Abstract

In view of minimally-invasive clinical interventions, laser tissue soldering assisted by plasmonic nanoparticles is emerging as an appealing concept in surgical medicine, holding the promise of surgeries without sutures. Rigorous monitoring of the plasmonically-heated solder and the underlying tissue is crucial for optimizing the soldering bonding strength and minimizing the photothermal damage. To this end, we propose a non-invasive, non-contact, and non-ionizing modality for monitoring nanoparticle-assisted laser-tissue interaction and visualizing the localized photothermal damage, by taking advantage of the unique sensitivity of terahertz radiation to the hydration level of biological tissue. We demonstrate that terahertz radiation can be employed as a versatile tool to reveal the thermally-affected evolution in tissue, and to quantitatively characterize the photothermal damage induced by nanoparticle-assisted laser tissue soldering in three dimensions. Our approach can be easily extended and applied across a broad range of clinical applications involving laser-tissue interaction, such as laser ablation and photothermal therapies.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Robot-assisted laser tissue soldering system

Svetlana Basov, Amit Milstein, Erez Sulimani, Max Platkov, Eli Peretz, Marcel Rattunde, Joachim Wagner, Uri Netz, Abraham Katzir, and Ilana Nisky
Biomed. Opt. Express 9(11) 5635-5644 (2018)

Detection of blackbody radiation during fiber guided laser-tissue vaporization

Paris Franz, Xiaomei Wang, Hui Zhu, Ray Chia, Tom Hasenberg, and Hui Wang
Biomed. Opt. Express 11(2) 791-800 (2020)

Nanoparticle assisted photothermal deformation of individual neuronal organelles and cells

V. H. Romero, Z. Kereselidze, W. Egido, E. A. Michaelides, F. Santamaria, and X. G. Peralta
Biomed. Opt. Express 5(11) 4002-4012 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. H. Yun and S. J. J. Kwok, “Light in diagnosis, therapy and surgery,” Nat. Biomed. Eng. 1(1), 0008 (2017).
    [Crossref]
  2. R. Schober, F. Ulrich, T. Sander, H. Dürselen, and S. Hessel, “Laser-induced alteration of collagen substructure allows microsurgical tissue welding,” Science 232(4756), 1421–1422 (1986).
    [Crossref]
  3. L. S. Bass and M. R. Treat, “Laser tissue welding: A comprehensive review of current and future clinical applications,” Lasers Surg. Med. 17(4), 315–349 (1995).
    [Crossref]
  4. P. Matteini, F. Rossi, L. Menabuoni, and R. Pini, “Microscopic characterization of collagen modifications induced by low-temperature diode-laser welding of corneal tissue,” Lasers Surg. Med. 39(7), 597–604 (2007).
    [Crossref]
  5. R. A. White, R. Patrick Abergel, R. Lyons, S. R. Klein, G. Kopchok, R. M. Dwyer, and J. Uitto, “Biological effects of laser welding on vascular healing,” Lasers Surg. Med. 6(2), 137–141 (1986).
    [Crossref]
  6. W. Happak, C. Neumayer, G. Holak, R. Kuzbari, G. Burggasser, and H. Gruber, “Morphometric and functional results after CO2 laser welding of nerve coaptations,” Lasers Surg. Med. 27(1), 66–72 (2000).
    [Crossref]
  7. S. Rose, A. Prevoteau, P. Elzière, D. Hourdet, A. Marcellan, and L. Leibler, “Nanoparticle solutions as adhesives for gels and biological tissues,” Nature 505(7483), 382–385 (2014).
    [Crossref]
  8. H. C. Huang, C. R. Walker, A. Nanda, and K. Rege, “Laser welding of ruptured intestinal tissue using plasmonic polypeptide nanocomposite solders,” ACS Nano 7(4), 2988–2998 (2013).
    [Crossref]
  9. W. He, J. Frueh, N. Hu, L. Liu, M. Gai, and Q. He, “Guidable Thermophoretic Janus Micromotors Containing Gold Nanocolorifiers for Infrared Laser Assisted Tissue Welding,” Adv. Sci. 3(12), 1600206 (2016).
    [Crossref]
  10. G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
    [Crossref]
  11. H. Breitenborn, J. Dong, R. Piccoli, A. Bruhacs, L. V. Besteiro, A. Skripka, Z. M. Wang, A. O. Govorov, L. Razzari, F. Vetrone, R. Naccache, and R. Morandotti, “Quantifying the photothermal conversion efficiency of plasmonic nanoparticles by means of terahertz radiation,” APL Photonics 4(12), 126106 (2019).
    [Crossref]
  12. R. Anderson and J. Parrish, “Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,” Science 220(4596), 524–527 (1983).
    [Crossref]
  13. M. A. Ansari, M. Erfanzadeh, and E. Mohajerani, “Mechanisms of laser-tissue interaction: II. tissue thermal properties,” Journal of Lasers in Medical Sciences 4, 99–106 (2013).
  14. P. Matteini, F. Ratto, F. Rossi, and R. Pini, “Emerging concepts of laser-activated nanoparticles for tissue bonding,” J. Biomed. Opt. 17(1), 010701 (2012).
    [Crossref]
  15. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  16. E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
    [Crossref]
  17. Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J. P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: In vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
    [Crossref]
  18. R. Naccache, A. Mazhorova, M. Clerici, R. Piccoli, L. K. Khorashad, A. O. Govorov, L. Razzari, F. Vetrone, and R. Morandotti, “Terahertz Thermometry: Combining Hyperspectral Imaging and Temperature Mapping at Terahertz Frequencies,” Laser Photonics Rev. 11(5), 1600342 (2017).
    [Crossref]
  19. P. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
    [Crossref]
  20. M. H. Arbab, T. C. Dickey, D. P. Winebrenner, A. Chen, M. B. Klein, and P. D. Mourad, “Terahertz reflectometry of burn wounds in a rat model,” Biomed. Opt. Express 2(8), 2339 (2011).
    [Crossref]
  21. P. Tewari, C. P. Kealey, D. B. Bennett, N. Bajwa, K. S. Barnett, R. S. Singh, M. O. Culjat, A. Stojadinovic, W. S. Grundfest, and Z. D. Taylor, “In vivo terahertz imaging of rat skin burns,” J. Biomed. Opt. 17(4), 040503 (2012).
    [Crossref]
  22. C. S. Joseph, R. Patel, V. A. Neel, R. H. Giles, and A. N. Yaroslavsky, “Imaging of ex vivo nonmelanoma skin cancers in the optical and terahertz spectral regions,” J. Biophotonics 7(5), 295–303 (2014).
    [Crossref]
  23. R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
    [Crossref]
  24. T. Bowman, M. El-Shenawee, and L. K. Campbell, “Terahertz transmission vs reflection imaging and model-based characterization for excised breast carcinomas,” Biomed. Opt. Express 7(9), 3756 (2016).
    [Crossref]
  25. S. Selvin, S. Sung, N. Bajwa, A. D. Li, Z. D. Taylor, E. R. Brown, B. Nowroozi, W. S. Grundfest, S. X. Deng, J. Goell, J. Garritano, and S. Chantra, “THz Imaging System for in vivo Human Cornea,” IEEE Trans. Terahertz Sci. Technol. 8(1), 27–37 (2018).
    [Crossref]
  26. G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
    [Crossref]
  27. O. A. Smolyanskaya, I. J. Schelkanova, M. S. Kulya, E. L. Odlyanitskiy, I. S. Goryachev, A. N. Tcypkin, Y. V. Grachev, Y. G. Toropova, and V. V. Tuchin, “Glycerol dehydration of native and diabetic animal tissues studied by THz-TDS and NMR methods,” Biomed. Opt. Express 9(3), 1198 (2018).
    [Crossref]
  28. U. Jacobi, M. Kaiser, R. Toll, S. Mangelsdorf, H. Audring, N. Otberg, W. Sterry, and J. Lademann, “Porcine ear skin: An in vitro model for human skin,” Skin Research and Technol. 13(1), 19–24 (2007).
    [Crossref]
  29. M. Mushaben, R. Urie, T. Flake, M. Jaffe, K. Rege, and J. Heys, “Spatiotemporal modeling of laser tissue soldering using photothermal nanocomposites,” Lasers Surg. Med. 50(2), 143–152 (2018).
    [Crossref]
  30. K. M. McNally, B. S. Sorg, N. C. Bhavaraju, M. G. Ducros, A. J. Welch, and J. M. Dawes, “Optical and thermal characterization of albumin protein solders,” Appl. Opt. 38(31), 6661 (1999).
    [Crossref]
  31. Y. Ren, H. Qi, Q. Chen, and L. Ruan, “Thermal dosage investigation for optimal temperature distribution in gold nanoparticle enhanced photothermal therapy,” Int. J. Heat Mass Transfer 106, 212–221 (2017).
    [Crossref]
  32. J. Dong, J. Bianca Jackson, M. Melis, D. Giovanacci, G. C. Walker, A. Locquet, J. W. Bowen, and D. S. Citrin, “Terahertz frequency-wavelet domain deconvolution for stratigraphic and subsurface investigation of art painting,” Opt. Express 24(23), 26972 (2016).
    [Crossref]
  33. J. Dong, A. Locquet, and D. S. Citrin, “Depth resolution enhancement of terahertz deconvolution by autoregressive spectral extrapolation,” Opt. Lett. 42(9), 1828 (2017).
    [Crossref]
  34. J. Dong, A. Locquet, and D. S. Citrin, “Enhanced Terahertz Imaging of Small Forced Delamination in Woven Glass Fibre-reinforced Composites with Wavelet De-noising,” J. Infrared, Millimeter, Terahertz Waves 37(3), 289–301 (2016).
    [Crossref]
  35. X. Li, X. Fu, J. Liu, Y. Du, and Z. Hong, “Investigation of thermal denaturation of solid bovine serum albumin by terahertz dielectric spectroscopy,” J. Mol. Struct. 1049, 441–445 (2013).
    [Crossref]
  36. D. B. Bennett, W. Li, Z. D. Taylor, W. S. Grundfest, and E. R. Brown, “Stratified media model for terahertz reflectometry of the skin,” IEEE Sens. J. 11(5), 1253–1262 (2011).
    [Crossref]
  37. J. Jiao and Z. Guo, “Thermal interaction of short-pulsed laser focused beams with skin tissues,” Phys. Med. Biol. 54(13), 4225–4241 (2009).
    [Crossref]

2019 (1)

H. Breitenborn, J. Dong, R. Piccoli, A. Bruhacs, L. V. Besteiro, A. Skripka, Z. M. Wang, A. O. Govorov, L. Razzari, F. Vetrone, R. Naccache, and R. Morandotti, “Quantifying the photothermal conversion efficiency of plasmonic nanoparticles by means of terahertz radiation,” APL Photonics 4(12), 126106 (2019).
[Crossref]

2018 (3)

S. Selvin, S. Sung, N. Bajwa, A. D. Li, Z. D. Taylor, E. R. Brown, B. Nowroozi, W. S. Grundfest, S. X. Deng, J. Goell, J. Garritano, and S. Chantra, “THz Imaging System for in vivo Human Cornea,” IEEE Trans. Terahertz Sci. Technol. 8(1), 27–37 (2018).
[Crossref]

O. A. Smolyanskaya, I. J. Schelkanova, M. S. Kulya, E. L. Odlyanitskiy, I. S. Goryachev, A. N. Tcypkin, Y. V. Grachev, Y. G. Toropova, and V. V. Tuchin, “Glycerol dehydration of native and diabetic animal tissues studied by THz-TDS and NMR methods,” Biomed. Opt. Express 9(3), 1198 (2018).
[Crossref]

M. Mushaben, R. Urie, T. Flake, M. Jaffe, K. Rege, and J. Heys, “Spatiotemporal modeling of laser tissue soldering using photothermal nanocomposites,” Lasers Surg. Med. 50(2), 143–152 (2018).
[Crossref]

2017 (5)

J. Dong, A. Locquet, and D. S. Citrin, “Depth resolution enhancement of terahertz deconvolution by autoregressive spectral extrapolation,” Opt. Lett. 42(9), 1828 (2017).
[Crossref]

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref]

R. Naccache, A. Mazhorova, M. Clerici, R. Piccoli, L. K. Khorashad, A. O. Govorov, L. Razzari, F. Vetrone, and R. Morandotti, “Terahertz Thermometry: Combining Hyperspectral Imaging and Temperature Mapping at Terahertz Frequencies,” Laser Photonics Rev. 11(5), 1600342 (2017).
[Crossref]

S. H. Yun and S. J. J. Kwok, “Light in diagnosis, therapy and surgery,” Nat. Biomed. Eng. 1(1), 0008 (2017).
[Crossref]

Y. Ren, H. Qi, Q. Chen, and L. Ruan, “Thermal dosage investigation for optimal temperature distribution in gold nanoparticle enhanced photothermal therapy,” Int. J. Heat Mass Transfer 106, 212–221 (2017).
[Crossref]

2016 (4)

J. Dong, J. Bianca Jackson, M. Melis, D. Giovanacci, G. C. Walker, A. Locquet, J. W. Bowen, and D. S. Citrin, “Terahertz frequency-wavelet domain deconvolution for stratigraphic and subsurface investigation of art painting,” Opt. Express 24(23), 26972 (2016).
[Crossref]

T. Bowman, M. El-Shenawee, and L. K. Campbell, “Terahertz transmission vs reflection imaging and model-based characterization for excised breast carcinomas,” Biomed. Opt. Express 7(9), 3756 (2016).
[Crossref]

W. He, J. Frueh, N. Hu, L. Liu, M. Gai, and Q. He, “Guidable Thermophoretic Janus Micromotors Containing Gold Nanocolorifiers for Infrared Laser Assisted Tissue Welding,” Adv. Sci. 3(12), 1600206 (2016).
[Crossref]

J. Dong, A. Locquet, and D. S. Citrin, “Enhanced Terahertz Imaging of Small Forced Delamination in Woven Glass Fibre-reinforced Composites with Wavelet De-noising,” J. Infrared, Millimeter, Terahertz Waves 37(3), 289–301 (2016).
[Crossref]

2014 (2)

C. S. Joseph, R. Patel, V. A. Neel, R. H. Giles, and A. N. Yaroslavsky, “Imaging of ex vivo nonmelanoma skin cancers in the optical and terahertz spectral regions,” J. Biophotonics 7(5), 295–303 (2014).
[Crossref]

S. Rose, A. Prevoteau, P. Elzière, D. Hourdet, A. Marcellan, and L. Leibler, “Nanoparticle solutions as adhesives for gels and biological tissues,” Nature 505(7483), 382–385 (2014).
[Crossref]

2013 (4)

H. C. Huang, C. R. Walker, A. Nanda, and K. Rege, “Laser welding of ruptured intestinal tissue using plasmonic polypeptide nanocomposite solders,” ACS Nano 7(4), 2988–2998 (2013).
[Crossref]

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

M. A. Ansari, M. Erfanzadeh, and E. Mohajerani, “Mechanisms of laser-tissue interaction: II. tissue thermal properties,” Journal of Lasers in Medical Sciences 4, 99–106 (2013).

X. Li, X. Fu, J. Liu, Y. Du, and Z. Hong, “Investigation of thermal denaturation of solid bovine serum albumin by terahertz dielectric spectroscopy,” J. Mol. Struct. 1049, 441–445 (2013).
[Crossref]

2012 (2)

P. Tewari, C. P. Kealey, D. B. Bennett, N. Bajwa, K. S. Barnett, R. S. Singh, M. O. Culjat, A. Stojadinovic, W. S. Grundfest, and Z. D. Taylor, “In vivo terahertz imaging of rat skin burns,” J. Biomed. Opt. 17(4), 040503 (2012).
[Crossref]

P. Matteini, F. Ratto, F. Rossi, and R. Pini, “Emerging concepts of laser-activated nanoparticles for tissue bonding,” J. Biomed. Opt. 17(1), 010701 (2012).
[Crossref]

2011 (4)

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J. P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: In vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref]

P. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

M. H. Arbab, T. C. Dickey, D. P. Winebrenner, A. Chen, M. B. Klein, and P. D. Mourad, “Terahertz reflectometry of burn wounds in a rat model,” Biomed. Opt. Express 2(8), 2339 (2011).
[Crossref]

D. B. Bennett, W. Li, Z. D. Taylor, W. S. Grundfest, and E. R. Brown, “Stratified media model for terahertz reflectometry of the skin,” IEEE Sens. J. 11(5), 1253–1262 (2011).
[Crossref]

2009 (1)

J. Jiao and Z. Guo, “Thermal interaction of short-pulsed laser focused beams with skin tissues,” Phys. Med. Biol. 54(13), 4225–4241 (2009).
[Crossref]

2007 (3)

U. Jacobi, M. Kaiser, R. Toll, S. Mangelsdorf, H. Audring, N. Otberg, W. Sterry, and J. Lademann, “Porcine ear skin: An in vitro model for human skin,” Skin Research and Technol. 13(1), 19–24 (2007).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

P. Matteini, F. Rossi, L. Menabuoni, and R. Pini, “Microscopic characterization of collagen modifications induced by low-temperature diode-laser welding of corneal tissue,” Lasers Surg. Med. 39(7), 597–604 (2007).
[Crossref]

2004 (1)

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[Crossref]

2002 (1)

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref]

2000 (1)

W. Happak, C. Neumayer, G. Holak, R. Kuzbari, G. Burggasser, and H. Gruber, “Morphometric and functional results after CO2 laser welding of nerve coaptations,” Lasers Surg. Med. 27(1), 66–72 (2000).
[Crossref]

1999 (1)

1995 (1)

L. S. Bass and M. R. Treat, “Laser tissue welding: A comprehensive review of current and future clinical applications,” Lasers Surg. Med. 17(4), 315–349 (1995).
[Crossref]

1986 (2)

R. A. White, R. Patrick Abergel, R. Lyons, S. R. Klein, G. Kopchok, R. M. Dwyer, and J. Uitto, “Biological effects of laser welding on vascular healing,” Lasers Surg. Med. 6(2), 137–141 (1986).
[Crossref]

R. Schober, F. Ulrich, T. Sander, H. Dürselen, and S. Hessel, “Laser-induced alteration of collagen substructure allows microsurgical tissue welding,” Science 232(4756), 1421–1422 (1986).
[Crossref]

1983 (1)

R. Anderson and J. Parrish, “Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,” Science 220(4596), 524–527 (1983).
[Crossref]

Alfaro-Gomez, M.

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref]

Anderson, R.

R. Anderson and J. Parrish, “Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,” Science 220(4596), 524–527 (1983).
[Crossref]

Ansari, M. A.

M. A. Ansari, M. Erfanzadeh, and E. Mohajerani, “Mechanisms of laser-tissue interaction: II. tissue thermal properties,” Journal of Lasers in Medical Sciences 4, 99–106 (2013).

Arbab, M. H.

Arnone, D. D.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref]

Audring, H.

U. Jacobi, M. Kaiser, R. Toll, S. Mangelsdorf, H. Audring, N. Otberg, W. Sterry, and J. Lademann, “Porcine ear skin: An in vitro model for human skin,” Skin Research and Technol. 13(1), 19–24 (2007).
[Crossref]

Baffou, G.

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

Bajwa, N.

S. Selvin, S. Sung, N. Bajwa, A. D. Li, Z. D. Taylor, E. R. Brown, B. Nowroozi, W. S. Grundfest, S. X. Deng, J. Goell, J. Garritano, and S. Chantra, “THz Imaging System for in vivo Human Cornea,” IEEE Trans. Terahertz Sci. Technol. 8(1), 27–37 (2018).
[Crossref]

P. Tewari, C. P. Kealey, D. B. Bennett, N. Bajwa, K. S. Barnett, R. S. Singh, M. O. Culjat, A. Stojadinovic, W. S. Grundfest, and Z. D. Taylor, “In vivo terahertz imaging of rat skin burns,” J. Biomed. Opt. 17(4), 040503 (2012).
[Crossref]

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J. P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: In vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref]

Barnett, K. S.

P. Tewari, C. P. Kealey, D. B. Bennett, N. Bajwa, K. S. Barnett, R. S. Singh, M. O. Culjat, A. Stojadinovic, W. S. Grundfest, and Z. D. Taylor, “In vivo terahertz imaging of rat skin burns,” J. Biomed. Opt. 17(4), 040503 (2012).
[Crossref]

Bass, L. S.

L. S. Bass and M. R. Treat, “Laser tissue welding: A comprehensive review of current and future clinical applications,” Lasers Surg. Med. 17(4), 315–349 (1995).
[Crossref]

Bennett, D. B.

P. Tewari, C. P. Kealey, D. B. Bennett, N. Bajwa, K. S. Barnett, R. S. Singh, M. O. Culjat, A. Stojadinovic, W. S. Grundfest, and Z. D. Taylor, “In vivo terahertz imaging of rat skin burns,” J. Biomed. Opt. 17(4), 040503 (2012).
[Crossref]

D. B. Bennett, W. Li, Z. D. Taylor, W. S. Grundfest, and E. R. Brown, “Stratified media model for terahertz reflectometry of the skin,” IEEE Sens. J. 11(5), 1253–1262 (2011).
[Crossref]

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J. P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: In vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref]

Besteiro, L. V.

H. Breitenborn, J. Dong, R. Piccoli, A. Bruhacs, L. V. Besteiro, A. Skripka, Z. M. Wang, A. O. Govorov, L. Razzari, F. Vetrone, R. Naccache, and R. Morandotti, “Quantifying the photothermal conversion efficiency of plasmonic nanoparticles by means of terahertz radiation,” APL Photonics 4(12), 126106 (2019).
[Crossref]

Bhavaraju, N. C.

Bianca Jackson, J.

Bowen, J. W.

Bowman, T.

Breitenborn, H.

H. Breitenborn, J. Dong, R. Piccoli, A. Bruhacs, L. V. Besteiro, A. Skripka, Z. M. Wang, A. O. Govorov, L. Razzari, F. Vetrone, R. Naccache, and R. Morandotti, “Quantifying the photothermal conversion efficiency of plasmonic nanoparticles by means of terahertz radiation,” APL Photonics 4(12), 126106 (2019).
[Crossref]

Brown, E. R.

S. Selvin, S. Sung, N. Bajwa, A. D. Li, Z. D. Taylor, E. R. Brown, B. Nowroozi, W. S. Grundfest, S. X. Deng, J. Goell, J. Garritano, and S. Chantra, “THz Imaging System for in vivo Human Cornea,” IEEE Trans. Terahertz Sci. Technol. 8(1), 27–37 (2018).
[Crossref]

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J. P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: In vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref]

D. B. Bennett, W. Li, Z. D. Taylor, W. S. Grundfest, and E. R. Brown, “Stratified media model for terahertz reflectometry of the skin,” IEEE Sens. J. 11(5), 1253–1262 (2011).
[Crossref]

Bruhacs, A.

H. Breitenborn, J. Dong, R. Piccoli, A. Bruhacs, L. V. Besteiro, A. Skripka, Z. M. Wang, A. O. Govorov, L. Razzari, F. Vetrone, R. Naccache, and R. Morandotti, “Quantifying the photothermal conversion efficiency of plasmonic nanoparticles by means of terahertz radiation,” APL Photonics 4(12), 126106 (2019).
[Crossref]

Burggasser, G.

W. Happak, C. Neumayer, G. Holak, R. Kuzbari, G. Burggasser, and H. Gruber, “Morphometric and functional results after CO2 laser welding of nerve coaptations,” Lasers Surg. Med. 27(1), 66–72 (2000).
[Crossref]

Campbell, L. K.

Castillo-Guzman, A. R.

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref]

Castro-Camus, E.

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref]

Chantra, S.

S. Selvin, S. Sung, N. Bajwa, A. D. Li, Z. D. Taylor, E. R. Brown, B. Nowroozi, W. S. Grundfest, S. X. Deng, J. Goell, J. Garritano, and S. Chantra, “THz Imaging System for in vivo Human Cornea,” IEEE Trans. Terahertz Sci. Technol. 8(1), 27–37 (2018).
[Crossref]

Chen, A.

Chen, Q.

Y. Ren, H. Qi, Q. Chen, and L. Ruan, “Thermal dosage investigation for optimal temperature distribution in gold nanoparticle enhanced photothermal therapy,” Int. J. Heat Mass Transfer 106, 212–221 (2017).
[Crossref]

Citrin, D. S.

Clerici, M.

R. Naccache, A. Mazhorova, M. Clerici, R. Piccoli, L. K. Khorashad, A. O. Govorov, L. Razzari, F. Vetrone, and R. Morandotti, “Terahertz Thermometry: Combining Hyperspectral Imaging and Temperature Mapping at Terahertz Frequencies,” Laser Photonics Rev. 11(5), 1600342 (2017).
[Crossref]

Cole, B. E.

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[Crossref]

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref]

Cooke, D.

P. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Culjat, M. O.

P. Tewari, C. P. Kealey, D. B. Bennett, N. Bajwa, K. S. Barnett, R. S. Singh, M. O. Culjat, A. Stojadinovic, W. S. Grundfest, and Z. D. Taylor, “In vivo terahertz imaging of rat skin burns,” J. Biomed. Opt. 17(4), 040503 (2012).
[Crossref]

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J. P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: In vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref]

Dawes, J. M.

Deng, S. X.

S. Selvin, S. Sung, N. Bajwa, A. D. Li, Z. D. Taylor, E. R. Brown, B. Nowroozi, W. S. Grundfest, S. X. Deng, J. Goell, J. Garritano, and S. Chantra, “THz Imaging System for in vivo Human Cornea,” IEEE Trans. Terahertz Sci. Technol. 8(1), 27–37 (2018).
[Crossref]

Dickey, T. C.

Dong, J.

H. Breitenborn, J. Dong, R. Piccoli, A. Bruhacs, L. V. Besteiro, A. Skripka, Z. M. Wang, A. O. Govorov, L. Razzari, F. Vetrone, R. Naccache, and R. Morandotti, “Quantifying the photothermal conversion efficiency of plasmonic nanoparticles by means of terahertz radiation,” APL Photonics 4(12), 126106 (2019).
[Crossref]

J. Dong, A. Locquet, and D. S. Citrin, “Depth resolution enhancement of terahertz deconvolution by autoregressive spectral extrapolation,” Opt. Lett. 42(9), 1828 (2017).
[Crossref]

J. Dong, A. Locquet, and D. S. Citrin, “Enhanced Terahertz Imaging of Small Forced Delamination in Woven Glass Fibre-reinforced Composites with Wavelet De-noising,” J. Infrared, Millimeter, Terahertz Waves 37(3), 289–301 (2016).
[Crossref]

J. Dong, J. Bianca Jackson, M. Melis, D. Giovanacci, G. C. Walker, A. Locquet, J. W. Bowen, and D. S. Citrin, “Terahertz frequency-wavelet domain deconvolution for stratigraphic and subsurface investigation of art painting,” Opt. Express 24(23), 26972 (2016).
[Crossref]

Du, Y.

X. Li, X. Fu, J. Liu, Y. Du, and Z. Hong, “Investigation of thermal denaturation of solid bovine serum albumin by terahertz dielectric spectroscopy,” J. Mol. Struct. 1049, 441–445 (2013).
[Crossref]

Ducros, M. G.

Dürselen, H.

R. Schober, F. Ulrich, T. Sander, H. Dürselen, and S. Hessel, “Laser-induced alteration of collagen substructure allows microsurgical tissue welding,” Science 232(4756), 1421–1422 (1986).
[Crossref]

Dwyer, R. M.

R. A. White, R. Patrick Abergel, R. Lyons, S. R. Klein, G. Kopchok, R. M. Dwyer, and J. Uitto, “Biological effects of laser welding on vascular healing,” Lasers Surg. Med. 6(2), 137–141 (1986).
[Crossref]

El-Shenawee, M.

Elzière, P.

S. Rose, A. Prevoteau, P. Elzière, D. Hourdet, A. Marcellan, and L. Leibler, “Nanoparticle solutions as adhesives for gels and biological tissues,” Nature 505(7483), 382–385 (2014).
[Crossref]

Erfanzadeh, M.

M. A. Ansari, M. Erfanzadeh, and E. Mohajerani, “Mechanisms of laser-tissue interaction: II. tissue thermal properties,” Journal of Lasers in Medical Sciences 4, 99–106 (2013).

Fitzgerald, A. J.

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[Crossref]

Flake, T.

M. Mushaben, R. Urie, T. Flake, M. Jaffe, K. Rege, and J. Heys, “Spatiotemporal modeling of laser tissue soldering using photothermal nanocomposites,” Lasers Surg. Med. 50(2), 143–152 (2018).
[Crossref]

Frueh, J.

W. He, J. Frueh, N. Hu, L. Liu, M. Gai, and Q. He, “Guidable Thermophoretic Janus Micromotors Containing Gold Nanocolorifiers for Infrared Laser Assisted Tissue Welding,” Adv. Sci. 3(12), 1600206 (2016).
[Crossref]

Fu, X.

X. Li, X. Fu, J. Liu, Y. Du, and Z. Hong, “Investigation of thermal denaturation of solid bovine serum albumin by terahertz dielectric spectroscopy,” J. Mol. Struct. 1049, 441–445 (2013).
[Crossref]

Gai, M.

W. He, J. Frueh, N. Hu, L. Liu, M. Gai, and Q. He, “Guidable Thermophoretic Janus Micromotors Containing Gold Nanocolorifiers for Infrared Laser Assisted Tissue Welding,” Adv. Sci. 3(12), 1600206 (2016).
[Crossref]

Garritano, J.

S. Selvin, S. Sung, N. Bajwa, A. D. Li, Z. D. Taylor, E. R. Brown, B. Nowroozi, W. S. Grundfest, S. X. Deng, J. Goell, J. Garritano, and S. Chantra, “THz Imaging System for in vivo Human Cornea,” IEEE Trans. Terahertz Sci. Technol. 8(1), 27–37 (2018).
[Crossref]

Giles, R. H.

C. S. Joseph, R. Patel, V. A. Neel, R. H. Giles, and A. N. Yaroslavsky, “Imaging of ex vivo nonmelanoma skin cancers in the optical and terahertz spectral regions,” J. Biophotonics 7(5), 295–303 (2014).
[Crossref]

Giovanacci, D.

Goell, J.

S. Selvin, S. Sung, N. Bajwa, A. D. Li, Z. D. Taylor, E. R. Brown, B. Nowroozi, W. S. Grundfest, S. X. Deng, J. Goell, J. Garritano, and S. Chantra, “THz Imaging System for in vivo Human Cornea,” IEEE Trans. Terahertz Sci. Technol. 8(1), 27–37 (2018).
[Crossref]

Goryachev, I. S.

Govorov, A. O.

H. Breitenborn, J. Dong, R. Piccoli, A. Bruhacs, L. V. Besteiro, A. Skripka, Z. M. Wang, A. O. Govorov, L. Razzari, F. Vetrone, R. Naccache, and R. Morandotti, “Quantifying the photothermal conversion efficiency of plasmonic nanoparticles by means of terahertz radiation,” APL Photonics 4(12), 126106 (2019).
[Crossref]

R. Naccache, A. Mazhorova, M. Clerici, R. Piccoli, L. K. Khorashad, A. O. Govorov, L. Razzari, F. Vetrone, and R. Morandotti, “Terahertz Thermometry: Combining Hyperspectral Imaging and Temperature Mapping at Terahertz Frequencies,” Laser Photonics Rev. 11(5), 1600342 (2017).
[Crossref]

Grachev, Y. V.

Gruber, H.

W. Happak, C. Neumayer, G. Holak, R. Kuzbari, G. Burggasser, and H. Gruber, “Morphometric and functional results after CO2 laser welding of nerve coaptations,” Lasers Surg. Med. 27(1), 66–72 (2000).
[Crossref]

Grundfest, W. S.

S. Selvin, S. Sung, N. Bajwa, A. D. Li, Z. D. Taylor, E. R. Brown, B. Nowroozi, W. S. Grundfest, S. X. Deng, J. Goell, J. Garritano, and S. Chantra, “THz Imaging System for in vivo Human Cornea,” IEEE Trans. Terahertz Sci. Technol. 8(1), 27–37 (2018).
[Crossref]

P. Tewari, C. P. Kealey, D. B. Bennett, N. Bajwa, K. S. Barnett, R. S. Singh, M. O. Culjat, A. Stojadinovic, W. S. Grundfest, and Z. D. Taylor, “In vivo terahertz imaging of rat skin burns,” J. Biomed. Opt. 17(4), 040503 (2012).
[Crossref]

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J. P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: In vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref]

D. B. Bennett, W. Li, Z. D. Taylor, W. S. Grundfest, and E. R. Brown, “Stratified media model for terahertz reflectometry of the skin,” IEEE Sens. J. 11(5), 1253–1262 (2011).
[Crossref]

Guo, Z.

J. Jiao and Z. Guo, “Thermal interaction of short-pulsed laser focused beams with skin tissues,” Phys. Med. Biol. 54(13), 4225–4241 (2009).
[Crossref]

Happak, W.

W. Happak, C. Neumayer, G. Holak, R. Kuzbari, G. Burggasser, and H. Gruber, “Morphometric and functional results after CO2 laser welding of nerve coaptations,” Lasers Surg. Med. 27(1), 66–72 (2000).
[Crossref]

He, Q.

W. He, J. Frueh, N. Hu, L. Liu, M. Gai, and Q. He, “Guidable Thermophoretic Janus Micromotors Containing Gold Nanocolorifiers for Infrared Laser Assisted Tissue Welding,” Adv. Sci. 3(12), 1600206 (2016).
[Crossref]

He, W.

W. He, J. Frueh, N. Hu, L. Liu, M. Gai, and Q. He, “Guidable Thermophoretic Janus Micromotors Containing Gold Nanocolorifiers for Infrared Laser Assisted Tissue Welding,” Adv. Sci. 3(12), 1600206 (2016).
[Crossref]

Hernandez-Cardoso, G. G.

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref]

Hernandez-Serrano, A. I.

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref]

Hessel, S.

R. Schober, F. Ulrich, T. Sander, H. Dürselen, and S. Hessel, “Laser-induced alteration of collagen substructure allows microsurgical tissue welding,” Science 232(4756), 1421–1422 (1986).
[Crossref]

Heys, J.

M. Mushaben, R. Urie, T. Flake, M. Jaffe, K. Rege, and J. Heys, “Spatiotemporal modeling of laser tissue soldering using photothermal nanocomposites,” Lasers Surg. Med. 50(2), 143–152 (2018).
[Crossref]

Holak, G.

W. Happak, C. Neumayer, G. Holak, R. Kuzbari, G. Burggasser, and H. Gruber, “Morphometric and functional results after CO2 laser welding of nerve coaptations,” Lasers Surg. Med. 27(1), 66–72 (2000).
[Crossref]

Hong, Z.

X. Li, X. Fu, J. Liu, Y. Du, and Z. Hong, “Investigation of thermal denaturation of solid bovine serum albumin by terahertz dielectric spectroscopy,” J. Mol. Struct. 1049, 441–445 (2013).
[Crossref]

Hourdet, D.

S. Rose, A. Prevoteau, P. Elzière, D. Hourdet, A. Marcellan, and L. Leibler, “Nanoparticle solutions as adhesives for gels and biological tissues,” Nature 505(7483), 382–385 (2014).
[Crossref]

Hu, N.

W. He, J. Frueh, N. Hu, L. Liu, M. Gai, and Q. He, “Guidable Thermophoretic Janus Micromotors Containing Gold Nanocolorifiers for Infrared Laser Assisted Tissue Welding,” Adv. Sci. 3(12), 1600206 (2016).
[Crossref]

Huang, H. C.

H. C. Huang, C. R. Walker, A. Nanda, and K. Rege, “Laser welding of ruptured intestinal tissue using plasmonic polypeptide nanocomposite solders,” ACS Nano 7(4), 2988–2998 (2013).
[Crossref]

Hubschman, J. P.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J. P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: In vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref]

Jacobi, U.

U. Jacobi, M. Kaiser, R. Toll, S. Mangelsdorf, H. Audring, N. Otberg, W. Sterry, and J. Lademann, “Porcine ear skin: An in vitro model for human skin,” Skin Research and Technol. 13(1), 19–24 (2007).
[Crossref]

Jaffe, M.

M. Mushaben, R. Urie, T. Flake, M. Jaffe, K. Rege, and J. Heys, “Spatiotemporal modeling of laser tissue soldering using photothermal nanocomposites,” Lasers Surg. Med. 50(2), 143–152 (2018).
[Crossref]

Jepsen, P.

P. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Jiao, J.

J. Jiao and Z. Guo, “Thermal interaction of short-pulsed laser focused beams with skin tissues,” Phys. Med. Biol. 54(13), 4225–4241 (2009).
[Crossref]

Joseph, C. S.

C. S. Joseph, R. Patel, V. A. Neel, R. H. Giles, and A. N. Yaroslavsky, “Imaging of ex vivo nonmelanoma skin cancers in the optical and terahertz spectral regions,” J. Biophotonics 7(5), 295–303 (2014).
[Crossref]

Kaiser, M.

U. Jacobi, M. Kaiser, R. Toll, S. Mangelsdorf, H. Audring, N. Otberg, W. Sterry, and J. Lademann, “Porcine ear skin: An in vitro model for human skin,” Skin Research and Technol. 13(1), 19–24 (2007).
[Crossref]

Kealey, C. P.

P. Tewari, C. P. Kealey, D. B. Bennett, N. Bajwa, K. S. Barnett, R. S. Singh, M. O. Culjat, A. Stojadinovic, W. S. Grundfest, and Z. D. Taylor, “In vivo terahertz imaging of rat skin burns,” J. Biomed. Opt. 17(4), 040503 (2012).
[Crossref]

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J. P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: In vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref]

Khorashad, L. K.

R. Naccache, A. Mazhorova, M. Clerici, R. Piccoli, L. K. Khorashad, A. O. Govorov, L. Razzari, F. Vetrone, and R. Morandotti, “Terahertz Thermometry: Combining Hyperspectral Imaging and Temperature Mapping at Terahertz Frequencies,” Laser Photonics Rev. 11(5), 1600342 (2017).
[Crossref]

Klein, M. B.

Klein, S. R.

R. A. White, R. Patrick Abergel, R. Lyons, S. R. Klein, G. Kopchok, R. M. Dwyer, and J. Uitto, “Biological effects of laser welding on vascular healing,” Lasers Surg. Med. 6(2), 137–141 (1986).
[Crossref]

Koch, M.

P. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Kopchok, G.

R. A. White, R. Patrick Abergel, R. Lyons, S. R. Klein, G. Kopchok, R. M. Dwyer, and J. Uitto, “Biological effects of laser welding on vascular healing,” Lasers Surg. Med. 6(2), 137–141 (1986).
[Crossref]

Kulya, M. S.

Kuzbari, R.

W. Happak, C. Neumayer, G. Holak, R. Kuzbari, G. Burggasser, and H. Gruber, “Morphometric and functional results after CO2 laser welding of nerve coaptations,” Lasers Surg. Med. 27(1), 66–72 (2000).
[Crossref]

Kwok, S. J. J.

S. H. Yun and S. J. J. Kwok, “Light in diagnosis, therapy and surgery,” Nat. Biomed. Eng. 1(1), 0008 (2017).
[Crossref]

Lademann, J.

U. Jacobi, M. Kaiser, R. Toll, S. Mangelsdorf, H. Audring, N. Otberg, W. Sterry, and J. Lademann, “Porcine ear skin: An in vitro model for human skin,” Skin Research and Technol. 13(1), 19–24 (2007).
[Crossref]

Lee, H.

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J. P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: In vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref]

Leibler, L.

S. Rose, A. Prevoteau, P. Elzière, D. Hourdet, A. Marcellan, and L. Leibler, “Nanoparticle solutions as adhesives for gels and biological tissues,” Nature 505(7483), 382–385 (2014).
[Crossref]

Lemus-Bedolla, E.

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref]

Li, A. D.

S. Selvin, S. Sung, N. Bajwa, A. D. Li, Z. D. Taylor, E. R. Brown, B. Nowroozi, W. S. Grundfest, S. X. Deng, J. Goell, J. Garritano, and S. Chantra, “THz Imaging System for in vivo Human Cornea,” IEEE Trans. Terahertz Sci. Technol. 8(1), 27–37 (2018).
[Crossref]

Li, W.

D. B. Bennett, W. Li, Z. D. Taylor, W. S. Grundfest, and E. R. Brown, “Stratified media model for terahertz reflectometry of the skin,” IEEE Sens. J. 11(5), 1253–1262 (2011).
[Crossref]

Li, X.

X. Li, X. Fu, J. Liu, Y. Du, and Z. Hong, “Investigation of thermal denaturation of solid bovine serum albumin by terahertz dielectric spectroscopy,” J. Mol. Struct. 1049, 441–445 (2013).
[Crossref]

Linfield, E. H.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref]

Liu, J.

X. Li, X. Fu, J. Liu, Y. Du, and Z. Hong, “Investigation of thermal denaturation of solid bovine serum albumin by terahertz dielectric spectroscopy,” J. Mol. Struct. 1049, 441–445 (2013).
[Crossref]

Liu, L.

W. He, J. Frueh, N. Hu, L. Liu, M. Gai, and Q. He, “Guidable Thermophoretic Janus Micromotors Containing Gold Nanocolorifiers for Infrared Laser Assisted Tissue Welding,” Adv. Sci. 3(12), 1600206 (2016).
[Crossref]

Locquet, A.

Lopez-Lemus, H. L.

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref]

Lyons, R.

R. A. White, R. Patrick Abergel, R. Lyons, S. R. Klein, G. Kopchok, R. M. Dwyer, and J. Uitto, “Biological effects of laser welding on vascular healing,” Lasers Surg. Med. 6(2), 137–141 (1986).
[Crossref]

Mangelsdorf, S.

U. Jacobi, M. Kaiser, R. Toll, S. Mangelsdorf, H. Audring, N. Otberg, W. Sterry, and J. Lademann, “Porcine ear skin: An in vitro model for human skin,” Skin Research and Technol. 13(1), 19–24 (2007).
[Crossref]

Marcellan, A.

S. Rose, A. Prevoteau, P. Elzière, D. Hourdet, A. Marcellan, and L. Leibler, “Nanoparticle solutions as adhesives for gels and biological tissues,” Nature 505(7483), 382–385 (2014).
[Crossref]

Matteini, P.

P. Matteini, F. Ratto, F. Rossi, and R. Pini, “Emerging concepts of laser-activated nanoparticles for tissue bonding,” J. Biomed. Opt. 17(1), 010701 (2012).
[Crossref]

P. Matteini, F. Rossi, L. Menabuoni, and R. Pini, “Microscopic characterization of collagen modifications induced by low-temperature diode-laser welding of corneal tissue,” Lasers Surg. Med. 39(7), 597–604 (2007).
[Crossref]

Mazhorova, A.

R. Naccache, A. Mazhorova, M. Clerici, R. Piccoli, L. K. Khorashad, A. O. Govorov, L. Razzari, F. Vetrone, and R. Morandotti, “Terahertz Thermometry: Combining Hyperspectral Imaging and Temperature Mapping at Terahertz Frequencies,” Laser Photonics Rev. 11(5), 1600342 (2017).
[Crossref]

McNally, K. M.

Melis, M.

Menabuoni, L.

P. Matteini, F. Rossi, L. Menabuoni, and R. Pini, “Microscopic characterization of collagen modifications induced by low-temperature diode-laser welding of corneal tissue,” Lasers Surg. Med. 39(7), 597–604 (2007).
[Crossref]

Mohajerani, E.

M. A. Ansari, M. Erfanzadeh, and E. Mohajerani, “Mechanisms of laser-tissue interaction: II. tissue thermal properties,” Journal of Lasers in Medical Sciences 4, 99–106 (2013).

Morandotti, R.

H. Breitenborn, J. Dong, R. Piccoli, A. Bruhacs, L. V. Besteiro, A. Skripka, Z. M. Wang, A. O. Govorov, L. Razzari, F. Vetrone, R. Naccache, and R. Morandotti, “Quantifying the photothermal conversion efficiency of plasmonic nanoparticles by means of terahertz radiation,” APL Photonics 4(12), 126106 (2019).
[Crossref]

R. Naccache, A. Mazhorova, M. Clerici, R. Piccoli, L. K. Khorashad, A. O. Govorov, L. Razzari, F. Vetrone, and R. Morandotti, “Terahertz Thermometry: Combining Hyperspectral Imaging and Temperature Mapping at Terahertz Frequencies,” Laser Photonics Rev. 11(5), 1600342 (2017).
[Crossref]

Mourad, P. D.

Mushaben, M.

M. Mushaben, R. Urie, T. Flake, M. Jaffe, K. Rege, and J. Heys, “Spatiotemporal modeling of laser tissue soldering using photothermal nanocomposites,” Lasers Surg. Med. 50(2), 143–152 (2018).
[Crossref]

Naccache, R.

H. Breitenborn, J. Dong, R. Piccoli, A. Bruhacs, L. V. Besteiro, A. Skripka, Z. M. Wang, A. O. Govorov, L. Razzari, F. Vetrone, R. Naccache, and R. Morandotti, “Quantifying the photothermal conversion efficiency of plasmonic nanoparticles by means of terahertz radiation,” APL Photonics 4(12), 126106 (2019).
[Crossref]

R. Naccache, A. Mazhorova, M. Clerici, R. Piccoli, L. K. Khorashad, A. O. Govorov, L. Razzari, F. Vetrone, and R. Morandotti, “Terahertz Thermometry: Combining Hyperspectral Imaging and Temperature Mapping at Terahertz Frequencies,” Laser Photonics Rev. 11(5), 1600342 (2017).
[Crossref]

Nanda, A.

H. C. Huang, C. R. Walker, A. Nanda, and K. Rege, “Laser welding of ruptured intestinal tissue using plasmonic polypeptide nanocomposite solders,” ACS Nano 7(4), 2988–2998 (2013).
[Crossref]

Neel, V. A.

C. S. Joseph, R. Patel, V. A. Neel, R. H. Giles, and A. N. Yaroslavsky, “Imaging of ex vivo nonmelanoma skin cancers in the optical and terahertz spectral regions,” J. Biophotonics 7(5), 295–303 (2014).
[Crossref]

Neumayer, C.

W. Happak, C. Neumayer, G. Holak, R. Kuzbari, G. Burggasser, and H. Gruber, “Morphometric and functional results after CO2 laser welding of nerve coaptations,” Lasers Surg. Med. 27(1), 66–72 (2000).
[Crossref]

Nowroozi, B.

S. Selvin, S. Sung, N. Bajwa, A. D. Li, Z. D. Taylor, E. R. Brown, B. Nowroozi, W. S. Grundfest, S. X. Deng, J. Goell, J. Garritano, and S. Chantra, “THz Imaging System for in vivo Human Cornea,” IEEE Trans. Terahertz Sci. Technol. 8(1), 27–37 (2018).
[Crossref]

Odlyanitskiy, E. L.

Otberg, N.

U. Jacobi, M. Kaiser, R. Toll, S. Mangelsdorf, H. Audring, N. Otberg, W. Sterry, and J. Lademann, “Porcine ear skin: An in vitro model for human skin,” Skin Research and Technol. 13(1), 19–24 (2007).
[Crossref]

Parrish, J.

R. Anderson and J. Parrish, “Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,” Science 220(4596), 524–527 (1983).
[Crossref]

Patel, R.

C. S. Joseph, R. Patel, V. A. Neel, R. H. Giles, and A. N. Yaroslavsky, “Imaging of ex vivo nonmelanoma skin cancers in the optical and terahertz spectral regions,” J. Biophotonics 7(5), 295–303 (2014).
[Crossref]

Patrick Abergel, R.

R. A. White, R. Patrick Abergel, R. Lyons, S. R. Klein, G. Kopchok, R. M. Dwyer, and J. Uitto, “Biological effects of laser welding on vascular healing,” Lasers Surg. Med. 6(2), 137–141 (1986).
[Crossref]

Pepper, M.

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[Crossref]

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref]

Piccoli, R.

H. Breitenborn, J. Dong, R. Piccoli, A. Bruhacs, L. V. Besteiro, A. Skripka, Z. M. Wang, A. O. Govorov, L. Razzari, F. Vetrone, R. Naccache, and R. Morandotti, “Quantifying the photothermal conversion efficiency of plasmonic nanoparticles by means of terahertz radiation,” APL Photonics 4(12), 126106 (2019).
[Crossref]

R. Naccache, A. Mazhorova, M. Clerici, R. Piccoli, L. K. Khorashad, A. O. Govorov, L. Razzari, F. Vetrone, and R. Morandotti, “Terahertz Thermometry: Combining Hyperspectral Imaging and Temperature Mapping at Terahertz Frequencies,” Laser Photonics Rev. 11(5), 1600342 (2017).
[Crossref]

Pickwell, E.

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[Crossref]

Pini, R.

P. Matteini, F. Ratto, F. Rossi, and R. Pini, “Emerging concepts of laser-activated nanoparticles for tissue bonding,” J. Biomed. Opt. 17(1), 010701 (2012).
[Crossref]

P. Matteini, F. Rossi, L. Menabuoni, and R. Pini, “Microscopic characterization of collagen modifications induced by low-temperature diode-laser welding of corneal tissue,” Lasers Surg. Med. 39(7), 597–604 (2007).
[Crossref]

Prevoteau, A.

S. Rose, A. Prevoteau, P. Elzière, D. Hourdet, A. Marcellan, and L. Leibler, “Nanoparticle solutions as adhesives for gels and biological tissues,” Nature 505(7483), 382–385 (2014).
[Crossref]

Pye, R. J.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref]

Qi, H.

Y. Ren, H. Qi, Q. Chen, and L. Ruan, “Thermal dosage investigation for optimal temperature distribution in gold nanoparticle enhanced photothermal therapy,” Int. J. Heat Mass Transfer 106, 212–221 (2017).
[Crossref]

Quidant, R.

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

Ratto, F.

P. Matteini, F. Ratto, F. Rossi, and R. Pini, “Emerging concepts of laser-activated nanoparticles for tissue bonding,” J. Biomed. Opt. 17(1), 010701 (2012).
[Crossref]

Razzari, L.

H. Breitenborn, J. Dong, R. Piccoli, A. Bruhacs, L. V. Besteiro, A. Skripka, Z. M. Wang, A. O. Govorov, L. Razzari, F. Vetrone, R. Naccache, and R. Morandotti, “Quantifying the photothermal conversion efficiency of plasmonic nanoparticles by means of terahertz radiation,” APL Photonics 4(12), 126106 (2019).
[Crossref]

R. Naccache, A. Mazhorova, M. Clerici, R. Piccoli, L. K. Khorashad, A. O. Govorov, L. Razzari, F. Vetrone, and R. Morandotti, “Terahertz Thermometry: Combining Hyperspectral Imaging and Temperature Mapping at Terahertz Frequencies,” Laser Photonics Rev. 11(5), 1600342 (2017).
[Crossref]

Rege, K.

M. Mushaben, R. Urie, T. Flake, M. Jaffe, K. Rege, and J. Heys, “Spatiotemporal modeling of laser tissue soldering using photothermal nanocomposites,” Lasers Surg. Med. 50(2), 143–152 (2018).
[Crossref]

H. C. Huang, C. R. Walker, A. Nanda, and K. Rege, “Laser welding of ruptured intestinal tissue using plasmonic polypeptide nanocomposite solders,” ACS Nano 7(4), 2988–2998 (2013).
[Crossref]

Ren, Y.

Y. Ren, H. Qi, Q. Chen, and L. Ruan, “Thermal dosage investigation for optimal temperature distribution in gold nanoparticle enhanced photothermal therapy,” Int. J. Heat Mass Transfer 106, 212–221 (2017).
[Crossref]

Rojas-Landeros, S. C.

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref]

Rose, S.

S. Rose, A. Prevoteau, P. Elzière, D. Hourdet, A. Marcellan, and L. Leibler, “Nanoparticle solutions as adhesives for gels and biological tissues,” Nature 505(7483), 382–385 (2014).
[Crossref]

Rossi, F.

P. Matteini, F. Ratto, F. Rossi, and R. Pini, “Emerging concepts of laser-activated nanoparticles for tissue bonding,” J. Biomed. Opt. 17(1), 010701 (2012).
[Crossref]

P. Matteini, F. Rossi, L. Menabuoni, and R. Pini, “Microscopic characterization of collagen modifications induced by low-temperature diode-laser welding of corneal tissue,” Lasers Surg. Med. 39(7), 597–604 (2007).
[Crossref]

Ruan, L.

Y. Ren, H. Qi, Q. Chen, and L. Ruan, “Thermal dosage investigation for optimal temperature distribution in gold nanoparticle enhanced photothermal therapy,” Int. J. Heat Mass Transfer 106, 212–221 (2017).
[Crossref]

Salas-Gutierrez, I.

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref]

Sander, T.

R. Schober, F. Ulrich, T. Sander, H. Dürselen, and S. Hessel, “Laser-induced alteration of collagen substructure allows microsurgical tissue welding,” Science 232(4756), 1421–1422 (1986).
[Crossref]

Schelkanova, I. J.

Schober, R.

R. Schober, F. Ulrich, T. Sander, H. Dürselen, and S. Hessel, “Laser-induced alteration of collagen substructure allows microsurgical tissue welding,” Science 232(4756), 1421–1422 (1986).
[Crossref]

Selvin, S.

S. Selvin, S. Sung, N. Bajwa, A. D. Li, Z. D. Taylor, E. R. Brown, B. Nowroozi, W. S. Grundfest, S. X. Deng, J. Goell, J. Garritano, and S. Chantra, “THz Imaging System for in vivo Human Cornea,” IEEE Trans. Terahertz Sci. Technol. 8(1), 27–37 (2018).
[Crossref]

Singh, R. S.

P. Tewari, C. P. Kealey, D. B. Bennett, N. Bajwa, K. S. Barnett, R. S. Singh, M. O. Culjat, A. Stojadinovic, W. S. Grundfest, and Z. D. Taylor, “In vivo terahertz imaging of rat skin burns,” J. Biomed. Opt. 17(4), 040503 (2012).
[Crossref]

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J. P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: In vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref]

Skripka, A.

H. Breitenborn, J. Dong, R. Piccoli, A. Bruhacs, L. V. Besteiro, A. Skripka, Z. M. Wang, A. O. Govorov, L. Razzari, F. Vetrone, R. Naccache, and R. Morandotti, “Quantifying the photothermal conversion efficiency of plasmonic nanoparticles by means of terahertz radiation,” APL Photonics 4(12), 126106 (2019).
[Crossref]

Smolyanskaya, O. A.

Sorg, B. S.

Sterry, W.

U. Jacobi, M. Kaiser, R. Toll, S. Mangelsdorf, H. Audring, N. Otberg, W. Sterry, and J. Lademann, “Porcine ear skin: An in vitro model for human skin,” Skin Research and Technol. 13(1), 19–24 (2007).
[Crossref]

Stojadinovic, A.

P. Tewari, C. P. Kealey, D. B. Bennett, N. Bajwa, K. S. Barnett, R. S. Singh, M. O. Culjat, A. Stojadinovic, W. S. Grundfest, and Z. D. Taylor, “In vivo terahertz imaging of rat skin burns,” J. Biomed. Opt. 17(4), 040503 (2012).
[Crossref]

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J. P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: In vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref]

Sung, S.

S. Selvin, S. Sung, N. Bajwa, A. D. Li, Z. D. Taylor, E. R. Brown, B. Nowroozi, W. S. Grundfest, S. X. Deng, J. Goell, J. Garritano, and S. Chantra, “THz Imaging System for in vivo Human Cornea,” IEEE Trans. Terahertz Sci. Technol. 8(1), 27–37 (2018).
[Crossref]

Taylor, Z. D.

S. Selvin, S. Sung, N. Bajwa, A. D. Li, Z. D. Taylor, E. R. Brown, B. Nowroozi, W. S. Grundfest, S. X. Deng, J. Goell, J. Garritano, and S. Chantra, “THz Imaging System for in vivo Human Cornea,” IEEE Trans. Terahertz Sci. Technol. 8(1), 27–37 (2018).
[Crossref]

P. Tewari, C. P. Kealey, D. B. Bennett, N. Bajwa, K. S. Barnett, R. S. Singh, M. O. Culjat, A. Stojadinovic, W. S. Grundfest, and Z. D. Taylor, “In vivo terahertz imaging of rat skin burns,” J. Biomed. Opt. 17(4), 040503 (2012).
[Crossref]

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J. P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: In vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref]

D. B. Bennett, W. Li, Z. D. Taylor, W. S. Grundfest, and E. R. Brown, “Stratified media model for terahertz reflectometry of the skin,” IEEE Sens. J. 11(5), 1253–1262 (2011).
[Crossref]

Tcypkin, A. N.

Tewari, P.

P. Tewari, C. P. Kealey, D. B. Bennett, N. Bajwa, K. S. Barnett, R. S. Singh, M. O. Culjat, A. Stojadinovic, W. S. Grundfest, and Z. D. Taylor, “In vivo terahertz imaging of rat skin burns,” J. Biomed. Opt. 17(4), 040503 (2012).
[Crossref]

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J. P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: In vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref]

Toll, R.

U. Jacobi, M. Kaiser, R. Toll, S. Mangelsdorf, H. Audring, N. Otberg, W. Sterry, and J. Lademann, “Porcine ear skin: An in vitro model for human skin,” Skin Research and Technol. 13(1), 19–24 (2007).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Toropova, Y. G.

Treat, M. R.

L. S. Bass and M. R. Treat, “Laser tissue welding: A comprehensive review of current and future clinical applications,” Lasers Surg. Med. 17(4), 315–349 (1995).
[Crossref]

Tuchin, V. V.

Uitto, J.

R. A. White, R. Patrick Abergel, R. Lyons, S. R. Klein, G. Kopchok, R. M. Dwyer, and J. Uitto, “Biological effects of laser welding on vascular healing,” Lasers Surg. Med. 6(2), 137–141 (1986).
[Crossref]

Ulrich, F.

R. Schober, F. Ulrich, T. Sander, H. Dürselen, and S. Hessel, “Laser-induced alteration of collagen substructure allows microsurgical tissue welding,” Science 232(4756), 1421–1422 (1986).
[Crossref]

Urie, R.

M. Mushaben, R. Urie, T. Flake, M. Jaffe, K. Rege, and J. Heys, “Spatiotemporal modeling of laser tissue soldering using photothermal nanocomposites,” Lasers Surg. Med. 50(2), 143–152 (2018).
[Crossref]

Vetrone, F.

H. Breitenborn, J. Dong, R. Piccoli, A. Bruhacs, L. V. Besteiro, A. Skripka, Z. M. Wang, A. O. Govorov, L. Razzari, F. Vetrone, R. Naccache, and R. Morandotti, “Quantifying the photothermal conversion efficiency of plasmonic nanoparticles by means of terahertz radiation,” APL Photonics 4(12), 126106 (2019).
[Crossref]

R. Naccache, A. Mazhorova, M. Clerici, R. Piccoli, L. K. Khorashad, A. O. Govorov, L. Razzari, F. Vetrone, and R. Morandotti, “Terahertz Thermometry: Combining Hyperspectral Imaging and Temperature Mapping at Terahertz Frequencies,” Laser Photonics Rev. 11(5), 1600342 (2017).
[Crossref]

Walker, C. R.

H. C. Huang, C. R. Walker, A. Nanda, and K. Rege, “Laser welding of ruptured intestinal tissue using plasmonic polypeptide nanocomposite solders,” ACS Nano 7(4), 2988–2998 (2013).
[Crossref]

Walker, G. C.

Wallace, V. P.

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[Crossref]

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref]

Wang, Z. M.

H. Breitenborn, J. Dong, R. Piccoli, A. Bruhacs, L. V. Besteiro, A. Skripka, Z. M. Wang, A. O. Govorov, L. Razzari, F. Vetrone, R. Naccache, and R. Morandotti, “Quantifying the photothermal conversion efficiency of plasmonic nanoparticles by means of terahertz radiation,” APL Photonics 4(12), 126106 (2019).
[Crossref]

Welch, A. J.

White, R. A.

R. A. White, R. Patrick Abergel, R. Lyons, S. R. Klein, G. Kopchok, R. M. Dwyer, and J. Uitto, “Biological effects of laser welding on vascular healing,” Lasers Surg. Med. 6(2), 137–141 (1986).
[Crossref]

Winebrenner, D. P.

Woodward, R. M.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref]

Yaroslavsky, A. N.

C. S. Joseph, R. Patel, V. A. Neel, R. H. Giles, and A. N. Yaroslavsky, “Imaging of ex vivo nonmelanoma skin cancers in the optical and terahertz spectral regions,” J. Biophotonics 7(5), 295–303 (2014).
[Crossref]

Yun, S. H.

S. H. Yun and S. J. J. Kwok, “Light in diagnosis, therapy and surgery,” Nat. Biomed. Eng. 1(1), 0008 (2017).
[Crossref]

ACS Nano (1)

H. C. Huang, C. R. Walker, A. Nanda, and K. Rege, “Laser welding of ruptured intestinal tissue using plasmonic polypeptide nanocomposite solders,” ACS Nano 7(4), 2988–2998 (2013).
[Crossref]

Adv. Sci. (1)

W. He, J. Frueh, N. Hu, L. Liu, M. Gai, and Q. He, “Guidable Thermophoretic Janus Micromotors Containing Gold Nanocolorifiers for Infrared Laser Assisted Tissue Welding,” Adv. Sci. 3(12), 1600206 (2016).
[Crossref]

APL Photonics (1)

H. Breitenborn, J. Dong, R. Piccoli, A. Bruhacs, L. V. Besteiro, A. Skripka, Z. M. Wang, A. O. Govorov, L. Razzari, F. Vetrone, R. Naccache, and R. Morandotti, “Quantifying the photothermal conversion efficiency of plasmonic nanoparticles by means of terahertz radiation,” APL Photonics 4(12), 126106 (2019).
[Crossref]

Appl. Opt. (1)

Biomed. Opt. Express (3)

IEEE Sens. J. (1)

D. B. Bennett, W. Li, Z. D. Taylor, W. S. Grundfest, and E. R. Brown, “Stratified media model for terahertz reflectometry of the skin,” IEEE Sens. J. 11(5), 1253–1262 (2011).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (2)

S. Selvin, S. Sung, N. Bajwa, A. D. Li, Z. D. Taylor, E. R. Brown, B. Nowroozi, W. S. Grundfest, S. X. Deng, J. Goell, J. Garritano, and S. Chantra, “THz Imaging System for in vivo Human Cornea,” IEEE Trans. Terahertz Sci. Technol. 8(1), 27–37 (2018).
[Crossref]

Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J. P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: In vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1(1), 201–219 (2011).
[Crossref]

Int. J. Heat Mass Transfer (1)

Y. Ren, H. Qi, Q. Chen, and L. Ruan, “Thermal dosage investigation for optimal temperature distribution in gold nanoparticle enhanced photothermal therapy,” Int. J. Heat Mass Transfer 106, 212–221 (2017).
[Crossref]

J. Biomed. Opt. (2)

P. Tewari, C. P. Kealey, D. B. Bennett, N. Bajwa, K. S. Barnett, R. S. Singh, M. O. Culjat, A. Stojadinovic, W. S. Grundfest, and Z. D. Taylor, “In vivo terahertz imaging of rat skin burns,” J. Biomed. Opt. 17(4), 040503 (2012).
[Crossref]

P. Matteini, F. Ratto, F. Rossi, and R. Pini, “Emerging concepts of laser-activated nanoparticles for tissue bonding,” J. Biomed. Opt. 17(1), 010701 (2012).
[Crossref]

J. Biophotonics (1)

C. S. Joseph, R. Patel, V. A. Neel, R. H. Giles, and A. N. Yaroslavsky, “Imaging of ex vivo nonmelanoma skin cancers in the optical and terahertz spectral regions,” J. Biophotonics 7(5), 295–303 (2014).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (1)

J. Dong, A. Locquet, and D. S. Citrin, “Enhanced Terahertz Imaging of Small Forced Delamination in Woven Glass Fibre-reinforced Composites with Wavelet De-noising,” J. Infrared, Millimeter, Terahertz Waves 37(3), 289–301 (2016).
[Crossref]

J. Mol. Struct. (1)

X. Li, X. Fu, J. Liu, Y. Du, and Z. Hong, “Investigation of thermal denaturation of solid bovine serum albumin by terahertz dielectric spectroscopy,” J. Mol. Struct. 1049, 441–445 (2013).
[Crossref]

Journal of Lasers in Medical Sciences (1)

M. A. Ansari, M. Erfanzadeh, and E. Mohajerani, “Mechanisms of laser-tissue interaction: II. tissue thermal properties,” Journal of Lasers in Medical Sciences 4, 99–106 (2013).

Laser Photonics Rev. (3)

R. Naccache, A. Mazhorova, M. Clerici, R. Piccoli, L. K. Khorashad, A. O. Govorov, L. Razzari, F. Vetrone, and R. Morandotti, “Terahertz Thermometry: Combining Hyperspectral Imaging and Temperature Mapping at Terahertz Frequencies,” Laser Photonics Rev. 11(5), 1600342 (2017).
[Crossref]

P. Jepsen, D. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

Lasers Surg. Med. (5)

L. S. Bass and M. R. Treat, “Laser tissue welding: A comprehensive review of current and future clinical applications,” Lasers Surg. Med. 17(4), 315–349 (1995).
[Crossref]

P. Matteini, F. Rossi, L. Menabuoni, and R. Pini, “Microscopic characterization of collagen modifications induced by low-temperature diode-laser welding of corneal tissue,” Lasers Surg. Med. 39(7), 597–604 (2007).
[Crossref]

R. A. White, R. Patrick Abergel, R. Lyons, S. R. Klein, G. Kopchok, R. M. Dwyer, and J. Uitto, “Biological effects of laser welding on vascular healing,” Lasers Surg. Med. 6(2), 137–141 (1986).
[Crossref]

W. Happak, C. Neumayer, G. Holak, R. Kuzbari, G. Burggasser, and H. Gruber, “Morphometric and functional results after CO2 laser welding of nerve coaptations,” Lasers Surg. Med. 27(1), 66–72 (2000).
[Crossref]

M. Mushaben, R. Urie, T. Flake, M. Jaffe, K. Rege, and J. Heys, “Spatiotemporal modeling of laser tissue soldering using photothermal nanocomposites,” Lasers Surg. Med. 50(2), 143–152 (2018).
[Crossref]

Nat. Biomed. Eng. (1)

S. H. Yun and S. J. J. Kwok, “Light in diagnosis, therapy and surgery,” Nat. Biomed. Eng. 1(1), 0008 (2017).
[Crossref]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Nature (1)

S. Rose, A. Prevoteau, P. Elzière, D. Hourdet, A. Marcellan, and L. Leibler, “Nanoparticle solutions as adhesives for gels and biological tissues,” Nature 505(7483), 382–385 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Med. Biol. (3)

J. Jiao and Z. Guo, “Thermal interaction of short-pulsed laser focused beams with skin tissues,” Phys. Med. Biol. 54(13), 4225–4241 (2009).
[Crossref]

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[Crossref]

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref]

Sci. Rep. (1)

G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept,” Sci. Rep. 7(1), 42124 (2017).
[Crossref]

Science (2)

R. Anderson and J. Parrish, “Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,” Science 220(4596), 524–527 (1983).
[Crossref]

R. Schober, F. Ulrich, T. Sander, H. Dürselen, and S. Hessel, “Laser-induced alteration of collagen substructure allows microsurgical tissue welding,” Science 232(4756), 1421–1422 (1986).
[Crossref]

Skin Research and Technol. (1)

U. Jacobi, M. Kaiser, R. Toll, S. Mangelsdorf, H. Audring, N. Otberg, W. Sterry, and J. Lademann, “Porcine ear skin: An in vitro model for human skin,” Skin Research and Technol. 13(1), 19–24 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic showing the range of simultaneous photothermal reactions during nanoparticle-assisted laser tissue soldering.
Fig. 2.
Fig. 2. Spatio-temporal heat transfer model of laser-tissue interaction. (a) Schematic diagram of the finite element model of nanoparticle-assisted laser-tissue interaction. (b) Simulated temperature transients at the top center of the skin, with and without modelling the tissue damage. The inset shows the zoom-in of the temperature transient without the application of the solder gel. (c) Simulated three-dimensional temperature distribution in skin with the application of the solder gel after a laser exposure time of 250 s. Temperature contours of 60 $^{\circ }$C and 100 $^{\circ }$C are highlighted in white and black, respectively. (d) Spatial temperature distribution along the depth direction at the center of the skin sample (at $t$ = 250 s). (e) Estimated damage distribution in skin with the application of the solder gel after a laser exposure time of 250 s.
Fig. 3.
Fig. 3. Dynamic THz single-point measurements. (a) Experimental THz-TDS setup in reflection geometry. The 786 nm NIR beam is used to plasmonically heat the GNR-embedded solder gel and the porcine skin sample. (b) Digital photograph of the porcine skin sample with the GNR-embedded solder gel applied on the surface. (c) Digital photograph of the porcine skin sample after plasmonic heating for 250 s. Here, carbonization on the surface is observed. (d) The 250 reflected THz signals recorded (one trace per second) during the laser illumination. (e) The 250 deconvolved signals achieved after applying the FWDD algorithm to the raw THz signals in (d).
Fig. 4.
Fig. 4. Typical THz raw and deconvolved signals at specific time $t$ from the dynamic THz single-point measurement. (a1-a8) correspond to the raw THz signals recorded at $t$ = 1 s, 20 s, 40 s, 50 s, 70 s, 160 s, 200 s and 250 s, respectively. (b1-b8) correspond to the deconvolved signals after applying the FWDD algorithm to the raw THz signals ranging from (a1) to (a8). Note that the deconvolved signals are normalized to their maximum peaks.
Fig. 5.
Fig. 5. THz imaging of porcine skin samples after nanoparticle-assisted laser soldering. (a1-a3) Digital photographs, (b1-b3) THz in-plane images, (c1-c3) THz cross-sectional images, and (d1-d3) binary THz cross-sectional images of the porcine skin samples after laser soldering with intensities of 200 mW/mm$^2$, 300 mW/mm$^2$, and 400 mW/mm$^2$, respectively.
Fig. 6.
Fig. 6. THz three-dimensional images of the porcine skin samples after nanoparticle-assisted laser soldering with intensities of (a) 200 mW/mm$^2$, (b) 300 mW/mm$^2$, and (c) 400 mW/mm$^2$. The contrast mechanism is the estimated depth of the thermal damage induced by laser soldering.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ρ C p T t + ( k T ) = Q e x t ,
Q l a s e r = I ( r , z ) z | a b s = μ a b s I ( r , z ) ,
I ( r , z ) = I 0 ( r ) e ( μ a b s + μ s c a t ) z ,
Q c o n v = h ( T T 0 ) ,
Q r a d = ϵ σ ( T 4 T 0 4 ) ,
d α d t = 1 τ d a m a g e θ ( T 100 C ) , θ ( x ) = { 0 , x < 0 1 , x 0 ,
Q d a m a g e = L h ρ d α d t θ ( α ) θ ( 1 α ) .
h ( t ) = F F T 1 [ F F T ( f ( t ) ) × F F T ( r ( t ) ) F F T ( i ( t ) ) ]   ,
F ( ω ) = { e i ω t 0 c o s 2 ( ω 4 f c ) , | ω | < 2 π f c 0 , | ω | 2 π f c   ,

Metrics