Abstract

An ultralow level light detection module, the time-correlated photon counter, is proposed and evaluated for fluorescence analysis. The time-correlated photon counter employs a silicon photomultiplier as a photon counting sensor in conjunction with a Poisson statistics algorithm and a double time windows technique, and therefore it can accurately count the photon number. The time-correlated photon counter is compatible with the time-correlated single photon counting technique and can record the arrival time of very faint light signals. This low-cost and compact instrument was used to analyze the intensity and lifetime of fluorescein isothiocyanate; a limit of detection of 16 pg/ml with a large linear dynamic range from 2.86 pg/ml to 0.5 µg/ml was obtained, and the lifetime of fluorescein isothiocyanate was measured to be 3.758 ns, which agrees well with the results of a sophisticated commercial fluorescence analysis instrument. The time-correlated photon counter may be useful in applications such as point-of-care testing.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Increasing the collection efficiency of time-correlated single-photon counting with single-photon avalanche diodes using immersion lenses

Charles Pichette, Andrea Giudice, Simon Thibault, and Yves Bérubé-Lauzière
Appl. Opt. 55(33) 9555-9562 (2016)

Global analysis of time correlated single photon counting FRET-FLIM data

Hernan E. Grecco, Pedro Roda-Navarro, and Peter J. Verveer
Opt. Express 17(8) 6493-6508 (2009)

Multifocal multiphoton excitation and time correlated single photon counting detection for 3-D fluorescence lifetime imaging

S. Kumar, C. Dunsby, P. A. A. De Beule, D. M. Owen, U. Anand, P. M. P. Lanigan, R. K. P. Benninger, D. M. Davis, M. A. A. Neil, P. Anand, C. Benham, A. Naylor, and P. M. W. French
Opt. Express 15(20) 12548-12561 (2007)

References

  • View by:
  • |
  • |
  • |

  1. D. Renker, “New trends on photodetectors,” Nucl. Instrum. Methods Phys. Res., Sect. A 571(1-2), 1–6 (2007).
    [Crossref]
  2. E. Garutti, “Silicon photomultipliers for high energy physics detectors,” J. Instrum. 6(10), C10003 (2011).
    [Crossref]
  3. S. I. Kwon, J. S. Lee, H. S. Yoon, M. Ito, G. B. Ko, J. Y. Choi, S.-H. Lee, I. C. Song, J. M. Jeong, D. S. Lee, and S. J. Hong, “Development of Small-Animal PET Prototype Using Silicon Photomultiplier (SiPM): Initial Results of Phantom and Animal Imaging Studies,” J. Nucl. Med. 52(4), 572–579 (2011).
    [Crossref]
  4. J. Riu, M. Sicard, S. Royo, and A. Comerón, ““Silicon photomultiplier detector for atmospheric lidar applications,” Opt. Lett. 37(7), 1229–1231 (2012).
    [Crossref]
  5. M. Caccia, L. Nardo, R. Santoro, and D. Schaffhauser, “Silicon Photomultipliers and SPAD imagers in biophotonics: Advances and perspectives,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (2018).
  6. H. Liu, K. Liang, B. Li, Y. Pen, L. Dai, R. Yang, and D. Han, “High-Density Silicon Photomultipliers with Epitaxial Quenching Resistors at Novel Device Laboratory,” in Proceedings of the 5th International Workshop on New Photon-Detectors (PD18), JPS Conference Proceedings No. 27 (Journal of the Physical Society of Japan, 2019), Vol. 27.
  7. M. F. Santangelo, E. L. Sciuto, A. C. Busacca, S. Petralia, S. Conoci, and S. Libertino, “SiPM as miniaturised optical biosensor for DNA-microarray applications,” Sensing and Bio-Sensing Research 6, 95–98 (2015).
    [Crossref]
  8. M. F. Santangelo, S. Libertino, A. P. F. Turner, D. Filippini, and W. C. Mak, “Integrating printed microfluidics with silicon photomultipliers for miniaturised and highly sensitive ATP bioluminescence detection,” Biosens. Bioelectron. 99, 464–470 (2018).
    [Crossref]
  9. M. F. Santangelo, E. L. Sciuto, S. A. Lombardo, A. C. Busacca, S. Petralia, S. Conoci, and S. Libertino, “Si Photomultipliers for Bio-Sensing Applications,” IEEE J. Sel. Top. Quantum Electron. 22(3), 335–341 (2016).
    [Crossref]
  10. M. Baszczyk, P. Dorosz, L. Mik, W. Kucewicz, W. Reczynski, and M. Sapor, “A readout circuit dedicated for the detection of chemiluminescence using a silicon photomultiplier,” J. Instrum. 13(5), P05010 (2018).
    [Crossref]
  11. Ł. Mik, W. Kucewicz, J. Barszcz, M. Sapor, and S. Głąb, “Silicon photomultiplier as fluorescence light detector,” in Proceedings of the 18th International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2011 (2011), pp. 663–666.
  12. “Low intensity fluorescence light measurements using Silicon Photomultiplier with dedicated front-end ASIC,” in 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC) (IEEE, 2013), pp. 1–3.
  13. C. Zhang, L. Zhang, R. Yang, K. Liang, and D. Han, “Time-Correlated Raman and Fluorescence Spectroscopy Based on a Silicon Photomultiplier and Time-Correlated Single Photon Counting Technique,” Appl. Spectrosc. 67(2), 136–140 (2013).
    [Crossref]
  14. B. Li, Q. Miao, S. Wang, D. Hui, T. Zhao, K. Liang, R. Yang, and D. Han, “Time-Correlated Photon Counting (TCPC) technique based on a photon-number-resolving photodetector,” in M. A. Itzler and J. C. Campbell, eds. (2016), p. 98580L.
  15. A. N. Otte, J. Hose, R. Mirzoyan, A. Romaszkiewicz, M. Teshima, and A. Thea, “A measurement of the photon detection efficiency of silicon photomultipliers,” Nucl. Instrum. Methods Phys. Res., Sect. A 567(1), 360–363 (2006).
    [Crossref]
  16. J. Liu, L. Dai, B. Zhang, K. Liang, R. Yang, and D. Han, “Ultra-Low Level Light Detection Based on the Poisson Statistics Algorithm and a Double Time Windows Technique With Silicon Photomultiplier,” IEEE J. Electron Devices Soc. 7, 722–727 (2019).
    [Crossref]
  17. F. M. D. Rocca, J. Nedbal, D. Tyndall, N. Krstajić, D. D.-U. Li, S. M. Ameer-Beg, and R. K. Henderson, “Real-time fluorescence lifetime actuation for cell sorting using a CMOS SPAD silicon photomultiplier,” Opt. Lett. 41(4), 673–676 (2016).
    [Crossref]
  18. D. V. O’Connor, W. R. Ware, and J. C. Andre, “Deconvolution of fluorescence decay curves. A critical comparison of techniques,” J. Phys. Chem. 83(10), 1333–1343 (1979).
    [Crossref]
  19. D. F. Eaton, “International union of pure and applied chemistry organic chemistry division commission on photochemistry,” J. Photochem. Photobiol., B 2(4), 523–531 (1988).
    [Crossref]
  20. A. G. Ryder, S. Power, T. J. Glynn, and J. J. Morrison, “Time-domain measurement of fluorescence lifetime variation with pH,” in Biomarkers and Biological Spectral Imaging (International Society for Optics and Photonics, 2001), Vol. 4259, pp. 102–110.
  21. D. Tyndall, B. R. Rae, D. D. Li, J. Arlt, A. Johnston, J. A. Richardson, and R. K. Henderson, “A High-Throughput Time-Resolved Mini-Silicon Photomultiplier With Embedded Fluorescence Lifetime Estimation in 0.13µm CMOS,” IEEE Trans. Biomed. Circuits Syst. 6(6), 562–570 (2012).
    [Crossref]
  22. M. Liu, M. Jia, H. Pan, L. Li, M. Chang, H. Ren, F. Argoul, S. Zhang, and J. Xu, “Instrument Response Standard in Time-Resolved Fluorescence Spectroscopy at Visible Wavelength: Quenched Fluorescein Sodium,” Appl. Spectrosc. 68(5), 577–583 (2014).
    [Crossref]

2019 (1)

J. Liu, L. Dai, B. Zhang, K. Liang, R. Yang, and D. Han, “Ultra-Low Level Light Detection Based on the Poisson Statistics Algorithm and a Double Time Windows Technique With Silicon Photomultiplier,” IEEE J. Electron Devices Soc. 7, 722–727 (2019).
[Crossref]

2018 (2)

M. F. Santangelo, S. Libertino, A. P. F. Turner, D. Filippini, and W. C. Mak, “Integrating printed microfluidics with silicon photomultipliers for miniaturised and highly sensitive ATP bioluminescence detection,” Biosens. Bioelectron. 99, 464–470 (2018).
[Crossref]

M. Baszczyk, P. Dorosz, L. Mik, W. Kucewicz, W. Reczynski, and M. Sapor, “A readout circuit dedicated for the detection of chemiluminescence using a silicon photomultiplier,” J. Instrum. 13(5), P05010 (2018).
[Crossref]

2016 (2)

M. F. Santangelo, E. L. Sciuto, S. A. Lombardo, A. C. Busacca, S. Petralia, S. Conoci, and S. Libertino, “Si Photomultipliers for Bio-Sensing Applications,” IEEE J. Sel. Top. Quantum Electron. 22(3), 335–341 (2016).
[Crossref]

F. M. D. Rocca, J. Nedbal, D. Tyndall, N. Krstajić, D. D.-U. Li, S. M. Ameer-Beg, and R. K. Henderson, “Real-time fluorescence lifetime actuation for cell sorting using a CMOS SPAD silicon photomultiplier,” Opt. Lett. 41(4), 673–676 (2016).
[Crossref]

2015 (1)

M. F. Santangelo, E. L. Sciuto, A. C. Busacca, S. Petralia, S. Conoci, and S. Libertino, “SiPM as miniaturised optical biosensor for DNA-microarray applications,” Sensing and Bio-Sensing Research 6, 95–98 (2015).
[Crossref]

2014 (1)

2013 (1)

2012 (2)

J. Riu, M. Sicard, S. Royo, and A. Comerón, ““Silicon photomultiplier detector for atmospheric lidar applications,” Opt. Lett. 37(7), 1229–1231 (2012).
[Crossref]

D. Tyndall, B. R. Rae, D. D. Li, J. Arlt, A. Johnston, J. A. Richardson, and R. K. Henderson, “A High-Throughput Time-Resolved Mini-Silicon Photomultiplier With Embedded Fluorescence Lifetime Estimation in 0.13µm CMOS,” IEEE Trans. Biomed. Circuits Syst. 6(6), 562–570 (2012).
[Crossref]

2011 (2)

E. Garutti, “Silicon photomultipliers for high energy physics detectors,” J. Instrum. 6(10), C10003 (2011).
[Crossref]

S. I. Kwon, J. S. Lee, H. S. Yoon, M. Ito, G. B. Ko, J. Y. Choi, S.-H. Lee, I. C. Song, J. M. Jeong, D. S. Lee, and S. J. Hong, “Development of Small-Animal PET Prototype Using Silicon Photomultiplier (SiPM): Initial Results of Phantom and Animal Imaging Studies,” J. Nucl. Med. 52(4), 572–579 (2011).
[Crossref]

2007 (1)

D. Renker, “New trends on photodetectors,” Nucl. Instrum. Methods Phys. Res., Sect. A 571(1-2), 1–6 (2007).
[Crossref]

2006 (1)

A. N. Otte, J. Hose, R. Mirzoyan, A. Romaszkiewicz, M. Teshima, and A. Thea, “A measurement of the photon detection efficiency of silicon photomultipliers,” Nucl. Instrum. Methods Phys. Res., Sect. A 567(1), 360–363 (2006).
[Crossref]

1988 (1)

D. F. Eaton, “International union of pure and applied chemistry organic chemistry division commission on photochemistry,” J. Photochem. Photobiol., B 2(4), 523–531 (1988).
[Crossref]

1979 (1)

D. V. O’Connor, W. R. Ware, and J. C. Andre, “Deconvolution of fluorescence decay curves. A critical comparison of techniques,” J. Phys. Chem. 83(10), 1333–1343 (1979).
[Crossref]

Ameer-Beg, S. M.

Andre, J. C.

D. V. O’Connor, W. R. Ware, and J. C. Andre, “Deconvolution of fluorescence decay curves. A critical comparison of techniques,” J. Phys. Chem. 83(10), 1333–1343 (1979).
[Crossref]

Argoul, F.

Arlt, J.

D. Tyndall, B. R. Rae, D. D. Li, J. Arlt, A. Johnston, J. A. Richardson, and R. K. Henderson, “A High-Throughput Time-Resolved Mini-Silicon Photomultiplier With Embedded Fluorescence Lifetime Estimation in 0.13µm CMOS,” IEEE Trans. Biomed. Circuits Syst. 6(6), 562–570 (2012).
[Crossref]

Barszcz, J.

Ł. Mik, W. Kucewicz, J. Barszcz, M. Sapor, and S. Głąb, “Silicon photomultiplier as fluorescence light detector,” in Proceedings of the 18th International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2011 (2011), pp. 663–666.

Baszczyk, M.

M. Baszczyk, P. Dorosz, L. Mik, W. Kucewicz, W. Reczynski, and M. Sapor, “A readout circuit dedicated for the detection of chemiluminescence using a silicon photomultiplier,” J. Instrum. 13(5), P05010 (2018).
[Crossref]

Busacca, A. C.

M. F. Santangelo, E. L. Sciuto, S. A. Lombardo, A. C. Busacca, S. Petralia, S. Conoci, and S. Libertino, “Si Photomultipliers for Bio-Sensing Applications,” IEEE J. Sel. Top. Quantum Electron. 22(3), 335–341 (2016).
[Crossref]

M. F. Santangelo, E. L. Sciuto, A. C. Busacca, S. Petralia, S. Conoci, and S. Libertino, “SiPM as miniaturised optical biosensor for DNA-microarray applications,” Sensing and Bio-Sensing Research 6, 95–98 (2015).
[Crossref]

Caccia, M.

M. Caccia, L. Nardo, R. Santoro, and D. Schaffhauser, “Silicon Photomultipliers and SPAD imagers in biophotonics: Advances and perspectives,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (2018).

Chang, M.

Choi, J. Y.

S. I. Kwon, J. S. Lee, H. S. Yoon, M. Ito, G. B. Ko, J. Y. Choi, S.-H. Lee, I. C. Song, J. M. Jeong, D. S. Lee, and S. J. Hong, “Development of Small-Animal PET Prototype Using Silicon Photomultiplier (SiPM): Initial Results of Phantom and Animal Imaging Studies,” J. Nucl. Med. 52(4), 572–579 (2011).
[Crossref]

Comerón, A.

Conoci, S.

M. F. Santangelo, E. L. Sciuto, S. A. Lombardo, A. C. Busacca, S. Petralia, S. Conoci, and S. Libertino, “Si Photomultipliers for Bio-Sensing Applications,” IEEE J. Sel. Top. Quantum Electron. 22(3), 335–341 (2016).
[Crossref]

M. F. Santangelo, E. L. Sciuto, A. C. Busacca, S. Petralia, S. Conoci, and S. Libertino, “SiPM as miniaturised optical biosensor for DNA-microarray applications,” Sensing and Bio-Sensing Research 6, 95–98 (2015).
[Crossref]

Dai, L.

J. Liu, L. Dai, B. Zhang, K. Liang, R. Yang, and D. Han, “Ultra-Low Level Light Detection Based on the Poisson Statistics Algorithm and a Double Time Windows Technique With Silicon Photomultiplier,” IEEE J. Electron Devices Soc. 7, 722–727 (2019).
[Crossref]

H. Liu, K. Liang, B. Li, Y. Pen, L. Dai, R. Yang, and D. Han, “High-Density Silicon Photomultipliers with Epitaxial Quenching Resistors at Novel Device Laboratory,” in Proceedings of the 5th International Workshop on New Photon-Detectors (PD18), JPS Conference Proceedings No. 27 (Journal of the Physical Society of Japan, 2019), Vol. 27.

Dorosz, P.

M. Baszczyk, P. Dorosz, L. Mik, W. Kucewicz, W. Reczynski, and M. Sapor, “A readout circuit dedicated for the detection of chemiluminescence using a silicon photomultiplier,” J. Instrum. 13(5), P05010 (2018).
[Crossref]

Eaton, D. F.

D. F. Eaton, “International union of pure and applied chemistry organic chemistry division commission on photochemistry,” J. Photochem. Photobiol., B 2(4), 523–531 (1988).
[Crossref]

Filippini, D.

M. F. Santangelo, S. Libertino, A. P. F. Turner, D. Filippini, and W. C. Mak, “Integrating printed microfluidics with silicon photomultipliers for miniaturised and highly sensitive ATP bioluminescence detection,” Biosens. Bioelectron. 99, 464–470 (2018).
[Crossref]

Garutti, E.

E. Garutti, “Silicon photomultipliers for high energy physics detectors,” J. Instrum. 6(10), C10003 (2011).
[Crossref]

Glab, S.

Ł. Mik, W. Kucewicz, J. Barszcz, M. Sapor, and S. Głąb, “Silicon photomultiplier as fluorescence light detector,” in Proceedings of the 18th International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2011 (2011), pp. 663–666.

Glynn, T. J.

A. G. Ryder, S. Power, T. J. Glynn, and J. J. Morrison, “Time-domain measurement of fluorescence lifetime variation with pH,” in Biomarkers and Biological Spectral Imaging (International Society for Optics and Photonics, 2001), Vol. 4259, pp. 102–110.

Han, D.

J. Liu, L. Dai, B. Zhang, K. Liang, R. Yang, and D. Han, “Ultra-Low Level Light Detection Based on the Poisson Statistics Algorithm and a Double Time Windows Technique With Silicon Photomultiplier,” IEEE J. Electron Devices Soc. 7, 722–727 (2019).
[Crossref]

C. Zhang, L. Zhang, R. Yang, K. Liang, and D. Han, “Time-Correlated Raman and Fluorescence Spectroscopy Based on a Silicon Photomultiplier and Time-Correlated Single Photon Counting Technique,” Appl. Spectrosc. 67(2), 136–140 (2013).
[Crossref]

B. Li, Q. Miao, S. Wang, D. Hui, T. Zhao, K. Liang, R. Yang, and D. Han, “Time-Correlated Photon Counting (TCPC) technique based on a photon-number-resolving photodetector,” in M. A. Itzler and J. C. Campbell, eds. (2016), p. 98580L.

H. Liu, K. Liang, B. Li, Y. Pen, L. Dai, R. Yang, and D. Han, “High-Density Silicon Photomultipliers with Epitaxial Quenching Resistors at Novel Device Laboratory,” in Proceedings of the 5th International Workshop on New Photon-Detectors (PD18), JPS Conference Proceedings No. 27 (Journal of the Physical Society of Japan, 2019), Vol. 27.

Henderson, R. K.

F. M. D. Rocca, J. Nedbal, D. Tyndall, N. Krstajić, D. D.-U. Li, S. M. Ameer-Beg, and R. K. Henderson, “Real-time fluorescence lifetime actuation for cell sorting using a CMOS SPAD silicon photomultiplier,” Opt. Lett. 41(4), 673–676 (2016).
[Crossref]

D. Tyndall, B. R. Rae, D. D. Li, J. Arlt, A. Johnston, J. A. Richardson, and R. K. Henderson, “A High-Throughput Time-Resolved Mini-Silicon Photomultiplier With Embedded Fluorescence Lifetime Estimation in 0.13µm CMOS,” IEEE Trans. Biomed. Circuits Syst. 6(6), 562–570 (2012).
[Crossref]

Hong, S. J.

S. I. Kwon, J. S. Lee, H. S. Yoon, M. Ito, G. B. Ko, J. Y. Choi, S.-H. Lee, I. C. Song, J. M. Jeong, D. S. Lee, and S. J. Hong, “Development of Small-Animal PET Prototype Using Silicon Photomultiplier (SiPM): Initial Results of Phantom and Animal Imaging Studies,” J. Nucl. Med. 52(4), 572–579 (2011).
[Crossref]

Hose, J.

A. N. Otte, J. Hose, R. Mirzoyan, A. Romaszkiewicz, M. Teshima, and A. Thea, “A measurement of the photon detection efficiency of silicon photomultipliers,” Nucl. Instrum. Methods Phys. Res., Sect. A 567(1), 360–363 (2006).
[Crossref]

Hui, D.

B. Li, Q. Miao, S. Wang, D. Hui, T. Zhao, K. Liang, R. Yang, and D. Han, “Time-Correlated Photon Counting (TCPC) technique based on a photon-number-resolving photodetector,” in M. A. Itzler and J. C. Campbell, eds. (2016), p. 98580L.

Ito, M.

S. I. Kwon, J. S. Lee, H. S. Yoon, M. Ito, G. B. Ko, J. Y. Choi, S.-H. Lee, I. C. Song, J. M. Jeong, D. S. Lee, and S. J. Hong, “Development of Small-Animal PET Prototype Using Silicon Photomultiplier (SiPM): Initial Results of Phantom and Animal Imaging Studies,” J. Nucl. Med. 52(4), 572–579 (2011).
[Crossref]

Jeong, J. M.

S. I. Kwon, J. S. Lee, H. S. Yoon, M. Ito, G. B. Ko, J. Y. Choi, S.-H. Lee, I. C. Song, J. M. Jeong, D. S. Lee, and S. J. Hong, “Development of Small-Animal PET Prototype Using Silicon Photomultiplier (SiPM): Initial Results of Phantom and Animal Imaging Studies,” J. Nucl. Med. 52(4), 572–579 (2011).
[Crossref]

Jia, M.

Johnston, A.

D. Tyndall, B. R. Rae, D. D. Li, J. Arlt, A. Johnston, J. A. Richardson, and R. K. Henderson, “A High-Throughput Time-Resolved Mini-Silicon Photomultiplier With Embedded Fluorescence Lifetime Estimation in 0.13µm CMOS,” IEEE Trans. Biomed. Circuits Syst. 6(6), 562–570 (2012).
[Crossref]

Ko, G. B.

S. I. Kwon, J. S. Lee, H. S. Yoon, M. Ito, G. B. Ko, J. Y. Choi, S.-H. Lee, I. C. Song, J. M. Jeong, D. S. Lee, and S. J. Hong, “Development of Small-Animal PET Prototype Using Silicon Photomultiplier (SiPM): Initial Results of Phantom and Animal Imaging Studies,” J. Nucl. Med. 52(4), 572–579 (2011).
[Crossref]

Krstajic, N.

Kucewicz, W.

M. Baszczyk, P. Dorosz, L. Mik, W. Kucewicz, W. Reczynski, and M. Sapor, “A readout circuit dedicated for the detection of chemiluminescence using a silicon photomultiplier,” J. Instrum. 13(5), P05010 (2018).
[Crossref]

Ł. Mik, W. Kucewicz, J. Barszcz, M. Sapor, and S. Głąb, “Silicon photomultiplier as fluorescence light detector,” in Proceedings of the 18th International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2011 (2011), pp. 663–666.

Kwon, S. I.

S. I. Kwon, J. S. Lee, H. S. Yoon, M. Ito, G. B. Ko, J. Y. Choi, S.-H. Lee, I. C. Song, J. M. Jeong, D. S. Lee, and S. J. Hong, “Development of Small-Animal PET Prototype Using Silicon Photomultiplier (SiPM): Initial Results of Phantom and Animal Imaging Studies,” J. Nucl. Med. 52(4), 572–579 (2011).
[Crossref]

Lee, D. S.

S. I. Kwon, J. S. Lee, H. S. Yoon, M. Ito, G. B. Ko, J. Y. Choi, S.-H. Lee, I. C. Song, J. M. Jeong, D. S. Lee, and S. J. Hong, “Development of Small-Animal PET Prototype Using Silicon Photomultiplier (SiPM): Initial Results of Phantom and Animal Imaging Studies,” J. Nucl. Med. 52(4), 572–579 (2011).
[Crossref]

Lee, J. S.

S. I. Kwon, J. S. Lee, H. S. Yoon, M. Ito, G. B. Ko, J. Y. Choi, S.-H. Lee, I. C. Song, J. M. Jeong, D. S. Lee, and S. J. Hong, “Development of Small-Animal PET Prototype Using Silicon Photomultiplier (SiPM): Initial Results of Phantom and Animal Imaging Studies,” J. Nucl. Med. 52(4), 572–579 (2011).
[Crossref]

Lee, S.-H.

S. I. Kwon, J. S. Lee, H. S. Yoon, M. Ito, G. B. Ko, J. Y. Choi, S.-H. Lee, I. C. Song, J. M. Jeong, D. S. Lee, and S. J. Hong, “Development of Small-Animal PET Prototype Using Silicon Photomultiplier (SiPM): Initial Results of Phantom and Animal Imaging Studies,” J. Nucl. Med. 52(4), 572–579 (2011).
[Crossref]

Li, B.

B. Li, Q. Miao, S. Wang, D. Hui, T. Zhao, K. Liang, R. Yang, and D. Han, “Time-Correlated Photon Counting (TCPC) technique based on a photon-number-resolving photodetector,” in M. A. Itzler and J. C. Campbell, eds. (2016), p. 98580L.

H. Liu, K. Liang, B. Li, Y. Pen, L. Dai, R. Yang, and D. Han, “High-Density Silicon Photomultipliers with Epitaxial Quenching Resistors at Novel Device Laboratory,” in Proceedings of the 5th International Workshop on New Photon-Detectors (PD18), JPS Conference Proceedings No. 27 (Journal of the Physical Society of Japan, 2019), Vol. 27.

Li, D. D.

D. Tyndall, B. R. Rae, D. D. Li, J. Arlt, A. Johnston, J. A. Richardson, and R. K. Henderson, “A High-Throughput Time-Resolved Mini-Silicon Photomultiplier With Embedded Fluorescence Lifetime Estimation in 0.13µm CMOS,” IEEE Trans. Biomed. Circuits Syst. 6(6), 562–570 (2012).
[Crossref]

Li, D. D.-U.

Li, L.

Liang, K.

J. Liu, L. Dai, B. Zhang, K. Liang, R. Yang, and D. Han, “Ultra-Low Level Light Detection Based on the Poisson Statistics Algorithm and a Double Time Windows Technique With Silicon Photomultiplier,” IEEE J. Electron Devices Soc. 7, 722–727 (2019).
[Crossref]

C. Zhang, L. Zhang, R. Yang, K. Liang, and D. Han, “Time-Correlated Raman and Fluorescence Spectroscopy Based on a Silicon Photomultiplier and Time-Correlated Single Photon Counting Technique,” Appl. Spectrosc. 67(2), 136–140 (2013).
[Crossref]

H. Liu, K. Liang, B. Li, Y. Pen, L. Dai, R. Yang, and D. Han, “High-Density Silicon Photomultipliers with Epitaxial Quenching Resistors at Novel Device Laboratory,” in Proceedings of the 5th International Workshop on New Photon-Detectors (PD18), JPS Conference Proceedings No. 27 (Journal of the Physical Society of Japan, 2019), Vol. 27.

B. Li, Q. Miao, S. Wang, D. Hui, T. Zhao, K. Liang, R. Yang, and D. Han, “Time-Correlated Photon Counting (TCPC) technique based on a photon-number-resolving photodetector,” in M. A. Itzler and J. C. Campbell, eds. (2016), p. 98580L.

Libertino, S.

M. F. Santangelo, S. Libertino, A. P. F. Turner, D. Filippini, and W. C. Mak, “Integrating printed microfluidics with silicon photomultipliers for miniaturised and highly sensitive ATP bioluminescence detection,” Biosens. Bioelectron. 99, 464–470 (2018).
[Crossref]

M. F. Santangelo, E. L. Sciuto, S. A. Lombardo, A. C. Busacca, S. Petralia, S. Conoci, and S. Libertino, “Si Photomultipliers for Bio-Sensing Applications,” IEEE J. Sel. Top. Quantum Electron. 22(3), 335–341 (2016).
[Crossref]

M. F. Santangelo, E. L. Sciuto, A. C. Busacca, S. Petralia, S. Conoci, and S. Libertino, “SiPM as miniaturised optical biosensor for DNA-microarray applications,” Sensing and Bio-Sensing Research 6, 95–98 (2015).
[Crossref]

Liu, H.

H. Liu, K. Liang, B. Li, Y. Pen, L. Dai, R. Yang, and D. Han, “High-Density Silicon Photomultipliers with Epitaxial Quenching Resistors at Novel Device Laboratory,” in Proceedings of the 5th International Workshop on New Photon-Detectors (PD18), JPS Conference Proceedings No. 27 (Journal of the Physical Society of Japan, 2019), Vol. 27.

Liu, J.

J. Liu, L. Dai, B. Zhang, K. Liang, R. Yang, and D. Han, “Ultra-Low Level Light Detection Based on the Poisson Statistics Algorithm and a Double Time Windows Technique With Silicon Photomultiplier,” IEEE J. Electron Devices Soc. 7, 722–727 (2019).
[Crossref]

Liu, M.

Lombardo, S. A.

M. F. Santangelo, E. L. Sciuto, S. A. Lombardo, A. C. Busacca, S. Petralia, S. Conoci, and S. Libertino, “Si Photomultipliers for Bio-Sensing Applications,” IEEE J. Sel. Top. Quantum Electron. 22(3), 335–341 (2016).
[Crossref]

Mak, W. C.

M. F. Santangelo, S. Libertino, A. P. F. Turner, D. Filippini, and W. C. Mak, “Integrating printed microfluidics with silicon photomultipliers for miniaturised and highly sensitive ATP bioluminescence detection,” Biosens. Bioelectron. 99, 464–470 (2018).
[Crossref]

Miao, Q.

B. Li, Q. Miao, S. Wang, D. Hui, T. Zhao, K. Liang, R. Yang, and D. Han, “Time-Correlated Photon Counting (TCPC) technique based on a photon-number-resolving photodetector,” in M. A. Itzler and J. C. Campbell, eds. (2016), p. 98580L.

Mik, L.

M. Baszczyk, P. Dorosz, L. Mik, W. Kucewicz, W. Reczynski, and M. Sapor, “A readout circuit dedicated for the detection of chemiluminescence using a silicon photomultiplier,” J. Instrum. 13(5), P05010 (2018).
[Crossref]

Ł. Mik, W. Kucewicz, J. Barszcz, M. Sapor, and S. Głąb, “Silicon photomultiplier as fluorescence light detector,” in Proceedings of the 18th International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2011 (2011), pp. 663–666.

Mirzoyan, R.

A. N. Otte, J. Hose, R. Mirzoyan, A. Romaszkiewicz, M. Teshima, and A. Thea, “A measurement of the photon detection efficiency of silicon photomultipliers,” Nucl. Instrum. Methods Phys. Res., Sect. A 567(1), 360–363 (2006).
[Crossref]

Morrison, J. J.

A. G. Ryder, S. Power, T. J. Glynn, and J. J. Morrison, “Time-domain measurement of fluorescence lifetime variation with pH,” in Biomarkers and Biological Spectral Imaging (International Society for Optics and Photonics, 2001), Vol. 4259, pp. 102–110.

Nardo, L.

M. Caccia, L. Nardo, R. Santoro, and D. Schaffhauser, “Silicon Photomultipliers and SPAD imagers in biophotonics: Advances and perspectives,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (2018).

Nedbal, J.

O’Connor, D. V.

D. V. O’Connor, W. R. Ware, and J. C. Andre, “Deconvolution of fluorescence decay curves. A critical comparison of techniques,” J. Phys. Chem. 83(10), 1333–1343 (1979).
[Crossref]

Otte, A. N.

A. N. Otte, J. Hose, R. Mirzoyan, A. Romaszkiewicz, M. Teshima, and A. Thea, “A measurement of the photon detection efficiency of silicon photomultipliers,” Nucl. Instrum. Methods Phys. Res., Sect. A 567(1), 360–363 (2006).
[Crossref]

Pan, H.

Pen, Y.

H. Liu, K. Liang, B. Li, Y. Pen, L. Dai, R. Yang, and D. Han, “High-Density Silicon Photomultipliers with Epitaxial Quenching Resistors at Novel Device Laboratory,” in Proceedings of the 5th International Workshop on New Photon-Detectors (PD18), JPS Conference Proceedings No. 27 (Journal of the Physical Society of Japan, 2019), Vol. 27.

Petralia, S.

M. F. Santangelo, E. L. Sciuto, S. A. Lombardo, A. C. Busacca, S. Petralia, S. Conoci, and S. Libertino, “Si Photomultipliers for Bio-Sensing Applications,” IEEE J. Sel. Top. Quantum Electron. 22(3), 335–341 (2016).
[Crossref]

M. F. Santangelo, E. L. Sciuto, A. C. Busacca, S. Petralia, S. Conoci, and S. Libertino, “SiPM as miniaturised optical biosensor for DNA-microarray applications,” Sensing and Bio-Sensing Research 6, 95–98 (2015).
[Crossref]

Power, S.

A. G. Ryder, S. Power, T. J. Glynn, and J. J. Morrison, “Time-domain measurement of fluorescence lifetime variation with pH,” in Biomarkers and Biological Spectral Imaging (International Society for Optics and Photonics, 2001), Vol. 4259, pp. 102–110.

Rae, B. R.

D. Tyndall, B. R. Rae, D. D. Li, J. Arlt, A. Johnston, J. A. Richardson, and R. K. Henderson, “A High-Throughput Time-Resolved Mini-Silicon Photomultiplier With Embedded Fluorescence Lifetime Estimation in 0.13µm CMOS,” IEEE Trans. Biomed. Circuits Syst. 6(6), 562–570 (2012).
[Crossref]

Reczynski, W.

M. Baszczyk, P. Dorosz, L. Mik, W. Kucewicz, W. Reczynski, and M. Sapor, “A readout circuit dedicated for the detection of chemiluminescence using a silicon photomultiplier,” J. Instrum. 13(5), P05010 (2018).
[Crossref]

Ren, H.

Renker, D.

D. Renker, “New trends on photodetectors,” Nucl. Instrum. Methods Phys. Res., Sect. A 571(1-2), 1–6 (2007).
[Crossref]

Richardson, J. A.

D. Tyndall, B. R. Rae, D. D. Li, J. Arlt, A. Johnston, J. A. Richardson, and R. K. Henderson, “A High-Throughput Time-Resolved Mini-Silicon Photomultiplier With Embedded Fluorescence Lifetime Estimation in 0.13µm CMOS,” IEEE Trans. Biomed. Circuits Syst. 6(6), 562–570 (2012).
[Crossref]

Riu, J.

Rocca, F. M. D.

Romaszkiewicz, A.

A. N. Otte, J. Hose, R. Mirzoyan, A. Romaszkiewicz, M. Teshima, and A. Thea, “A measurement of the photon detection efficiency of silicon photomultipliers,” Nucl. Instrum. Methods Phys. Res., Sect. A 567(1), 360–363 (2006).
[Crossref]

Royo, S.

Ryder, A. G.

A. G. Ryder, S. Power, T. J. Glynn, and J. J. Morrison, “Time-domain measurement of fluorescence lifetime variation with pH,” in Biomarkers and Biological Spectral Imaging (International Society for Optics and Photonics, 2001), Vol. 4259, pp. 102–110.

Santangelo, M. F.

M. F. Santangelo, S. Libertino, A. P. F. Turner, D. Filippini, and W. C. Mak, “Integrating printed microfluidics with silicon photomultipliers for miniaturised and highly sensitive ATP bioluminescence detection,” Biosens. Bioelectron. 99, 464–470 (2018).
[Crossref]

M. F. Santangelo, E. L. Sciuto, S. A. Lombardo, A. C. Busacca, S. Petralia, S. Conoci, and S. Libertino, “Si Photomultipliers for Bio-Sensing Applications,” IEEE J. Sel. Top. Quantum Electron. 22(3), 335–341 (2016).
[Crossref]

M. F. Santangelo, E. L. Sciuto, A. C. Busacca, S. Petralia, S. Conoci, and S. Libertino, “SiPM as miniaturised optical biosensor for DNA-microarray applications,” Sensing and Bio-Sensing Research 6, 95–98 (2015).
[Crossref]

Santoro, R.

M. Caccia, L. Nardo, R. Santoro, and D. Schaffhauser, “Silicon Photomultipliers and SPAD imagers in biophotonics: Advances and perspectives,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (2018).

Sapor, M.

M. Baszczyk, P. Dorosz, L. Mik, W. Kucewicz, W. Reczynski, and M. Sapor, “A readout circuit dedicated for the detection of chemiluminescence using a silicon photomultiplier,” J. Instrum. 13(5), P05010 (2018).
[Crossref]

Ł. Mik, W. Kucewicz, J. Barszcz, M. Sapor, and S. Głąb, “Silicon photomultiplier as fluorescence light detector,” in Proceedings of the 18th International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2011 (2011), pp. 663–666.

Schaffhauser, D.

M. Caccia, L. Nardo, R. Santoro, and D. Schaffhauser, “Silicon Photomultipliers and SPAD imagers in biophotonics: Advances and perspectives,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (2018).

Sciuto, E. L.

M. F. Santangelo, E. L. Sciuto, S. A. Lombardo, A. C. Busacca, S. Petralia, S. Conoci, and S. Libertino, “Si Photomultipliers for Bio-Sensing Applications,” IEEE J. Sel. Top. Quantum Electron. 22(3), 335–341 (2016).
[Crossref]

M. F. Santangelo, E. L. Sciuto, A. C. Busacca, S. Petralia, S. Conoci, and S. Libertino, “SiPM as miniaturised optical biosensor for DNA-microarray applications,” Sensing and Bio-Sensing Research 6, 95–98 (2015).
[Crossref]

Sicard, M.

Song, I. C.

S. I. Kwon, J. S. Lee, H. S. Yoon, M. Ito, G. B. Ko, J. Y. Choi, S.-H. Lee, I. C. Song, J. M. Jeong, D. S. Lee, and S. J. Hong, “Development of Small-Animal PET Prototype Using Silicon Photomultiplier (SiPM): Initial Results of Phantom and Animal Imaging Studies,” J. Nucl. Med. 52(4), 572–579 (2011).
[Crossref]

Teshima, M.

A. N. Otte, J. Hose, R. Mirzoyan, A. Romaszkiewicz, M. Teshima, and A. Thea, “A measurement of the photon detection efficiency of silicon photomultipliers,” Nucl. Instrum. Methods Phys. Res., Sect. A 567(1), 360–363 (2006).
[Crossref]

Thea, A.

A. N. Otte, J. Hose, R. Mirzoyan, A. Romaszkiewicz, M. Teshima, and A. Thea, “A measurement of the photon detection efficiency of silicon photomultipliers,” Nucl. Instrum. Methods Phys. Res., Sect. A 567(1), 360–363 (2006).
[Crossref]

Turner, A. P. F.

M. F. Santangelo, S. Libertino, A. P. F. Turner, D. Filippini, and W. C. Mak, “Integrating printed microfluidics with silicon photomultipliers for miniaturised and highly sensitive ATP bioluminescence detection,” Biosens. Bioelectron. 99, 464–470 (2018).
[Crossref]

Tyndall, D.

F. M. D. Rocca, J. Nedbal, D. Tyndall, N. Krstajić, D. D.-U. Li, S. M. Ameer-Beg, and R. K. Henderson, “Real-time fluorescence lifetime actuation for cell sorting using a CMOS SPAD silicon photomultiplier,” Opt. Lett. 41(4), 673–676 (2016).
[Crossref]

D. Tyndall, B. R. Rae, D. D. Li, J. Arlt, A. Johnston, J. A. Richardson, and R. K. Henderson, “A High-Throughput Time-Resolved Mini-Silicon Photomultiplier With Embedded Fluorescence Lifetime Estimation in 0.13µm CMOS,” IEEE Trans. Biomed. Circuits Syst. 6(6), 562–570 (2012).
[Crossref]

Wang, S.

B. Li, Q. Miao, S. Wang, D. Hui, T. Zhao, K. Liang, R. Yang, and D. Han, “Time-Correlated Photon Counting (TCPC) technique based on a photon-number-resolving photodetector,” in M. A. Itzler and J. C. Campbell, eds. (2016), p. 98580L.

Ware, W. R.

D. V. O’Connor, W. R. Ware, and J. C. Andre, “Deconvolution of fluorescence decay curves. A critical comparison of techniques,” J. Phys. Chem. 83(10), 1333–1343 (1979).
[Crossref]

Xu, J.

Yang, R.

J. Liu, L. Dai, B. Zhang, K. Liang, R. Yang, and D. Han, “Ultra-Low Level Light Detection Based on the Poisson Statistics Algorithm and a Double Time Windows Technique With Silicon Photomultiplier,” IEEE J. Electron Devices Soc. 7, 722–727 (2019).
[Crossref]

C. Zhang, L. Zhang, R. Yang, K. Liang, and D. Han, “Time-Correlated Raman and Fluorescence Spectroscopy Based on a Silicon Photomultiplier and Time-Correlated Single Photon Counting Technique,” Appl. Spectrosc. 67(2), 136–140 (2013).
[Crossref]

B. Li, Q. Miao, S. Wang, D. Hui, T. Zhao, K. Liang, R. Yang, and D. Han, “Time-Correlated Photon Counting (TCPC) technique based on a photon-number-resolving photodetector,” in M. A. Itzler and J. C. Campbell, eds. (2016), p. 98580L.

H. Liu, K. Liang, B. Li, Y. Pen, L. Dai, R. Yang, and D. Han, “High-Density Silicon Photomultipliers with Epitaxial Quenching Resistors at Novel Device Laboratory,” in Proceedings of the 5th International Workshop on New Photon-Detectors (PD18), JPS Conference Proceedings No. 27 (Journal of the Physical Society of Japan, 2019), Vol. 27.

Yoon, H. S.

S. I. Kwon, J. S. Lee, H. S. Yoon, M. Ito, G. B. Ko, J. Y. Choi, S.-H. Lee, I. C. Song, J. M. Jeong, D. S. Lee, and S. J. Hong, “Development of Small-Animal PET Prototype Using Silicon Photomultiplier (SiPM): Initial Results of Phantom and Animal Imaging Studies,” J. Nucl. Med. 52(4), 572–579 (2011).
[Crossref]

Zhang, B.

J. Liu, L. Dai, B. Zhang, K. Liang, R. Yang, and D. Han, “Ultra-Low Level Light Detection Based on the Poisson Statistics Algorithm and a Double Time Windows Technique With Silicon Photomultiplier,” IEEE J. Electron Devices Soc. 7, 722–727 (2019).
[Crossref]

Zhang, C.

Zhang, L.

Zhang, S.

Zhao, T.

B. Li, Q. Miao, S. Wang, D. Hui, T. Zhao, K. Liang, R. Yang, and D. Han, “Time-Correlated Photon Counting (TCPC) technique based on a photon-number-resolving photodetector,” in M. A. Itzler and J. C. Campbell, eds. (2016), p. 98580L.

Appl. Spectrosc. (2)

Biosens. Bioelectron. (1)

M. F. Santangelo, S. Libertino, A. P. F. Turner, D. Filippini, and W. C. Mak, “Integrating printed microfluidics with silicon photomultipliers for miniaturised and highly sensitive ATP bioluminescence detection,” Biosens. Bioelectron. 99, 464–470 (2018).
[Crossref]

IEEE J. Electron Devices Soc. (1)

J. Liu, L. Dai, B. Zhang, K. Liang, R. Yang, and D. Han, “Ultra-Low Level Light Detection Based on the Poisson Statistics Algorithm and a Double Time Windows Technique With Silicon Photomultiplier,” IEEE J. Electron Devices Soc. 7, 722–727 (2019).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. F. Santangelo, E. L. Sciuto, S. A. Lombardo, A. C. Busacca, S. Petralia, S. Conoci, and S. Libertino, “Si Photomultipliers for Bio-Sensing Applications,” IEEE J. Sel. Top. Quantum Electron. 22(3), 335–341 (2016).
[Crossref]

IEEE Trans. Biomed. Circuits Syst. (1)

D. Tyndall, B. R. Rae, D. D. Li, J. Arlt, A. Johnston, J. A. Richardson, and R. K. Henderson, “A High-Throughput Time-Resolved Mini-Silicon Photomultiplier With Embedded Fluorescence Lifetime Estimation in 0.13µm CMOS,” IEEE Trans. Biomed. Circuits Syst. 6(6), 562–570 (2012).
[Crossref]

J. Instrum. (2)

E. Garutti, “Silicon photomultipliers for high energy physics detectors,” J. Instrum. 6(10), C10003 (2011).
[Crossref]

M. Baszczyk, P. Dorosz, L. Mik, W. Kucewicz, W. Reczynski, and M. Sapor, “A readout circuit dedicated for the detection of chemiluminescence using a silicon photomultiplier,” J. Instrum. 13(5), P05010 (2018).
[Crossref]

J. Nucl. Med. (1)

S. I. Kwon, J. S. Lee, H. S. Yoon, M. Ito, G. B. Ko, J. Y. Choi, S.-H. Lee, I. C. Song, J. M. Jeong, D. S. Lee, and S. J. Hong, “Development of Small-Animal PET Prototype Using Silicon Photomultiplier (SiPM): Initial Results of Phantom and Animal Imaging Studies,” J. Nucl. Med. 52(4), 572–579 (2011).
[Crossref]

J. Photochem. Photobiol., B (1)

D. F. Eaton, “International union of pure and applied chemistry organic chemistry division commission on photochemistry,” J. Photochem. Photobiol., B 2(4), 523–531 (1988).
[Crossref]

J. Phys. Chem. (1)

D. V. O’Connor, W. R. Ware, and J. C. Andre, “Deconvolution of fluorescence decay curves. A critical comparison of techniques,” J. Phys. Chem. 83(10), 1333–1343 (1979).
[Crossref]

Nucl. Instrum. Methods Phys. Res., Sect. A (2)

D. Renker, “New trends on photodetectors,” Nucl. Instrum. Methods Phys. Res., Sect. A 571(1-2), 1–6 (2007).
[Crossref]

A. N. Otte, J. Hose, R. Mirzoyan, A. Romaszkiewicz, M. Teshima, and A. Thea, “A measurement of the photon detection efficiency of silicon photomultipliers,” Nucl. Instrum. Methods Phys. Res., Sect. A 567(1), 360–363 (2006).
[Crossref]

Opt. Lett. (2)

Sensing and Bio-Sensing Research (1)

M. F. Santangelo, E. L. Sciuto, A. C. Busacca, S. Petralia, S. Conoci, and S. Libertino, “SiPM as miniaturised optical biosensor for DNA-microarray applications,” Sensing and Bio-Sensing Research 6, 95–98 (2015).
[Crossref]

Other (6)

M. Caccia, L. Nardo, R. Santoro, and D. Schaffhauser, “Silicon Photomultipliers and SPAD imagers in biophotonics: Advances and perspectives,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (2018).

H. Liu, K. Liang, B. Li, Y. Pen, L. Dai, R. Yang, and D. Han, “High-Density Silicon Photomultipliers with Epitaxial Quenching Resistors at Novel Device Laboratory,” in Proceedings of the 5th International Workshop on New Photon-Detectors (PD18), JPS Conference Proceedings No. 27 (Journal of the Physical Society of Japan, 2019), Vol. 27.

Ł. Mik, W. Kucewicz, J. Barszcz, M. Sapor, and S. Głąb, “Silicon photomultiplier as fluorescence light detector,” in Proceedings of the 18th International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2011 (2011), pp. 663–666.

“Low intensity fluorescence light measurements using Silicon Photomultiplier with dedicated front-end ASIC,” in 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC) (IEEE, 2013), pp. 1–3.

A. G. Ryder, S. Power, T. J. Glynn, and J. J. Morrison, “Time-domain measurement of fluorescence lifetime variation with pH,” in Biomarkers and Biological Spectral Imaging (International Society for Optics and Photonics, 2001), Vol. 4259, pp. 102–110.

B. Li, Q. Miao, S. Wang, D. Hui, T. Zhao, K. Liang, R. Yang, and D. Han, “Time-Correlated Photon Counting (TCPC) technique based on a photon-number-resolving photodetector,” in M. A. Itzler and J. C. Campbell, eds. (2016), p. 98580L.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic diagram for the TCPC module.
Fig. 2.
Fig. 2. Schematic setup for the fluorescence analysis (left) and a photo of the TCPC module (right).
Fig. 3.
Fig. 3. DCR at different temperatures.
Fig. 4.
Fig. 4. MPEN at different FITC concentrations.
Fig. 5.
Fig. 5. Measured FLT results for FITC using TCPC (left) and FLS980 (right).

Tables (1)

Tables Icon

Table 1. Comparison of Fluorescence Detection Results

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

μ min = 2 Δ t D C R f
μ max ln f
R ( t ) = i α i e t / τ i
F ( t ) = R ( t ) h ( t )