montage for wide-field OCT angiography,” Biomed. Opt. Express 10(1), 120–136 (2019).
    [Crossref]
  26. Y. Li, G. Gregori, B. L. Lam, and P. J. Rosenfeld, “Automatic montage of SD-OCT data sets,” Opt. Express 19(27), 26239–26248 (2011).
    [Crossref]
  27. Y. Cui, Y. Zhu, J. C. Wang, Y. Lu, R. Zeng, R. Katz, D. M. Wu, D. G. Vavvas, D. Husain, and J. W. Miller, “Imaging Artifacts and Segmentation Errors With Wide-Field Swept-Source Optical Coherence Tomography Angiography in Diabetic Retinopathy,” Trans. Vis. Sci. Tech. 8(6), 18 (2019).
    [Crossref]
  28. K. V. Vienola, B. Braaf, C. K. Sheehy, Q. Yang, P. Tiruveedhula, D. W. Arathorn, J. F. de Boer, and A. Roorda, “Real-time eye motion compensation for OCT imaging with tracking SLO,” Biomed. Opt. Express 3(11), 2950–2963 (2012).
    [Crossref]
  29. R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. Beaton, and J. S. Schuman, “Tracking optical coherence tomography,” Opt. Lett. 29(18), 2139–2141 (2004).
    [Crossref]
  30. D. X. Hammer, R. D. Ferguson, N. V. Iftimia, T. Ustun, G. Wollstein, H. Ishikawa, M. L. Gabriele, W. D. Dilworth, L. Kagemann, and J. S. Schuman, “Advanced scanning methods with tracking optical coherence tomography,” Opt. Express 13(20), 7937–7947 (2005).
    [Crossref]
  31. M. Pircher, E. Götzinger, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “In vivo investigation of human cone photoreceptors with SLO/OCT in combination with 3D motion correction on a cellular level,” Opt. Express 18(13), 13935–13944 (2010).
    [Crossref]
  32. Y. Zhang and H. Wörn, “Optical coherence tomography as highly accurate optical tracking system,” in 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (IEEE, 2014), 1145–1150.
  33. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [Crossref]
  34. J. Li, P. Bloch, J. Xu, M. V. Sarunic, and L. Shannon, “Performance and scalability of Fourier domain optical coherence tomography acceleration using graphics processing units,” Appl. Opt. 50(13), 1832–1838 (2011).
    [Crossref]
  35. J. Rasakanthan, K. Sugden, and P. H. Tomlins, “Processing and rendering of Fourier domain optical coherence tomography images at a line rate over 524 kHz using a graphics processing unit,” J. Biomed. Opt. 16(2), 020505 (2011).
    [Crossref]
  36. M. Sylwestrzak, D. Szlag, M. Szkulmowski, I. M. Gorczynska, D. Bukowska, M. Wojtkowski, and P. Targowski, “Four-dimensional structural and Doppler optical coherence tomography imaging on graphics processing units,” J. Biomed. Opt. 17(10), 100502 (2012).
    [Crossref]
  37. Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt. 18(2), 026002 (2013).
    [Crossref]
  38. J. Xu, K. Wong, Y. Jian, and M. V. Sarunic, “Real-time acquisition and display of flow contrast using speckle variance optical coherence tomography in a graphics processing unit,” J. Biomed. Opt. 19(2), 026001 (2014).
    [Crossref]
  39. K. K. Lee, A. Mariampillai, X. Joe, D. W. Cadotte, B. C. Wilson, B. A. Standish, and V. X. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomed. Opt. Express 3(7), 1557–1564 (2012).
    [Crossref]
  40. X. Wei, A. Camino, S. Pi, T. T. Hormel, W. Cepurna, D. Huang, J. C. Morrison, and Y. Jia, “Real-time cross-sectional and en face OCT angiography guiding high-quality scan acquisition,” Opt. Lett. 44(6), 1431–1434 (2019).
    [Crossref]
  41. M. J. Ju, M. Heisler, A. Athwal, M. V. Sarunic, and Y. Jian, “Effective bidirectional scanning pattern for optical coherence tomography angiography,” Biomed. Opt. Express 9(5), 2336–2350 (2018).
    [Crossref]
  42. Y. Guo, A. Camino, M. Zhang, J. Wang, D. Huang, T. Hwang, and Y. Jia, “Automated segmentation of retinal layer boundaries and capillary plexuses in wide-field optical coherence tomographic angiography,” Biomed. Opt. Express 9(9), 4429–4442 (2018).
    [Crossref]
  43. T. T. Hormel, J. Wang, S. T. Bailey, T. S. Hwang, D. Huang, and Y. Jia, “Maximum value projection produces better en face OCT angiograms than mean value projection,” Biomed. Opt. Express 9(12), 6412–6424 (2018).
    [Crossref]
  44. J. Xu, X. Wei, L. Yu, C. Zhang, J. Xu, K. Wong, and K. K. Tsia, “High-performance multi-megahertz optical coherence tomography based on amplified optical time-stretch,” Biomed. Opt. Express 6(4), 1340–1350 (2015).
    [Crossref]
  45. J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, and R. Huber, “Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates,” PLoS One 14, e0213144 (2019).
    [Crossref]

2020 (1)

Q. S. You, Y. Guo, J. Wang, X. Wei, A. Camino, P. Zang, C. J. Flaxel, S. T. Bailey, D. Huang, and Y. Jia, “Detection of clinically unsuspected retinal neovascularization with wide-field optical coherence tomography angiography,” Retina 40(5), 891–897 (2020).
[Crossref]

2019 (6)

L. R. De Pretto, E. M. Moult, A. Y. Alibhai, O. M. Carrasco-Zevallos, S. Chen, B. Lee, A. J. Witkin, C. R. Baumal, E. Reichel, A. Z. de Freitas, J. S. Duker, N. K. Waheed, and J. G. Fujimoto, “Controlling for Artifacts in Widefield Optical Coherence Tomography Angiography Measurements of Non-Perfusion Area,” Sci. Rep. 9(1), 9096 (2019).
[Crossref]

X. Wei, T. T. Hormel, Y. Guo, and Y. Jia, “75-degree non-mydriatic single-volume optical coherence tomographic angiography,” Biomed. Opt. Express 10(12), 6286–6295 (2019).
[Crossref]

J. Wang, A. Camino, X. Hua, L. Liu, D. Huang, T. S. Hwang, and Y. Jia, “Invariant features-based automated registration and montage for wide-field OCT angiography,” Biomed. Opt. Express 10(1), 120–136 (2019).
[Crossref]

Y. Cui, Y. Zhu, J. C. Wang, Y. Lu, R. Zeng, R. Katz, D. M. Wu, D. G. Vavvas, D. Husain, and J. W. Miller, “Imaging Artifacts and Segmentation Errors With Wide-Field Swept-Source Optical Coherence Tomography Angiography in Diabetic Retinopathy,” Trans. Vis. Sci. Tech. 8(6), 18 (2019).
[Crossref]

X. Wei, A. Camino, S. Pi, T. T. Hormel, W. Cepurna, D. Huang, J. C. Morrison, and Y. Jia, “Real-time cross-sectional and en face OCT angiography guiding high-quality scan acquisition,” Opt. Lett. 44(6), 1431–1434 (2019).
[Crossref]

J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, and R. Huber, “Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates,” PLoS One 14, e0213144 (2019).
[Crossref]

2018 (4)

2017 (1)

2016 (2)

P. Zang, G. Liu, M. Zhang, C. Dongye, J. Wang, A. D. Pechauer, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram,” Biomed. Opt. Express 7(7), 2823–2836 (2016).
[Crossref]

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref]

2015 (3)

2014 (2)

J. Xu, K. Wong, Y. Jian, and M. V. Sarunic, “Real-time acquisition and display of flow contrast using speckle variance optical coherence tomography in a graphics processing unit,” J. Biomed. Opt. 19(2), 026001 (2014).
[Crossref]

J. Xu, C. Zhang, J. Xu, K. Wong, and K. Tsia, “Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch,” Opt. Lett. 39(3), 622–625 (2014).
[Crossref]

2013 (2)

H. C. Hendargo, R. Estrada, S. J. Chiu, C. Tomasi, S. Farsiu, and J. A. Izatt, “Automated non-rigid registration and mosaicing for robust imaging of distinct retinal capillary beds using speckle variance optical coherence tomography,” Biomed. Opt. Express 4(6), 803–821 (2013).
[Crossref]

Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt. 18(2), 026002 (2013).
[Crossref]

2012 (5)

2011 (4)

2010 (2)

2008 (2)

2006 (1)

2005 (1)

2004 (1)

2003 (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

1996 (1)

R. G. Small and P. L. Hildebrand, “Preferred practice patterns,” Ophthalmology 103(12), 1987–1988 (1996).
[Crossref]

1993 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

1986 (1)

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986).
[Crossref]

Alibhai, A. Y.

L. R. De Pretto, E. M. Moult, A. Y. Alibhai, O. M. Carrasco-Zevallos, S. Chen, B. Lee, A. J. Witkin, C. R. Baumal, E. Reichel, A. Z. de Freitas, J. S. Duker, N. K. Waheed, and J. G. Fujimoto, “Controlling for Artifacts in Widefield Optical Coherence Tomography Angiography Measurements of Non-Perfusion Area,” Sci. Rep. 9(1), 9096 (2019).
[Crossref]

An, L.

Arathorn, D. W.

Athwal, A.

Bailey, S. T.

Q. S. You, Y. Guo, J. Wang, X. Wei, A. Camino, P. Zang, C. J. Flaxel, S. T. Bailey, D. Huang, and Y. Jia, “Detection of clinically unsuspected retinal neovascularization with wide-field optical coherence tomography angiography,” Retina 40(5), 891–897 (2020).
[Crossref]

T. T. Hormel, J. Wang, S. T. Bailey, T. S. Hwang, D. Huang, and Y. Jia, “Maximum value projection produces better en face OCT angiograms than mean value projection,” Biomed. Opt. Express 9(12), 6412–6424 (2018).
[Crossref]

Baumal, C. R.

L. R. De Pretto, E. M. Moult, A. Y. Alibhai, O. M. Carrasco-Zevallos, S. Chen, B. Lee, A. J. Witkin, C. R. Baumal, E. Reichel, A. Z. de Freitas, J. S. Duker, N. K. Waheed, and J. G. Fujimoto, “Controlling for Artifacts in Widefield Optical Coherence Tomography Angiography Measurements of Non-Perfusion Area,” Sci. Rep. 9(1), 9096 (2019).
[Crossref]

Baumann, B.

Beaton, S.

Biedermann, B. R.

Bloch, P.

Bock, R.

Braaf, B.

Bukowska, D.

M. Sylwestrzak, D. Szlag, M. Szkulmowski, I. M. Gorczynska, D. Bukowska, M. Wojtkowski, and P. Targowski, “Four-dimensional structural and Doppler optical coherence tomography imaging on graphics processing units,” J. Biomed. Opt. 17(10), 100502 (2012).
[Crossref]

Cable, A.

Cadotte, D. W.

Camino, A.

Carrasco-Zevallos, O. M.

L. R. De Pretto, E. M. Moult, A. Y. Alibhai, O. M. Carrasco-Zevallos, S. Chen, B. Lee, A. J. Witkin, C. R. Baumal, E. Reichel, A. Z. de Freitas, J. S. Duker, N. K. Waheed, and J. G. Fujimoto, “Controlling for Artifacts in Widefield Optical Coherence Tomography Angiography Measurements of Non-Perfusion Area,” Sci. Rep. 9(1), 9096 (2019).
[Crossref]

Cepurna, W.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Chao, J.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref]

Chen, C.-L.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref]

Chen, M.

S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, (Springer, 2009), 100–107.

Chen, S.

L. R. De Pretto, E. M. Moult, A. Y. Alibhai, O. M. Carrasco-Zevallos, S. Chen, B. Lee, A. J. Witkin, C. R. Baumal, E. Reichel, A. Z. de Freitas, J. S. Duker, N. K. Waheed, and J. G. Fujimoto, “Controlling for Artifacts in Widefield Optical Coherence Tomography Angiography Measurements of Non-Perfusion Area,” Sci. Rep. 9(1), 9096 (2019).
[Crossref]

Chiu, S. J.

Choi, S. S.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” in Ophthalmic Technologies XVII, (International Society for Optics and Photonics, 2007), 642607.

Costanza, M. A.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986).
[Crossref]

Cui, Y.

Y. Cui, Y. Zhu, J. C. Wang, Y. Lu, R. Zeng, R. Katz, D. M. Wu, D. G. Vavvas, D. Husain, and J. W. Miller, “Imaging Artifacts and Segmentation Errors With Wide-Field Swept-Source Optical Coherence Tomography Angiography in Diabetic Retinopathy,” Trans. Vis. Sci. Tech. 8(6), 18 (2019).
[Crossref]

de Boer, J. F.

de Freitas, A. Z.

L. R. De Pretto, E. M. Moult, A. Y. Alibhai, O. M. Carrasco-Zevallos, S. Chen, B. Lee, A. J. Witkin, C. R. Baumal, E. Reichel, A. Z. de Freitas, J. S. Duker, N. K. Waheed, and J. G. Fujimoto, “Controlling for Artifacts in Widefield Optical Coherence Tomography Angiography Measurements of Non-Perfusion Area,” Sci. Rep. 9(1), 9096 (2019).
[Crossref]

De Pretto, L. R.

L. R. De Pretto, E. M. Moult, A. Y. Alibhai, O. M. Carrasco-Zevallos, S. Chen, B. Lee, A. J. Witkin, C. R. Baumal, E. Reichel, A. Z. de Freitas, J. S. Duker, N. K. Waheed, and J. G. Fujimoto, “Controlling for Artifacts in Widefield Optical Coherence Tomography Angiography Measurements of Non-Perfusion Area,” Sci. Rep. 9(1), 9096 (2019).
[Crossref]

Dilworth, W. D.

Dongye, C.

Draxinger, W.

J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, and R. Huber, “Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates,” PLoS One 14, e0213144 (2019).
[Crossref]

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Duker, J. S.

L. R. De Pretto, E. M. Moult, A. Y. Alibhai, O. M. Carrasco-Zevallos, S. Chen, B. Lee, A. J. Witkin, C. R. Baumal, E. Reichel, A. Z. de Freitas, J. S. Duker, N. K. Waheed, and J. G. Fujimoto, “Controlling for Artifacts in Widefield Optical Coherence Tomography Angiography Measurements of Non-Perfusion Area,” Sci. Rep. 9(1), 9096 (2019).
[Crossref]

Eibl, M.

J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, and R. Huber, “Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates,” PLoS One 14, e0213144 (2019).
[Crossref]

Eigenwillig, C. M.

Estrada, R.

Farsiu, S.

Feng, P.

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Ferguson, R. D.

Flaxel, C. J.

Q. S. You, Y. Guo, J. Wang, X. Wei, A. Camino, P. Zang, C. J. Flaxel, S. T. Bailey, D. Huang, and Y. Jia, “Detection of clinically unsuspected retinal neovascularization with wide-field optical coherence tomography angiography,” Retina 40(5), 891–897 (2020).
[Crossref]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Fujimoto, J. G.

L. R. De Pretto, E. M. Moult, A. Y. Alibhai, O. M. Carrasco-Zevallos, S. Chen, B. Lee, A. J. Witkin, C. R. Baumal, E. Reichel, A. Z. de Freitas, J. S. Duker, N. K. Waheed, and J. G. Fujimoto, “Controlling for Artifacts in Widefield Optical Coherence Tomography Angiography Measurements of Non-Perfusion Area,” Sci. Rep. 9(1), 9096 (2019).
[Crossref]

R. F. Spaide, J. G. Fujimoto, and N. K. Waheed, “Image artifacts in optical coherence angiography,” Retina 35(11), 2163–2180 (2015).
[Crossref]

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express 3(6), 1182–1199 (2012).
[Crossref]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. Lin, J. Schuman, C. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Fuller, A. R.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” in Ophthalmic Technologies XVII, (International Society for Optics and Photonics, 2007), 642607.

Gabriele, M. L.

Gorczynska, I. M.

M. Sylwestrzak, D. Szlag, M. Szkulmowski, I. M. Gorczynska, D. Bukowska, M. Wojtkowski, and P. Targowski, “Four-dimensional structural and Doppler optical coherence tomography imaging on graphics processing units,” J. Biomed. Opt. 17(10), 100502 (2012).
[Crossref]

Götzinger, E.

Gregori, G.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Guo, Y.

Hamann, B.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” in Ophthalmic Technologies XVII, (International Society for Optics and Photonics, 2007), 642607.

Hammer, D. X.

Hee, M. R.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. Lin, J. Schuman, C. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Heisler, M.

Hendargo, H. C.

Hildebrand, P. L.

R. G. Small and P. L. Hildebrand, “Preferred practice patterns,” Ophthalmology 103(12), 1987–1988 (1996).
[Crossref]

Hitzenberger, C. K.

Hong, Y.

Hormel, T. T.

Hornegger, J.

Hua, X.

Huang, D.

Q. S. You, Y. Guo, J. Wang, X. Wei, A. Camino, P. Zang, C. J. Flaxel, S. T. Bailey, D. Huang, and Y. Jia, “Detection of clinically unsuspected retinal neovascularization with wide-field optical coherence tomography angiography,” Retina 40(5), 891–897 (2020).
[Crossref]

J. Wang, A. Camino, X. Hua, L. Liu, D. Huang, T. S. Hwang, and Y. Jia, “Invariant features-based automated registration and montage for wide-field OCT angiography,” Biomed. Opt. Express 10(1), 120–136 (2019).
[Crossref]

X. Wei, A. Camino, S. Pi, T. T. Hormel, W. Cepurna, D. Huang, J. C. Morrison, and Y. Jia, “Real-time cross-sectional and en face OCT angiography guiding high-quality scan acquisition,” Opt. Lett. 44(6), 1431–1434 (2019).
[Crossref]

Y. Guo, A. Camino, M. Zhang, J. Wang, D. Huang, T. Hwang, and Y. Jia, “Automated segmentation of retinal layer boundaries and capillary plexuses in wide-field optical coherence tomographic angiography,” Biomed. Opt. Express 9(9), 4429–4442 (2018).
[Crossref]

T. T. Hormel, J. Wang, S. T. Bailey, T. S. Hwang, D. Huang, and Y. Jia, “Maximum value projection produces better en face OCT angiograms than mean value projection,” Biomed. Opt. Express 9(12), 6412–6424 (2018).
[Crossref]

A. Camino, Y. Jia, G. Liu, J. Wang, and D. Huang, “Regression-based algorithm for bulk motion subtraction in optical coherence tomography angiography,” Biomed. Opt. Express 8(6), 3053–3066 (2017).
[Crossref]

P. Zang, G. Liu, M. Zhang, C. Dongye, J. Wang, A. D. Pechauer, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram,” Biomed. Opt. Express 7(7), 2823–2836 (2016).
[Crossref]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. Lin, J. Schuman, C. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Huber, R.

Husain, D.

Y. Cui, Y. Zhu, J. C. Wang, Y. Lu, R. Zeng, R. Katz, D. M. Wu, D. G. Vavvas, D. Husain, and J. W. Miller, “Imaging Artifacts and Segmentation Errors With Wide-Field Swept-Source Optical Coherence Tomography Angiography in Diabetic Retinopathy,” Trans. Vis. Sci. Tech. 8(6), 18 (2019).
[Crossref]

Hwang, T.

Hwang, T. S.

Iftimia, N. V.

Ishikawa, H.

D. X. Hammer, R. D. Ferguson, N. V. Iftimia, T. Ustun, G. Wollstein, H. Ishikawa, M. L. Gabriele, W. D. Dilworth, L. Kagemann, and J. S. Schuman, “Advanced scanning methods with tracking optical coherence tomography,” Opt. Express 13(20), 7937–7947 (2005).
[Crossref]

S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, (Springer, 2009), 100–107.

Izatt, J. A.

Jia, Y.

Q. S. You, Y. Guo, J. Wang, X. Wei, A. Camino, P. Zang, C. J. Flaxel, S. T. Bailey, D. Huang, and Y. Jia, “Detection of clinically unsuspected retinal neovascularization with wide-field optical coherence tomography angiography,” Retina 40(5), 891–897 (2020).
[Crossref]

X. Wei, T. T. Hormel, Y. Guo, and Y. Jia, “75-degree non-mydriatic single-volume optical coherence tomographic angiography,” Biomed. Opt. Express 10(12), 6286–6295 (2019).
[Crossref]

J. Wang, A. Camino, X. Hua, L. Liu, D. Huang, T. S. Hwang, and Y. Jia, “Invariant features-based automated registration and montage for wide-field OCT angiography,” Biomed. Opt. Express 10(1), 120–136 (2019).
[Crossref]

X. Wei, A. Camino, S. Pi, T. T. Hormel, W. Cepurna, D. Huang, J. C. Morrison, and Y. Jia, “Real-time cross-sectional and en face OCT angiography guiding high-quality scan acquisition,” Opt. Lett. 44(6), 1431–1434 (2019).
[Crossref]

T. T. Hormel, J. Wang, S. T. Bailey, T. S. Hwang, D. Huang, and Y. Jia, “Maximum value projection produces better en face OCT angiograms than mean value projection,” Biomed. Opt. Express 9(12), 6412–6424 (2018).
[Crossref]

Y. Guo, A. Camino, M. Zhang, J. Wang, D. Huang, T. Hwang, and Y. Jia, “Automated segmentation of retinal layer boundaries and capillary plexuses in wide-field optical coherence tomographic angiography,” Biomed. Opt. Express 9(9), 4429–4442 (2018).
[Crossref]

A. Camino, Y. Jia, G. Liu, J. Wang, and D. Huang, “Regression-based algorithm for bulk motion subtraction in optical coherence tomography angiography,” Biomed. Opt. Express 8(6), 3053–3066 (2017).
[Crossref]

P. Zang, G. Liu, M. Zhang, C. Dongye, J. Wang, A. D. Pechauer, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram,” Biomed. Opt. Express 7(7), 2823–2836 (2016).
[Crossref]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref]

Jian, Y.

M. J. Ju, M. Heisler, A. Athwal, M. V. Sarunic, and Y. Jian, “Effective bidirectional scanning pattern for optical coherence tomography angiography,” Biomed. Opt. Express 9(5), 2336–2350 (2018).
[Crossref]

J. Xu, K. Wong, Y. Jian, and M. V. Sarunic, “Real-time acquisition and display of flow contrast using speckle variance optical coherence tomography in a graphics processing unit,” J. Biomed. Opt. 19(2), 026001 (2014).
[Crossref]

Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt. 18(2), 026002 (2013).
[Crossref]

Jiang, J.

Joe, X.

Johnstone, M.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref]

Ju, M. J.

Kagemann, L.

Kang, J.

Katz, R.

Y. Cui, Y. Zhu, J. C. Wang, Y. Lu, R. Zeng, R. Katz, D. M. Wu, D. G. Vavvas, D. Husain, and J. W. Miller, “Imaging Artifacts and Segmentation Errors With Wide-Field Swept-Source Optical Coherence Tomography Angiography in Diabetic Retinopathy,” Trans. Vis. Sci. Tech. 8(6), 18 (2019).
[Crossref]

Khurana, M.

Kinyoun, J.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref]

Klee, J.

J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, and R. Huber, “Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates,” PLoS One 14, e0213144 (2019).
[Crossref]

Klein, T.

Kolb, J. P.

J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, and R. Huber, “Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates,” PLoS One 14, e0213144 (2019).
[Crossref]

Kraus, M. F.

Lam, B. L.

Lam, E. Y.

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Lee, B.

L. R. De Pretto, E. M. Moult, A. Y. Alibhai, O. M. Carrasco-Zevallos, S. Chen, B. Lee, A. J. Witkin, C. R. Baumal, E. Reichel, A. Z. de Freitas, J. S. Duker, N. K. Waheed, and J. G. Fujimoto, “Controlling for Artifacts in Widefield Optical Coherence Tomography Angiography Measurements of Non-Perfusion Area,” Sci. Rep. 9(1), 9096 (2019).
[Crossref]

Lee, C. S.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref]

Lee, K. K.

Leitgeb, R. A.

Leung, M. K.

Li, D.

Li, J.

Li, Y.

Lin, C.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Liu, G.

Liu, J.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref]

Liu, J. J.

Liu, L.

Lu, Y.

Y. Cui, Y. Zhu, J. C. Wang, Y. Lu, R. Zeng, R. Katz, D. M. Wu, D. G. Vavvas, D. Husain, and J. W. Miller, “Imaging Artifacts and Segmentation Errors With Wide-Field Swept-Source Optical Coherence Tomography Angiography in Diabetic Retinopathy,” Trans. Vis. Sci. Tech. 8(6), 18 (2019).
[Crossref]

Makita, S.

Mariampillai, A.

Mayer, M. A.

Miller, J. W.

Y. Cui, Y. Zhu, J. C. Wang, Y. Lu, R. Zeng, R. Katz, D. M. Wu, D. G. Vavvas, D. Husain, and J. W. Miller, “Imaging Artifacts and Segmentation Errors With Wide-Field Swept-Source Optical Coherence Tomography Angiography in Diabetic Retinopathy,” Trans. Vis. Sci. Tech. 8(6), 18 (2019).
[Crossref]

Moriyama, E. H.

Morrison, J. C.

Moult, E. M.

L. R. De Pretto, E. M. Moult, A. Y. Alibhai, O. M. Carrasco-Zevallos, S. Chen, B. Lee, A. J. Witkin, C. R. Baumal, E. Reichel, A. Z. de Freitas, J. S. Duker, N. K. Waheed, and J. G. Fujimoto, “Controlling for Artifacts in Widefield Optical Coherence Tomography Angiography Measurements of Non-Perfusion Area,” Sci. Rep. 9(1), 9096 (2019).
[Crossref]

Munce, N. R.

Munsen, R.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref]

Paunescu, L. A.

Pechauer, A. D.

Pepple, K. L.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref]

Pfeiffer, T.

J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, and R. Huber, “Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates,” PLoS One 14, e0213144 (2019).
[Crossref]

Pi, S.

Pircher, M.

Potsaid, B.

Puliafito, C.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Qin, W.

Rasakanthan, J.

J. Rasakanthan, K. Sugden, and P. H. Tomlins, “Processing and rendering of Fourier domain optical coherence tomography images at a line rate over 524 kHz using a graphics processing unit,” J. Biomed. Opt. 16(2), 020505 (2011).
[Crossref]

Reichel, E.

L. R. De Pretto, E. M. Moult, A. Y. Alibhai, O. M. Carrasco-Zevallos, S. Chen, B. Lee, A. J. Witkin, C. R. Baumal, E. Reichel, A. Z. de Freitas, J. S. Duker, N. K. Waheed, and J. G. Fujimoto, “Controlling for Artifacts in Widefield Optical Coherence Tomography Angiography Measurements of Non-Perfusion Area,” Sci. Rep. 9(1), 9096 (2019).
[Crossref]

Rezaei, K.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref]

Ricco, S.

S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, (Springer, 2009), 100–107.

Rohrer, K. T.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986).
[Crossref]

Roorda, A.

Rosenfeld, P. J.

Sarunic, M. V.

M. J. Ju, M. Heisler, A. Athwal, M. V. Sarunic, and Y. Jian, “Effective bidirectional scanning pattern for optical coherence tomography angiography,” Biomed. Opt. Express 9(5), 2336–2350 (2018).
[Crossref]

J. Xu, K. Wong, Y. Jian, and M. V. Sarunic, “Real-time acquisition and display of flow contrast using speckle variance optical coherence tomography in a graphics processing unit,” J. Biomed. Opt. 19(2), 026001 (2014).
[Crossref]

Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt. 18(2), 026002 (2013).
[Crossref]

J. Li, P. Bloch, J. Xu, M. V. Sarunic, and L. Shannon, “Performance and scalability of Fourier domain optical coherence tomography acceleration using graphics processing units,” Appl. Opt. 50(13), 1832–1838 (2011).
[Crossref]

Sattmann, H.

Schuman, J.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. Lin, J. Schuman, C. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
[Crossref]

S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, (Springer, 2009), 100–107.

Schuman, J. S.

Shannon, L.

Sharma, U.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref]

Sheehy, C. K.

Shields, W.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986).
[Crossref]

Small, R. G.

R. G. Small and P. L. Hildebrand, “Preferred practice patterns,” Ophthalmology 103(12), 1987–1988 (1996).
[Crossref]

Sobel, R. S.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986).
[Crossref]

Spaide, R. F.

R. F. Spaide, J. G. Fujimoto, and N. K. Waheed, “Image artifacts in optical coherence angiography,” Retina 35(11), 2163–2180 (2015).
[Crossref]

Standish, B. A.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Subhash, H.

Sugden, K.

J. Rasakanthan, K. Sugden, and P. H. Tomlins, “Processing and rendering of Fourier domain optical coherence tomography images at a line rate over 524 kHz using a graphics processing unit,” J. Biomed. Opt. 16(2), 020505 (2011).
[Crossref]

Swanson, E. A.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. Lin, J. Schuman, C. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Sylwestrzak, M.

M. Sylwestrzak, D. Szlag, M. Szkulmowski, I. M. Gorczynska, D. Bukowska, M. Wojtkowski, and P. Targowski, “Four-dimensional structural and Doppler optical coherence tomography imaging on graphics processing units,” J. Biomed. Opt. 17(10), 100502 (2012).
[Crossref]

Szkulmowski, M.

M. Sylwestrzak, D. Szlag, M. Szkulmowski, I. M. Gorczynska, D. Bukowska, M. Wojtkowski, and P. Targowski, “Four-dimensional structural and Doppler optical coherence tomography imaging on graphics processing units,” J. Biomed. Opt. 17(10), 100502 (2012).
[Crossref]

Szlag, D.

M. Sylwestrzak, D. Szlag, M. Szkulmowski, I. M. Gorczynska, D. Bukowska, M. Wojtkowski, and P. Targowski, “Four-dimensional structural and Doppler optical coherence tomography imaging on graphics processing units,” J. Biomed. Opt. 17(10), 100502 (2012).
[Crossref]

Tan, O.

Targowski, P.

M. Sylwestrzak, D. Szlag, M. Szkulmowski, I. M. Gorczynska, D. Bukowska, M. Wojtkowski, and P. Targowski, “Four-dimensional structural and Doppler optical coherence tomography imaging on graphics processing units,” J. Biomed. Opt. 17(10), 100502 (2012).
[Crossref]

Tindel, L. J.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986).
[Crossref]

Tiruveedhula, P.

Tokayer, J.

Tomasi, C.

Tomlins, P. H.

J. Rasakanthan, K. Sugden, and P. H. Tomlins, “Processing and rendering of Fourier domain optical coherence tomography images at a line rate over 524 kHz using a graphics processing unit,” J. Biomed. Opt. 16(2), 020505 (2011).
[Crossref]

Tsia, K.

Tsia, K. K.

Ustun, T.

Van Gelder, R. N.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref]

Vavvas, D. G.

Y. Cui, Y. Zhu, J. C. Wang, Y. Lu, R. Zeng, R. Katz, D. M. Wu, D. G. Vavvas, D. Husain, and J. W. Miller, “Imaging Artifacts and Segmentation Errors With Wide-Field Swept-Source Optical Coherence Tomography Angiography in Diabetic Retinopathy,” Trans. Vis. Sci. Tech. 8(6), 18 (2019).
[Crossref]

Vienola, K. V.

Vitkin, I. A.

Waheed, N. K.

L. R. De Pretto, E. M. Moult, A. Y. Alibhai, O. M. Carrasco-Zevallos, S. Chen, B. Lee, A. J. Witkin, C. R. Baumal, E. Reichel, A. Z. de Freitas, J. S. Duker, N. K. Waheed, and J. G. Fujimoto, “Controlling for Artifacts in Widefield Optical Coherence Tomography Angiography Measurements of Non-Perfusion Area,” Sci. Rep. 9(1), 9096 (2019).
[Crossref]

R. F. Spaide, J. G. Fujimoto, and N. K. Waheed, “Image artifacts in optical coherence angiography,” Retina 35(11), 2163–2180 (2015).
[Crossref]

Wang, J.

Q. S. You, Y. Guo, J. Wang, X. Wei, A. Camino, P. Zang, C. J. Flaxel, S. T. Bailey, D. Huang, and Y. Jia, “Detection of clinically unsuspected retinal neovascularization with wide-field optical coherence tomography angiography,” Retina 40(5), 891–897 (2020).
[Crossref]

J. Wang, A. Camino, X. Hua, L. Liu, D. Huang, T. S. Hwang, and Y. Jia, “Invariant features-based automated registration and montage for wide-field OCT angiography,” Biomed. Opt. Express 10(1), 120–136 (2019).
[Crossref]

Y. Guo, A. Camino, M. Zhang, J. Wang, D. Huang, T. Hwang, and Y. Jia, “Automated segmentation of retinal layer boundaries and capillary plexuses in wide-field optical coherence tomographic angiography,” Biomed. Opt. Express 9(9), 4429–4442 (2018).
[Crossref]

T. T. Hormel, J. Wang, S. T. Bailey, T. S. Hwang, D. Huang, and Y. Jia, “Maximum value projection produces better en face OCT angiograms than mean value projection,” Biomed. Opt. Express 9(12), 6412–6424 (2018).
[Crossref]

A. Camino, Y. Jia, G. Liu, J. Wang, and D. Huang, “Regression-based algorithm for bulk motion subtraction in optical coherence tomography angiography,” Biomed. Opt. Express 8(6), 3053–3066 (2017).
[Crossref]

P. Zang, G. Liu, M. Zhang, C. Dongye, J. Wang, A. D. Pechauer, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram,” Biomed. Opt. Express 7(7), 2823–2836 (2016).
[Crossref]

Z. Zhi, W. Qin, J. Wang, W. Wei, and R. K. Wang, “4D optical coherence tomography-based micro-angiography achieved by 1.6-MHz FDML swept source,” Opt. Lett. 40(8), 1779–1782 (2015).
[Crossref]

Wang, J. C.

Y. Cui, Y. Zhu, J. C. Wang, Y. Lu, R. Zeng, R. Katz, D. M. Wu, D. G. Vavvas, D. Husain, and J. W. Miller, “Imaging Artifacts and Segmentation Errors With Wide-Field Swept-Source Optical Coherence Tomography Angiography in Diabetic Retinopathy,” Trans. Vis. Sci. Tech. 8(6), 18 (2019).
[Crossref]

Wang, R. K.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref]

Z. Zhi, W. Qin, J. Wang, W. Wei, and R. K. Wang, “4D optical coherence tomography-based micro-angiography achieved by 1.6-MHz FDML swept source,” Opt. Lett. 40(8), 1779–1782 (2015).
[Crossref]

L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008).
[Crossref]

Wang, Y.

Wei, W.

Wei, X.

Werner, J. S.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” in Ophthalmic Technologies XVII, (International Society for Optics and Photonics, 2007), 642607.

Wieser, W.

Wiley, D. F.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” in Ophthalmic Technologies XVII, (International Society for Optics and Photonics, 2007), 642607.

Wilson, B. C.

Wilson, D. J.

Witkin, A. J.

L. R. De Pretto, E. M. Moult, A. Y. Alibhai, O. M. Carrasco-Zevallos, S. Chen, B. Lee, A. J. Witkin, C. R. Baumal, E. Reichel, A. Z. de Freitas, J. S. Duker, N. K. Waheed, and J. G. Fujimoto, “Controlling for Artifacts in Widefield Optical Coherence Tomography Angiography Measurements of Non-Perfusion Area,” Sci. Rep. 9(1), 9096 (2019).
[Crossref]

Wojtkowski, M.

M. Sylwestrzak, D. Szlag, M. Szkulmowski, I. M. Gorczynska, D. Bukowska, M. Wojtkowski, and P. Targowski, “Four-dimensional structural and Doppler optical coherence tomography imaging on graphics processing units,” J. Biomed. Opt. 17(10), 100502 (2012).
[Crossref]

Wollstein, G.

D. X. Hammer, R. D. Ferguson, N. V. Iftimia, T. Ustun, G. Wollstein, H. Ishikawa, M. L. Gabriele, W. D. Dilworth, L. Kagemann, and J. S. Schuman, “Advanced scanning methods with tracking optical coherence tomography,” Opt. Express 13(20), 7937–7947 (2005).
[Crossref]

S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, (Springer, 2009), 100–107.

Wong, K.

J. Xu, X. Wei, L. Yu, C. Zhang, J. Xu, K. Wong, and K. K. Tsia, “High-performance multi-megahertz optical coherence tomography based on amplified optical time-stretch,” Biomed. Opt. Express 6(4), 1340–1350 (2015).
[Crossref]

J. Xu, K. Wong, Y. Jian, and M. V. Sarunic, “Real-time acquisition and display of flow contrast using speckle variance optical coherence tomography in a graphics processing unit,” J. Biomed. Opt. 19(2), 026001 (2014).
[Crossref]

J. Xu, C. Zhang, J. Xu, K. Wong, and K. Tsia, “Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch,” Opt. Lett. 39(3), 622–625 (2014).
[Crossref]

Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt. 18(2), 026002 (2013).
[Crossref]

Wong, K. K.

Wörn, H.

Y. Zhang and H. Wörn, “Optical coherence tomography as highly accurate optical tracking system,” in 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (IEEE, 2014), 1145–1150.

Wu, D. M.

Y. Cui, Y. Zhu, J. C. Wang, Y. Lu, R. Zeng, R. Katz, D. M. Wu, D. G. Vavvas, D. Husain, and J. W. Miller, “Imaging Artifacts and Segmentation Errors With Wide-Field Swept-Source Optical Coherence Tomography Angiography in Diabetic Retinopathy,” Trans. Vis. Sci. Tech. 8(6), 18 (2019).
[Crossref]

Xu, J.

Yamanari, M.

Yang, Q.

Yang, V. X.

Yang, V. X. D.

Yannuzzi, L. A.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986).
[Crossref]

Yasuno, Y.

Yatagai, T.

You, Q. S.

Q. S. You, Y. Guo, J. Wang, X. Wei, A. Camino, P. Zang, C. J. Flaxel, S. T. Bailey, D. Huang, and Y. Jia, “Detection of clinically unsuspected retinal neovascularization with wide-field optical coherence tomography angiography,” Retina 40(5), 891–897 (2020).
[Crossref]

Yu, L.

Zang, E.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986).
[Crossref]

Zang, P.

Q. S. You, Y. Guo, J. Wang, X. Wei, A. Camino, P. Zang, C. J. Flaxel, S. T. Bailey, D. Huang, and Y. Jia, “Detection of clinically unsuspected retinal neovascularization with wide-field optical coherence tomography angiography,” Retina 40(5), 891–897 (2020).
[Crossref]

P. Zang, G. Liu, M. Zhang, C. Dongye, J. Wang, A. D. Pechauer, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram,” Biomed. Opt. Express 7(7), 2823–2836 (2016).
[Crossref]

Zawadzki, R. J.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” in Ophthalmic Technologies XVII, (International Society for Optics and Photonics, 2007), 642607.

Zeng, R.

Y. Cui, Y. Zhu, J. C. Wang, Y. Lu, R. Zeng, R. Katz, D. M. Wu, D. G. Vavvas, D. Husain, and J. W. Miller, “Imaging Artifacts and Segmentation Errors With Wide-Field Swept-Source Optical Coherence Tomography Angiography in Diabetic Retinopathy,” Trans. Vis. Sci. Tech. 8(6), 18 (2019).
[Crossref]

Zhang, A.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref]

Zhang, C.

Zhang, M.

Zhang, Q.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref]

Zhang, T.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref]

Zhang, Y.

Y. Zhang and H. Wörn, “Optical coherence tomography as highly accurate optical tracking system,” in 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (IEEE, 2014), 1145–1150.

Zhi, Z.

Zhu, Y.

Y. Cui, Y. Zhu, J. C. Wang, Y. Lu, R. Zeng, R. Katz, D. M. Wu, D. G. Vavvas, D. Husain, and J. W. Miller, “Imaging Artifacts and Segmentation Errors With Wide-Field Swept-Source Optical Coherence Tomography Angiography in Diabetic Retinopathy,” Trans. Vis. Sci. Tech. 8(6), 18 (2019).
[Crossref]

Appl. Opt. (1)

Biomed. Opt. Express (12)

H. C. Hendargo, R. Estrada, S. J. Chiu, C. Tomasi, S. Farsiu, and J. A. Izatt, “Automated non-rigid registration and mosaicing for robust imaging of distinct retinal capillary beds using speckle variance optical coherence tomography,” Biomed. Opt. Express 4(6), 803–821 (2013).
[Crossref]

A. Camino, Y. Jia, G. Liu, J. Wang, and D. Huang, “Regression-based algorithm for bulk motion subtraction in optical coherence tomography angiography,” Biomed. Opt. Express 8(6), 3053–3066 (2017).
[Crossref]

J. Wang, A. Camino, X. Hua, L. Liu, D. Huang, T. S. Hwang, and Y. Jia, “Invariant features-based automated registration and montage for wide-field OCT angiography,” Biomed. Opt. Express 10(1), 120–136 (2019).
[Crossref]

K. V. Vienola, B. Braaf, C. K. Sheehy, Q. Yang, P. Tiruveedhula, D. W. Arathorn, J. F. de Boer, and A. Roorda, “Real-time eye motion compensation for OCT imaging with tracking SLO,” Biomed. Opt. Express 3(11), 2950–2963 (2012).
[Crossref]

X. Wei, T. T. Hormel, Y. Guo, and Y. Jia, “75-degree non-mydriatic single-volume optical coherence tomographic angiography,” Biomed. Opt. Express 10(12), 6286–6295 (2019).
[Crossref]

P. Zang, G. Liu, M. Zhang, C. Dongye, J. Wang, A. D. Pechauer, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram,” Biomed. Opt. Express 7(7), 2823–2836 (2016).
[Crossref]

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express 3(6), 1182–1199 (2012).
[Crossref]

M. J. Ju, M. Heisler, A. Athwal, M. V. Sarunic, and Y. Jian, “Effective bidirectional scanning pattern for optical coherence tomography angiography,” Biomed. Opt. Express 9(5), 2336–2350 (2018).
[Crossref]

Y. Guo, A. Camino, M. Zhang, J. Wang, D. Huang, T. Hwang, and Y. Jia, “Automated segmentation of retinal layer boundaries and capillary plexuses in wide-field optical coherence tomographic angiography,” Biomed. Opt. Express 9(9), 4429–4442 (2018).
[Crossref]

T. T. Hormel, J. Wang, S. T. Bailey, T. S. Hwang, D. Huang, and Y. Jia, “Maximum value projection produces better en face OCT angiograms than mean value projection,” Biomed. Opt. Express 9(12), 6412–6424 (2018).
[Crossref]

J. Xu, X. Wei, L. Yu, C. Zhang, J. Xu, K. Wong, and K. K. Tsia, “High-performance multi-megahertz optical coherence tomography based on amplified optical time-stretch,” Biomed. Opt. Express 6(4), 1340–1350 (2015).
[Crossref]

K. K. Lee, A. Mariampillai, X. Joe, D. W. Cadotte, B. C. Wilson, B. A. Standish, and V. X. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomed. Opt. Express 3(7), 1557–1564 (2012).
[Crossref]

J. Biomed. Opt. (4)

J. Rasakanthan, K. Sugden, and P. H. Tomlins, “Processing and rendering of Fourier domain optical coherence tomography images at a line rate over 524 kHz using a graphics processing unit,” J. Biomed. Opt. 16(2), 020505 (2011).
[Crossref]

M. Sylwestrzak, D. Szlag, M. Szkulmowski, I. M. Gorczynska, D. Bukowska, M. Wojtkowski, and P. Targowski, “Four-dimensional structural and Doppler optical coherence tomography imaging on graphics processing units,” J. Biomed. Opt. 17(10), 100502 (2012).
[Crossref]

Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt. 18(2), 026002 (2013).
[Crossref]

J. Xu, K. Wong, Y. Jian, and M. V. Sarunic, “Real-time acquisition and display of flow contrast using speckle variance optical coherence tomography in a graphics processing unit,” J. Biomed. Opt. 19(2), 026001 (2014).
[Crossref]

Ophthalmology (2)

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986).
[Crossref]

R. G. Small and P. L. Hildebrand, “Preferred practice patterns,” Ophthalmology 103(12), 1987–1988 (1996).
[Crossref]

Opt. Express (9)

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
[Crossref]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
[Crossref]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref]

L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008).
[Crossref]

D. X. Hammer, R. D. Ferguson, N. V. Iftimia, T. Ustun, G. Wollstein, H. Ishikawa, M. L. Gabriele, W. D. Dilworth, L. Kagemann, and J. S. Schuman, “Advanced scanning methods with tracking optical coherence tomography,” Opt. Express 13(20), 7937–7947 (2005).
[Crossref]

M. Pircher, E. Götzinger, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “In vivo investigation of human cone photoreceptors with SLO/OCT in combination with 3D motion correction on a cellular level,” Opt. Express 18(13), 13935–13944 (2010).
[Crossref]

J. Kang, P. Feng, X. Wei, E. Y. Lam, K. K. Tsia, and K. K. Wong, “102-nm, 44.5-MHz inertial-free swept source by mode-locked fiber laser and time stretch technique for optical coherence tomography,” Opt. Express 26(4), 4370–4381 (2018).
[Crossref]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
[Crossref]

Y. Li, G. Gregori, B. L. Lam, and P. J. Rosenfeld, “Automatic montage of SD-OCT data sets,” Opt. Express 19(27), 26239–26248 (2011).
[Crossref]

Opt. Lett. (6)

PLoS One (1)

J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, and R. Huber, “Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates,” PLoS One 14, e0213144 (2019).
[Crossref]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Retina (2)

R. F. Spaide, J. G. Fujimoto, and N. K. Waheed, “Image artifacts in optical coherence angiography,” Retina 35(11), 2163–2180 (2015).
[Crossref]

Q. S. You, Y. Guo, J. Wang, X. Wei, A. Camino, P. Zang, C. J. Flaxel, S. T. Bailey, D. Huang, and Y. Jia, “Detection of clinically unsuspected retinal neovascularization with wide-field optical coherence tomography angiography,” Retina 40(5), 891–897 (2020).
[Crossref]

Sci. Rep. (2)

L. R. De Pretto, E. M. Moult, A. Y. Alibhai, O. M. Carrasco-Zevallos, S. Chen, B. Lee, A. J. Witkin, C. R. Baumal, E. Reichel, A. Z. de Freitas, J. S. Duker, N. K. Waheed, and J. G. Fujimoto, “Controlling for Artifacts in Widefield Optical Coherence Tomography Angiography Measurements of Non-Perfusion Area,” Sci. Rep. 9(1), 9096 (2019).
[Crossref]

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Trans. Vis. Sci. Tech. (1)

Y. Cui, Y. Zhu, J. C. Wang, Y. Lu, R. Zeng, R. Katz, D. M. Wu, D. G. Vavvas, D. Husain, and J. W. Miller, “Imaging Artifacts and Segmentation Errors With Wide-Field Swept-Source Optical Coherence Tomography Angiography in Diabetic Retinopathy,” Trans. Vis. Sci. Tech. 8(6), 18 (2019).
[Crossref]

Other (3)

Y. Zhang and H. Wörn, “Optical coherence tomography as highly accurate optical tracking system,” in 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (IEEE, 2014), 1145–1150.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” in Ophthalmic Technologies XVII, (International Society for Optics and Photonics, 2007), 642607.

S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, (Springer, 2009), 100–107.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. GPU-based real-time OCT/OCTA image processing thread. Once the raw spectrum batch is acquired and transferred from the host memory to the device memory, the thread will begin to process the new data. The dataset contains spectra from M location with N repeated scans at each location. A GPU-based dispersion compensation algorithm is applied to the raw spectrum (a). The raw spectrum is then copied to form a dataset with S+1 copies, where S indicates the number of spectrum splits, and the one additional copy is used to generate the OCT image (b). Then a set of Gaussian masks are applied to the dataset (c). A fast Fourier transform (FFT) is then applied to the combined dataset, which generates a split spectrum image and OCT image (d). The OCT data is then averaged across N repeats to generate an averaged OCT image, which reduces noise (e). The split spectrum image set is then processed using a decorrelation algorithm to generate the OCTA image (f). Then the OCTA and OCT images are projected using mean projection to generate an en face image (g, h). The following pseudo code is used to demonstrate the process.
Fig. 2.
Fig. 2. (A, B) En face OCTA images acquired from a healthy volunteer without the motion correction system engaged; (C, D) mean values from each OCTA batch; (E, F) standard deviation (STD) between B-frames in each batch; (G, H) IMSI calculated using the en face OCTA image, with yellow line indicating the threshold; (I, J) motion trigger signal generated after the threshold applied to the IMSI value.
Fig. 3.
Fig. 3. Flow chart of the GPU-based real-time self-navigated motion correction thread. Variable n indicates the global batch number counter, variable m indicates a batch that contains artifacts, and f is the motion flag. After the GPU thread generates a new en face image, the image is then processed to calculate IMSI to determine if motion occurred. If motion occurred, the thread will wait until no additional motion events occur to reset the galvo scanner. The following pseudo code is used to better demonstrate the process.
Fig. 4.
Fig. 4. High-density wide-field OCTA images. (A) wide-field OCTA image acquired without self-navigated motion correction engaged; (B) wide-field OCTA image acquired with self-navigated motion correction engaged. The shadowing artifact is caused by eye lashes; (C) high-resolution wide-field OCTA image acquired with self-navigated motion correction engaged; (D, F) 3×3-mm inner retinal angiogram cropped from C; (E, G) 3×3-mm inner retinal angiogram acquired using commercial system for comparison.
Fig. 5.
Fig. 5. Inner retinal angiogram acquired by our prototype high-resolution wide-field OCTA from a participant with proliferative diabetic retinopathy.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

IMSI = std ( D OCTA ) mean ( D OCTA )