Abstract

Pulsed lasers in photoacoustic tomography systems are expensive, which limit their use to a few clinics and small animal labs. We present a method to realize tomographic ultrasound and photoacoustic imaging using a commercial LED-based photoacoustic and ultrasound system. We present two illumination configurations using LED array units and an optimal number of angular views for tomographic reconstruction. The proposed method can be a cost-effective solution for applications demanding tomographic imaging and can be easily integrated into conventional linear array-based ultrasound systems. We present a potential application for finger joint imaging in vivo, which can be used for point-of-care rheumatoid arthritis diagnosis and monitoring.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dictionary learning technique enhances signal in LED-based photoacoustic imaging

Parastoo Farnia, Ebrahim Najafzadeh, Ali Hariri, Saeedeh Navaei Lavasani, Bahador Makkiabadi, Alireza Ahmadian, and Jesse V. Jokerst
Biomed. Opt. Express 11(5) 2533-2547 (2020)

Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging

K. Daoudi, P.J. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen
Opt. Express 22(21) 26365-26374 (2014)

High frame rate photoacoustic imaging at 7000 frames per second using clinical ultrasound system

Kathyayini Sivasubramanian and Manojit Pramanik
Biomed. Opt. Express 7(2) 312-323 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
    [Crossref]
  2. J. Yao and L. V. Wang, “Recent progress in photoacoustic molecular imaging,” Curr. Opin. Chem. Biol. 45, 104–112 (2018).
    [Crossref]
  3. S. Manohar and M. Dantuma, “Current and future trends in photoacoustic breast imaging,” Photoacoustics 16, 100134 (2019).
    [Crossref]
  4. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
    [Crossref]
  5. V. Ntziachristos and D. Razansky, “Molecular imaging by means of multispectral optoacoustic tomography (msot),” Chem. Rev. 110(5), 2783–2794 (2010).
    [Crossref]
  6. K. J. Francis and S. Manohar, “Photoacoustic imaging in percutaneous radiofrequency ablation: device guidance and ablation visualization,” Phys. Med. Biol. 64(18), 184001 (2019).
    [Crossref]
  7. K. J. Francis, E. Rascevska, and S. Manohar, “Photoacoustic imaging assisted radiofrequency ablation: Illumination strategies and prospects,” in TENCON 2019-2019 IEEE Region 10 Conference (TENCON) (IEEE, 2019), pp. 118–122.
  8. I. Steinberg, D. M. Huland, O. Vermesh, H. E. Frostig, W. S. Tummers, and S. S. Gambhir, “Photoacoustic clinical imaging,” Photoacoustics 14, 77–98 (2019).
    [Crossref]
  9. M. Oeri, W. Bost, S. Tretbar, and M. Fournelle, “Calibrated linear array-driven photoacoustic/ultrasound tomography,” Ultrasound Med. Biol. 42(11), 2697–2707 (2016).
    [Crossref]
  10. G. Li, L. Li, L. Zhu, J. Xia, and L. V. Wang, “Multiview hilbert transformation for full-view photoacoustic computed tomography using a linear array,” J. Biomed. Opt. 20(6), 066010 (2015).
    [Crossref]
  11. R. G. Kolkman, P. J. Brands, W. Steenbergen, and T. G. van Leeuwen, “Real-time in vivo photoacoustic and ultrasound imaging,” J. Biomed. Opt. 13(5), 050510 (2008).
    [Crossref]
  12. E. Mercep, G. Jeng, S. Morscher, P.-C. Li, and D. Razansky, “Hybrid optoacoustic tomography and pulse-echo ultrasonography using concave arrays,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 62(9), 1651–1661 (2015).
    [Crossref]
  13. K. J. Francis, B. Chinni, S. S. Channappayya, R. Pachamuthu, V. S. Dogra, and N. Rao, “Characterization of lens based photoacoustic imaging system,” Photoacoustics 8, 37–47 (2017).
    [Crossref]
  14. A. Fatima, K. Kratkiewicz, R. Manwar, M. Zafar, R. Zhang, B. Huang, N. Dadashzadesh, J. Xia, and M. Avanaki, “Review of cost reduction methods in photoacoustic computed tomography,” Photoacoustics 15, 100137 (2019).
    [Crossref]
  15. Y. Zhu, G. Xu, J. Yuan, J. Jo, G. Gandikota, H. Demirci, T. Agano, N. Sato, Y. Shigeta, and X. Wang, “Light emitting diodes based photoacoustic imaging and potential clinical applications,” Sci. Rep. 8(1), 9885 (2018).
    [Crossref]
  16. W. Xia, M. Kuniyil Ajith Singh, E. Maneas, N. Sato, Y. Shigeta, T. Agano, S. Ourselin, S. J West, and A. E Desjardins, “Handheld real-time led-based photoacoustic and ultrasound imaging system for accurate visualization of clinical metal needles and superficial vasculature to guide minimally invasive procedures,” Sensors 18(5), 1394 (2018).
    [Crossref]
  17. E. Maneas, R. Aughwane, N. Huynh, W. Xia, O. J. Ansari, and J. Deprest, “Photoacoustic imaging of the human placental vasculature,” Journal of biophotonics (2019).
  18. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
    [Crossref]
  19. C. Lutzweiler and D. Razansky, “Optoacoustic imaging and tomography: reconstruction approaches and outstanding challenges in image performance and quantification,” Sensors 13(6), 7345–7384 (2013).
    [Crossref]
  20. A. A. Oraevsky, V. A. Andreev, A. A. Karabutov, and R. O. Esenaliev, “Two-dimensional optoacoustic tomography: transducer array and image reconstruction algorithm,” in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, vol. 3601 (International Society for Optics and Photonics, 1999), pp. 256–267.
  21. R. A. Kruger, W. L. Kiser Jr, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography using a conventional linear transducer array,” Med. Phys. 30(5), 856–860 (2003).
    [Crossref]
  22. D. Yang, D. Xing, S. Yang, and L. Xiang, “Fast full-view photoacoustic imaging by combined scanning with a linear transducer array,” Opt. Express 15(23), 15566–15575 (2007).
    [Crossref]
  23. X. Lin, J. Yu, N. Feng, and M. Sun, “Synthetic aperture-based linear-array photoacoustic tomography considering the aperture orientation effect,” J. Innovative Opt. Health Sci. 11(04), 1850015 (2018).
    [Crossref]
  24. H. J. Kang, M. A. L. Bell, X. Guo, and E. M. Boctor, “Spatial angular compounding of photoacoustic images,” IEEE Trans. Med. Imaging 35(8), 1845–1855 (2016).
    [Crossref]
  25. K. J. Francis, B. Chinni, S. S. Channappayya, R. Pachamuthu, V. S. Dogra, and N. Rao, “Multiview spatial compounding using lens-based photoacoustic imaging system,” Photoacoustics 13, 85–94 (2019).
    [Crossref]
  26. J. Gateau, M. Á. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: Whole-body tomographic system for small animals,” Med. Phys. 40(1), 013302 (2012).
    [Crossref]
  27. M. Omar, J. Rebling, K. Wicker, T. Schmitt-Manderbach, M. Schwarz, J. Gateau, H. López-Schier, T. Mappes, and V. Ntziachristos, “Optical imaging of post-embryonic zebrafish using multi orientation raster scan optoacoustic mesoscopy,” Light: Sci. Appl. 6(1), e16186 (2017).
    [Crossref]
  28. C. Liu, B. Zhang, C. Xue, W. Zhang, G. Zhang, and Y. Cheng, “Multi-perspective ultrasound imaging technology of the breast with cylindrical motion of linear arrays,” Appl. Sci. 9(3), 419 (2019).
    [Crossref]
  29. S. Agrawal, C. Fadden, A. Dangi, and S.-R. Kothapalli, “Light-emitting-diode-based multispectral photoacoustic computed tomography system,” Sensors 19(22), 4861 (2019).
    [Crossref]
  30. P. J. van den Berg, K. Daoudi, H. J. B. Moens, and W. Steenbergen, “Feasibility of photoacoustic/ultrasound imaging of synovitis in finger joints using a point-of-care system,” Photoacoustics 8, 8–14 (2017).
    [Crossref]
  31. P. van Es, S. K. Biswas, H. J. B. Moens, W. Steenbergen, and S. Manohar, “Initial results of finger imaging using photoacoustic computed tomography,” J. Biomed. Opt. 19(6), 060501 (2014).
    [Crossref]
  32. T. J. Allen and P. C. Beard, “High power visible light emitting diodes as pulsed excitation sources for biomedical photoacoustics,” Biomed. Opt. Express 7(4), 1260–1270 (2016).
    [Crossref]
  33. J. Leskinen, A. Pulkkinen, J. Tick, and T. Tarvainen, “Photoacoustic tomography setup using led illumination,” in Opto-Acoustic Methods and Applications in Biophotonics IV, vol. 11077 (International Society for Optics and Photonics, 2019), p. 110770Q.
  34. Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31(4), 724–733 (2004).
    [Crossref]
  35. B. E. Treeby and B. T. Cox, “k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
    [Crossref]
  36. M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Problems 23(6), S51–S63 (2007).
    [Crossref]
  37. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. on Image Process. 13(4), 600–612 (2004).
    [Crossref]
  38. L. Yu, F. Nina-Paravecino, D. R. Kaeli, and Q. Fang, “Scalable and massively parallel monte carlo photon transport simulations for heterogeneous computing platforms,” J. Biomed. Opt. 23(1), 010504 (2018).
    [Crossref]
  39. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Medicine & Biol. 58(11), R37–R61 (2013).
    [Crossref]
  40. J. Staal, M. D. Abràmoff, M. Niemeijer, M. A. Viergever, and B. Van Ginneken, “Ridge-based vessel segmentation in color images of the retina,” IEEE Trans. Med. Imaging 23(4), 501–509 (2004).
    [Crossref]
  41. Y. E. Boink, M. J. Lagerwerf, W. Steenbergen, S. A. Van Gils, S. Manohar, and C. Brune, “A framework for directional and higher-order reconstruction in photoacoustic tomography,” Phys. Medicine & Biol. 63(4), 045018 (2018).
    [Crossref]
  42. J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
    [Crossref]
  43. S. Jeon, E.-Y. Park, W. Choi, R. Managuli, K. jong Lee, and C. Kim, “Real-time delay-multiply-and-sum beamforming with coherence factor for in vivo clinical photoacoustic imaging of humans,” Photoacoustics 15, 100136 (2019).
    [Crossref]
  44. J. Gamelin, A. Maurudis, A. Aguirre, F. Huang, P. Guo, L. V. Wang, and Q. Zhu, “A real-time photoacoustic tomography system for small animals,” Opt. Express 17(13), 10489–10498 (2009).
    [Crossref]

2019 (8)

S. Manohar and M. Dantuma, “Current and future trends in photoacoustic breast imaging,” Photoacoustics 16, 100134 (2019).
[Crossref]

K. J. Francis and S. Manohar, “Photoacoustic imaging in percutaneous radiofrequency ablation: device guidance and ablation visualization,” Phys. Med. Biol. 64(18), 184001 (2019).
[Crossref]

I. Steinberg, D. M. Huland, O. Vermesh, H. E. Frostig, W. S. Tummers, and S. S. Gambhir, “Photoacoustic clinical imaging,” Photoacoustics 14, 77–98 (2019).
[Crossref]

A. Fatima, K. Kratkiewicz, R. Manwar, M. Zafar, R. Zhang, B. Huang, N. Dadashzadesh, J. Xia, and M. Avanaki, “Review of cost reduction methods in photoacoustic computed tomography,” Photoacoustics 15, 100137 (2019).
[Crossref]

K. J. Francis, B. Chinni, S. S. Channappayya, R. Pachamuthu, V. S. Dogra, and N. Rao, “Multiview spatial compounding using lens-based photoacoustic imaging system,” Photoacoustics 13, 85–94 (2019).
[Crossref]

C. Liu, B. Zhang, C. Xue, W. Zhang, G. Zhang, and Y. Cheng, “Multi-perspective ultrasound imaging technology of the breast with cylindrical motion of linear arrays,” Appl. Sci. 9(3), 419 (2019).
[Crossref]

S. Agrawal, C. Fadden, A. Dangi, and S.-R. Kothapalli, “Light-emitting-diode-based multispectral photoacoustic computed tomography system,” Sensors 19(22), 4861 (2019).
[Crossref]

S. Jeon, E.-Y. Park, W. Choi, R. Managuli, K. jong Lee, and C. Kim, “Real-time delay-multiply-and-sum beamforming with coherence factor for in vivo clinical photoacoustic imaging of humans,” Photoacoustics 15, 100136 (2019).
[Crossref]

2018 (6)

Y. E. Boink, M. J. Lagerwerf, W. Steenbergen, S. A. Van Gils, S. Manohar, and C. Brune, “A framework for directional and higher-order reconstruction in photoacoustic tomography,” Phys. Medicine & Biol. 63(4), 045018 (2018).
[Crossref]

X. Lin, J. Yu, N. Feng, and M. Sun, “Synthetic aperture-based linear-array photoacoustic tomography considering the aperture orientation effect,” J. Innovative Opt. Health Sci. 11(04), 1850015 (2018).
[Crossref]

L. Yu, F. Nina-Paravecino, D. R. Kaeli, and Q. Fang, “Scalable and massively parallel monte carlo photon transport simulations for heterogeneous computing platforms,” J. Biomed. Opt. 23(1), 010504 (2018).
[Crossref]

Y. Zhu, G. Xu, J. Yuan, J. Jo, G. Gandikota, H. Demirci, T. Agano, N. Sato, Y. Shigeta, and X. Wang, “Light emitting diodes based photoacoustic imaging and potential clinical applications,” Sci. Rep. 8(1), 9885 (2018).
[Crossref]

W. Xia, M. Kuniyil Ajith Singh, E. Maneas, N. Sato, Y. Shigeta, T. Agano, S. Ourselin, S. J West, and A. E Desjardins, “Handheld real-time led-based photoacoustic and ultrasound imaging system for accurate visualization of clinical metal needles and superficial vasculature to guide minimally invasive procedures,” Sensors 18(5), 1394 (2018).
[Crossref]

J. Yao and L. V. Wang, “Recent progress in photoacoustic molecular imaging,” Curr. Opin. Chem. Biol. 45, 104–112 (2018).
[Crossref]

2017 (3)

K. J. Francis, B. Chinni, S. S. Channappayya, R. Pachamuthu, V. S. Dogra, and N. Rao, “Characterization of lens based photoacoustic imaging system,” Photoacoustics 8, 37–47 (2017).
[Crossref]

M. Omar, J. Rebling, K. Wicker, T. Schmitt-Manderbach, M. Schwarz, J. Gateau, H. López-Schier, T. Mappes, and V. Ntziachristos, “Optical imaging of post-embryonic zebrafish using multi orientation raster scan optoacoustic mesoscopy,” Light: Sci. Appl. 6(1), e16186 (2017).
[Crossref]

P. J. van den Berg, K. Daoudi, H. J. B. Moens, and W. Steenbergen, “Feasibility of photoacoustic/ultrasound imaging of synovitis in finger joints using a point-of-care system,” Photoacoustics 8, 8–14 (2017).
[Crossref]

2016 (3)

H. J. Kang, M. A. L. Bell, X. Guo, and E. M. Boctor, “Spatial angular compounding of photoacoustic images,” IEEE Trans. Med. Imaging 35(8), 1845–1855 (2016).
[Crossref]

T. J. Allen and P. C. Beard, “High power visible light emitting diodes as pulsed excitation sources for biomedical photoacoustics,” Biomed. Opt. Express 7(4), 1260–1270 (2016).
[Crossref]

M. Oeri, W. Bost, S. Tretbar, and M. Fournelle, “Calibrated linear array-driven photoacoustic/ultrasound tomography,” Ultrasound Med. Biol. 42(11), 2697–2707 (2016).
[Crossref]

2015 (2)

G. Li, L. Li, L. Zhu, J. Xia, and L. V. Wang, “Multiview hilbert transformation for full-view photoacoustic computed tomography using a linear array,” J. Biomed. Opt. 20(6), 066010 (2015).
[Crossref]

E. Mercep, G. Jeng, S. Morscher, P.-C. Li, and D. Razansky, “Hybrid optoacoustic tomography and pulse-echo ultrasonography using concave arrays,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 62(9), 1651–1661 (2015).
[Crossref]

2014 (1)

P. van Es, S. K. Biswas, H. J. B. Moens, W. Steenbergen, and S. Manohar, “Initial results of finger imaging using photoacoustic computed tomography,” J. Biomed. Opt. 19(6), 060501 (2014).
[Crossref]

2013 (2)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Medicine & Biol. 58(11), R37–R61 (2013).
[Crossref]

C. Lutzweiler and D. Razansky, “Optoacoustic imaging and tomography: reconstruction approaches and outstanding challenges in image performance and quantification,” Sensors 13(6), 7345–7384 (2013).
[Crossref]

2012 (3)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref]

J. Gateau, M. Á. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: Whole-body tomographic system for small animals,” Med. Phys. 40(1), 013302 (2012).
[Crossref]

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref]

2011 (1)

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref]

2010 (2)

V. Ntziachristos and D. Razansky, “Molecular imaging by means of multispectral optoacoustic tomography (msot),” Chem. Rev. 110(5), 2783–2794 (2010).
[Crossref]

B. E. Treeby and B. T. Cox, “k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref]

2009 (2)

2008 (1)

R. G. Kolkman, P. J. Brands, W. Steenbergen, and T. G. van Leeuwen, “Real-time in vivo photoacoustic and ultrasound imaging,” J. Biomed. Opt. 13(5), 050510 (2008).
[Crossref]

2007 (2)

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Problems 23(6), S51–S63 (2007).
[Crossref]

D. Yang, D. Xing, S. Yang, and L. Xiang, “Fast full-view photoacoustic imaging by combined scanning with a linear transducer array,” Opt. Express 15(23), 15566–15575 (2007).
[Crossref]

2004 (3)

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31(4), 724–733 (2004).
[Crossref]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. on Image Process. 13(4), 600–612 (2004).
[Crossref]

J. Staal, M. D. Abràmoff, M. Niemeijer, M. A. Viergever, and B. Van Ginneken, “Ridge-based vessel segmentation in color images of the retina,” IEEE Trans. Med. Imaging 23(4), 501–509 (2004).
[Crossref]

2003 (1)

R. A. Kruger, W. L. Kiser Jr, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography using a conventional linear transducer array,” Med. Phys. 30(5), 856–860 (2003).
[Crossref]

Á. A. Caballero, M.

J. Gateau, M. Á. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: Whole-body tomographic system for small animals,” Med. Phys. 40(1), 013302 (2012).
[Crossref]

Abràmoff, M. D.

J. Staal, M. D. Abràmoff, M. Niemeijer, M. A. Viergever, and B. Van Ginneken, “Ridge-based vessel segmentation in color images of the retina,” IEEE Trans. Med. Imaging 23(4), 501–509 (2004).
[Crossref]

Agano, T.

W. Xia, M. Kuniyil Ajith Singh, E. Maneas, N. Sato, Y. Shigeta, T. Agano, S. Ourselin, S. J West, and A. E Desjardins, “Handheld real-time led-based photoacoustic and ultrasound imaging system for accurate visualization of clinical metal needles and superficial vasculature to guide minimally invasive procedures,” Sensors 18(5), 1394 (2018).
[Crossref]

Y. Zhu, G. Xu, J. Yuan, J. Jo, G. Gandikota, H. Demirci, T. Agano, N. Sato, Y. Shigeta, and X. Wang, “Light emitting diodes based photoacoustic imaging and potential clinical applications,” Sci. Rep. 8(1), 9885 (2018).
[Crossref]

Agrawal, S.

S. Agrawal, C. Fadden, A. Dangi, and S.-R. Kothapalli, “Light-emitting-diode-based multispectral photoacoustic computed tomography system,” Sensors 19(22), 4861 (2019).
[Crossref]

Aguirre, A.

Allen, T. J.

Ambartsoumian, G.

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31(4), 724–733 (2004).
[Crossref]

Andreev, V. A.

A. A. Oraevsky, V. A. Andreev, A. A. Karabutov, and R. O. Esenaliev, “Two-dimensional optoacoustic tomography: transducer array and image reconstruction algorithm,” in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, vol. 3601 (International Society for Optics and Photonics, 1999), pp. 256–267.

Ansari, O. J.

E. Maneas, R. Aughwane, N. Huynh, W. Xia, O. J. Ansari, and J. Deprest, “Photoacoustic imaging of the human placental vasculature,” Journal of biophotonics (2019).

Aughwane, R.

E. Maneas, R. Aughwane, N. Huynh, W. Xia, O. J. Ansari, and J. Deprest, “Photoacoustic imaging of the human placental vasculature,” Journal of biophotonics (2019).

Avanaki, M.

A. Fatima, K. Kratkiewicz, R. Manwar, M. Zafar, R. Zhang, B. Huang, N. Dadashzadesh, J. Xia, and M. Avanaki, “Review of cost reduction methods in photoacoustic computed tomography,” Photoacoustics 15, 100137 (2019).
[Crossref]

Beard, P.

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref]

Beard, P. C.

Bell, M. A. L.

H. J. Kang, M. A. L. Bell, X. Guo, and E. M. Boctor, “Spatial angular compounding of photoacoustic images,” IEEE Trans. Med. Imaging 35(8), 1845–1855 (2016).
[Crossref]

Biswas, S. K.

P. van Es, S. K. Biswas, H. J. B. Moens, W. Steenbergen, and S. Manohar, “Initial results of finger imaging using photoacoustic computed tomography,” J. Biomed. Opt. 19(6), 060501 (2014).
[Crossref]

Boctor, E. M.

H. J. Kang, M. A. L. Bell, X. Guo, and E. M. Boctor, “Spatial angular compounding of photoacoustic images,” IEEE Trans. Med. Imaging 35(8), 1845–1855 (2016).
[Crossref]

Boink, Y. E.

Y. E. Boink, M. J. Lagerwerf, W. Steenbergen, S. A. Van Gils, S. Manohar, and C. Brune, “A framework for directional and higher-order reconstruction in photoacoustic tomography,” Phys. Medicine & Biol. 63(4), 045018 (2018).
[Crossref]

Bost, W.

M. Oeri, W. Bost, S. Tretbar, and M. Fournelle, “Calibrated linear array-driven photoacoustic/ultrasound tomography,” Ultrasound Med. Biol. 42(11), 2697–2707 (2016).
[Crossref]

Bovik, A. C.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. on Image Process. 13(4), 600–612 (2004).
[Crossref]

Brands, P. J.

R. G. Kolkman, P. J. Brands, W. Steenbergen, and T. G. van Leeuwen, “Real-time in vivo photoacoustic and ultrasound imaging,” J. Biomed. Opt. 13(5), 050510 (2008).
[Crossref]

Brune, C.

Y. E. Boink, M. J. Lagerwerf, W. Steenbergen, S. A. Van Gils, S. Manohar, and C. Brune, “A framework for directional and higher-order reconstruction in photoacoustic tomography,” Phys. Medicine & Biol. 63(4), 045018 (2018).
[Crossref]

Channappayya, S. S.

K. J. Francis, B. Chinni, S. S. Channappayya, R. Pachamuthu, V. S. Dogra, and N. Rao, “Multiview spatial compounding using lens-based photoacoustic imaging system,” Photoacoustics 13, 85–94 (2019).
[Crossref]

K. J. Francis, B. Chinni, S. S. Channappayya, R. Pachamuthu, V. S. Dogra, and N. Rao, “Characterization of lens based photoacoustic imaging system,” Photoacoustics 8, 37–47 (2017).
[Crossref]

Cheng, Y.

C. Liu, B. Zhang, C. Xue, W. Zhang, G. Zhang, and Y. Cheng, “Multi-perspective ultrasound imaging technology of the breast with cylindrical motion of linear arrays,” Appl. Sci. 9(3), 419 (2019).
[Crossref]

Chinni, B.

K. J. Francis, B. Chinni, S. S. Channappayya, R. Pachamuthu, V. S. Dogra, and N. Rao, “Multiview spatial compounding using lens-based photoacoustic imaging system,” Photoacoustics 13, 85–94 (2019).
[Crossref]

K. J. Francis, B. Chinni, S. S. Channappayya, R. Pachamuthu, V. S. Dogra, and N. Rao, “Characterization of lens based photoacoustic imaging system,” Photoacoustics 8, 37–47 (2017).
[Crossref]

Choi, W.

S. Jeon, E.-Y. Park, W. Choi, R. Managuli, K. jong Lee, and C. Kim, “Real-time delay-multiply-and-sum beamforming with coherence factor for in vivo clinical photoacoustic imaging of humans,” Photoacoustics 15, 100136 (2019).
[Crossref]

Cox, B. T.

B. E. Treeby and B. T. Cox, “k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref]

Dadashzadesh, N.

A. Fatima, K. Kratkiewicz, R. Manwar, M. Zafar, R. Zhang, B. Huang, N. Dadashzadesh, J. Xia, and M. Avanaki, “Review of cost reduction methods in photoacoustic computed tomography,” Photoacoustics 15, 100137 (2019).
[Crossref]

Dangi, A.

S. Agrawal, C. Fadden, A. Dangi, and S.-R. Kothapalli, “Light-emitting-diode-based multispectral photoacoustic computed tomography system,” Sensors 19(22), 4861 (2019).
[Crossref]

Dantuma, M.

S. Manohar and M. Dantuma, “Current and future trends in photoacoustic breast imaging,” Photoacoustics 16, 100134 (2019).
[Crossref]

Daoudi, K.

P. J. van den Berg, K. Daoudi, H. J. B. Moens, and W. Steenbergen, “Feasibility of photoacoustic/ultrasound imaging of synovitis in finger joints using a point-of-care system,” Photoacoustics 8, 8–14 (2017).
[Crossref]

Demirci, H.

Y. Zhu, G. Xu, J. Yuan, J. Jo, G. Gandikota, H. Demirci, T. Agano, N. Sato, Y. Shigeta, and X. Wang, “Light emitting diodes based photoacoustic imaging and potential clinical applications,” Sci. Rep. 8(1), 9885 (2018).
[Crossref]

Deprest, J.

E. Maneas, R. Aughwane, N. Huynh, W. Xia, O. J. Ansari, and J. Deprest, “Photoacoustic imaging of the human placental vasculature,” Journal of biophotonics (2019).

Desjardins, A. E

W. Xia, M. Kuniyil Ajith Singh, E. Maneas, N. Sato, Y. Shigeta, T. Agano, S. Ourselin, S. J West, and A. E Desjardins, “Handheld real-time led-based photoacoustic and ultrasound imaging system for accurate visualization of clinical metal needles and superficial vasculature to guide minimally invasive procedures,” Sensors 18(5), 1394 (2018).
[Crossref]

Dima, A.

J. Gateau, M. Á. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: Whole-body tomographic system for small animals,” Med. Phys. 40(1), 013302 (2012).
[Crossref]

Dogra, V. S.

K. J. Francis, B. Chinni, S. S. Channappayya, R. Pachamuthu, V. S. Dogra, and N. Rao, “Multiview spatial compounding using lens-based photoacoustic imaging system,” Photoacoustics 13, 85–94 (2019).
[Crossref]

K. J. Francis, B. Chinni, S. S. Channappayya, R. Pachamuthu, V. S. Dogra, and N. Rao, “Characterization of lens based photoacoustic imaging system,” Photoacoustics 8, 37–47 (2017).
[Crossref]

Esenaliev, R. O.

A. A. Oraevsky, V. A. Andreev, A. A. Karabutov, and R. O. Esenaliev, “Two-dimensional optoacoustic tomography: transducer array and image reconstruction algorithm,” in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, vol. 3601 (International Society for Optics and Photonics, 1999), pp. 256–267.

Fadden, C.

S. Agrawal, C. Fadden, A. Dangi, and S.-R. Kothapalli, “Light-emitting-diode-based multispectral photoacoustic computed tomography system,” Sensors 19(22), 4861 (2019).
[Crossref]

Fang, Q.

L. Yu, F. Nina-Paravecino, D. R. Kaeli, and Q. Fang, “Scalable and massively parallel monte carlo photon transport simulations for heterogeneous computing platforms,” J. Biomed. Opt. 23(1), 010504 (2018).
[Crossref]

Fatima, A.

A. Fatima, K. Kratkiewicz, R. Manwar, M. Zafar, R. Zhang, B. Huang, N. Dadashzadesh, J. Xia, and M. Avanaki, “Review of cost reduction methods in photoacoustic computed tomography,” Photoacoustics 15, 100137 (2019).
[Crossref]

Feng, N.

X. Lin, J. Yu, N. Feng, and M. Sun, “Synthetic aperture-based linear-array photoacoustic tomography considering the aperture orientation effect,” J. Innovative Opt. Health Sci. 11(04), 1850015 (2018).
[Crossref]

Fournelle, M.

M. Oeri, W. Bost, S. Tretbar, and M. Fournelle, “Calibrated linear array-driven photoacoustic/ultrasound tomography,” Ultrasound Med. Biol. 42(11), 2697–2707 (2016).
[Crossref]

Francis, K. J.

K. J. Francis and S. Manohar, “Photoacoustic imaging in percutaneous radiofrequency ablation: device guidance and ablation visualization,” Phys. Med. Biol. 64(18), 184001 (2019).
[Crossref]

K. J. Francis, B. Chinni, S. S. Channappayya, R. Pachamuthu, V. S. Dogra, and N. Rao, “Multiview spatial compounding using lens-based photoacoustic imaging system,” Photoacoustics 13, 85–94 (2019).
[Crossref]

K. J. Francis, B. Chinni, S. S. Channappayya, R. Pachamuthu, V. S. Dogra, and N. Rao, “Characterization of lens based photoacoustic imaging system,” Photoacoustics 8, 37–47 (2017).
[Crossref]

K. J. Francis, E. Rascevska, and S. Manohar, “Photoacoustic imaging assisted radiofrequency ablation: Illumination strategies and prospects,” in TENCON 2019-2019 IEEE Region 10 Conference (TENCON) (IEEE, 2019), pp. 118–122.

Frenz, M.

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Problems 23(6), S51–S63 (2007).
[Crossref]

Frostig, H. E.

I. Steinberg, D. M. Huland, O. Vermesh, H. E. Frostig, W. S. Tummers, and S. S. Gambhir, “Photoacoustic clinical imaging,” Photoacoustics 14, 77–98 (2019).
[Crossref]

Gambhir, S. S.

I. Steinberg, D. M. Huland, O. Vermesh, H. E. Frostig, W. S. Tummers, and S. S. Gambhir, “Photoacoustic clinical imaging,” Photoacoustics 14, 77–98 (2019).
[Crossref]

Gamelin, J.

Gandikota, G.

Y. Zhu, G. Xu, J. Yuan, J. Jo, G. Gandikota, H. Demirci, T. Agano, N. Sato, Y. Shigeta, and X. Wang, “Light emitting diodes based photoacoustic imaging and potential clinical applications,” Sci. Rep. 8(1), 9885 (2018).
[Crossref]

Gateau, J.

M. Omar, J. Rebling, K. Wicker, T. Schmitt-Manderbach, M. Schwarz, J. Gateau, H. López-Schier, T. Mappes, and V. Ntziachristos, “Optical imaging of post-embryonic zebrafish using multi orientation raster scan optoacoustic mesoscopy,” Light: Sci. Appl. 6(1), e16186 (2017).
[Crossref]

J. Gateau, M. Á. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: Whole-body tomographic system for small animals,” Med. Phys. 40(1), 013302 (2012).
[Crossref]

Gertsch, A.

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Problems 23(6), S51–S63 (2007).
[Crossref]

Guo, P.

Guo, X.

H. J. Kang, M. A. L. Bell, X. Guo, and E. M. Boctor, “Spatial angular compounding of photoacoustic images,” IEEE Trans. Med. Imaging 35(8), 1845–1855 (2016).
[Crossref]

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref]

Huang, B.

A. Fatima, K. Kratkiewicz, R. Manwar, M. Zafar, R. Zhang, B. Huang, N. Dadashzadesh, J. Xia, and M. Avanaki, “Review of cost reduction methods in photoacoustic computed tomography,” Photoacoustics 15, 100137 (2019).
[Crossref]

Huang, F.

Huland, D. M.

I. Steinberg, D. M. Huland, O. Vermesh, H. E. Frostig, W. S. Tummers, and S. S. Gambhir, “Photoacoustic clinical imaging,” Photoacoustics 14, 77–98 (2019).
[Crossref]

Huynh, N.

E. Maneas, R. Aughwane, N. Huynh, W. Xia, O. J. Ansari, and J. Deprest, “Photoacoustic imaging of the human placental vasculature,” Journal of biophotonics (2019).

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Medicine & Biol. 58(11), R37–R61 (2013).
[Crossref]

Jaeger, M.

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Problems 23(6), S51–S63 (2007).
[Crossref]

Jeng, G.

E. Mercep, G. Jeng, S. Morscher, P.-C. Li, and D. Razansky, “Hybrid optoacoustic tomography and pulse-echo ultrasonography using concave arrays,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 62(9), 1651–1661 (2015).
[Crossref]

Jeon, S.

S. Jeon, E.-Y. Park, W. Choi, R. Managuli, K. jong Lee, and C. Kim, “Real-time delay-multiply-and-sum beamforming with coherence factor for in vivo clinical photoacoustic imaging of humans,” Photoacoustics 15, 100136 (2019).
[Crossref]

Jo, J.

Y. Zhu, G. Xu, J. Yuan, J. Jo, G. Gandikota, H. Demirci, T. Agano, N. Sato, Y. Shigeta, and X. Wang, “Light emitting diodes based photoacoustic imaging and potential clinical applications,” Sci. Rep. 8(1), 9885 (2018).
[Crossref]

jong Lee, K.

S. Jeon, E.-Y. Park, W. Choi, R. Managuli, K. jong Lee, and C. Kim, “Real-time delay-multiply-and-sum beamforming with coherence factor for in vivo clinical photoacoustic imaging of humans,” Photoacoustics 15, 100136 (2019).
[Crossref]

Jose, J.

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref]

Kaeli, D. R.

L. Yu, F. Nina-Paravecino, D. R. Kaeli, and Q. Fang, “Scalable and massively parallel monte carlo photon transport simulations for heterogeneous computing platforms,” J. Biomed. Opt. 23(1), 010504 (2018).
[Crossref]

Kang, H. J.

H. J. Kang, M. A. L. Bell, X. Guo, and E. M. Boctor, “Spatial angular compounding of photoacoustic images,” IEEE Trans. Med. Imaging 35(8), 1845–1855 (2016).
[Crossref]

Karabutov, A. A.

A. A. Oraevsky, V. A. Andreev, A. A. Karabutov, and R. O. Esenaliev, “Two-dimensional optoacoustic tomography: transducer array and image reconstruction algorithm,” in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, vol. 3601 (International Society for Optics and Photonics, 1999), pp. 256–267.

Kim, C.

S. Jeon, E.-Y. Park, W. Choi, R. Managuli, K. jong Lee, and C. Kim, “Real-time delay-multiply-and-sum beamforming with coherence factor for in vivo clinical photoacoustic imaging of humans,” Photoacoustics 15, 100136 (2019).
[Crossref]

Kiser Jr, W. L.

R. A. Kruger, W. L. Kiser Jr, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography using a conventional linear transducer array,” Med. Phys. 30(5), 856–860 (2003).
[Crossref]

Kitz, M.

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Problems 23(6), S51–S63 (2007).
[Crossref]

Kolkman, R. G.

R. G. Kolkman, P. J. Brands, W. Steenbergen, and T. G. van Leeuwen, “Real-time in vivo photoacoustic and ultrasound imaging,” J. Biomed. Opt. 13(5), 050510 (2008).
[Crossref]

Kothapalli, S.-R.

S. Agrawal, C. Fadden, A. Dangi, and S.-R. Kothapalli, “Light-emitting-diode-based multispectral photoacoustic computed tomography system,” Sensors 19(22), 4861 (2019).
[Crossref]

Kratkiewicz, K.

A. Fatima, K. Kratkiewicz, R. Manwar, M. Zafar, R. Zhang, B. Huang, N. Dadashzadesh, J. Xia, and M. Avanaki, “Review of cost reduction methods in photoacoustic computed tomography,” Photoacoustics 15, 100137 (2019).
[Crossref]

Kruger, G. A.

R. A. Kruger, W. L. Kiser Jr, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography using a conventional linear transducer array,” Med. Phys. 30(5), 856–860 (2003).
[Crossref]

Kruger, R. A.

R. A. Kruger, W. L. Kiser Jr, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography using a conventional linear transducer array,” Med. Phys. 30(5), 856–860 (2003).
[Crossref]

Kuchment, P.

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31(4), 724–733 (2004).
[Crossref]

Kuniyil Ajith Singh, M.

W. Xia, M. Kuniyil Ajith Singh, E. Maneas, N. Sato, Y. Shigeta, T. Agano, S. Ourselin, S. J West, and A. E Desjardins, “Handheld real-time led-based photoacoustic and ultrasound imaging system for accurate visualization of clinical metal needles and superficial vasculature to guide minimally invasive procedures,” Sensors 18(5), 1394 (2018).
[Crossref]

Lagerwerf, M. J.

Y. E. Boink, M. J. Lagerwerf, W. Steenbergen, S. A. Van Gils, S. Manohar, and C. Brune, “A framework for directional and higher-order reconstruction in photoacoustic tomography,” Phys. Medicine & Biol. 63(4), 045018 (2018).
[Crossref]

Leskinen, J.

J. Leskinen, A. Pulkkinen, J. Tick, and T. Tarvainen, “Photoacoustic tomography setup using led illumination,” in Opto-Acoustic Methods and Applications in Biophotonics IV, vol. 11077 (International Society for Optics and Photonics, 2019), p. 110770Q.

Li, G.

G. Li, L. Li, L. Zhu, J. Xia, and L. V. Wang, “Multiview hilbert transformation for full-view photoacoustic computed tomography using a linear array,” J. Biomed. Opt. 20(6), 066010 (2015).
[Crossref]

Li, L.

G. Li, L. Li, L. Zhu, J. Xia, and L. V. Wang, “Multiview hilbert transformation for full-view photoacoustic computed tomography using a linear array,” J. Biomed. Opt. 20(6), 066010 (2015).
[Crossref]

Li, P.-C.

E. Mercep, G. Jeng, S. Morscher, P.-C. Li, and D. Razansky, “Hybrid optoacoustic tomography and pulse-echo ultrasonography using concave arrays,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 62(9), 1651–1661 (2015).
[Crossref]

Lin, X.

X. Lin, J. Yu, N. Feng, and M. Sun, “Synthetic aperture-based linear-array photoacoustic tomography considering the aperture orientation effect,” J. Innovative Opt. Health Sci. 11(04), 1850015 (2018).
[Crossref]

Liu, C.

C. Liu, B. Zhang, C. Xue, W. Zhang, G. Zhang, and Y. Cheng, “Multi-perspective ultrasound imaging technology of the breast with cylindrical motion of linear arrays,” Appl. Sci. 9(3), 419 (2019).
[Crossref]

López-Schier, H.

M. Omar, J. Rebling, K. Wicker, T. Schmitt-Manderbach, M. Schwarz, J. Gateau, H. López-Schier, T. Mappes, and V. Ntziachristos, “Optical imaging of post-embryonic zebrafish using multi orientation raster scan optoacoustic mesoscopy,” Light: Sci. Appl. 6(1), e16186 (2017).
[Crossref]

Lutzweiler, C.

C. Lutzweiler and D. Razansky, “Optoacoustic imaging and tomography: reconstruction approaches and outstanding challenges in image performance and quantification,” Sensors 13(6), 7345–7384 (2013).
[Crossref]

Managuli, R.

S. Jeon, E.-Y. Park, W. Choi, R. Managuli, K. jong Lee, and C. Kim, “Real-time delay-multiply-and-sum beamforming with coherence factor for in vivo clinical photoacoustic imaging of humans,” Photoacoustics 15, 100136 (2019).
[Crossref]

Maneas, E.

W. Xia, M. Kuniyil Ajith Singh, E. Maneas, N. Sato, Y. Shigeta, T. Agano, S. Ourselin, S. J West, and A. E Desjardins, “Handheld real-time led-based photoacoustic and ultrasound imaging system for accurate visualization of clinical metal needles and superficial vasculature to guide minimally invasive procedures,” Sensors 18(5), 1394 (2018).
[Crossref]

E. Maneas, R. Aughwane, N. Huynh, W. Xia, O. J. Ansari, and J. Deprest, “Photoacoustic imaging of the human placental vasculature,” Journal of biophotonics (2019).

Manohar, S.

K. J. Francis and S. Manohar, “Photoacoustic imaging in percutaneous radiofrequency ablation: device guidance and ablation visualization,” Phys. Med. Biol. 64(18), 184001 (2019).
[Crossref]

S. Manohar and M. Dantuma, “Current and future trends in photoacoustic breast imaging,” Photoacoustics 16, 100134 (2019).
[Crossref]

Y. E. Boink, M. J. Lagerwerf, W. Steenbergen, S. A. Van Gils, S. Manohar, and C. Brune, “A framework for directional and higher-order reconstruction in photoacoustic tomography,” Phys. Medicine & Biol. 63(4), 045018 (2018).
[Crossref]

P. van Es, S. K. Biswas, H. J. B. Moens, W. Steenbergen, and S. Manohar, “Initial results of finger imaging using photoacoustic computed tomography,” J. Biomed. Opt. 19(6), 060501 (2014).
[Crossref]

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref]

K. J. Francis, E. Rascevska, and S. Manohar, “Photoacoustic imaging assisted radiofrequency ablation: Illumination strategies and prospects,” in TENCON 2019-2019 IEEE Region 10 Conference (TENCON) (IEEE, 2019), pp. 118–122.

Manwar, R.

A. Fatima, K. Kratkiewicz, R. Manwar, M. Zafar, R. Zhang, B. Huang, N. Dadashzadesh, J. Xia, and M. Avanaki, “Review of cost reduction methods in photoacoustic computed tomography,” Photoacoustics 15, 100137 (2019).
[Crossref]

Mappes, T.

M. Omar, J. Rebling, K. Wicker, T. Schmitt-Manderbach, M. Schwarz, J. Gateau, H. López-Schier, T. Mappes, and V. Ntziachristos, “Optical imaging of post-embryonic zebrafish using multi orientation raster scan optoacoustic mesoscopy,” Light: Sci. Appl. 6(1), e16186 (2017).
[Crossref]

Maurudis, A.

Mercep, E.

E. Mercep, G. Jeng, S. Morscher, P.-C. Li, and D. Razansky, “Hybrid optoacoustic tomography and pulse-echo ultrasonography using concave arrays,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 62(9), 1651–1661 (2015).
[Crossref]

Moens, H. J. B.

P. J. van den Berg, K. Daoudi, H. J. B. Moens, and W. Steenbergen, “Feasibility of photoacoustic/ultrasound imaging of synovitis in finger joints using a point-of-care system,” Photoacoustics 8, 8–14 (2017).
[Crossref]

P. van Es, S. K. Biswas, H. J. B. Moens, W. Steenbergen, and S. Manohar, “Initial results of finger imaging using photoacoustic computed tomography,” J. Biomed. Opt. 19(6), 060501 (2014).
[Crossref]

Morscher, S.

E. Mercep, G. Jeng, S. Morscher, P.-C. Li, and D. Razansky, “Hybrid optoacoustic tomography and pulse-echo ultrasonography using concave arrays,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 62(9), 1651–1661 (2015).
[Crossref]

Niemeijer, M.

J. Staal, M. D. Abràmoff, M. Niemeijer, M. A. Viergever, and B. Van Ginneken, “Ridge-based vessel segmentation in color images of the retina,” IEEE Trans. Med. Imaging 23(4), 501–509 (2004).
[Crossref]

Nina-Paravecino, F.

L. Yu, F. Nina-Paravecino, D. R. Kaeli, and Q. Fang, “Scalable and massively parallel monte carlo photon transport simulations for heterogeneous computing platforms,” J. Biomed. Opt. 23(1), 010504 (2018).
[Crossref]

Ntziachristos, V.

M. Omar, J. Rebling, K. Wicker, T. Schmitt-Manderbach, M. Schwarz, J. Gateau, H. López-Schier, T. Mappes, and V. Ntziachristos, “Optical imaging of post-embryonic zebrafish using multi orientation raster scan optoacoustic mesoscopy,” Light: Sci. Appl. 6(1), e16186 (2017).
[Crossref]

J. Gateau, M. Á. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: Whole-body tomographic system for small animals,” Med. Phys. 40(1), 013302 (2012).
[Crossref]

V. Ntziachristos and D. Razansky, “Molecular imaging by means of multispectral optoacoustic tomography (msot),” Chem. Rev. 110(5), 2783–2794 (2010).
[Crossref]

Oeri, M.

M. Oeri, W. Bost, S. Tretbar, and M. Fournelle, “Calibrated linear array-driven photoacoustic/ultrasound tomography,” Ultrasound Med. Biol. 42(11), 2697–2707 (2016).
[Crossref]

Omar, M.

M. Omar, J. Rebling, K. Wicker, T. Schmitt-Manderbach, M. Schwarz, J. Gateau, H. López-Schier, T. Mappes, and V. Ntziachristos, “Optical imaging of post-embryonic zebrafish using multi orientation raster scan optoacoustic mesoscopy,” Light: Sci. Appl. 6(1), e16186 (2017).
[Crossref]

Oraevsky, A. A.

A. A. Oraevsky, V. A. Andreev, A. A. Karabutov, and R. O. Esenaliev, “Two-dimensional optoacoustic tomography: transducer array and image reconstruction algorithm,” in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, vol. 3601 (International Society for Optics and Photonics, 1999), pp. 256–267.

Ourselin, S.

W. Xia, M. Kuniyil Ajith Singh, E. Maneas, N. Sato, Y. Shigeta, T. Agano, S. Ourselin, S. J West, and A. E Desjardins, “Handheld real-time led-based photoacoustic and ultrasound imaging system for accurate visualization of clinical metal needles and superficial vasculature to guide minimally invasive procedures,” Sensors 18(5), 1394 (2018).
[Crossref]

Pachamuthu, R.

K. J. Francis, B. Chinni, S. S. Channappayya, R. Pachamuthu, V. S. Dogra, and N. Rao, “Multiview spatial compounding using lens-based photoacoustic imaging system,” Photoacoustics 13, 85–94 (2019).
[Crossref]

K. J. Francis, B. Chinni, S. S. Channappayya, R. Pachamuthu, V. S. Dogra, and N. Rao, “Characterization of lens based photoacoustic imaging system,” Photoacoustics 8, 37–47 (2017).
[Crossref]

Park, E.-Y.

S. Jeon, E.-Y. Park, W. Choi, R. Managuli, K. jong Lee, and C. Kim, “Real-time delay-multiply-and-sum beamforming with coherence factor for in vivo clinical photoacoustic imaging of humans,” Photoacoustics 15, 100136 (2019).
[Crossref]

Pulkkinen, A.

J. Leskinen, A. Pulkkinen, J. Tick, and T. Tarvainen, “Photoacoustic tomography setup using led illumination,” in Opto-Acoustic Methods and Applications in Biophotonics IV, vol. 11077 (International Society for Optics and Photonics, 2019), p. 110770Q.

Rao, N.

K. J. Francis, B. Chinni, S. S. Channappayya, R. Pachamuthu, V. S. Dogra, and N. Rao, “Multiview spatial compounding using lens-based photoacoustic imaging system,” Photoacoustics 13, 85–94 (2019).
[Crossref]

K. J. Francis, B. Chinni, S. S. Channappayya, R. Pachamuthu, V. S. Dogra, and N. Rao, “Characterization of lens based photoacoustic imaging system,” Photoacoustics 8, 37–47 (2017).
[Crossref]

Rascevska, E.

K. J. Francis, E. Rascevska, and S. Manohar, “Photoacoustic imaging assisted radiofrequency ablation: Illumination strategies and prospects,” in TENCON 2019-2019 IEEE Region 10 Conference (TENCON) (IEEE, 2019), pp. 118–122.

Razansky, D.

E. Mercep, G. Jeng, S. Morscher, P.-C. Li, and D. Razansky, “Hybrid optoacoustic tomography and pulse-echo ultrasonography using concave arrays,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 62(9), 1651–1661 (2015).
[Crossref]

C. Lutzweiler and D. Razansky, “Optoacoustic imaging and tomography: reconstruction approaches and outstanding challenges in image performance and quantification,” Sensors 13(6), 7345–7384 (2013).
[Crossref]

V. Ntziachristos and D. Razansky, “Molecular imaging by means of multispectral optoacoustic tomography (msot),” Chem. Rev. 110(5), 2783–2794 (2010).
[Crossref]

Rebling, J.

M. Omar, J. Rebling, K. Wicker, T. Schmitt-Manderbach, M. Schwarz, J. Gateau, H. López-Schier, T. Mappes, and V. Ntziachristos, “Optical imaging of post-embryonic zebrafish using multi orientation raster scan optoacoustic mesoscopy,” Light: Sci. Appl. 6(1), e16186 (2017).
[Crossref]

Reinecke, D. R.

R. A. Kruger, W. L. Kiser Jr, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography using a conventional linear transducer array,” Med. Phys. 30(5), 856–860 (2003).
[Crossref]

Sato, N.

W. Xia, M. Kuniyil Ajith Singh, E. Maneas, N. Sato, Y. Shigeta, T. Agano, S. Ourselin, S. J West, and A. E Desjardins, “Handheld real-time led-based photoacoustic and ultrasound imaging system for accurate visualization of clinical metal needles and superficial vasculature to guide minimally invasive procedures,” Sensors 18(5), 1394 (2018).
[Crossref]

Y. Zhu, G. Xu, J. Yuan, J. Jo, G. Gandikota, H. Demirci, T. Agano, N. Sato, Y. Shigeta, and X. Wang, “Light emitting diodes based photoacoustic imaging and potential clinical applications,” Sci. Rep. 8(1), 9885 (2018).
[Crossref]

Schmitt-Manderbach, T.

M. Omar, J. Rebling, K. Wicker, T. Schmitt-Manderbach, M. Schwarz, J. Gateau, H. López-Schier, T. Mappes, and V. Ntziachristos, “Optical imaging of post-embryonic zebrafish using multi orientation raster scan optoacoustic mesoscopy,” Light: Sci. Appl. 6(1), e16186 (2017).
[Crossref]

Schüpbach, S.

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Problems 23(6), S51–S63 (2007).
[Crossref]

Schwarz, M.

M. Omar, J. Rebling, K. Wicker, T. Schmitt-Manderbach, M. Schwarz, J. Gateau, H. López-Schier, T. Mappes, and V. Ntziachristos, “Optical imaging of post-embryonic zebrafish using multi orientation raster scan optoacoustic mesoscopy,” Light: Sci. Appl. 6(1), e16186 (2017).
[Crossref]

Sheikh, H. R.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. on Image Process. 13(4), 600–612 (2004).
[Crossref]

Shigeta, Y.

Y. Zhu, G. Xu, J. Yuan, J. Jo, G. Gandikota, H. Demirci, T. Agano, N. Sato, Y. Shigeta, and X. Wang, “Light emitting diodes based photoacoustic imaging and potential clinical applications,” Sci. Rep. 8(1), 9885 (2018).
[Crossref]

W. Xia, M. Kuniyil Ajith Singh, E. Maneas, N. Sato, Y. Shigeta, T. Agano, S. Ourselin, S. J West, and A. E Desjardins, “Handheld real-time led-based photoacoustic and ultrasound imaging system for accurate visualization of clinical metal needles and superficial vasculature to guide minimally invasive procedures,” Sensors 18(5), 1394 (2018).
[Crossref]

Simoncelli, E. P.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. on Image Process. 13(4), 600–612 (2004).
[Crossref]

Slump, C. H.

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref]

Staal, J.

J. Staal, M. D. Abràmoff, M. Niemeijer, M. A. Viergever, and B. Van Ginneken, “Ridge-based vessel segmentation in color images of the retina,” IEEE Trans. Med. Imaging 23(4), 501–509 (2004).
[Crossref]

Steenbergen, W.

Y. E. Boink, M. J. Lagerwerf, W. Steenbergen, S. A. Van Gils, S. Manohar, and C. Brune, “A framework for directional and higher-order reconstruction in photoacoustic tomography,” Phys. Medicine & Biol. 63(4), 045018 (2018).
[Crossref]

P. J. van den Berg, K. Daoudi, H. J. B. Moens, and W. Steenbergen, “Feasibility of photoacoustic/ultrasound imaging of synovitis in finger joints using a point-of-care system,” Photoacoustics 8, 8–14 (2017).
[Crossref]

P. van Es, S. K. Biswas, H. J. B. Moens, W. Steenbergen, and S. Manohar, “Initial results of finger imaging using photoacoustic computed tomography,” J. Biomed. Opt. 19(6), 060501 (2014).
[Crossref]

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref]

R. G. Kolkman, P. J. Brands, W. Steenbergen, and T. G. van Leeuwen, “Real-time in vivo photoacoustic and ultrasound imaging,” J. Biomed. Opt. 13(5), 050510 (2008).
[Crossref]

Steinberg, I.

I. Steinberg, D. M. Huland, O. Vermesh, H. E. Frostig, W. S. Tummers, and S. S. Gambhir, “Photoacoustic clinical imaging,” Photoacoustics 14, 77–98 (2019).
[Crossref]

Sun, M.

X. Lin, J. Yu, N. Feng, and M. Sun, “Synthetic aperture-based linear-array photoacoustic tomography considering the aperture orientation effect,” J. Innovative Opt. Health Sci. 11(04), 1850015 (2018).
[Crossref]

Tarvainen, T.

J. Leskinen, A. Pulkkinen, J. Tick, and T. Tarvainen, “Photoacoustic tomography setup using led illumination,” in Opto-Acoustic Methods and Applications in Biophotonics IV, vol. 11077 (International Society for Optics and Photonics, 2019), p. 110770Q.

Tick, J.

J. Leskinen, A. Pulkkinen, J. Tick, and T. Tarvainen, “Photoacoustic tomography setup using led illumination,” in Opto-Acoustic Methods and Applications in Biophotonics IV, vol. 11077 (International Society for Optics and Photonics, 2019), p. 110770Q.

Treeby, B. E.

B. E. Treeby and B. T. Cox, “k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref]

Tretbar, S.

M. Oeri, W. Bost, S. Tretbar, and M. Fournelle, “Calibrated linear array-driven photoacoustic/ultrasound tomography,” Ultrasound Med. Biol. 42(11), 2697–2707 (2016).
[Crossref]

Tummers, W. S.

I. Steinberg, D. M. Huland, O. Vermesh, H. E. Frostig, W. S. Tummers, and S. S. Gambhir, “Photoacoustic clinical imaging,” Photoacoustics 14, 77–98 (2019).
[Crossref]

van den Berg, P. J.

P. J. van den Berg, K. Daoudi, H. J. B. Moens, and W. Steenbergen, “Feasibility of photoacoustic/ultrasound imaging of synovitis in finger joints using a point-of-care system,” Photoacoustics 8, 8–14 (2017).
[Crossref]

van Es, P.

P. van Es, S. K. Biswas, H. J. B. Moens, W. Steenbergen, and S. Manohar, “Initial results of finger imaging using photoacoustic computed tomography,” J. Biomed. Opt. 19(6), 060501 (2014).
[Crossref]

Van Gils, S. A.

Y. E. Boink, M. J. Lagerwerf, W. Steenbergen, S. A. Van Gils, S. Manohar, and C. Brune, “A framework for directional and higher-order reconstruction in photoacoustic tomography,” Phys. Medicine & Biol. 63(4), 045018 (2018).
[Crossref]

Van Ginneken, B.

J. Staal, M. D. Abràmoff, M. Niemeijer, M. A. Viergever, and B. Van Ginneken, “Ridge-based vessel segmentation in color images of the retina,” IEEE Trans. Med. Imaging 23(4), 501–509 (2004).
[Crossref]

van Leeuwen, T. G.

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref]

R. G. Kolkman, P. J. Brands, W. Steenbergen, and T. G. van Leeuwen, “Real-time in vivo photoacoustic and ultrasound imaging,” J. Biomed. Opt. 13(5), 050510 (2008).
[Crossref]

Vermesh, O.

I. Steinberg, D. M. Huland, O. Vermesh, H. E. Frostig, W. S. Tummers, and S. S. Gambhir, “Photoacoustic clinical imaging,” Photoacoustics 14, 77–98 (2019).
[Crossref]

Viergever, M. A.

J. Staal, M. D. Abràmoff, M. Niemeijer, M. A. Viergever, and B. Van Ginneken, “Ridge-based vessel segmentation in color images of the retina,” IEEE Trans. Med. Imaging 23(4), 501–509 (2004).
[Crossref]

Wang, L. V.

J. Yao and L. V. Wang, “Recent progress in photoacoustic molecular imaging,” Curr. Opin. Chem. Biol. 45, 104–112 (2018).
[Crossref]

G. Li, L. Li, L. Zhu, J. Xia, and L. V. Wang, “Multiview hilbert transformation for full-view photoacoustic computed tomography using a linear array,” J. Biomed. Opt. 20(6), 066010 (2015).
[Crossref]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref]

J. Gamelin, A. Maurudis, A. Aguirre, F. Huang, P. Guo, L. V. Wang, and Q. Zhu, “A real-time photoacoustic tomography system for small animals,” Opt. Express 17(13), 10489–10498 (2009).
[Crossref]

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31(4), 724–733 (2004).
[Crossref]

Wang, X.

Y. Zhu, G. Xu, J. Yuan, J. Jo, G. Gandikota, H. Demirci, T. Agano, N. Sato, Y. Shigeta, and X. Wang, “Light emitting diodes based photoacoustic imaging and potential clinical applications,” Sci. Rep. 8(1), 9885 (2018).
[Crossref]

Wang, Z.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. on Image Process. 13(4), 600–612 (2004).
[Crossref]

West, S. J

W. Xia, M. Kuniyil Ajith Singh, E. Maneas, N. Sato, Y. Shigeta, T. Agano, S. Ourselin, S. J West, and A. E Desjardins, “Handheld real-time led-based photoacoustic and ultrasound imaging system for accurate visualization of clinical metal needles and superficial vasculature to guide minimally invasive procedures,” Sensors 18(5), 1394 (2018).
[Crossref]

Wicker, K.

M. Omar, J. Rebling, K. Wicker, T. Schmitt-Manderbach, M. Schwarz, J. Gateau, H. López-Schier, T. Mappes, and V. Ntziachristos, “Optical imaging of post-embryonic zebrafish using multi orientation raster scan optoacoustic mesoscopy,” Light: Sci. Appl. 6(1), e16186 (2017).
[Crossref]

Willemink, R. G.

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref]

Xia, J.

A. Fatima, K. Kratkiewicz, R. Manwar, M. Zafar, R. Zhang, B. Huang, N. Dadashzadesh, J. Xia, and M. Avanaki, “Review of cost reduction methods in photoacoustic computed tomography,” Photoacoustics 15, 100137 (2019).
[Crossref]

G. Li, L. Li, L. Zhu, J. Xia, and L. V. Wang, “Multiview hilbert transformation for full-view photoacoustic computed tomography using a linear array,” J. Biomed. Opt. 20(6), 066010 (2015).
[Crossref]

Xia, W.

W. Xia, M. Kuniyil Ajith Singh, E. Maneas, N. Sato, Y. Shigeta, T. Agano, S. Ourselin, S. J West, and A. E Desjardins, “Handheld real-time led-based photoacoustic and ultrasound imaging system for accurate visualization of clinical metal needles and superficial vasculature to guide minimally invasive procedures,” Sensors 18(5), 1394 (2018).
[Crossref]

E. Maneas, R. Aughwane, N. Huynh, W. Xia, O. J. Ansari, and J. Deprest, “Photoacoustic imaging of the human placental vasculature,” Journal of biophotonics (2019).

Xiang, L.

Xing, D.

Xu, G.

Y. Zhu, G. Xu, J. Yuan, J. Jo, G. Gandikota, H. Demirci, T. Agano, N. Sato, Y. Shigeta, and X. Wang, “Light emitting diodes based photoacoustic imaging and potential clinical applications,” Sci. Rep. 8(1), 9885 (2018).
[Crossref]

Xu, Y.

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31(4), 724–733 (2004).
[Crossref]

Xue, C.

C. Liu, B. Zhang, C. Xue, W. Zhang, G. Zhang, and Y. Cheng, “Multi-perspective ultrasound imaging technology of the breast with cylindrical motion of linear arrays,” Appl. Sci. 9(3), 419 (2019).
[Crossref]

Yang, D.

Yang, S.

Yao, J.

J. Yao and L. V. Wang, “Recent progress in photoacoustic molecular imaging,” Curr. Opin. Chem. Biol. 45, 104–112 (2018).
[Crossref]

Yu, J.

X. Lin, J. Yu, N. Feng, and M. Sun, “Synthetic aperture-based linear-array photoacoustic tomography considering the aperture orientation effect,” J. Innovative Opt. Health Sci. 11(04), 1850015 (2018).
[Crossref]

Yu, L.

L. Yu, F. Nina-Paravecino, D. R. Kaeli, and Q. Fang, “Scalable and massively parallel monte carlo photon transport simulations for heterogeneous computing platforms,” J. Biomed. Opt. 23(1), 010504 (2018).
[Crossref]

Yuan, J.

Y. Zhu, G. Xu, J. Yuan, J. Jo, G. Gandikota, H. Demirci, T. Agano, N. Sato, Y. Shigeta, and X. Wang, “Light emitting diodes based photoacoustic imaging and potential clinical applications,” Sci. Rep. 8(1), 9885 (2018).
[Crossref]

Zafar, M.

A. Fatima, K. Kratkiewicz, R. Manwar, M. Zafar, R. Zhang, B. Huang, N. Dadashzadesh, J. Xia, and M. Avanaki, “Review of cost reduction methods in photoacoustic computed tomography,” Photoacoustics 15, 100137 (2019).
[Crossref]

Zhang, B.

C. Liu, B. Zhang, C. Xue, W. Zhang, G. Zhang, and Y. Cheng, “Multi-perspective ultrasound imaging technology of the breast with cylindrical motion of linear arrays,” Appl. Sci. 9(3), 419 (2019).
[Crossref]

Zhang, G.

C. Liu, B. Zhang, C. Xue, W. Zhang, G. Zhang, and Y. Cheng, “Multi-perspective ultrasound imaging technology of the breast with cylindrical motion of linear arrays,” Appl. Sci. 9(3), 419 (2019).
[Crossref]

Zhang, R.

A. Fatima, K. Kratkiewicz, R. Manwar, M. Zafar, R. Zhang, B. Huang, N. Dadashzadesh, J. Xia, and M. Avanaki, “Review of cost reduction methods in photoacoustic computed tomography,” Photoacoustics 15, 100137 (2019).
[Crossref]

Zhang, W.

C. Liu, B. Zhang, C. Xue, W. Zhang, G. Zhang, and Y. Cheng, “Multi-perspective ultrasound imaging technology of the breast with cylindrical motion of linear arrays,” Appl. Sci. 9(3), 419 (2019).
[Crossref]

Zhu, L.

G. Li, L. Li, L. Zhu, J. Xia, and L. V. Wang, “Multiview hilbert transformation for full-view photoacoustic computed tomography using a linear array,” J. Biomed. Opt. 20(6), 066010 (2015).
[Crossref]

Zhu, Q.

Zhu, Y.

Y. Zhu, G. Xu, J. Yuan, J. Jo, G. Gandikota, H. Demirci, T. Agano, N. Sato, Y. Shigeta, and X. Wang, “Light emitting diodes based photoacoustic imaging and potential clinical applications,” Sci. Rep. 8(1), 9885 (2018).
[Crossref]

Appl. Sci. (1)

C. Liu, B. Zhang, C. Xue, W. Zhang, G. Zhang, and Y. Cheng, “Multi-perspective ultrasound imaging technology of the breast with cylindrical motion of linear arrays,” Appl. Sci. 9(3), 419 (2019).
[Crossref]

Biomed. Opt. Express (1)

Chem. Rev. (1)

V. Ntziachristos and D. Razansky, “Molecular imaging by means of multispectral optoacoustic tomography (msot),” Chem. Rev. 110(5), 2783–2794 (2010).
[Crossref]

Curr. Opin. Chem. Biol. (1)

J. Yao and L. V. Wang, “Recent progress in photoacoustic molecular imaging,” Curr. Opin. Chem. Biol. 45, 104–112 (2018).
[Crossref]

IEEE Trans. Med. Imaging (2)

H. J. Kang, M. A. L. Bell, X. Guo, and E. M. Boctor, “Spatial angular compounding of photoacoustic images,” IEEE Trans. Med. Imaging 35(8), 1845–1855 (2016).
[Crossref]

J. Staal, M. D. Abràmoff, M. Niemeijer, M. A. Viergever, and B. Van Ginneken, “Ridge-based vessel segmentation in color images of the retina,” IEEE Trans. Med. Imaging 23(4), 501–509 (2004).
[Crossref]

IEEE Trans. on Image Process. (1)

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. on Image Process. 13(4), 600–612 (2004).
[Crossref]

IEEE Trans. Ultrason., Ferroelect., Freq. Contr. (1)

E. Mercep, G. Jeng, S. Morscher, P.-C. Li, and D. Razansky, “Hybrid optoacoustic tomography and pulse-echo ultrasonography using concave arrays,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 62(9), 1651–1661 (2015).
[Crossref]

Interface Focus (1)

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref]

Inverse Problems (1)

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Problems 23(6), S51–S63 (2007).
[Crossref]

J. Biomed. Opt. (5)

G. Li, L. Li, L. Zhu, J. Xia, and L. V. Wang, “Multiview hilbert transformation for full-view photoacoustic computed tomography using a linear array,” J. Biomed. Opt. 20(6), 066010 (2015).
[Crossref]

R. G. Kolkman, P. J. Brands, W. Steenbergen, and T. G. van Leeuwen, “Real-time in vivo photoacoustic and ultrasound imaging,” J. Biomed. Opt. 13(5), 050510 (2008).
[Crossref]

L. Yu, F. Nina-Paravecino, D. R. Kaeli, and Q. Fang, “Scalable and massively parallel monte carlo photon transport simulations for heterogeneous computing platforms,” J. Biomed. Opt. 23(1), 010504 (2018).
[Crossref]

P. van Es, S. K. Biswas, H. J. B. Moens, W. Steenbergen, and S. Manohar, “Initial results of finger imaging using photoacoustic computed tomography,” J. Biomed. Opt. 19(6), 060501 (2014).
[Crossref]

B. E. Treeby and B. T. Cox, “k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref]

J. Innovative Opt. Health Sci. (1)

X. Lin, J. Yu, N. Feng, and M. Sun, “Synthetic aperture-based linear-array photoacoustic tomography considering the aperture orientation effect,” J. Innovative Opt. Health Sci. 11(04), 1850015 (2018).
[Crossref]

Light: Sci. Appl. (1)

M. Omar, J. Rebling, K. Wicker, T. Schmitt-Manderbach, M. Schwarz, J. Gateau, H. López-Schier, T. Mappes, and V. Ntziachristos, “Optical imaging of post-embryonic zebrafish using multi orientation raster scan optoacoustic mesoscopy,” Light: Sci. Appl. 6(1), e16186 (2017).
[Crossref]

Med. Phys. (4)

J. Gateau, M. Á. A. Caballero, A. Dima, and V. Ntziachristos, “Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: Whole-body tomographic system for small animals,” Med. Phys. 40(1), 013302 (2012).
[Crossref]

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31(4), 724–733 (2004).
[Crossref]

R. A. Kruger, W. L. Kiser Jr, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography using a conventional linear transducer array,” Med. Phys. 30(5), 856–860 (2003).
[Crossref]

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref]

Nat. Photonics (1)

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref]

Opt. Express (2)

Photoacoustics (7)

S. Jeon, E.-Y. Park, W. Choi, R. Managuli, K. jong Lee, and C. Kim, “Real-time delay-multiply-and-sum beamforming with coherence factor for in vivo clinical photoacoustic imaging of humans,” Photoacoustics 15, 100136 (2019).
[Crossref]

K. J. Francis, B. Chinni, S. S. Channappayya, R. Pachamuthu, V. S. Dogra, and N. Rao, “Characterization of lens based photoacoustic imaging system,” Photoacoustics 8, 37–47 (2017).
[Crossref]

A. Fatima, K. Kratkiewicz, R. Manwar, M. Zafar, R. Zhang, B. Huang, N. Dadashzadesh, J. Xia, and M. Avanaki, “Review of cost reduction methods in photoacoustic computed tomography,” Photoacoustics 15, 100137 (2019).
[Crossref]

I. Steinberg, D. M. Huland, O. Vermesh, H. E. Frostig, W. S. Tummers, and S. S. Gambhir, “Photoacoustic clinical imaging,” Photoacoustics 14, 77–98 (2019).
[Crossref]

S. Manohar and M. Dantuma, “Current and future trends in photoacoustic breast imaging,” Photoacoustics 16, 100134 (2019).
[Crossref]

K. J. Francis, B. Chinni, S. S. Channappayya, R. Pachamuthu, V. S. Dogra, and N. Rao, “Multiview spatial compounding using lens-based photoacoustic imaging system,” Photoacoustics 13, 85–94 (2019).
[Crossref]

P. J. van den Berg, K. Daoudi, H. J. B. Moens, and W. Steenbergen, “Feasibility of photoacoustic/ultrasound imaging of synovitis in finger joints using a point-of-care system,” Photoacoustics 8, 8–14 (2017).
[Crossref]

Phys. Med. Biol. (1)

K. J. Francis and S. Manohar, “Photoacoustic imaging in percutaneous radiofrequency ablation: device guidance and ablation visualization,” Phys. Med. Biol. 64(18), 184001 (2019).
[Crossref]

Phys. Medicine & Biol. (2)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Medicine & Biol. 58(11), R37–R61 (2013).
[Crossref]

Y. E. Boink, M. J. Lagerwerf, W. Steenbergen, S. A. Van Gils, S. Manohar, and C. Brune, “A framework for directional and higher-order reconstruction in photoacoustic tomography,” Phys. Medicine & Biol. 63(4), 045018 (2018).
[Crossref]

Sci. Rep. (1)

Y. Zhu, G. Xu, J. Yuan, J. Jo, G. Gandikota, H. Demirci, T. Agano, N. Sato, Y. Shigeta, and X. Wang, “Light emitting diodes based photoacoustic imaging and potential clinical applications,” Sci. Rep. 8(1), 9885 (2018).
[Crossref]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref]

Sensors (3)

W. Xia, M. Kuniyil Ajith Singh, E. Maneas, N. Sato, Y. Shigeta, T. Agano, S. Ourselin, S. J West, and A. E Desjardins, “Handheld real-time led-based photoacoustic and ultrasound imaging system for accurate visualization of clinical metal needles and superficial vasculature to guide minimally invasive procedures,” Sensors 18(5), 1394 (2018).
[Crossref]

C. Lutzweiler and D. Razansky, “Optoacoustic imaging and tomography: reconstruction approaches and outstanding challenges in image performance and quantification,” Sensors 13(6), 7345–7384 (2013).
[Crossref]

S. Agrawal, C. Fadden, A. Dangi, and S.-R. Kothapalli, “Light-emitting-diode-based multispectral photoacoustic computed tomography system,” Sensors 19(22), 4861 (2019).
[Crossref]

Ultrasound Med. Biol. (1)

M. Oeri, W. Bost, S. Tretbar, and M. Fournelle, “Calibrated linear array-driven photoacoustic/ultrasound tomography,” Ultrasound Med. Biol. 42(11), 2697–2707 (2016).
[Crossref]

Other (4)

K. J. Francis, E. Rascevska, and S. Manohar, “Photoacoustic imaging assisted radiofrequency ablation: Illumination strategies and prospects,” in TENCON 2019-2019 IEEE Region 10 Conference (TENCON) (IEEE, 2019), pp. 118–122.

A. A. Oraevsky, V. A. Andreev, A. A. Karabutov, and R. O. Esenaliev, “Two-dimensional optoacoustic tomography: transducer array and image reconstruction algorithm,” in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, vol. 3601 (International Society for Optics and Photonics, 1999), pp. 256–267.

E. Maneas, R. Aughwane, N. Huynh, W. Xia, O. J. Ansari, and J. Deprest, “Photoacoustic imaging of the human placental vasculature,” Journal of biophotonics (2019).

J. Leskinen, A. Pulkkinen, J. Tick, and T. Tarvainen, “Photoacoustic tomography setup using led illumination,” in Opto-Acoustic Methods and Applications in Biophotonics IV, vol. 11077 (International Society for Optics and Photonics, 2019), p. 110770Q.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. System configurations and finger joint imager. (a) Illumination from the top using 4 LED array. (b) Illumination from the side of the sample, two LED units parallel to the long axis of the array ($30.8^{\circ }$ with the imaging plane) and two on either side of the sample ($105^{\circ }$ with the transducer). (c) Schematic and (d) photograph of finger joint imager.
Fig. 2.
Fig. 2. Image quality with an increasing number of angular views. (a) Ground truth image of the digital phantom used as photoacoustic initial pressure. (b) Image quality measured with Structural Similarity (SSIM) index and Peak Signal to Noise Ratio (PSNR) for an increasing number of equispaced angular views. (c)-(f) Reconstructed photoacoustic tomographic images from 1,4,16 and 64 angular views respectively.
Fig. 3.
Fig. 3. A simulation study comparing top and side illumination configurations. (a) - (b) Normalized optical fluence maps in the two cases respectively. For the side illumination the probe is positioned on the right side of the phantom. (c) Ground truth vascular phantom. (d) - (e) Initial pressure obtained from top and side illumination respectively. (f) - (g) Reconstructed and normalized tomographic images from 16 angular views. (h) - (i) Comparison of line profiles between the ground truth (c) and the reconstructed images (f) and (g), along horizontal (green) and vertical (white) lines passing through the center of the phantom respectively.
Fig. 4.
Fig. 4. Photoacoustic and ultrasound tomographic imaging of leaf phantom. (a) Photograph of leaf skeleton stained with India ink and embedded in an agar phantom. (b) Photoacoustic tomographic image of the phantom using top illumination and (c) the corresponding ultrasound image. (d-g) Photoacoustic tomographic image obtained from 1,4, 12 and 18 angular views.
Fig. 5.
Fig. 5. Photoacoustic and ultrasound tomographic imaging of an ex vivo mouse knee. (a) Photograph of the sample. The tomographic image from 18 angular views formed using (b) plane wave and (c) B-mode ultrasound imaging from multiple angles. (d) Photoacoustic image using top illumination. (e) Overlaid photoacoustic and ultrasound image.
Fig. 6.
Fig. 6. In vivo finger joint tomographic imaging using side illumination configuration. (a) Overlaid photoacoustic and ultrasound maximum intensity projection image showing finger joint from a linear scan. (b - d) Photoacoustic, ultrasound and combined tomographic image of the finger joint (p1). (e - g) Photoacoustic, ultrasound and combined tomographic image 5 mm in front of the joint (p2) respectively. (The dynamic range of the color bar is not applicable for the maximum intensity projection image in (a))

Metrics