Abstract

Fast confocal imaging was achieved by combining remote focusing with differential spinning disk optical sectioning to rapidly acquire images of live samples at cellular resolution. Axial and lateral full width half maxima less than 5 µm and 490 nm respectively are demonstrated over 130 µm axial range with a 256 × 128 µm field of view. A water-index calibration slide was used to achieve an alignment that minimises image volume distortion. Application to live biological samples was demonstrated by acquiring image volumes over a 24 µm axial range at 1 volume/s, allowing for the detection of calcium-based neuronal activity in Platynereis dumerilii larvae.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. N. S. Nadella, H. Roš, C. Baragli, V. A. Griffiths, G. Konstantinou, T. Koimtzis, G. J. Evans, P. A. Kirkby, and R. A. Silver, “Random-access scanning microscopy for 3D imaging in awake behaving animals,” Nat. Methods 13(12), 1001–1004 (2016).
    [Crossref]
  2. B. F. Grewe, F. F. Voigt, M. van ’t Hoff, and F. Helmchen, “Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens,” Biomed. Opt. Express 2(7), 2035–2046 (2011).
    [Crossref]
  3. A. D. Corbett, R. A. B. Burton, G. Bub, P. S. Salter, S. Tuohy, M. J. Booth, and T. Wilson, “Quantifying distortions in two-photon remote focussing microscope images using a volumetric calibration specimen,” Front. Physiol. 5, 384 (2014).
    [Crossref]
  4. W. Göbel, B. M. Kampa, and F. Helmchen, “Imaging cellular network dynamics in three dimensions using fast 3D laser scanning,” Nat. Methods 4(1), 73–79 (2007).
    [Crossref]
  5. E. J. Botcherby, R. Juškaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun. 281(4), 880–887 (2008).
    [Crossref]
  6. C. Dunsby, “Optically sectioned imaging by oblique plane microscopy,” Opt. Express 16(25), 20306–20316 (2008).
    [Crossref]
  7. S. Kumar, D. Wilding, M. B. Sikkel, A. R. Lyon, K. T. MacLeod, and C. Dunsby, “High-speed 2D and 3D fluorescence microscopy of cardiac myocytes,” Opt. Express 19(15), 13839–13847 (2011).
    [Crossref]
  8. M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. C. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
    [Crossref]
  9. M. Kumar, S. Kishore, J. Nasenbeny, D. L. McLean, and Y. Kozorovitskiy, “Integrated one- and two-photon scanned oblique plane illumination (SOPi) microscopy for rapid volumetric imaging,” Opt. Express 26(10), 13027 (2018).
    [Crossref]
  10. B. Yang, X. Chen, Y. Wang, S. Feng, V. Pessino, N. Stuurman, N. H. Cho, K. W. Cheng, S. J. Lord, L. Xu, D. Xie, R. D. Mullins, M. D. Leonetti, and B. Huang, “Epi-illumination SPIM for volumetric imaging with high spatial-temporal resolution,” Nat. Methods 16(6), 501–504 (2019).
    [Crossref]
  11. A. Millet-Sikking and A. G. York, “High NA single objective light sheet,” Zenodo, https://doi.org/10.5281/zenodo.3244420 (2019).
  12. R. Fiolka, “Resolution upgrades for light-sheet microscopy,” Nat. Methods 16(9), 813–814 (2019).
    [Crossref]
  13. R. Jusškaitis, T. Wilson, M. a. A. Neil, and M. Kozubek, “Efficient real-time confocal microscopy with white light sources,” Nature 383(6603), 804–806 (1996).
    [Crossref]
  14. A. D. Corbett, M. Shaw, A. Yacoot, A. Jefferson, L. Schermelleh, T. Wilson, M. Booth, and P. S. Salter, “Microscope calibration using laser written fluorescence,” Opt. Express 26(17), 21887 (2018).
    [Crossref]
  15. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
    [Crossref]
  16. P. Theer, C. Mongis, and M. Knop, “PSFj: know your fluorescence microscope,” Nat. Methods 11(10), 981–982 (2014).
    [Crossref]
  17. N. Randel, A. Asadulina, L. A. Bezares-Calderón, C. Verasztó, E. A. Williams, M. Conzelmann, R. Shahidi, and G. Jékely, “Neuronal connectome of a sensory-motor circuit for visual navigation,” eLife 3, e02730 (2014).
    [Crossref]
  18. M. Conzelmann and G. Jékely, “Antibodies against conserved amidated neuropeptide epitopes enrich the comparative neurobiology toolbox,” EvoDevo 3(1), 23 (2012).
    [Crossref]
  19. A. Asadulina, A. Panzera, C. Verasztó, C. Liebig, and G. Jékely, “Whole-body gene expression pattern registration in Platynereis larvae,” EvoDevo 3(1), 27 (2012).
    [Crossref]
  20. E. J. Botcherby, M. J. Booth, R. Juskaitis, and T. Wilson, “Real-time extended depth of field microscopy,” Opt. Express 16(26), 21843–21848 (2008).
    [Crossref]
  21. C. J. R. Sheppard and M. Gu, “Aberration compensation in confocal microscopy,” Appl. Opt. 30(25), 3563 (1991).
    [Crossref]
  22. C. J. R. Sheppard, M. Gu, K. Brain, and H. Zhou, “Influence of spherical aberration on axial imaging of confocal reflection microscopy,” Appl. Opt. 33(4), 616 (1994).
    [Crossref]

2019 (2)

B. Yang, X. Chen, Y. Wang, S. Feng, V. Pessino, N. Stuurman, N. H. Cho, K. W. Cheng, S. J. Lord, L. Xu, D. Xie, R. D. Mullins, M. D. Leonetti, and B. Huang, “Epi-illumination SPIM for volumetric imaging with high spatial-temporal resolution,” Nat. Methods 16(6), 501–504 (2019).
[Crossref]

R. Fiolka, “Resolution upgrades for light-sheet microscopy,” Nat. Methods 16(9), 813–814 (2019).
[Crossref]

2018 (2)

2016 (1)

K. N. S. Nadella, H. Roš, C. Baragli, V. A. Griffiths, G. Konstantinou, T. Koimtzis, G. J. Evans, P. A. Kirkby, and R. A. Silver, “Random-access scanning microscopy for 3D imaging in awake behaving animals,” Nat. Methods 13(12), 1001–1004 (2016).
[Crossref]

2015 (1)

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. C. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref]

2014 (3)

A. D. Corbett, R. A. B. Burton, G. Bub, P. S. Salter, S. Tuohy, M. J. Booth, and T. Wilson, “Quantifying distortions in two-photon remote focussing microscope images using a volumetric calibration specimen,” Front. Physiol. 5, 384 (2014).
[Crossref]

P. Theer, C. Mongis, and M. Knop, “PSFj: know your fluorescence microscope,” Nat. Methods 11(10), 981–982 (2014).
[Crossref]

N. Randel, A. Asadulina, L. A. Bezares-Calderón, C. Verasztó, E. A. Williams, M. Conzelmann, R. Shahidi, and G. Jékely, “Neuronal connectome of a sensory-motor circuit for visual navigation,” eLife 3, e02730 (2014).
[Crossref]

2012 (3)

M. Conzelmann and G. Jékely, “Antibodies against conserved amidated neuropeptide epitopes enrich the comparative neurobiology toolbox,” EvoDevo 3(1), 23 (2012).
[Crossref]

A. Asadulina, A. Panzera, C. Verasztó, C. Liebig, and G. Jékely, “Whole-body gene expression pattern registration in Platynereis larvae,” EvoDevo 3(1), 27 (2012).
[Crossref]

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref]

2011 (2)

2008 (3)

2007 (1)

W. Göbel, B. M. Kampa, and F. Helmchen, “Imaging cellular network dynamics in three dimensions using fast 3D laser scanning,” Nat. Methods 4(1), 73–79 (2007).
[Crossref]

1996 (1)

R. Jusškaitis, T. Wilson, M. a. A. Neil, and M. Kozubek, “Efficient real-time confocal microscopy with white light sources,” Nature 383(6603), 804–806 (1996).
[Crossref]

1994 (1)

1991 (1)

Asadulina, A.

N. Randel, A. Asadulina, L. A. Bezares-Calderón, C. Verasztó, E. A. Williams, M. Conzelmann, R. Shahidi, and G. Jékely, “Neuronal connectome of a sensory-motor circuit for visual navigation,” eLife 3, e02730 (2014).
[Crossref]

A. Asadulina, A. Panzera, C. Verasztó, C. Liebig, and G. Jékely, “Whole-body gene expression pattern registration in Platynereis larvae,” EvoDevo 3(1), 27 (2012).
[Crossref]

Baragli, C.

K. N. S. Nadella, H. Roš, C. Baragli, V. A. Griffiths, G. Konstantinou, T. Koimtzis, G. J. Evans, P. A. Kirkby, and R. A. Silver, “Random-access scanning microscopy for 3D imaging in awake behaving animals,” Nat. Methods 13(12), 1001–1004 (2016).
[Crossref]

Bezares-Calderón, L. A.

N. Randel, A. Asadulina, L. A. Bezares-Calderón, C. Verasztó, E. A. Williams, M. Conzelmann, R. Shahidi, and G. Jékely, “Neuronal connectome of a sensory-motor circuit for visual navigation,” eLife 3, e02730 (2014).
[Crossref]

Booth, M.

Booth, M. J.

A. D. Corbett, R. A. B. Burton, G. Bub, P. S. Salter, S. Tuohy, M. J. Booth, and T. Wilson, “Quantifying distortions in two-photon remote focussing microscope images using a volumetric calibration specimen,” Front. Physiol. 5, 384 (2014).
[Crossref]

E. J. Botcherby, M. J. Booth, R. Juskaitis, and T. Wilson, “Real-time extended depth of field microscopy,” Opt. Express 16(26), 21843–21848 (2008).
[Crossref]

E. J. Botcherby, R. Juškaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun. 281(4), 880–887 (2008).
[Crossref]

Botcherby, E. J.

E. J. Botcherby, R. Juškaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun. 281(4), 880–887 (2008).
[Crossref]

E. J. Botcherby, M. J. Booth, R. Juskaitis, and T. Wilson, “Real-time extended depth of field microscopy,” Opt. Express 16(26), 21843–21848 (2008).
[Crossref]

Bouchard, M. B.

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. C. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref]

Brain, K.

Bruno, R. M.

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. C. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref]

Bub, G.

A. D. Corbett, R. A. B. Burton, G. Bub, P. S. Salter, S. Tuohy, M. J. Booth, and T. Wilson, “Quantifying distortions in two-photon remote focussing microscope images using a volumetric calibration specimen,” Front. Physiol. 5, 384 (2014).
[Crossref]

Burton, R. A. B.

A. D. Corbett, R. A. B. Burton, G. Bub, P. S. Salter, S. Tuohy, M. J. Booth, and T. Wilson, “Quantifying distortions in two-photon remote focussing microscope images using a volumetric calibration specimen,” Front. Physiol. 5, 384 (2014).
[Crossref]

Chen, X.

B. Yang, X. Chen, Y. Wang, S. Feng, V. Pessino, N. Stuurman, N. H. Cho, K. W. Cheng, S. J. Lord, L. Xu, D. Xie, R. D. Mullins, M. D. Leonetti, and B. Huang, “Epi-illumination SPIM for volumetric imaging with high spatial-temporal resolution,” Nat. Methods 16(6), 501–504 (2019).
[Crossref]

Cheng, K. W.

B. Yang, X. Chen, Y. Wang, S. Feng, V. Pessino, N. Stuurman, N. H. Cho, K. W. Cheng, S. J. Lord, L. Xu, D. Xie, R. D. Mullins, M. D. Leonetti, and B. Huang, “Epi-illumination SPIM for volumetric imaging with high spatial-temporal resolution,” Nat. Methods 16(6), 501–504 (2019).
[Crossref]

Cho, N. H.

B. Yang, X. Chen, Y. Wang, S. Feng, V. Pessino, N. Stuurman, N. H. Cho, K. W. Cheng, S. J. Lord, L. Xu, D. Xie, R. D. Mullins, M. D. Leonetti, and B. Huang, “Epi-illumination SPIM for volumetric imaging with high spatial-temporal resolution,” Nat. Methods 16(6), 501–504 (2019).
[Crossref]

Conzelmann, M.

N. Randel, A. Asadulina, L. A. Bezares-Calderón, C. Verasztó, E. A. Williams, M. Conzelmann, R. Shahidi, and G. Jékely, “Neuronal connectome of a sensory-motor circuit for visual navigation,” eLife 3, e02730 (2014).
[Crossref]

M. Conzelmann and G. Jékely, “Antibodies against conserved amidated neuropeptide epitopes enrich the comparative neurobiology toolbox,” EvoDevo 3(1), 23 (2012).
[Crossref]

Corbett, A. D.

A. D. Corbett, M. Shaw, A. Yacoot, A. Jefferson, L. Schermelleh, T. Wilson, M. Booth, and P. S. Salter, “Microscope calibration using laser written fluorescence,” Opt. Express 26(17), 21887 (2018).
[Crossref]

A. D. Corbett, R. A. B. Burton, G. Bub, P. S. Salter, S. Tuohy, M. J. Booth, and T. Wilson, “Quantifying distortions in two-photon remote focussing microscope images using a volumetric calibration specimen,” Front. Physiol. 5, 384 (2014).
[Crossref]

Dunsby, C.

Eliceiri, K. W.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref]

Evans, G. J.

K. N. S. Nadella, H. Roš, C. Baragli, V. A. Griffiths, G. Konstantinou, T. Koimtzis, G. J. Evans, P. A. Kirkby, and R. A. Silver, “Random-access scanning microscopy for 3D imaging in awake behaving animals,” Nat. Methods 13(12), 1001–1004 (2016).
[Crossref]

Feng, S.

B. Yang, X. Chen, Y. Wang, S. Feng, V. Pessino, N. Stuurman, N. H. Cho, K. W. Cheng, S. J. Lord, L. Xu, D. Xie, R. D. Mullins, M. D. Leonetti, and B. Huang, “Epi-illumination SPIM for volumetric imaging with high spatial-temporal resolution,” Nat. Methods 16(6), 501–504 (2019).
[Crossref]

Fiolka, R.

R. Fiolka, “Resolution upgrades for light-sheet microscopy,” Nat. Methods 16(9), 813–814 (2019).
[Crossref]

Göbel, W.

W. Göbel, B. M. Kampa, and F. Helmchen, “Imaging cellular network dynamics in three dimensions using fast 3D laser scanning,” Nat. Methods 4(1), 73–79 (2007).
[Crossref]

Grewe, B. F.

Griffiths, V. A.

K. N. S. Nadella, H. Roš, C. Baragli, V. A. Griffiths, G. Konstantinou, T. Koimtzis, G. J. Evans, P. A. Kirkby, and R. A. Silver, “Random-access scanning microscopy for 3D imaging in awake behaving animals,” Nat. Methods 13(12), 1001–1004 (2016).
[Crossref]

Grueber, W. B.

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. C. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref]

Gu, M.

Helmchen, F.

B. F. Grewe, F. F. Voigt, M. van ’t Hoff, and F. Helmchen, “Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens,” Biomed. Opt. Express 2(7), 2035–2046 (2011).
[Crossref]

W. Göbel, B. M. Kampa, and F. Helmchen, “Imaging cellular network dynamics in three dimensions using fast 3D laser scanning,” Nat. Methods 4(1), 73–79 (2007).
[Crossref]

Hillman, E. M. C.

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. C. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref]

Huang, B.

B. Yang, X. Chen, Y. Wang, S. Feng, V. Pessino, N. Stuurman, N. H. Cho, K. W. Cheng, S. J. Lord, L. Xu, D. Xie, R. D. Mullins, M. D. Leonetti, and B. Huang, “Epi-illumination SPIM for volumetric imaging with high spatial-temporal resolution,” Nat. Methods 16(6), 501–504 (2019).
[Crossref]

Jefferson, A.

Jékely, G.

N. Randel, A. Asadulina, L. A. Bezares-Calderón, C. Verasztó, E. A. Williams, M. Conzelmann, R. Shahidi, and G. Jékely, “Neuronal connectome of a sensory-motor circuit for visual navigation,” eLife 3, e02730 (2014).
[Crossref]

M. Conzelmann and G. Jékely, “Antibodies against conserved amidated neuropeptide epitopes enrich the comparative neurobiology toolbox,” EvoDevo 3(1), 23 (2012).
[Crossref]

A. Asadulina, A. Panzera, C. Verasztó, C. Liebig, and G. Jékely, “Whole-body gene expression pattern registration in Platynereis larvae,” EvoDevo 3(1), 27 (2012).
[Crossref]

Juskaitis, R.

Juškaitis, R.

E. J. Botcherby, R. Juškaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun. 281(4), 880–887 (2008).
[Crossref]

Jusškaitis, R.

R. Jusškaitis, T. Wilson, M. a. A. Neil, and M. Kozubek, “Efficient real-time confocal microscopy with white light sources,” Nature 383(6603), 804–806 (1996).
[Crossref]

Kampa, B. M.

W. Göbel, B. M. Kampa, and F. Helmchen, “Imaging cellular network dynamics in three dimensions using fast 3D laser scanning,” Nat. Methods 4(1), 73–79 (2007).
[Crossref]

Kirkby, P. A.

K. N. S. Nadella, H. Roš, C. Baragli, V. A. Griffiths, G. Konstantinou, T. Koimtzis, G. J. Evans, P. A. Kirkby, and R. A. Silver, “Random-access scanning microscopy for 3D imaging in awake behaving animals,” Nat. Methods 13(12), 1001–1004 (2016).
[Crossref]

Kishore, S.

Knop, M.

P. Theer, C. Mongis, and M. Knop, “PSFj: know your fluorescence microscope,” Nat. Methods 11(10), 981–982 (2014).
[Crossref]

Koimtzis, T.

K. N. S. Nadella, H. Roš, C. Baragli, V. A. Griffiths, G. Konstantinou, T. Koimtzis, G. J. Evans, P. A. Kirkby, and R. A. Silver, “Random-access scanning microscopy for 3D imaging in awake behaving animals,” Nat. Methods 13(12), 1001–1004 (2016).
[Crossref]

Konstantinou, G.

K. N. S. Nadella, H. Roš, C. Baragli, V. A. Griffiths, G. Konstantinou, T. Koimtzis, G. J. Evans, P. A. Kirkby, and R. A. Silver, “Random-access scanning microscopy for 3D imaging in awake behaving animals,” Nat. Methods 13(12), 1001–1004 (2016).
[Crossref]

Kozorovitskiy, Y.

Kozubek, M.

R. Jusškaitis, T. Wilson, M. a. A. Neil, and M. Kozubek, “Efficient real-time confocal microscopy with white light sources,” Nature 383(6603), 804–806 (1996).
[Crossref]

Kumar, M.

Kumar, S.

Lacefield, C.

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. C. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref]

Leonetti, M. D.

B. Yang, X. Chen, Y. Wang, S. Feng, V. Pessino, N. Stuurman, N. H. Cho, K. W. Cheng, S. J. Lord, L. Xu, D. Xie, R. D. Mullins, M. D. Leonetti, and B. Huang, “Epi-illumination SPIM for volumetric imaging with high spatial-temporal resolution,” Nat. Methods 16(6), 501–504 (2019).
[Crossref]

Liebig, C.

A. Asadulina, A. Panzera, C. Verasztó, C. Liebig, and G. Jékely, “Whole-body gene expression pattern registration in Platynereis larvae,” EvoDevo 3(1), 27 (2012).
[Crossref]

Lord, S. J.

B. Yang, X. Chen, Y. Wang, S. Feng, V. Pessino, N. Stuurman, N. H. Cho, K. W. Cheng, S. J. Lord, L. Xu, D. Xie, R. D. Mullins, M. D. Leonetti, and B. Huang, “Epi-illumination SPIM for volumetric imaging with high spatial-temporal resolution,” Nat. Methods 16(6), 501–504 (2019).
[Crossref]

Lyon, A. R.

MacLeod, K. T.

Mann, R. S.

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. C. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref]

McLean, D. L.

Mendes, C. S.

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. C. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref]

Millet-Sikking, A.

A. Millet-Sikking and A. G. York, “High NA single objective light sheet,” Zenodo, https://doi.org/10.5281/zenodo.3244420 (2019).

Mongis, C.

P. Theer, C. Mongis, and M. Knop, “PSFj: know your fluorescence microscope,” Nat. Methods 11(10), 981–982 (2014).
[Crossref]

Mullins, R. D.

B. Yang, X. Chen, Y. Wang, S. Feng, V. Pessino, N. Stuurman, N. H. Cho, K. W. Cheng, S. J. Lord, L. Xu, D. Xie, R. D. Mullins, M. D. Leonetti, and B. Huang, “Epi-illumination SPIM for volumetric imaging with high spatial-temporal resolution,” Nat. Methods 16(6), 501–504 (2019).
[Crossref]

Nadella, K. N. S.

K. N. S. Nadella, H. Roš, C. Baragli, V. A. Griffiths, G. Konstantinou, T. Koimtzis, G. J. Evans, P. A. Kirkby, and R. A. Silver, “Random-access scanning microscopy for 3D imaging in awake behaving animals,” Nat. Methods 13(12), 1001–1004 (2016).
[Crossref]

Nasenbeny, J.

Neil, M. a. A.

R. Jusškaitis, T. Wilson, M. a. A. Neil, and M. Kozubek, “Efficient real-time confocal microscopy with white light sources,” Nature 383(6603), 804–806 (1996).
[Crossref]

Panzera, A.

A. Asadulina, A. Panzera, C. Verasztó, C. Liebig, and G. Jékely, “Whole-body gene expression pattern registration in Platynereis larvae,” EvoDevo 3(1), 27 (2012).
[Crossref]

Pessino, V.

B. Yang, X. Chen, Y. Wang, S. Feng, V. Pessino, N. Stuurman, N. H. Cho, K. W. Cheng, S. J. Lord, L. Xu, D. Xie, R. D. Mullins, M. D. Leonetti, and B. Huang, “Epi-illumination SPIM for volumetric imaging with high spatial-temporal resolution,” Nat. Methods 16(6), 501–504 (2019).
[Crossref]

Randel, N.

N. Randel, A. Asadulina, L. A. Bezares-Calderón, C. Verasztó, E. A. Williams, M. Conzelmann, R. Shahidi, and G. Jékely, “Neuronal connectome of a sensory-motor circuit for visual navigation,” eLife 3, e02730 (2014).
[Crossref]

Rasband, W. S.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref]

Roš, H.

K. N. S. Nadella, H. Roš, C. Baragli, V. A. Griffiths, G. Konstantinou, T. Koimtzis, G. J. Evans, P. A. Kirkby, and R. A. Silver, “Random-access scanning microscopy for 3D imaging in awake behaving animals,” Nat. Methods 13(12), 1001–1004 (2016).
[Crossref]

Salter, P. S.

A. D. Corbett, M. Shaw, A. Yacoot, A. Jefferson, L. Schermelleh, T. Wilson, M. Booth, and P. S. Salter, “Microscope calibration using laser written fluorescence,” Opt. Express 26(17), 21887 (2018).
[Crossref]

A. D. Corbett, R. A. B. Burton, G. Bub, P. S. Salter, S. Tuohy, M. J. Booth, and T. Wilson, “Quantifying distortions in two-photon remote focussing microscope images using a volumetric calibration specimen,” Front. Physiol. 5, 384 (2014).
[Crossref]

Schermelleh, L.

Schneider, C. A.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref]

Shahidi, R.

N. Randel, A. Asadulina, L. A. Bezares-Calderón, C. Verasztó, E. A. Williams, M. Conzelmann, R. Shahidi, and G. Jékely, “Neuronal connectome of a sensory-motor circuit for visual navigation,” eLife 3, e02730 (2014).
[Crossref]

Shaw, M.

Sheppard, C. J. R.

Sikkel, M. B.

Silver, R. A.

K. N. S. Nadella, H. Roš, C. Baragli, V. A. Griffiths, G. Konstantinou, T. Koimtzis, G. J. Evans, P. A. Kirkby, and R. A. Silver, “Random-access scanning microscopy for 3D imaging in awake behaving animals,” Nat. Methods 13(12), 1001–1004 (2016).
[Crossref]

Stuurman, N.

B. Yang, X. Chen, Y. Wang, S. Feng, V. Pessino, N. Stuurman, N. H. Cho, K. W. Cheng, S. J. Lord, L. Xu, D. Xie, R. D. Mullins, M. D. Leonetti, and B. Huang, “Epi-illumination SPIM for volumetric imaging with high spatial-temporal resolution,” Nat. Methods 16(6), 501–504 (2019).
[Crossref]

Theer, P.

P. Theer, C. Mongis, and M. Knop, “PSFj: know your fluorescence microscope,” Nat. Methods 11(10), 981–982 (2014).
[Crossref]

Tuohy, S.

A. D. Corbett, R. A. B. Burton, G. Bub, P. S. Salter, S. Tuohy, M. J. Booth, and T. Wilson, “Quantifying distortions in two-photon remote focussing microscope images using a volumetric calibration specimen,” Front. Physiol. 5, 384 (2014).
[Crossref]

van ’t Hoff, M.

Verasztó, C.

N. Randel, A. Asadulina, L. A. Bezares-Calderón, C. Verasztó, E. A. Williams, M. Conzelmann, R. Shahidi, and G. Jékely, “Neuronal connectome of a sensory-motor circuit for visual navigation,” eLife 3, e02730 (2014).
[Crossref]

A. Asadulina, A. Panzera, C. Verasztó, C. Liebig, and G. Jékely, “Whole-body gene expression pattern registration in Platynereis larvae,” EvoDevo 3(1), 27 (2012).
[Crossref]

Voigt, F. F.

Voleti, V.

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. C. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref]

Wang, Y.

B. Yang, X. Chen, Y. Wang, S. Feng, V. Pessino, N. Stuurman, N. H. Cho, K. W. Cheng, S. J. Lord, L. Xu, D. Xie, R. D. Mullins, M. D. Leonetti, and B. Huang, “Epi-illumination SPIM for volumetric imaging with high spatial-temporal resolution,” Nat. Methods 16(6), 501–504 (2019).
[Crossref]

Wilding, D.

Williams, E. A.

N. Randel, A. Asadulina, L. A. Bezares-Calderón, C. Verasztó, E. A. Williams, M. Conzelmann, R. Shahidi, and G. Jékely, “Neuronal connectome of a sensory-motor circuit for visual navigation,” eLife 3, e02730 (2014).
[Crossref]

Wilson, T.

A. D. Corbett, M. Shaw, A. Yacoot, A. Jefferson, L. Schermelleh, T. Wilson, M. Booth, and P. S. Salter, “Microscope calibration using laser written fluorescence,” Opt. Express 26(17), 21887 (2018).
[Crossref]

A. D. Corbett, R. A. B. Burton, G. Bub, P. S. Salter, S. Tuohy, M. J. Booth, and T. Wilson, “Quantifying distortions in two-photon remote focussing microscope images using a volumetric calibration specimen,” Front. Physiol. 5, 384 (2014).
[Crossref]

E. J. Botcherby, M. J. Booth, R. Juskaitis, and T. Wilson, “Real-time extended depth of field microscopy,” Opt. Express 16(26), 21843–21848 (2008).
[Crossref]

E. J. Botcherby, R. Juškaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun. 281(4), 880–887 (2008).
[Crossref]

R. Jusškaitis, T. Wilson, M. a. A. Neil, and M. Kozubek, “Efficient real-time confocal microscopy with white light sources,” Nature 383(6603), 804–806 (1996).
[Crossref]

Xie, D.

B. Yang, X. Chen, Y. Wang, S. Feng, V. Pessino, N. Stuurman, N. H. Cho, K. W. Cheng, S. J. Lord, L. Xu, D. Xie, R. D. Mullins, M. D. Leonetti, and B. Huang, “Epi-illumination SPIM for volumetric imaging with high spatial-temporal resolution,” Nat. Methods 16(6), 501–504 (2019).
[Crossref]

Xu, L.

B. Yang, X. Chen, Y. Wang, S. Feng, V. Pessino, N. Stuurman, N. H. Cho, K. W. Cheng, S. J. Lord, L. Xu, D. Xie, R. D. Mullins, M. D. Leonetti, and B. Huang, “Epi-illumination SPIM for volumetric imaging with high spatial-temporal resolution,” Nat. Methods 16(6), 501–504 (2019).
[Crossref]

Yacoot, A.

Yang, B.

B. Yang, X. Chen, Y. Wang, S. Feng, V. Pessino, N. Stuurman, N. H. Cho, K. W. Cheng, S. J. Lord, L. Xu, D. Xie, R. D. Mullins, M. D. Leonetti, and B. Huang, “Epi-illumination SPIM for volumetric imaging with high spatial-temporal resolution,” Nat. Methods 16(6), 501–504 (2019).
[Crossref]

York, A. G.

A. Millet-Sikking and A. G. York, “High NA single objective light sheet,” Zenodo, https://doi.org/10.5281/zenodo.3244420 (2019).

Zhou, H.

Appl. Opt. (2)

Biomed. Opt. Express (1)

eLife (1)

N. Randel, A. Asadulina, L. A. Bezares-Calderón, C. Verasztó, E. A. Williams, M. Conzelmann, R. Shahidi, and G. Jékely, “Neuronal connectome of a sensory-motor circuit for visual navigation,” eLife 3, e02730 (2014).
[Crossref]

EvoDevo (2)

M. Conzelmann and G. Jékely, “Antibodies against conserved amidated neuropeptide epitopes enrich the comparative neurobiology toolbox,” EvoDevo 3(1), 23 (2012).
[Crossref]

A. Asadulina, A. Panzera, C. Verasztó, C. Liebig, and G. Jékely, “Whole-body gene expression pattern registration in Platynereis larvae,” EvoDevo 3(1), 27 (2012).
[Crossref]

Front. Physiol. (1)

A. D. Corbett, R. A. B. Burton, G. Bub, P. S. Salter, S. Tuohy, M. J. Booth, and T. Wilson, “Quantifying distortions in two-photon remote focussing microscope images using a volumetric calibration specimen,” Front. Physiol. 5, 384 (2014).
[Crossref]

Nat. Methods (6)

W. Göbel, B. M. Kampa, and F. Helmchen, “Imaging cellular network dynamics in three dimensions using fast 3D laser scanning,” Nat. Methods 4(1), 73–79 (2007).
[Crossref]

B. Yang, X. Chen, Y. Wang, S. Feng, V. Pessino, N. Stuurman, N. H. Cho, K. W. Cheng, S. J. Lord, L. Xu, D. Xie, R. D. Mullins, M. D. Leonetti, and B. Huang, “Epi-illumination SPIM for volumetric imaging with high spatial-temporal resolution,” Nat. Methods 16(6), 501–504 (2019).
[Crossref]

R. Fiolka, “Resolution upgrades for light-sheet microscopy,” Nat. Methods 16(9), 813–814 (2019).
[Crossref]

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref]

P. Theer, C. Mongis, and M. Knop, “PSFj: know your fluorescence microscope,” Nat. Methods 11(10), 981–982 (2014).
[Crossref]

K. N. S. Nadella, H. Roš, C. Baragli, V. A. Griffiths, G. Konstantinou, T. Koimtzis, G. J. Evans, P. A. Kirkby, and R. A. Silver, “Random-access scanning microscopy for 3D imaging in awake behaving animals,” Nat. Methods 13(12), 1001–1004 (2016).
[Crossref]

Nat. Photonics (1)

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. C. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref]

Nature (1)

R. Jusškaitis, T. Wilson, M. a. A. Neil, and M. Kozubek, “Efficient real-time confocal microscopy with white light sources,” Nature 383(6603), 804–806 (1996).
[Crossref]

Opt. Commun. (1)

E. J. Botcherby, R. Juškaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun. 281(4), 880–887 (2008).
[Crossref]

Opt. Express (5)

Other (1)

A. Millet-Sikking and A. G. York, “High NA single objective light sheet,” Zenodo, https://doi.org/10.5281/zenodo.3244420 (2019).

Supplementary Material (3)

NameDescription
» Visualization 1       Four of the five optical sections taken from the anterior nervous system region of Platynereis dumerilii (anterior view). Sections are axially separated by 6 µm over a 24 µm depth range. 50 ms exposures are captured at a rate of 5 Hz.
» Visualization 2       Multichannel images of fixed Platynereis dumerilii larvae after 2 days post-fertilisation. Labels: blue (DAPI) = nuclei; red (DsRed) = pERK immunostaining.
» Visualization 3       Multichannel images of fixed Platynereis dumerilii larvae after 3 days post-fertilisation. Labels: red = THDa immunostaining, green = cilia bands (acetylated tubulin immunostaining).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Simplified optical scheme of the combined SD-RF setup: Structured excitation light from the spinning disk (SD) is imaged through the remote focusing unit and onto the sample. Sample fluorescence is collected by O1 (40X 0.8NA, water dipping) and the magnified image is demagnified by the refocusing lens, O2 (40X 0.95 NA air). A third reimaging objective O3, identical to O2, relays an image of the sample plane, back onto the spinning disk (SD). In-focus fluorescence passes through the upper path onto one half of the sCMOS camera (CAM), with the out of focus component passing through the lower path onto the second half of the camera detector. On-the-fly processing of the two images then returns a confocal image of the sample. By scanning and de-scanning in Z, the position of O3 determines the axial location of plane of interest in the sample (see main text). FM = fold mirror, DM = dischroic mirror. Tube lenses L1 (f = 180 mm) and L2 (f = 140 mm).
Fig. 2.
Fig. 2. (A) A fluorescent calibration pattern written into low index polymer (n = 1.34) showing first layer in a 3D array of features. (B) Axial intensity profile (blue line) within an ROI encircling a single fluorescent feature in the array. The average axial separation of 8.76 µm between layers was measured by fitting a Gaussian (red dashed line) to the axial intensity profile across each layer and calculating the separation of the Gaussian peaks.
Fig. 3.
Fig. 3. Variation in lateral magnification as a function of refocusing depth for the SD-RF system. The change in magnification was < 3% over a 400 µm range. Data (blue dots) and line of best fit (red line) are shown. Dashed black lines indicate a magnification of 51.1 at the focal plane of the imaging objective.
Fig. 4.
Fig. 4. Measured lateral (a) and axial (b) resolutions (FWHM) for RF-only (orange dots) and SD-RF (blue dots) imaging configurations, together with trend line (solid red line). Also shown are the imaging objective focal plane (vertical dashed black lines), theoretical resolution limits (dashed grey lines), resolution values measured at the side-port (solid grey lines) and the axial range over which live image data was taken (pink bars).
Fig. 5.
Fig. 5. (a) Timing diagram for the SD-RF during acquisition. (b). Sketch showing the locations of the acquired frames and the sample relative to the Z values used by the PIFOC. Anterior neural plexus highlighted in yellow. Image of Platynereis adapted from Fig. 1(F), [19].
Fig. 6.
Fig. 6. Four of the five optical sections taken from the anterior nervous system region of Platynereis dumerilii (anterior view). Sections are axially separated by 6 µm over a 24 µm depth range. 50 ms exposures are captured at a rate of 5 Hz. Scale bar 50 µm.
Fig. 7.
Fig. 7. Measuring changes in electrical activity through Ca2+ binding to GCaMP. Three regions of interest were defined for each of the four planes. (a) Overlays on the Z = 128 µm plane show the location of the three regions of interest (ROI). Scale bar 50 µm. (b) Traces showing fluorescence changes relative to average fluorescence (ΔF/F) within the colour coded ROI across all time points. Plots are shown in vertically offset for clarity. Overlays indicate values of ΔF/F at each of the time points shown.
Fig. 8.
Fig. 8. Multichannel images of fixed Platynereis dumerilii larvae after (a) 2 days post-fertilisation and (b) 3 days post-fertilisation. Labels: (a) blue (DAPI) = nuclei; red (DsRed) = pERK immunostaining, (b) red = THDa immunostaining, green = cilia bands (acetylated tubulin immunostaining). Scale bars (a) 30 µm (b) 50 µm.
Fig. 9.
Fig. 9. (a) A test sample used to measure the PSF with and without the presence of a coverslip. A layer of dried beads on a microscope slide is half covered by a coverslip which is held in place by a second plastic slide with circular aperture. The beads can then be imaged with and without a coverslip by a small lateral displacement of the sample. (b) XZ PSF profiles obtained using the test sample in (a), showing negative spherical aberration introduced by the coverslip and the corresponding axial displacement.

Tables (4)

Tables Icon

Table 1. Magnification summary for different microscope configurations

Tables Icon

Table 2. PSF dimensions measured in each microscope configuration

Tables Icon

Table 3. Summary of colour filters available on the Clarity spinning disk.

Tables Icon

Table 4. Lateral and axial PSF FWHM values measured at the microscope side port using a bead sample both with and without the presence of a coverslip.

Metrics