Abstract

We studied time-dependent changes in muscle optical properties during degeneration and regeneration using polarization-sensitive optical coherence tomography (PSOCT). Excised canine muscle transplants in a xenograft mouse model were imaged ex vivo from 3- to 112-day post-transplantation. PSOCT images were quantified to evaluate post-transplantation changes of three optical/structural properties: attenuation, birefringence and fiber alignment. The birefringence and fiber alignment decreased after transplantation until 20∼30-day and recovered thereafter. The attenuation coefficient showed a reversed trend over the same period of time. These results suggest that optical properties could be used for monitoring skeletal muscle degeneration and regeneration.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical polarization tractography revealed significant fiber disarray in skeletal muscles of a mouse model for Duchenne muscular dystrophy

Y. Wang, K. Zhang, N. B. Wasala, D. Duan, and G. Yao
Biomed. Opt. Express 6(2) 347-352 (2015)

Optical coherence tomography can assess skeletal muscle tissue from mouse models of muscular dystrophy by parametric imaging of the attenuation coefficient

Blake R. Klyen, Loretta Scolaro, Tea Shavlakadze, Miranda D. Grounds, and David D. Sampson
Biomed. Opt. Express 5(4) 1217-1232 (2014)

Three-dimensional optical coherence micro-elastography of skeletal muscle tissue

Lixin Chin, Brendan F. Kennedy, Kelsey M. Kennedy, Philip Wijesinghe, Gavin J. Pinniger, Jessica R. Terrill, Robert A. McLaughlin, and David D. Sampson
Biomed. Opt. Express 5(9) 3090-3102 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Aparicio, M. Hidalgo, and A. L. Kung, “Examining the utility of patient-derived xenograft mouse models,” Nat. Rev. Cancer 15(5), 311–316 (2015).
    [Crossref]
  2. Y. Wakayama, D. L. Schotland, and E. Bonilla, “Transplantation of human skeletal muscle to nude mice: A sequential morphologic study,” Neurology 30(7), 740 (1980).
    [Crossref]
  3. Y. Zhang, O. D. King, F. Rahimov, T. I. Jones, C. W. Ward, J. P. Kerr, N. Liu, C. P. Emerson Jr, L. M. Kunkel, and T. A. Partridge, “Human skeletal muscle xenograft as a new preclinical model for muscle disorders,” Hum. Mol. Genet. 23(12), 3180–3188 (2014).
    [Crossref]
  4. M. E. Nance, R. Shi, C. H. Hakim, N. B. Wasala, Y. Yue, X. Pan, T. Zhang, C. A. Robinson, S. X. Duan, G. Yao, N. N. Yang, S. J. Chen, K. R. Wagner, C. A. Gersbach, and D. Duan, “AAV9 edits muscle stem cells in normal and dystrophic adult mice,” Mol. Ther. 27(9), 1568–1585 (2019).
    [Crossref]
  5. S. Kamath, N. Venkatanarasimha, M. A. Walsh, and P. M. Hughes, “MRI appearance of muscle denervation,” Skeletal Radiol 37(5), 397–404 (2008).
    [Crossref]
  6. B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt. 16(7), 076013 (2011).
    [Crossref]
  7. R. M. Lovering, S. B. Shah, S. J. P. Pratt, W. Gong, and Y. Chen, “Architecture of healthy and dystrophic muscles detected by optical coherence tomography,” Muscle Nerve 47(4), 588–590 (2013).
    [Crossref]
  8. B. R. Klyen, L. Scolaro, T. Shavlakadze, M. D. Grounds, and D. D. Sampson, “Optical coherence tomography can assess skeletal muscle tissue from mouse models of muscular dystrophy by parametric imaging of the attenuation coefficient,” Biomed. Opt. Express 5(4), 1217–1232 (2014).
    [Crossref]
  9. J. J. Pasquesi, S. C. Schlachter, M. D. Boppart, E. Chaney, S. J. Kaufman, and S. A. Boppart, “In vivo detection of exercise-induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization-sensitive optical coherence tomography,” Opt. Express 14(4), 1547–1556 (2006).
    [Crossref]
  10. X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J Appl Physiol 115(9), 1393–1401 (2013).
    [Crossref]
  11. Y. Wang and G. Yao, “Optical polarization tractography revealed significant fiber disarray in skeletal muscles of a mouse model for Duchenne muscular dystrophy,” Biomed. Opt. Express 6(2), 347–352 (2015).
    [Crossref]
  12. C. Fan and G. Yao, “Full-range spectral domain Jones matrix optical coherence tomography using a single spectral camerea,” Opt. Express 20(20), 22360–22371 (2012).
    [Crossref]
  13. C. Fan and G. Yao, “Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(11), 110501 (2012).
    [Crossref]
  14. C. Fan and G. Yao, “Mapping local retardance in birefringent samples using polarization sensitive optical coherence tomograpgy,” Opt. Lett. 37(9), 1415–1417 (2012).
    [Crossref]
  15. C. Fan and G. Yao, “Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography,” Biomed. Opt. Express 4(3), 460–465 (2013).
    [Crossref]
  16. L. Azinfar, M. Ravanfar, Y. Wang, K. Zhang, D. Duan, and G. Yao, “High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography,” J. Biophoton 10(2), 231–241 (2017).
    [Crossref]
  17. K. A. Vermeer, J. Mo, J. J. A. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express 5(1), 322–337 (2014).
    [Crossref]
  18. J. M. Jones, D. J. Player, N. R. W. Martin, A. J. Capel, M. P. Lewis, and V. Mudera, “An assessment of myotube morphology, matrix deformation, and myogenic mRNA expression in custom-built and commercially available engineered muscle chamber configurations,” Front. Physiol. 9, 483 (2018)..
    [Crossref]
  19. M. Yamanari, S. Nagase, S. Fukuda, K. Ishii, R. Tanaka, T. Yasui, T. Oshika, M. Miura, and Y. Yasuno, “Scleral birefringence as measured by polarization-sensitive optical coherence tomography and ocular biometric parameters of human eyes in vivo,” Biomed. Opt. Express 5(5), 1391–1402 (2014).
    [Crossref]
  20. Q. Li, K. Karnowski, G. Untracht, P. B. Noble, B. Cense, M. Villiger, and D. D. Sampson, “Vectorial birefringence imaging by optical coherence microscopy for assessing fibrillar microstructures in the cornea and limbus,” Biomed. Opt. Express 11(2), 1122–1138 (2020).
    [Crossref]
  21. M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci Rep 6(1), 28771 (2016).
    [Crossref]

2020 (1)

2019 (1)

M. E. Nance, R. Shi, C. H. Hakim, N. B. Wasala, Y. Yue, X. Pan, T. Zhang, C. A. Robinson, S. X. Duan, G. Yao, N. N. Yang, S. J. Chen, K. R. Wagner, C. A. Gersbach, and D. Duan, “AAV9 edits muscle stem cells in normal and dystrophic adult mice,” Mol. Ther. 27(9), 1568–1585 (2019).
[Crossref]

2018 (1)

J. M. Jones, D. J. Player, N. R. W. Martin, A. J. Capel, M. P. Lewis, and V. Mudera, “An assessment of myotube morphology, matrix deformation, and myogenic mRNA expression in custom-built and commercially available engineered muscle chamber configurations,” Front. Physiol. 9, 483 (2018)..
[Crossref]

2017 (1)

L. Azinfar, M. Ravanfar, Y. Wang, K. Zhang, D. Duan, and G. Yao, “High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography,” J. Biophoton 10(2), 231–241 (2017).
[Crossref]

2016 (1)

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci Rep 6(1), 28771 (2016).
[Crossref]

2015 (2)

Y. Wang and G. Yao, “Optical polarization tractography revealed significant fiber disarray in skeletal muscles of a mouse model for Duchenne muscular dystrophy,” Biomed. Opt. Express 6(2), 347–352 (2015).
[Crossref]

S. Aparicio, M. Hidalgo, and A. L. Kung, “Examining the utility of patient-derived xenograft mouse models,” Nat. Rev. Cancer 15(5), 311–316 (2015).
[Crossref]

2014 (4)

2013 (3)

C. Fan and G. Yao, “Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography,” Biomed. Opt. Express 4(3), 460–465 (2013).
[Crossref]

R. M. Lovering, S. B. Shah, S. J. P. Pratt, W. Gong, and Y. Chen, “Architecture of healthy and dystrophic muscles detected by optical coherence tomography,” Muscle Nerve 47(4), 588–590 (2013).
[Crossref]

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J Appl Physiol 115(9), 1393–1401 (2013).
[Crossref]

2012 (3)

2011 (1)

B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt. 16(7), 076013 (2011).
[Crossref]

2008 (1)

S. Kamath, N. Venkatanarasimha, M. A. Walsh, and P. M. Hughes, “MRI appearance of muscle denervation,” Skeletal Radiol 37(5), 397–404 (2008).
[Crossref]

2006 (1)

1980 (1)

Y. Wakayama, D. L. Schotland, and E. Bonilla, “Transplantation of human skeletal muscle to nude mice: A sequential morphologic study,” Neurology 30(7), 740 (1980).
[Crossref]

Aparicio, S.

S. Aparicio, M. Hidalgo, and A. L. Kung, “Examining the utility of patient-derived xenograft mouse models,” Nat. Rev. Cancer 15(5), 311–316 (2015).
[Crossref]

Azinfar, L.

L. Azinfar, M. Ravanfar, Y. Wang, K. Zhang, D. Duan, and G. Yao, “High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography,” J. Biophoton 10(2), 231–241 (2017).
[Crossref]

Bonilla, E.

Y. Wakayama, D. L. Schotland, and E. Bonilla, “Transplantation of human skeletal muscle to nude mice: A sequential morphologic study,” Neurology 30(7), 740 (1980).
[Crossref]

Boppart, M. D.

Boppart, S. A.

Bouma, B. E.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci Rep 6(1), 28771 (2016).
[Crossref]

Capel, A. J.

J. M. Jones, D. J. Player, N. R. W. Martin, A. J. Capel, M. P. Lewis, and V. Mudera, “An assessment of myotube morphology, matrix deformation, and myogenic mRNA expression in custom-built and commercially available engineered muscle chamber configurations,” Front. Physiol. 9, 483 (2018)..
[Crossref]

Cense, B.

Chaney, E.

Chen, S. J.

M. E. Nance, R. Shi, C. H. Hakim, N. B. Wasala, Y. Yue, X. Pan, T. Zhang, C. A. Robinson, S. X. Duan, G. Yao, N. N. Yang, S. J. Chen, K. R. Wagner, C. A. Gersbach, and D. Duan, “AAV9 edits muscle stem cells in normal and dystrophic adult mice,” Mol. Ther. 27(9), 1568–1585 (2019).
[Crossref]

Chen, Y.

R. M. Lovering, S. B. Shah, S. J. P. Pratt, W. Gong, and Y. Chen, “Architecture of healthy and dystrophic muscles detected by optical coherence tomography,” Muscle Nerve 47(4), 588–590 (2013).
[Crossref]

Chin, L.

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J Appl Physiol 115(9), 1393–1401 (2013).
[Crossref]

de Boer, J. F.

Duan, D.

M. E. Nance, R. Shi, C. H. Hakim, N. B. Wasala, Y. Yue, X. Pan, T. Zhang, C. A. Robinson, S. X. Duan, G. Yao, N. N. Yang, S. J. Chen, K. R. Wagner, C. A. Gersbach, and D. Duan, “AAV9 edits muscle stem cells in normal and dystrophic adult mice,” Mol. Ther. 27(9), 1568–1585 (2019).
[Crossref]

L. Azinfar, M. Ravanfar, Y. Wang, K. Zhang, D. Duan, and G. Yao, “High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography,” J. Biophoton 10(2), 231–241 (2017).
[Crossref]

Duan, S. X.

M. E. Nance, R. Shi, C. H. Hakim, N. B. Wasala, Y. Yue, X. Pan, T. Zhang, C. A. Robinson, S. X. Duan, G. Yao, N. N. Yang, S. J. Chen, K. R. Wagner, C. A. Gersbach, and D. Duan, “AAV9 edits muscle stem cells in normal and dystrophic adult mice,” Mol. Ther. 27(9), 1568–1585 (2019).
[Crossref]

Emerson Jr, C. P.

Y. Zhang, O. D. King, F. Rahimov, T. I. Jones, C. W. Ward, J. P. Kerr, N. Liu, C. P. Emerson Jr, L. M. Kunkel, and T. A. Partridge, “Human skeletal muscle xenograft as a new preclinical model for muscle disorders,” Hum. Mol. Genet. 23(12), 3180–3188 (2014).
[Crossref]

Fan, C.

Fukuda, S.

Gersbach, C. A.

M. E. Nance, R. Shi, C. H. Hakim, N. B. Wasala, Y. Yue, X. Pan, T. Zhang, C. A. Robinson, S. X. Duan, G. Yao, N. N. Yang, S. J. Chen, K. R. Wagner, C. A. Gersbach, and D. Duan, “AAV9 edits muscle stem cells in normal and dystrophic adult mice,” Mol. Ther. 27(9), 1568–1585 (2019).
[Crossref]

Gong, W.

R. M. Lovering, S. B. Shah, S. J. P. Pratt, W. Gong, and Y. Chen, “Architecture of healthy and dystrophic muscles detected by optical coherence tomography,” Muscle Nerve 47(4), 588–590 (2013).
[Crossref]

Grounds, M. D.

B. R. Klyen, L. Scolaro, T. Shavlakadze, M. D. Grounds, and D. D. Sampson, “Optical coherence tomography can assess skeletal muscle tissue from mouse models of muscular dystrophy by parametric imaging of the attenuation coefficient,” Biomed. Opt. Express 5(4), 1217–1232 (2014).
[Crossref]

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J Appl Physiol 115(9), 1393–1401 (2013).
[Crossref]

B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt. 16(7), 076013 (2011).
[Crossref]

Hakim, C. H.

M. E. Nance, R. Shi, C. H. Hakim, N. B. Wasala, Y. Yue, X. Pan, T. Zhang, C. A. Robinson, S. X. Duan, G. Yao, N. N. Yang, S. J. Chen, K. R. Wagner, C. A. Gersbach, and D. Duan, “AAV9 edits muscle stem cells in normal and dystrophic adult mice,” Mol. Ther. 27(9), 1568–1585 (2019).
[Crossref]

Hidalgo, M.

S. Aparicio, M. Hidalgo, and A. L. Kung, “Examining the utility of patient-derived xenograft mouse models,” Nat. Rev. Cancer 15(5), 311–316 (2015).
[Crossref]

Hughes, P. M.

S. Kamath, N. Venkatanarasimha, M. A. Walsh, and P. M. Hughes, “MRI appearance of muscle denervation,” Skeletal Radiol 37(5), 397–404 (2008).
[Crossref]

Ishii, K.

Jones, J. M.

J. M. Jones, D. J. Player, N. R. W. Martin, A. J. Capel, M. P. Lewis, and V. Mudera, “An assessment of myotube morphology, matrix deformation, and myogenic mRNA expression in custom-built and commercially available engineered muscle chamber configurations,” Front. Physiol. 9, 483 (2018)..
[Crossref]

Jones, T. I.

Y. Zhang, O. D. King, F. Rahimov, T. I. Jones, C. W. Ward, J. P. Kerr, N. Liu, C. P. Emerson Jr, L. M. Kunkel, and T. A. Partridge, “Human skeletal muscle xenograft as a new preclinical model for muscle disorders,” Hum. Mol. Genet. 23(12), 3180–3188 (2014).
[Crossref]

Kamath, S.

S. Kamath, N. Venkatanarasimha, M. A. Walsh, and P. M. Hughes, “MRI appearance of muscle denervation,” Skeletal Radiol 37(5), 397–404 (2008).
[Crossref]

Karnowski, K.

Kaufman, S. J.

Kerr, J. P.

Y. Zhang, O. D. King, F. Rahimov, T. I. Jones, C. W. Ward, J. P. Kerr, N. Liu, C. P. Emerson Jr, L. M. Kunkel, and T. A. Partridge, “Human skeletal muscle xenograft as a new preclinical model for muscle disorders,” Hum. Mol. Genet. 23(12), 3180–3188 (2014).
[Crossref]

King, O. D.

Y. Zhang, O. D. King, F. Rahimov, T. I. Jones, C. W. Ward, J. P. Kerr, N. Liu, C. P. Emerson Jr, L. M. Kunkel, and T. A. Partridge, “Human skeletal muscle xenograft as a new preclinical model for muscle disorders,” Hum. Mol. Genet. 23(12), 3180–3188 (2014).
[Crossref]

Kirk, R. W.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci Rep 6(1), 28771 (2016).
[Crossref]

Klyen, B. R.

B. R. Klyen, L. Scolaro, T. Shavlakadze, M. D. Grounds, and D. D. Sampson, “Optical coherence tomography can assess skeletal muscle tissue from mouse models of muscular dystrophy by parametric imaging of the attenuation coefficient,” Biomed. Opt. Express 5(4), 1217–1232 (2014).
[Crossref]

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J Appl Physiol 115(9), 1393–1401 (2013).
[Crossref]

B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt. 16(7), 076013 (2011).
[Crossref]

Kung, A. L.

S. Aparicio, M. Hidalgo, and A. L. Kung, “Examining the utility of patient-derived xenograft mouse models,” Nat. Rev. Cancer 15(5), 311–316 (2015).
[Crossref]

Kunkel, L. M.

Y. Zhang, O. D. King, F. Rahimov, T. I. Jones, C. W. Ward, J. P. Kerr, N. Liu, C. P. Emerson Jr, L. M. Kunkel, and T. A. Partridge, “Human skeletal muscle xenograft as a new preclinical model for muscle disorders,” Hum. Mol. Genet. 23(12), 3180–3188 (2014).
[Crossref]

Lemij, H. G.

Lewis, M. P.

J. M. Jones, D. J. Player, N. R. W. Martin, A. J. Capel, M. P. Lewis, and V. Mudera, “An assessment of myotube morphology, matrix deformation, and myogenic mRNA expression in custom-built and commercially available engineered muscle chamber configurations,” Front. Physiol. 9, 483 (2018)..
[Crossref]

Li, Q.

Liu, N.

Y. Zhang, O. D. King, F. Rahimov, T. I. Jones, C. W. Ward, J. P. Kerr, N. Liu, C. P. Emerson Jr, L. M. Kunkel, and T. A. Partridge, “Human skeletal muscle xenograft as a new preclinical model for muscle disorders,” Hum. Mol. Genet. 23(12), 3180–3188 (2014).
[Crossref]

Lorenser, D.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci Rep 6(1), 28771 (2016).
[Crossref]

Lovering, R. M.

R. M. Lovering, S. B. Shah, S. J. P. Pratt, W. Gong, and Y. Chen, “Architecture of healthy and dystrophic muscles detected by optical coherence tomography,” Muscle Nerve 47(4), 588–590 (2013).
[Crossref]

Martin, N. R. W.

J. M. Jones, D. J. Player, N. R. W. Martin, A. J. Capel, M. P. Lewis, and V. Mudera, “An assessment of myotube morphology, matrix deformation, and myogenic mRNA expression in custom-built and commercially available engineered muscle chamber configurations,” Front. Physiol. 9, 483 (2018)..
[Crossref]

McLaughlin, R. A.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci Rep 6(1), 28771 (2016).
[Crossref]

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J Appl Physiol 115(9), 1393–1401 (2013).
[Crossref]

Miura, M.

Mo, J.

Mudera, V.

J. M. Jones, D. J. Player, N. R. W. Martin, A. J. Capel, M. P. Lewis, and V. Mudera, “An assessment of myotube morphology, matrix deformation, and myogenic mRNA expression in custom-built and commercially available engineered muscle chamber configurations,” Front. Physiol. 9, 483 (2018)..
[Crossref]

Nagase, S.

Nance, M. E.

M. E. Nance, R. Shi, C. H. Hakim, N. B. Wasala, Y. Yue, X. Pan, T. Zhang, C. A. Robinson, S. X. Duan, G. Yao, N. N. Yang, S. J. Chen, K. R. Wagner, C. A. Gersbach, and D. Duan, “AAV9 edits muscle stem cells in normal and dystrophic adult mice,” Mol. Ther. 27(9), 1568–1585 (2019).
[Crossref]

Noble, P. B.

Oshika, T.

Pan, X.

M. E. Nance, R. Shi, C. H. Hakim, N. B. Wasala, Y. Yue, X. Pan, T. Zhang, C. A. Robinson, S. X. Duan, G. Yao, N. N. Yang, S. J. Chen, K. R. Wagner, C. A. Gersbach, and D. Duan, “AAV9 edits muscle stem cells in normal and dystrophic adult mice,” Mol. Ther. 27(9), 1568–1585 (2019).
[Crossref]

Partridge, T. A.

Y. Zhang, O. D. King, F. Rahimov, T. I. Jones, C. W. Ward, J. P. Kerr, N. Liu, C. P. Emerson Jr, L. M. Kunkel, and T. A. Partridge, “Human skeletal muscle xenograft as a new preclinical model for muscle disorders,” Hum. Mol. Genet. 23(12), 3180–3188 (2014).
[Crossref]

Pasquesi, J. J.

Player, D. J.

J. M. Jones, D. J. Player, N. R. W. Martin, A. J. Capel, M. P. Lewis, and V. Mudera, “An assessment of myotube morphology, matrix deformation, and myogenic mRNA expression in custom-built and commercially available engineered muscle chamber configurations,” Front. Physiol. 9, 483 (2018)..
[Crossref]

Pratt, S. J. P.

R. M. Lovering, S. B. Shah, S. J. P. Pratt, W. Gong, and Y. Chen, “Architecture of healthy and dystrophic muscles detected by optical coherence tomography,” Muscle Nerve 47(4), 588–590 (2013).
[Crossref]

Quirk, B. C.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci Rep 6(1), 28771 (2016).
[Crossref]

Radley-Crabb, H. G.

B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt. 16(7), 076013 (2011).
[Crossref]

Rahimov, F.

Y. Zhang, O. D. King, F. Rahimov, T. I. Jones, C. W. Ward, J. P. Kerr, N. Liu, C. P. Emerson Jr, L. M. Kunkel, and T. A. Partridge, “Human skeletal muscle xenograft as a new preclinical model for muscle disorders,” Hum. Mol. Genet. 23(12), 3180–3188 (2014).
[Crossref]

Ravanfar, M.

L. Azinfar, M. Ravanfar, Y. Wang, K. Zhang, D. Duan, and G. Yao, “High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography,” J. Biophoton 10(2), 231–241 (2017).
[Crossref]

Robinson, C. A.

M. E. Nance, R. Shi, C. H. Hakim, N. B. Wasala, Y. Yue, X. Pan, T. Zhang, C. A. Robinson, S. X. Duan, G. Yao, N. N. Yang, S. J. Chen, K. R. Wagner, C. A. Gersbach, and D. Duan, “AAV9 edits muscle stem cells in normal and dystrophic adult mice,” Mol. Ther. 27(9), 1568–1585 (2019).
[Crossref]

Sampson, D. D.

Q. Li, K. Karnowski, G. Untracht, P. B. Noble, B. Cense, M. Villiger, and D. D. Sampson, “Vectorial birefringence imaging by optical coherence microscopy for assessing fibrillar microstructures in the cornea and limbus,” Biomed. Opt. Express 11(2), 1122–1138 (2020).
[Crossref]

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci Rep 6(1), 28771 (2016).
[Crossref]

B. R. Klyen, L. Scolaro, T. Shavlakadze, M. D. Grounds, and D. D. Sampson, “Optical coherence tomography can assess skeletal muscle tissue from mouse models of muscular dystrophy by parametric imaging of the attenuation coefficient,” Biomed. Opt. Express 5(4), 1217–1232 (2014).
[Crossref]

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J Appl Physiol 115(9), 1393–1401 (2013).
[Crossref]

B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt. 16(7), 076013 (2011).
[Crossref]

Schlachter, S. C.

Schotland, D. L.

Y. Wakayama, D. L. Schotland, and E. Bonilla, “Transplantation of human skeletal muscle to nude mice: A sequential morphologic study,” Neurology 30(7), 740 (1980).
[Crossref]

Scolaro, L.

Shah, S. B.

R. M. Lovering, S. B. Shah, S. J. P. Pratt, W. Gong, and Y. Chen, “Architecture of healthy and dystrophic muscles detected by optical coherence tomography,” Muscle Nerve 47(4), 588–590 (2013).
[Crossref]

Shavlakadze, T.

B. R. Klyen, L. Scolaro, T. Shavlakadze, M. D. Grounds, and D. D. Sampson, “Optical coherence tomography can assess skeletal muscle tissue from mouse models of muscular dystrophy by parametric imaging of the attenuation coefficient,” Biomed. Opt. Express 5(4), 1217–1232 (2014).
[Crossref]

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J Appl Physiol 115(9), 1393–1401 (2013).
[Crossref]

B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt. 16(7), 076013 (2011).
[Crossref]

Shi, R.

M. E. Nance, R. Shi, C. H. Hakim, N. B. Wasala, Y. Yue, X. Pan, T. Zhang, C. A. Robinson, S. X. Duan, G. Yao, N. N. Yang, S. J. Chen, K. R. Wagner, C. A. Gersbach, and D. Duan, “AAV9 edits muscle stem cells in normal and dystrophic adult mice,” Mol. Ther. 27(9), 1568–1585 (2019).
[Crossref]

Tanaka, R.

Untracht, G.

Venkatanarasimha, N.

S. Kamath, N. Venkatanarasimha, M. A. Walsh, and P. M. Hughes, “MRI appearance of muscle denervation,” Skeletal Radiol 37(5), 397–404 (2008).
[Crossref]

Vermeer, K. A.

Villiger, M.

Q. Li, K. Karnowski, G. Untracht, P. B. Noble, B. Cense, M. Villiger, and D. D. Sampson, “Vectorial birefringence imaging by optical coherence microscopy for assessing fibrillar microstructures in the cornea and limbus,” Biomed. Opt. Express 11(2), 1122–1138 (2020).
[Crossref]

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci Rep 6(1), 28771 (2016).
[Crossref]

Wagner, K. R.

M. E. Nance, R. Shi, C. H. Hakim, N. B. Wasala, Y. Yue, X. Pan, T. Zhang, C. A. Robinson, S. X. Duan, G. Yao, N. N. Yang, S. J. Chen, K. R. Wagner, C. A. Gersbach, and D. Duan, “AAV9 edits muscle stem cells in normal and dystrophic adult mice,” Mol. Ther. 27(9), 1568–1585 (2019).
[Crossref]

Wakayama, Y.

Y. Wakayama, D. L. Schotland, and E. Bonilla, “Transplantation of human skeletal muscle to nude mice: A sequential morphologic study,” Neurology 30(7), 740 (1980).
[Crossref]

Walsh, M. A.

S. Kamath, N. Venkatanarasimha, M. A. Walsh, and P. M. Hughes, “MRI appearance of muscle denervation,” Skeletal Radiol 37(5), 397–404 (2008).
[Crossref]

Wang, Y.

L. Azinfar, M. Ravanfar, Y. Wang, K. Zhang, D. Duan, and G. Yao, “High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography,” J. Biophoton 10(2), 231–241 (2017).
[Crossref]

Y. Wang and G. Yao, “Optical polarization tractography revealed significant fiber disarray in skeletal muscles of a mouse model for Duchenne muscular dystrophy,” Biomed. Opt. Express 6(2), 347–352 (2015).
[Crossref]

Ward, C. W.

Y. Zhang, O. D. King, F. Rahimov, T. I. Jones, C. W. Ward, J. P. Kerr, N. Liu, C. P. Emerson Jr, L. M. Kunkel, and T. A. Partridge, “Human skeletal muscle xenograft as a new preclinical model for muscle disorders,” Hum. Mol. Genet. 23(12), 3180–3188 (2014).
[Crossref]

Wasala, N. B.

M. E. Nance, R. Shi, C. H. Hakim, N. B. Wasala, Y. Yue, X. Pan, T. Zhang, C. A. Robinson, S. X. Duan, G. Yao, N. N. Yang, S. J. Chen, K. R. Wagner, C. A. Gersbach, and D. Duan, “AAV9 edits muscle stem cells in normal and dystrophic adult mice,” Mol. Ther. 27(9), 1568–1585 (2019).
[Crossref]

Weda, J. J. A.

Yamanari, M.

Yang, N. N.

M. E. Nance, R. Shi, C. H. Hakim, N. B. Wasala, Y. Yue, X. Pan, T. Zhang, C. A. Robinson, S. X. Duan, G. Yao, N. N. Yang, S. J. Chen, K. R. Wagner, C. A. Gersbach, and D. Duan, “AAV9 edits muscle stem cells in normal and dystrophic adult mice,” Mol. Ther. 27(9), 1568–1585 (2019).
[Crossref]

Yang, X.

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J Appl Physiol 115(9), 1393–1401 (2013).
[Crossref]

Yao, G.

M. E. Nance, R. Shi, C. H. Hakim, N. B. Wasala, Y. Yue, X. Pan, T. Zhang, C. A. Robinson, S. X. Duan, G. Yao, N. N. Yang, S. J. Chen, K. R. Wagner, C. A. Gersbach, and D. Duan, “AAV9 edits muscle stem cells in normal and dystrophic adult mice,” Mol. Ther. 27(9), 1568–1585 (2019).
[Crossref]

L. Azinfar, M. Ravanfar, Y. Wang, K. Zhang, D. Duan, and G. Yao, “High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography,” J. Biophoton 10(2), 231–241 (2017).
[Crossref]

Y. Wang and G. Yao, “Optical polarization tractography revealed significant fiber disarray in skeletal muscles of a mouse model for Duchenne muscular dystrophy,” Biomed. Opt. Express 6(2), 347–352 (2015).
[Crossref]

C. Fan and G. Yao, “Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography,” Biomed. Opt. Express 4(3), 460–465 (2013).
[Crossref]

C. Fan and G. Yao, “Mapping local retardance in birefringent samples using polarization sensitive optical coherence tomograpgy,” Opt. Lett. 37(9), 1415–1417 (2012).
[Crossref]

C. Fan and G. Yao, “Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(11), 110501 (2012).
[Crossref]

C. Fan and G. Yao, “Full-range spectral domain Jones matrix optical coherence tomography using a single spectral camerea,” Opt. Express 20(20), 22360–22371 (2012).
[Crossref]

Yasui, T.

Yasuno, Y.

Yue, Y.

M. E. Nance, R. Shi, C. H. Hakim, N. B. Wasala, Y. Yue, X. Pan, T. Zhang, C. A. Robinson, S. X. Duan, G. Yao, N. N. Yang, S. J. Chen, K. R. Wagner, C. A. Gersbach, and D. Duan, “AAV9 edits muscle stem cells in normal and dystrophic adult mice,” Mol. Ther. 27(9), 1568–1585 (2019).
[Crossref]

Zhang, K.

L. Azinfar, M. Ravanfar, Y. Wang, K. Zhang, D. Duan, and G. Yao, “High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography,” J. Biophoton 10(2), 231–241 (2017).
[Crossref]

Zhang, T.

M. E. Nance, R. Shi, C. H. Hakim, N. B. Wasala, Y. Yue, X. Pan, T. Zhang, C. A. Robinson, S. X. Duan, G. Yao, N. N. Yang, S. J. Chen, K. R. Wagner, C. A. Gersbach, and D. Duan, “AAV9 edits muscle stem cells in normal and dystrophic adult mice,” Mol. Ther. 27(9), 1568–1585 (2019).
[Crossref]

Zhang, Y.

Y. Zhang, O. D. King, F. Rahimov, T. I. Jones, C. W. Ward, J. P. Kerr, N. Liu, C. P. Emerson Jr, L. M. Kunkel, and T. A. Partridge, “Human skeletal muscle xenograft as a new preclinical model for muscle disorders,” Hum. Mol. Genet. 23(12), 3180–3188 (2014).
[Crossref]

Biomed. Opt. Express (6)

C. Fan and G. Yao, “Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography,” Biomed. Opt. Express 4(3), 460–465 (2013).
[Crossref]

K. A. Vermeer, J. Mo, J. J. A. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express 5(1), 322–337 (2014).
[Crossref]

B. R. Klyen, L. Scolaro, T. Shavlakadze, M. D. Grounds, and D. D. Sampson, “Optical coherence tomography can assess skeletal muscle tissue from mouse models of muscular dystrophy by parametric imaging of the attenuation coefficient,” Biomed. Opt. Express 5(4), 1217–1232 (2014).
[Crossref]

M. Yamanari, S. Nagase, S. Fukuda, K. Ishii, R. Tanaka, T. Yasui, T. Oshika, M. Miura, and Y. Yasuno, “Scleral birefringence as measured by polarization-sensitive optical coherence tomography and ocular biometric parameters of human eyes in vivo,” Biomed. Opt. Express 5(5), 1391–1402 (2014).
[Crossref]

Y. Wang and G. Yao, “Optical polarization tractography revealed significant fiber disarray in skeletal muscles of a mouse model for Duchenne muscular dystrophy,” Biomed. Opt. Express 6(2), 347–352 (2015).
[Crossref]

Q. Li, K. Karnowski, G. Untracht, P. B. Noble, B. Cense, M. Villiger, and D. D. Sampson, “Vectorial birefringence imaging by optical coherence microscopy for assessing fibrillar microstructures in the cornea and limbus,” Biomed. Opt. Express 11(2), 1122–1138 (2020).
[Crossref]

Front. Physiol. (1)

J. M. Jones, D. J. Player, N. R. W. Martin, A. J. Capel, M. P. Lewis, and V. Mudera, “An assessment of myotube morphology, matrix deformation, and myogenic mRNA expression in custom-built and commercially available engineered muscle chamber configurations,” Front. Physiol. 9, 483 (2018)..
[Crossref]

Hum. Mol. Genet. (1)

Y. Zhang, O. D. King, F. Rahimov, T. I. Jones, C. W. Ward, J. P. Kerr, N. Liu, C. P. Emerson Jr, L. M. Kunkel, and T. A. Partridge, “Human skeletal muscle xenograft as a new preclinical model for muscle disorders,” Hum. Mol. Genet. 23(12), 3180–3188 (2014).
[Crossref]

J Appl Physiol (1)

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J Appl Physiol 115(9), 1393–1401 (2013).
[Crossref]

J. Biomed. Opt. (2)

C. Fan and G. Yao, “Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(11), 110501 (2012).
[Crossref]

B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt. 16(7), 076013 (2011).
[Crossref]

J. Biophoton (1)

L. Azinfar, M. Ravanfar, Y. Wang, K. Zhang, D. Duan, and G. Yao, “High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography,” J. Biophoton 10(2), 231–241 (2017).
[Crossref]

Mol. Ther. (1)

M. E. Nance, R. Shi, C. H. Hakim, N. B. Wasala, Y. Yue, X. Pan, T. Zhang, C. A. Robinson, S. X. Duan, G. Yao, N. N. Yang, S. J. Chen, K. R. Wagner, C. A. Gersbach, and D. Duan, “AAV9 edits muscle stem cells in normal and dystrophic adult mice,” Mol. Ther. 27(9), 1568–1585 (2019).
[Crossref]

Muscle Nerve (1)

R. M. Lovering, S. B. Shah, S. J. P. Pratt, W. Gong, and Y. Chen, “Architecture of healthy and dystrophic muscles detected by optical coherence tomography,” Muscle Nerve 47(4), 588–590 (2013).
[Crossref]

Nat. Rev. Cancer (1)

S. Aparicio, M. Hidalgo, and A. L. Kung, “Examining the utility of patient-derived xenograft mouse models,” Nat. Rev. Cancer 15(5), 311–316 (2015).
[Crossref]

Neurology (1)

Y. Wakayama, D. L. Schotland, and E. Bonilla, “Transplantation of human skeletal muscle to nude mice: A sequential morphologic study,” Neurology 30(7), 740 (1980).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Sci Rep (1)

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci Rep 6(1), 28771 (2016).
[Crossref]

Skeletal Radiol (1)

S. Kamath, N. Venkatanarasimha, M. A. Walsh, and P. M. Hughes, “MRI appearance of muscle denervation,” Skeletal Radiol 37(5), 397–404 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Image of a canine donor muscle before transplantation. (a) The cross-sectional images of the intensity (I), cumulative phase retardation (R), cumulative optic axis (θc), local birefringence (Δn), local optic axis (θL), attenuation coefficient (µ), and fiber alignment index (FA). (b) The corresponding enface images obtained at 200 µm beneath the tissue surface, along with the tractography (T) and cross-sectional HE histology result. The dotted line on the enface intensity image indicates the location of the cross-sectional images in panel (a). The red box indicated the region-of-interest (ROI) used for quantitative analysis in Fig. 2.
Fig. 2.
Fig. 2. Distributions of fiber orientation, fiber alignment, optical birefringence, and attenuation coefficient of the donor muscle measured before transplantation (0-day).
Fig. 3.
Fig. 3. The PSOCT images of the intensity (I), birefringence (Δn), fiber orientation (θL), tractography (T), attenuation coefficient (µ), and fiber alignment index (FA) of the xenograft excised at 14-day post-transplantation. In the enface intensity image (extracted at the depth of 0.2 mm), the dashed circles indicate locations of surgical sutures (S). The white dotted line marks the estimated location of cross-sectional images for comparison with histology. The red and yellow boxes indicate ROIs used in quantitative analysis in Fig. 4. The red dashed line in the red box separates the ROI into two sub-regions. The small ROIs marked on cross-sectional PSOCT and histology images had the size of 200×200 µm2. All size bars indicated 1-mm.
Fig. 4.
Fig. 4.  Distributions of fiber orientation, fiber alignment, optical birefringence, and attenuation coefficient of the graft and host tissues obtained from the 14-day sample in Fig. 3. The “sub-graft” distribution was obtained from the upper ROI (above the red dashed line shown in enface “I” image in Fig. 3).
Fig. 5.
Fig. 5. The PSOCT images of the intensity (I), birefringence (Δn), fiber orientation (θL), tractography (T), attenuation coefficient (µ), and fiber alignment index (FA) of the xenograft excised at 56-day post transplantation. In the enface intensity image (extracted at the depth of 0.2 mm), the dotted line marks the estimated location of cross-sectional images for comparison with histology. The red and yellow boxes indicate ROIs used in quantitative analysis in Fig. 6. The dashed circles in the intensity images (enface and cross-section) and histology indicate locations of surgical sutures (S). The small ROIs marked on cross-sectional intensity and histology images had the size of 200×200 µm2. All size bars indicated 1-mm.
Fig. 6.
Fig. 6.  Distributions of fiber orientation, fiber alignment, optical birefringence, and attenuation coefficient of the graft and host tissues obtained from the 56-day sample in Fig. 5.
Fig. 7.
Fig. 7. Temporal changes of three optical properties: (a) fiber alignment FA, (b) birefringence Δn, and (c) attenuation coefficient µ, measured over a period of 112 days after transplantation. Each individual symbol represents data measured from a different animal. The dashed lines were plotted using the mean results obtained at each date point.

Metrics