Abstract

Vascular targeted photodynamic therapy (V-PDT) has been successfully utilized for various vascular-related diseases. To optimize the PDT dose and treatment protocols for clinical treatments and to elucidate the biological mechanisms for V-PDT, blood vessels in the dorsal skin-fold window chamber (DSWC) of nude mice are often chosen to perform in vivo studies. In this study, a new automatic protocol to quantify the vasoconstriction of blood vessels in the DSWC model is proposed, which focused on tracking the pixels of blood vessels in pre- V-PDT images that disappear after V-PDT. The disappearing pixels indicate that the blood vessels were constricted, and thus, the vasoconstriction image for pixel distribution can be constructed. For this, the image of the circular region of interest was automatically extracted using the Hough transform. In addition, the U-Net model is employed to segment the image, and the speeded-up robust features algorithm to automatically register the segmented pre- and post- V-PDT images. The vasoconstriction of blood vessels in the DSWC model after V-PDT is directly quantified, which can avoid by the potential of generating new capillaries. The accuracy, sensitivity and specificity of the U-Net model for image segmentation are 90.64%, 80.12% and 92.83%, respectively. A significant difference in vasoconstriction between a control and a V-PDT group was observed. This new automatic protocol is well suitable for quantifying vasoconstriction in blood vessel image, which holds the potential application in V-PDT studies.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Automated segmentation of retinal blood vessels in spectral domain optical coherence tomography scans

Matthäus Pilch, Yaroslava Wenner, Elisabeth Strohmayr, Markus Preising, Christoph Friedburg, Erdmuthe Meyer zu Bexten, Birgit Lorenz, and Knut Stieger
Biomed. Opt. Express 3(7) 1478-1491 (2012)

Automatic boundary segmentation of vascular Doppler optical coherence tomography images based on cascaded U-net architecture

Chuanchao Wu, Yingxiong Xie, Long Shao, Jian Yang, Danni Ai, Hong Song, Yongtian Wang, and Yong Huang
OSA Continuum 2(3) 677-689 (2019)

Blood vessel segmentation of fundus images via cross-modality dictionary learning

Yan Yang, Feng Shao, Zhenqi Fu, and Randi Fu
Appl. Opt. 57(25) 7287-7295 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Cavin, T. Riedel, P. Rosskopfova, M. Gonzalez, G. Baldini, M. Zellweger, G. Wagnieres, P. J. Dyson, H. B. Ris, T. Krueger, and J. Y. Perentes, “Vascular-targeted low dose photodynamic therapy stabilizes tumor vessels by modulating pericyte contractility,” Lasers Surg. Med. 51(6), 550–561 (2019).
    [Crossref]
  2. B. Li, L. Lin, H. Lin, and B. C. Wilson, “Photosensitized singlet oxygen generation and detection: Recent advances and future perspectives in cancer photodynamic therapy,” J. Biophotonics 9(11-12), 1314–1325 (2016).
    [Crossref]
  3. A. Kawczyk-Krupka, K. Wawrzyniec, S. Musiol, M. Potempa, A. Bugaj, and A. Sieroń, “Treatment of localized prostate cancer using WST-09 and WST-11 mediated vascular targeted photodynamic therapy-A review,” Photodiagn. Photodyn. Ther. 12(4), 567–574 (2015).
    [Crossref]
  4. A. Noweski, A. Roosen, S. Lebdai, E. Barret, M. Emberton, F. Benzaghou, M. Apfelbeck, B. Gaillac, C. Gratzke, C. Stief, and A. R. Azzouzi, “Medium-term follow-up of vascular-targeted photodynamic therapy of localized prostate cancer using TOOKAD soluble WST-11 (Phase II Trials),” Eur. Urol. Focus 5(6), 1022–1028 (2019).
    [Crossref]
  5. Z. Li, P. Agharkar, and B. Chen, “Therapeutic enhancement of vascular-targeted photodynamic therapy by inhibiting proteasomal function,” Cancer Lett. 339(1), 128–134 (2013).
    [Crossref]
  6. A. Kawczyk-Krupka, A. Bugaj, M. Potempa, K. Wasilewska, W. Latos, and A. Sieroń, “Vascular-targeted photodynamic therapy in the treatment of neovascular age-related macular degeneration: Clinical perspectives,” Photodiagn. Photodyn. Ther. 12(2), 161–175 (2015).
    [Crossref]
  7. D. Chen, J. Ren, Y. Wang, H. Zhao, B. Li, and Y. Gu, “Relationship between the blood perfusion values determined by laser speckle imaging and laser Doppler imaging in normal skin and port wine stains,” Photodiagn. Photodyn. Ther. 13, 1–9 (2016).
    [Crossref]
  8. D. Chen, J. Ren, Y. Wang, B. Li, and Y. Gu, “Intraoperative monitoring of blood perfusion in port wine stains by laser Doppler imaging during vascular targeted photodynamic therapy: A preliminary study,” Photodiagn. Photodyn. Ther. 14, 142–151 (2016).
    [Crossref]
  9. H. Qiu, Y. Mao, Y. Gu, Y. Wang, J. Zhu, and J. Zeng, “Vascular targeted photodynamic therapy for bleeding gastrointestinal mucosal vascular lesions: A preliminary study,” Photodiagn. Photodyn. Ther. 9(2), 109–117 (2012).
    [Crossref]
  10. H. Qiu, Y. Mao, J. Zeng, Y. Wang, J. Zhang, N. Huang, Q. Liu, Y. Yang, E. Linghu, and Y. Gu, “Vascular-targeted photodynamic therapy of gastric antral vascular ectasia (GAVE),” J. Photochem. Photobiol., B 166, 58–62 (2017).
    [Crossref]
  11. L. Lin, Y. Li, J. Zhang, Z. Tan, D. Chen, S. Xie, Y. Gu, and B. Li, “Vessel constriction correlated with local singlet oxygen generation during vascular targeted photodynamic therapy,” Proc. SPIE 9268, 92680T (2014).
    [Crossref]
  12. H. S. de Bruijn, S. Brooks, T. L. ten Hagen, E. R. de Haas, and D. J. Robinson, “Light fractionation significantly increases the efficacy of photodynamic therapy using BF-200 ALA in normal mouse skin,” PLoS One 11(2), e0148850 (2016).
    [Crossref]
  13. K. S. Samkoe, A. A. Clancy, A. Karotki, B. C. Wilson, and D. T. Cramb, “Complete blood vessel occlusion in the chick chorioallantoic membrane using two-photon excitation photodynamic therapy: implications for treatment of wet age-related macular degeneration,” J. Biomed. Opt. 12(3), 034025 (2007).
    [Crossref]
  14. H. Buzzá, L. Silva, L. Moriyama, V. Bagnato, and C. Kurachi, “Evaluation of vascular effect of photodynamic therapy in chorioallantoic membrane using different photosensitizers,” J. Photochem. Photobiol., B 138, 1–7 (2014).
    [Crossref]
  15. T. A. Middelburg, H. S. de Bruijn, L. Tettero, A. van der Ploeg van den Heuvel, H. A. Neumann, E. R. de Haas, and D. J. Robinson, “Topical hexylaminolevulinate and aminolevulinic acid photodynamic therapy: complete arteriole vasoconstriction occurs frequently and depends on protoporphyrin IX concentration in vessel wall,” J. Photochem. Photobiol., B 126, 26–32 (2013).
    [Crossref]
  16. M. A. Sirotkina, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, V. V. Elagin, S. S. Kuznetsov, G. V. Gelikonov, S. Y. Ksenofontov, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “Accurate early prediction of tumour response to PDT using optical coherence angiography,” Sci. Rep. 9(1), 6492 (2019).
    [Crossref]
  17. S. Tzaridis, M. W. M. Wintergerst, C. Mai, T. F. C. Heeren, F. G. Holz, P. Charbel Issa, and P. Herrmann, “Quantification of retinal and choriocapillaris perfusion in different stages of macular telangiectasia type 2,” Invest. Ophthalmol. Visual Sci. 60(10), 3556–3562 (2019).
    [Crossref]
  18. M. Pellegrini, M. Cozzi, G. Staurenghi, and F. Corvi, “Comparison of wide field optical coherence tomography angiography with extended field imaging and fluorescein angiography in retinal vascular disorders,” PLoS One 14(4), e0214892 (2019).
    [Crossref]
  19. G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
    [Crossref]
  20. T. Tasdizen, E. Jurrus, and R. T. Whitaker, “Non-uniform illumination correction in transmission electron microscopy,” in Proceedings of MICCAI Workshop on Microscopic Image Analysis with Applications in Biology (2008), pp. 5–6.
  21. N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst., Man, Cybern. 9(1), 62–66 (1979).
    [Crossref]
  22. T. Chanwimaluang and G. Fan, “An efficient blood vessel detection algorithm for retinal images using local entropy thresholding,” in Proceedings of IEEE International Symposium on Circuits and Systems (IEEE, 2003), pp. V-21–V-24.
  23. H. Yuen, J. Princen, J. Illingworth, and J. Kittler, “Comparative study of Hough transform methods for circle finding,” Image Vision Comput. 8(1), 71–77 (1990).
    [Crossref]
  24. D. H. Ballard, “Generalizing the Hough transform to detect arbitrary shapes,” Pattern Recogn. 13(2), 111–122 (1981).
    [Crossref]
  25. A. Goel, R. McColl, K. S. King, A. Whittemore, and R. M. Peshock, “Fully automated tool to identify the aorta and compute flow using phase-contrast MRI: Validation and application in a large population based study,” J. Magn. Reson. Imaging 40(1), 221–228 (2014).
    [Crossref]
  26. X. Ni and P. Wu, “Study on target dimension measurement using linear CCD,” Opt. Instruments 33(6), 11–13 (2011).
  27. R. C. Gonzalez and R. E. Woods, “Digital image processing,” (Prentice hall, Upper Saddle River, 2002).
  28. O. Ronneberger, P. Fischer, and T. Brox, “U-Net : Convolutional networks for biomedical image segmentation,” in Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention, N. Naval, ed (Springer International Publishing, Switzerland, 2015), pp. 234–241.
  29. DRIVE, Digital Retinal Images for Vessel Extraction. http://www.isi.uu.nl/Research/Databases/DRIVE/ , 2004.
  30. H. Bay, T. Tuytelaars, and L. V. Gool, “SURF: speeded up robust features,” Comput. Vis. Image Und. 110(3), 346–359 (2008).
    [Crossref]
  31. C. Wang, A. Stefanidis, A. Croitoru, and P. Agouris, “Map registration of image sequences using linear features,” Photogramm. Eng. Remote Sens. 74(1), 25–38 (2008).
    [Crossref]
  32. M. M. Fraz, S. A. Barman, P. Remagnino, A. Hoppe, A. Basit, B. Uyyanonvara, A. R. Rudnicka, and C. G. Owen, “An approach to localize the retinal blood vessels using bit planes and centerline detection,” Comput. Meth. Prog. Bio. 108(2), 600–616 (2012).
    [Crossref]
  33. G. Balakrishnan, A. Zhao, M. R. Sabuncu, J. Guttag, and A. V. Dalca, “VoxelMorph: A learning framework for deformable medical image registration,” IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019).
    [Crossref]

2019 (6)

S. Cavin, T. Riedel, P. Rosskopfova, M. Gonzalez, G. Baldini, M. Zellweger, G. Wagnieres, P. J. Dyson, H. B. Ris, T. Krueger, and J. Y. Perentes, “Vascular-targeted low dose photodynamic therapy stabilizes tumor vessels by modulating pericyte contractility,” Lasers Surg. Med. 51(6), 550–561 (2019).
[Crossref]

A. Noweski, A. Roosen, S. Lebdai, E. Barret, M. Emberton, F. Benzaghou, M. Apfelbeck, B. Gaillac, C. Gratzke, C. Stief, and A. R. Azzouzi, “Medium-term follow-up of vascular-targeted photodynamic therapy of localized prostate cancer using TOOKAD soluble WST-11 (Phase II Trials),” Eur. Urol. Focus 5(6), 1022–1028 (2019).
[Crossref]

M. A. Sirotkina, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, V. V. Elagin, S. S. Kuznetsov, G. V. Gelikonov, S. Y. Ksenofontov, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “Accurate early prediction of tumour response to PDT using optical coherence angiography,” Sci. Rep. 9(1), 6492 (2019).
[Crossref]

S. Tzaridis, M. W. M. Wintergerst, C. Mai, T. F. C. Heeren, F. G. Holz, P. Charbel Issa, and P. Herrmann, “Quantification of retinal and choriocapillaris perfusion in different stages of macular telangiectasia type 2,” Invest. Ophthalmol. Visual Sci. 60(10), 3556–3562 (2019).
[Crossref]

M. Pellegrini, M. Cozzi, G. Staurenghi, and F. Corvi, “Comparison of wide field optical coherence tomography angiography with extended field imaging and fluorescein angiography in retinal vascular disorders,” PLoS One 14(4), e0214892 (2019).
[Crossref]

G. Balakrishnan, A. Zhao, M. R. Sabuncu, J. Guttag, and A. V. Dalca, “VoxelMorph: A learning framework for deformable medical image registration,” IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019).
[Crossref]

2017 (1)

H. Qiu, Y. Mao, J. Zeng, Y. Wang, J. Zhang, N. Huang, Q. Liu, Y. Yang, E. Linghu, and Y. Gu, “Vascular-targeted photodynamic therapy of gastric antral vascular ectasia (GAVE),” J. Photochem. Photobiol., B 166, 58–62 (2017).
[Crossref]

2016 (4)

D. Chen, J. Ren, Y. Wang, H. Zhao, B. Li, and Y. Gu, “Relationship between the blood perfusion values determined by laser speckle imaging and laser Doppler imaging in normal skin and port wine stains,” Photodiagn. Photodyn. Ther. 13, 1–9 (2016).
[Crossref]

D. Chen, J. Ren, Y. Wang, B. Li, and Y. Gu, “Intraoperative monitoring of blood perfusion in port wine stains by laser Doppler imaging during vascular targeted photodynamic therapy: A preliminary study,” Photodiagn. Photodyn. Ther. 14, 142–151 (2016).
[Crossref]

B. Li, L. Lin, H. Lin, and B. C. Wilson, “Photosensitized singlet oxygen generation and detection: Recent advances and future perspectives in cancer photodynamic therapy,” J. Biophotonics 9(11-12), 1314–1325 (2016).
[Crossref]

H. S. de Bruijn, S. Brooks, T. L. ten Hagen, E. R. de Haas, and D. J. Robinson, “Light fractionation significantly increases the efficacy of photodynamic therapy using BF-200 ALA in normal mouse skin,” PLoS One 11(2), e0148850 (2016).
[Crossref]

2015 (2)

A. Kawczyk-Krupka, K. Wawrzyniec, S. Musiol, M. Potempa, A. Bugaj, and A. Sieroń, “Treatment of localized prostate cancer using WST-09 and WST-11 mediated vascular targeted photodynamic therapy-A review,” Photodiagn. Photodyn. Ther. 12(4), 567–574 (2015).
[Crossref]

A. Kawczyk-Krupka, A. Bugaj, M. Potempa, K. Wasilewska, W. Latos, and A. Sieroń, “Vascular-targeted photodynamic therapy in the treatment of neovascular age-related macular degeneration: Clinical perspectives,” Photodiagn. Photodyn. Ther. 12(2), 161–175 (2015).
[Crossref]

2014 (3)

A. Goel, R. McColl, K. S. King, A. Whittemore, and R. M. Peshock, “Fully automated tool to identify the aorta and compute flow using phase-contrast MRI: Validation and application in a large population based study,” J. Magn. Reson. Imaging 40(1), 221–228 (2014).
[Crossref]

L. Lin, Y. Li, J. Zhang, Z. Tan, D. Chen, S. Xie, Y. Gu, and B. Li, “Vessel constriction correlated with local singlet oxygen generation during vascular targeted photodynamic therapy,” Proc. SPIE 9268, 92680T (2014).
[Crossref]

H. Buzzá, L. Silva, L. Moriyama, V. Bagnato, and C. Kurachi, “Evaluation of vascular effect of photodynamic therapy in chorioallantoic membrane using different photosensitizers,” J. Photochem. Photobiol., B 138, 1–7 (2014).
[Crossref]

2013 (2)

T. A. Middelburg, H. S. de Bruijn, L. Tettero, A. van der Ploeg van den Heuvel, H. A. Neumann, E. R. de Haas, and D. J. Robinson, “Topical hexylaminolevulinate and aminolevulinic acid photodynamic therapy: complete arteriole vasoconstriction occurs frequently and depends on protoporphyrin IX concentration in vessel wall,” J. Photochem. Photobiol., B 126, 26–32 (2013).
[Crossref]

Z. Li, P. Agharkar, and B. Chen, “Therapeutic enhancement of vascular-targeted photodynamic therapy by inhibiting proteasomal function,” Cancer Lett. 339(1), 128–134 (2013).
[Crossref]

2012 (2)

H. Qiu, Y. Mao, Y. Gu, Y. Wang, J. Zhu, and J. Zeng, “Vascular targeted photodynamic therapy for bleeding gastrointestinal mucosal vascular lesions: A preliminary study,” Photodiagn. Photodyn. Ther. 9(2), 109–117 (2012).
[Crossref]

M. M. Fraz, S. A. Barman, P. Remagnino, A. Hoppe, A. Basit, B. Uyyanonvara, A. R. Rudnicka, and C. G. Owen, “An approach to localize the retinal blood vessels using bit planes and centerline detection,” Comput. Meth. Prog. Bio. 108(2), 600–616 (2012).
[Crossref]

2011 (2)

X. Ni and P. Wu, “Study on target dimension measurement using linear CCD,” Opt. Instruments 33(6), 11–13 (2011).

G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
[Crossref]

2008 (2)

H. Bay, T. Tuytelaars, and L. V. Gool, “SURF: speeded up robust features,” Comput. Vis. Image Und. 110(3), 346–359 (2008).
[Crossref]

C. Wang, A. Stefanidis, A. Croitoru, and P. Agouris, “Map registration of image sequences using linear features,” Photogramm. Eng. Remote Sens. 74(1), 25–38 (2008).
[Crossref]

2007 (1)

K. S. Samkoe, A. A. Clancy, A. Karotki, B. C. Wilson, and D. T. Cramb, “Complete blood vessel occlusion in the chick chorioallantoic membrane using two-photon excitation photodynamic therapy: implications for treatment of wet age-related macular degeneration,” J. Biomed. Opt. 12(3), 034025 (2007).
[Crossref]

1990 (1)

H. Yuen, J. Princen, J. Illingworth, and J. Kittler, “Comparative study of Hough transform methods for circle finding,” Image Vision Comput. 8(1), 71–77 (1990).
[Crossref]

1981 (1)

D. H. Ballard, “Generalizing the Hough transform to detect arbitrary shapes,” Pattern Recogn. 13(2), 111–122 (1981).
[Crossref]

1979 (1)

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst., Man, Cybern. 9(1), 62–66 (1979).
[Crossref]

Agharkar, P.

Z. Li, P. Agharkar, and B. Chen, “Therapeutic enhancement of vascular-targeted photodynamic therapy by inhibiting proteasomal function,” Cancer Lett. 339(1), 128–134 (2013).
[Crossref]

Agouris, P.

C. Wang, A. Stefanidis, A. Croitoru, and P. Agouris, “Map registration of image sequences using linear features,” Photogramm. Eng. Remote Sens. 74(1), 25–38 (2008).
[Crossref]

Apfelbeck, M.

A. Noweski, A. Roosen, S. Lebdai, E. Barret, M. Emberton, F. Benzaghou, M. Apfelbeck, B. Gaillac, C. Gratzke, C. Stief, and A. R. Azzouzi, “Medium-term follow-up of vascular-targeted photodynamic therapy of localized prostate cancer using TOOKAD soluble WST-11 (Phase II Trials),” Eur. Urol. Focus 5(6), 1022–1028 (2019).
[Crossref]

Azzouzi, A. R.

A. Noweski, A. Roosen, S. Lebdai, E. Barret, M. Emberton, F. Benzaghou, M. Apfelbeck, B. Gaillac, C. Gratzke, C. Stief, and A. R. Azzouzi, “Medium-term follow-up of vascular-targeted photodynamic therapy of localized prostate cancer using TOOKAD soluble WST-11 (Phase II Trials),” Eur. Urol. Focus 5(6), 1022–1028 (2019).
[Crossref]

Bagnato, V.

H. Buzzá, L. Silva, L. Moriyama, V. Bagnato, and C. Kurachi, “Evaluation of vascular effect of photodynamic therapy in chorioallantoic membrane using different photosensitizers,” J. Photochem. Photobiol., B 138, 1–7 (2014).
[Crossref]

Balakrishnan, G.

G. Balakrishnan, A. Zhao, M. R. Sabuncu, J. Guttag, and A. V. Dalca, “VoxelMorph: A learning framework for deformable medical image registration,” IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019).
[Crossref]

Baldini, G.

S. Cavin, T. Riedel, P. Rosskopfova, M. Gonzalez, G. Baldini, M. Zellweger, G. Wagnieres, P. J. Dyson, H. B. Ris, T. Krueger, and J. Y. Perentes, “Vascular-targeted low dose photodynamic therapy stabilizes tumor vessels by modulating pericyte contractility,” Lasers Surg. Med. 51(6), 550–561 (2019).
[Crossref]

Ballard, D. H.

D. H. Ballard, “Generalizing the Hough transform to detect arbitrary shapes,” Pattern Recogn. 13(2), 111–122 (1981).
[Crossref]

Barman, S. A.

M. M. Fraz, S. A. Barman, P. Remagnino, A. Hoppe, A. Basit, B. Uyyanonvara, A. R. Rudnicka, and C. G. Owen, “An approach to localize the retinal blood vessels using bit planes and centerline detection,” Comput. Meth. Prog. Bio. 108(2), 600–616 (2012).
[Crossref]

Barret, E.

A. Noweski, A. Roosen, S. Lebdai, E. Barret, M. Emberton, F. Benzaghou, M. Apfelbeck, B. Gaillac, C. Gratzke, C. Stief, and A. R. Azzouzi, “Medium-term follow-up of vascular-targeted photodynamic therapy of localized prostate cancer using TOOKAD soluble WST-11 (Phase II Trials),” Eur. Urol. Focus 5(6), 1022–1028 (2019).
[Crossref]

Basit, A.

M. M. Fraz, S. A. Barman, P. Remagnino, A. Hoppe, A. Basit, B. Uyyanonvara, A. R. Rudnicka, and C. G. Owen, “An approach to localize the retinal blood vessels using bit planes and centerline detection,” Comput. Meth. Prog. Bio. 108(2), 600–616 (2012).
[Crossref]

Bay, H.

H. Bay, T. Tuytelaars, and L. V. Gool, “SURF: speeded up robust features,” Comput. Vis. Image Und. 110(3), 346–359 (2008).
[Crossref]

Benzaghou, F.

A. Noweski, A. Roosen, S. Lebdai, E. Barret, M. Emberton, F. Benzaghou, M. Apfelbeck, B. Gaillac, C. Gratzke, C. Stief, and A. R. Azzouzi, “Medium-term follow-up of vascular-targeted photodynamic therapy of localized prostate cancer using TOOKAD soluble WST-11 (Phase II Trials),” Eur. Urol. Focus 5(6), 1022–1028 (2019).
[Crossref]

Brooks, S.

H. S. de Bruijn, S. Brooks, T. L. ten Hagen, E. R. de Haas, and D. J. Robinson, “Light fractionation significantly increases the efficacy of photodynamic therapy using BF-200 ALA in normal mouse skin,” PLoS One 11(2), e0148850 (2016).
[Crossref]

Brox, T.

O. Ronneberger, P. Fischer, and T. Brox, “U-Net : Convolutional networks for biomedical image segmentation,” in Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention, N. Naval, ed (Springer International Publishing, Switzerland, 2015), pp. 234–241.

Bugaj, A.

A. Kawczyk-Krupka, K. Wawrzyniec, S. Musiol, M. Potempa, A. Bugaj, and A. Sieroń, “Treatment of localized prostate cancer using WST-09 and WST-11 mediated vascular targeted photodynamic therapy-A review,” Photodiagn. Photodyn. Ther. 12(4), 567–574 (2015).
[Crossref]

A. Kawczyk-Krupka, A. Bugaj, M. Potempa, K. Wasilewska, W. Latos, and A. Sieroń, “Vascular-targeted photodynamic therapy in the treatment of neovascular age-related macular degeneration: Clinical perspectives,” Photodiagn. Photodyn. Ther. 12(2), 161–175 (2015).
[Crossref]

Buzzá, H.

H. Buzzá, L. Silva, L. Moriyama, V. Bagnato, and C. Kurachi, “Evaluation of vascular effect of photodynamic therapy in chorioallantoic membrane using different photosensitizers,” J. Photochem. Photobiol., B 138, 1–7 (2014).
[Crossref]

Cavin, S.

S. Cavin, T. Riedel, P. Rosskopfova, M. Gonzalez, G. Baldini, M. Zellweger, G. Wagnieres, P. J. Dyson, H. B. Ris, T. Krueger, and J. Y. Perentes, “Vascular-targeted low dose photodynamic therapy stabilizes tumor vessels by modulating pericyte contractility,” Lasers Surg. Med. 51(6), 550–561 (2019).
[Crossref]

Chanwimaluang, T.

T. Chanwimaluang and G. Fan, “An efficient blood vessel detection algorithm for retinal images using local entropy thresholding,” in Proceedings of IEEE International Symposium on Circuits and Systems (IEEE, 2003), pp. V-21–V-24.

Charbel Issa, P.

S. Tzaridis, M. W. M. Wintergerst, C. Mai, T. F. C. Heeren, F. G. Holz, P. Charbel Issa, and P. Herrmann, “Quantification of retinal and choriocapillaris perfusion in different stages of macular telangiectasia type 2,” Invest. Ophthalmol. Visual Sci. 60(10), 3556–3562 (2019).
[Crossref]

Chen, B.

Z. Li, P. Agharkar, and B. Chen, “Therapeutic enhancement of vascular-targeted photodynamic therapy by inhibiting proteasomal function,” Cancer Lett. 339(1), 128–134 (2013).
[Crossref]

Chen, D.

D. Chen, J. Ren, Y. Wang, B. Li, and Y. Gu, “Intraoperative monitoring of blood perfusion in port wine stains by laser Doppler imaging during vascular targeted photodynamic therapy: A preliminary study,” Photodiagn. Photodyn. Ther. 14, 142–151 (2016).
[Crossref]

D. Chen, J. Ren, Y. Wang, H. Zhao, B. Li, and Y. Gu, “Relationship between the blood perfusion values determined by laser speckle imaging and laser Doppler imaging in normal skin and port wine stains,” Photodiagn. Photodyn. Ther. 13, 1–9 (2016).
[Crossref]

L. Lin, Y. Li, J. Zhang, Z. Tan, D. Chen, S. Xie, Y. Gu, and B. Li, “Vessel constriction correlated with local singlet oxygen generation during vascular targeted photodynamic therapy,” Proc. SPIE 9268, 92680T (2014).
[Crossref]

Clancy, A. A.

K. S. Samkoe, A. A. Clancy, A. Karotki, B. C. Wilson, and D. T. Cramb, “Complete blood vessel occlusion in the chick chorioallantoic membrane using two-photon excitation photodynamic therapy: implications for treatment of wet age-related macular degeneration,” J. Biomed. Opt. 12(3), 034025 (2007).
[Crossref]

Corvi, F.

M. Pellegrini, M. Cozzi, G. Staurenghi, and F. Corvi, “Comparison of wide field optical coherence tomography angiography with extended field imaging and fluorescein angiography in retinal vascular disorders,” PLoS One 14(4), e0214892 (2019).
[Crossref]

Cozzi, M.

M. Pellegrini, M. Cozzi, G. Staurenghi, and F. Corvi, “Comparison of wide field optical coherence tomography angiography with extended field imaging and fluorescein angiography in retinal vascular disorders,” PLoS One 14(4), e0214892 (2019).
[Crossref]

Cramb, D. T.

K. S. Samkoe, A. A. Clancy, A. Karotki, B. C. Wilson, and D. T. Cramb, “Complete blood vessel occlusion in the chick chorioallantoic membrane using two-photon excitation photodynamic therapy: implications for treatment of wet age-related macular degeneration,” J. Biomed. Opt. 12(3), 034025 (2007).
[Crossref]

Croitoru, A.

C. Wang, A. Stefanidis, A. Croitoru, and P. Agouris, “Map registration of image sequences using linear features,” Photogramm. Eng. Remote Sens. 74(1), 25–38 (2008).
[Crossref]

Dalca, A. V.

G. Balakrishnan, A. Zhao, M. R. Sabuncu, J. Guttag, and A. V. Dalca, “VoxelMorph: A learning framework for deformable medical image registration,” IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019).
[Crossref]

de Bruijn, H. S.

H. S. de Bruijn, S. Brooks, T. L. ten Hagen, E. R. de Haas, and D. J. Robinson, “Light fractionation significantly increases the efficacy of photodynamic therapy using BF-200 ALA in normal mouse skin,” PLoS One 11(2), e0148850 (2016).
[Crossref]

T. A. Middelburg, H. S. de Bruijn, L. Tettero, A. van der Ploeg van den Heuvel, H. A. Neumann, E. R. de Haas, and D. J. Robinson, “Topical hexylaminolevulinate and aminolevulinic acid photodynamic therapy: complete arteriole vasoconstriction occurs frequently and depends on protoporphyrin IX concentration in vessel wall,” J. Photochem. Photobiol., B 126, 26–32 (2013).
[Crossref]

de Haas, E. R.

H. S. de Bruijn, S. Brooks, T. L. ten Hagen, E. R. de Haas, and D. J. Robinson, “Light fractionation significantly increases the efficacy of photodynamic therapy using BF-200 ALA in normal mouse skin,” PLoS One 11(2), e0148850 (2016).
[Crossref]

T. A. Middelburg, H. S. de Bruijn, L. Tettero, A. van der Ploeg van den Heuvel, H. A. Neumann, E. R. de Haas, and D. J. Robinson, “Topical hexylaminolevulinate and aminolevulinic acid photodynamic therapy: complete arteriole vasoconstriction occurs frequently and depends on protoporphyrin IX concentration in vessel wall,” J. Photochem. Photobiol., B 126, 26–32 (2013).
[Crossref]

Dewhirst, M. W.

G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
[Crossref]

Dyson, P. J.

S. Cavin, T. Riedel, P. Rosskopfova, M. Gonzalez, G. Baldini, M. Zellweger, G. Wagnieres, P. J. Dyson, H. B. Ris, T. Krueger, and J. Y. Perentes, “Vascular-targeted low dose photodynamic therapy stabilizes tumor vessels by modulating pericyte contractility,” Lasers Surg. Med. 51(6), 550–561 (2019).
[Crossref]

Elagin, V. V.

M. A. Sirotkina, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, V. V. Elagin, S. S. Kuznetsov, G. V. Gelikonov, S. Y. Ksenofontov, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “Accurate early prediction of tumour response to PDT using optical coherence angiography,” Sci. Rep. 9(1), 6492 (2019).
[Crossref]

Emberton, M.

A. Noweski, A. Roosen, S. Lebdai, E. Barret, M. Emberton, F. Benzaghou, M. Apfelbeck, B. Gaillac, C. Gratzke, C. Stief, and A. R. Azzouzi, “Medium-term follow-up of vascular-targeted photodynamic therapy of localized prostate cancer using TOOKAD soluble WST-11 (Phase II Trials),” Eur. Urol. Focus 5(6), 1022–1028 (2019).
[Crossref]

Fan, G.

T. Chanwimaluang and G. Fan, “An efficient blood vessel detection algorithm for retinal images using local entropy thresholding,” in Proceedings of IEEE International Symposium on Circuits and Systems (IEEE, 2003), pp. V-21–V-24.

Feldchtein, F. I.

M. A. Sirotkina, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, V. V. Elagin, S. S. Kuznetsov, G. V. Gelikonov, S. Y. Ksenofontov, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “Accurate early prediction of tumour response to PDT using optical coherence angiography,” Sci. Rep. 9(1), 6492 (2019).
[Crossref]

Fischer, P.

O. Ronneberger, P. Fischer, and T. Brox, “U-Net : Convolutional networks for biomedical image segmentation,” in Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention, N. Naval, ed (Springer International Publishing, Switzerland, 2015), pp. 234–241.

Fontanella, A. N.

G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
[Crossref]

Fraser, C. L.

G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
[Crossref]

Fraz, M. M.

M. M. Fraz, S. A. Barman, P. Remagnino, A. Hoppe, A. Basit, B. Uyyanonvara, A. R. Rudnicka, and C. G. Owen, “An approach to localize the retinal blood vessels using bit planes and centerline detection,” Comput. Meth. Prog. Bio. 108(2), 600–616 (2012).
[Crossref]

Gaillac, B.

A. Noweski, A. Roosen, S. Lebdai, E. Barret, M. Emberton, F. Benzaghou, M. Apfelbeck, B. Gaillac, C. Gratzke, C. Stief, and A. R. Azzouzi, “Medium-term follow-up of vascular-targeted photodynamic therapy of localized prostate cancer using TOOKAD soluble WST-11 (Phase II Trials),” Eur. Urol. Focus 5(6), 1022–1028 (2019).
[Crossref]

Gelikonov, G. V.

M. A. Sirotkina, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, V. V. Elagin, S. S. Kuznetsov, G. V. Gelikonov, S. Y. Ksenofontov, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “Accurate early prediction of tumour response to PDT using optical coherence angiography,” Sci. Rep. 9(1), 6492 (2019).
[Crossref]

Gladkova, N. D.

M. A. Sirotkina, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, V. V. Elagin, S. S. Kuznetsov, G. V. Gelikonov, S. Y. Ksenofontov, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “Accurate early prediction of tumour response to PDT using optical coherence angiography,” Sci. Rep. 9(1), 6492 (2019).
[Crossref]

Goel, A.

A. Goel, R. McColl, K. S. King, A. Whittemore, and R. M. Peshock, “Fully automated tool to identify the aorta and compute flow using phase-contrast MRI: Validation and application in a large population based study,” J. Magn. Reson. Imaging 40(1), 221–228 (2014).
[Crossref]

Gonzalez, M.

S. Cavin, T. Riedel, P. Rosskopfova, M. Gonzalez, G. Baldini, M. Zellweger, G. Wagnieres, P. J. Dyson, H. B. Ris, T. Krueger, and J. Y. Perentes, “Vascular-targeted low dose photodynamic therapy stabilizes tumor vessels by modulating pericyte contractility,” Lasers Surg. Med. 51(6), 550–561 (2019).
[Crossref]

Gonzalez, R. C.

R. C. Gonzalez and R. E. Woods, “Digital image processing,” (Prentice hall, Upper Saddle River, 2002).

Gool, L. V.

H. Bay, T. Tuytelaars, and L. V. Gool, “SURF: speeded up robust features,” Comput. Vis. Image Und. 110(3), 346–359 (2008).
[Crossref]

Gratzke, C.

A. Noweski, A. Roosen, S. Lebdai, E. Barret, M. Emberton, F. Benzaghou, M. Apfelbeck, B. Gaillac, C. Gratzke, C. Stief, and A. R. Azzouzi, “Medium-term follow-up of vascular-targeted photodynamic therapy of localized prostate cancer using TOOKAD soluble WST-11 (Phase II Trials),” Eur. Urol. Focus 5(6), 1022–1028 (2019).
[Crossref]

Gu, Y.

H. Qiu, Y. Mao, J. Zeng, Y. Wang, J. Zhang, N. Huang, Q. Liu, Y. Yang, E. Linghu, and Y. Gu, “Vascular-targeted photodynamic therapy of gastric antral vascular ectasia (GAVE),” J. Photochem. Photobiol., B 166, 58–62 (2017).
[Crossref]

D. Chen, J. Ren, Y. Wang, B. Li, and Y. Gu, “Intraoperative monitoring of blood perfusion in port wine stains by laser Doppler imaging during vascular targeted photodynamic therapy: A preliminary study,” Photodiagn. Photodyn. Ther. 14, 142–151 (2016).
[Crossref]

D. Chen, J. Ren, Y. Wang, H. Zhao, B. Li, and Y. Gu, “Relationship between the blood perfusion values determined by laser speckle imaging and laser Doppler imaging in normal skin and port wine stains,” Photodiagn. Photodyn. Ther. 13, 1–9 (2016).
[Crossref]

L. Lin, Y. Li, J. Zhang, Z. Tan, D. Chen, S. Xie, Y. Gu, and B. Li, “Vessel constriction correlated with local singlet oxygen generation during vascular targeted photodynamic therapy,” Proc. SPIE 9268, 92680T (2014).
[Crossref]

H. Qiu, Y. Mao, Y. Gu, Y. Wang, J. Zhu, and J. Zeng, “Vascular targeted photodynamic therapy for bleeding gastrointestinal mucosal vascular lesions: A preliminary study,” Photodiagn. Photodyn. Ther. 9(2), 109–117 (2012).
[Crossref]

Guttag, J.

G. Balakrishnan, A. Zhao, M. R. Sabuncu, J. Guttag, and A. V. Dalca, “VoxelMorph: A learning framework for deformable medical image registration,” IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019).
[Crossref]

Hanna, G.

G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
[Crossref]

Heeren, T. F. C.

S. Tzaridis, M. W. M. Wintergerst, C. Mai, T. F. C. Heeren, F. G. Holz, P. Charbel Issa, and P. Herrmann, “Quantification of retinal and choriocapillaris perfusion in different stages of macular telangiectasia type 2,” Invest. Ophthalmol. Visual Sci. 60(10), 3556–3562 (2019).
[Crossref]

Herrmann, P.

S. Tzaridis, M. W. M. Wintergerst, C. Mai, T. F. C. Heeren, F. G. Holz, P. Charbel Issa, and P. Herrmann, “Quantification of retinal and choriocapillaris perfusion in different stages of macular telangiectasia type 2,” Invest. Ophthalmol. Visual Sci. 60(10), 3556–3562 (2019).
[Crossref]

Holz, F. G.

S. Tzaridis, M. W. M. Wintergerst, C. Mai, T. F. C. Heeren, F. G. Holz, P. Charbel Issa, and P. Herrmann, “Quantification of retinal and choriocapillaris perfusion in different stages of macular telangiectasia type 2,” Invest. Ophthalmol. Visual Sci. 60(10), 3556–3562 (2019).
[Crossref]

Hoppe, A.

M. M. Fraz, S. A. Barman, P. Remagnino, A. Hoppe, A. Basit, B. Uyyanonvara, A. R. Rudnicka, and C. G. Owen, “An approach to localize the retinal blood vessels using bit planes and centerline detection,” Comput. Meth. Prog. Bio. 108(2), 600–616 (2012).
[Crossref]

Huang, N.

H. Qiu, Y. Mao, J. Zeng, Y. Wang, J. Zhang, N. Huang, Q. Liu, Y. Yang, E. Linghu, and Y. Gu, “Vascular-targeted photodynamic therapy of gastric antral vascular ectasia (GAVE),” J. Photochem. Photobiol., B 166, 58–62 (2017).
[Crossref]

Illingworth, J.

H. Yuen, J. Princen, J. Illingworth, and J. Kittler, “Comparative study of Hough transform methods for circle finding,” Image Vision Comput. 8(1), 71–77 (1990).
[Crossref]

Jurrus, E.

T. Tasdizen, E. Jurrus, and R. T. Whitaker, “Non-uniform illumination correction in transmission electron microscopy,” in Proceedings of MICCAI Workshop on Microscopic Image Analysis with Applications in Biology (2008), pp. 5–6.

Karotki, A.

K. S. Samkoe, A. A. Clancy, A. Karotki, B. C. Wilson, and D. T. Cramb, “Complete blood vessel occlusion in the chick chorioallantoic membrane using two-photon excitation photodynamic therapy: implications for treatment of wet age-related macular degeneration,” J. Biomed. Opt. 12(3), 034025 (2007).
[Crossref]

Kawczyk-Krupka, A.

A. Kawczyk-Krupka, A. Bugaj, M. Potempa, K. Wasilewska, W. Latos, and A. Sieroń, “Vascular-targeted photodynamic therapy in the treatment of neovascular age-related macular degeneration: Clinical perspectives,” Photodiagn. Photodyn. Ther. 12(2), 161–175 (2015).
[Crossref]

A. Kawczyk-Krupka, K. Wawrzyniec, S. Musiol, M. Potempa, A. Bugaj, and A. Sieroń, “Treatment of localized prostate cancer using WST-09 and WST-11 mediated vascular targeted photodynamic therapy-A review,” Photodiagn. Photodyn. Ther. 12(4), 567–574 (2015).
[Crossref]

King, K. S.

A. Goel, R. McColl, K. S. King, A. Whittemore, and R. M. Peshock, “Fully automated tool to identify the aorta and compute flow using phase-contrast MRI: Validation and application in a large population based study,” J. Magn. Reson. Imaging 40(1), 221–228 (2014).
[Crossref]

Kittler, J.

H. Yuen, J. Princen, J. Illingworth, and J. Kittler, “Comparative study of Hough transform methods for circle finding,” Image Vision Comput. 8(1), 71–77 (1990).
[Crossref]

Krueger, T.

S. Cavin, T. Riedel, P. Rosskopfova, M. Gonzalez, G. Baldini, M. Zellweger, G. Wagnieres, P. J. Dyson, H. B. Ris, T. Krueger, and J. Y. Perentes, “Vascular-targeted low dose photodynamic therapy stabilizes tumor vessels by modulating pericyte contractility,” Lasers Surg. Med. 51(6), 550–561 (2019).
[Crossref]

Ksenofontov, S. Y.

M. A. Sirotkina, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, V. V. Elagin, S. S. Kuznetsov, G. V. Gelikonov, S. Y. Ksenofontov, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “Accurate early prediction of tumour response to PDT using optical coherence angiography,” Sci. Rep. 9(1), 6492 (2019).
[Crossref]

Kurachi, C.

H. Buzzá, L. Silva, L. Moriyama, V. Bagnato, and C. Kurachi, “Evaluation of vascular effect of photodynamic therapy in chorioallantoic membrane using different photosensitizers,” J. Photochem. Photobiol., B 138, 1–7 (2014).
[Crossref]

Kuznetsov, S. S.

M. A. Sirotkina, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, V. V. Elagin, S. S. Kuznetsov, G. V. Gelikonov, S. Y. Ksenofontov, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “Accurate early prediction of tumour response to PDT using optical coherence angiography,” Sci. Rep. 9(1), 6492 (2019).
[Crossref]

Latos, W.

A. Kawczyk-Krupka, A. Bugaj, M. Potempa, K. Wasilewska, W. Latos, and A. Sieroń, “Vascular-targeted photodynamic therapy in the treatment of neovascular age-related macular degeneration: Clinical perspectives,” Photodiagn. Photodyn. Ther. 12(2), 161–175 (2015).
[Crossref]

Lebdai, S.

A. Noweski, A. Roosen, S. Lebdai, E. Barret, M. Emberton, F. Benzaghou, M. Apfelbeck, B. Gaillac, C. Gratzke, C. Stief, and A. R. Azzouzi, “Medium-term follow-up of vascular-targeted photodynamic therapy of localized prostate cancer using TOOKAD soluble WST-11 (Phase II Trials),” Eur. Urol. Focus 5(6), 1022–1028 (2019).
[Crossref]

Li, B.

B. Li, L. Lin, H. Lin, and B. C. Wilson, “Photosensitized singlet oxygen generation and detection: Recent advances and future perspectives in cancer photodynamic therapy,” J. Biophotonics 9(11-12), 1314–1325 (2016).
[Crossref]

D. Chen, J. Ren, Y. Wang, B. Li, and Y. Gu, “Intraoperative monitoring of blood perfusion in port wine stains by laser Doppler imaging during vascular targeted photodynamic therapy: A preliminary study,” Photodiagn. Photodyn. Ther. 14, 142–151 (2016).
[Crossref]

D. Chen, J. Ren, Y. Wang, H. Zhao, B. Li, and Y. Gu, “Relationship between the blood perfusion values determined by laser speckle imaging and laser Doppler imaging in normal skin and port wine stains,” Photodiagn. Photodyn. Ther. 13, 1–9 (2016).
[Crossref]

L. Lin, Y. Li, J. Zhang, Z. Tan, D. Chen, S. Xie, Y. Gu, and B. Li, “Vessel constriction correlated with local singlet oxygen generation during vascular targeted photodynamic therapy,” Proc. SPIE 9268, 92680T (2014).
[Crossref]

Li, Y.

L. Lin, Y. Li, J. Zhang, Z. Tan, D. Chen, S. Xie, Y. Gu, and B. Li, “Vessel constriction correlated with local singlet oxygen generation during vascular targeted photodynamic therapy,” Proc. SPIE 9268, 92680T (2014).
[Crossref]

Li, Z.

Z. Li, P. Agharkar, and B. Chen, “Therapeutic enhancement of vascular-targeted photodynamic therapy by inhibiting proteasomal function,” Cancer Lett. 339(1), 128–134 (2013).
[Crossref]

Lin, H.

B. Li, L. Lin, H. Lin, and B. C. Wilson, “Photosensitized singlet oxygen generation and detection: Recent advances and future perspectives in cancer photodynamic therapy,” J. Biophotonics 9(11-12), 1314–1325 (2016).
[Crossref]

Lin, L.

B. Li, L. Lin, H. Lin, and B. C. Wilson, “Photosensitized singlet oxygen generation and detection: Recent advances and future perspectives in cancer photodynamic therapy,” J. Biophotonics 9(11-12), 1314–1325 (2016).
[Crossref]

L. Lin, Y. Li, J. Zhang, Z. Tan, D. Chen, S. Xie, Y. Gu, and B. Li, “Vessel constriction correlated with local singlet oxygen generation during vascular targeted photodynamic therapy,” Proc. SPIE 9268, 92680T (2014).
[Crossref]

Linghu, E.

H. Qiu, Y. Mao, J. Zeng, Y. Wang, J. Zhang, N. Huang, Q. Liu, Y. Yang, E. Linghu, and Y. Gu, “Vascular-targeted photodynamic therapy of gastric antral vascular ectasia (GAVE),” J. Photochem. Photobiol., B 166, 58–62 (2017).
[Crossref]

Liu, Q.

H. Qiu, Y. Mao, J. Zeng, Y. Wang, J. Zhang, N. Huang, Q. Liu, Y. Yang, E. Linghu, and Y. Gu, “Vascular-targeted photodynamic therapy of gastric antral vascular ectasia (GAVE),” J. Photochem. Photobiol., B 166, 58–62 (2017).
[Crossref]

Mai, C.

S. Tzaridis, M. W. M. Wintergerst, C. Mai, T. F. C. Heeren, F. G. Holz, P. Charbel Issa, and P. Herrmann, “Quantification of retinal and choriocapillaris perfusion in different stages of macular telangiectasia type 2,” Invest. Ophthalmol. Visual Sci. 60(10), 3556–3562 (2019).
[Crossref]

Mao, Y.

H. Qiu, Y. Mao, J. Zeng, Y. Wang, J. Zhang, N. Huang, Q. Liu, Y. Yang, E. Linghu, and Y. Gu, “Vascular-targeted photodynamic therapy of gastric antral vascular ectasia (GAVE),” J. Photochem. Photobiol., B 166, 58–62 (2017).
[Crossref]

H. Qiu, Y. Mao, Y. Gu, Y. Wang, J. Zhu, and J. Zeng, “Vascular targeted photodynamic therapy for bleeding gastrointestinal mucosal vascular lesions: A preliminary study,” Photodiagn. Photodyn. Ther. 9(2), 109–117 (2012).
[Crossref]

Matveev, L. A.

M. A. Sirotkina, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, V. V. Elagin, S. S. Kuznetsov, G. V. Gelikonov, S. Y. Ksenofontov, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “Accurate early prediction of tumour response to PDT using optical coherence angiography,” Sci. Rep. 9(1), 6492 (2019).
[Crossref]

McColl, R.

A. Goel, R. McColl, K. S. King, A. Whittemore, and R. M. Peshock, “Fully automated tool to identify the aorta and compute flow using phase-contrast MRI: Validation and application in a large population based study,” J. Magn. Reson. Imaging 40(1), 221–228 (2014).
[Crossref]

Middelburg, T. A.

T. A. Middelburg, H. S. de Bruijn, L. Tettero, A. van der Ploeg van den Heuvel, H. A. Neumann, E. R. de Haas, and D. J. Robinson, “Topical hexylaminolevulinate and aminolevulinic acid photodynamic therapy: complete arteriole vasoconstriction occurs frequently and depends on protoporphyrin IX concentration in vessel wall,” J. Photochem. Photobiol., B 126, 26–32 (2013).
[Crossref]

Moiseev, A. A.

M. A. Sirotkina, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, V. V. Elagin, S. S. Kuznetsov, G. V. Gelikonov, S. Y. Ksenofontov, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “Accurate early prediction of tumour response to PDT using optical coherence angiography,” Sci. Rep. 9(1), 6492 (2019).
[Crossref]

Moriyama, L.

H. Buzzá, L. Silva, L. Moriyama, V. Bagnato, and C. Kurachi, “Evaluation of vascular effect of photodynamic therapy in chorioallantoic membrane using different photosensitizers,” J. Photochem. Photobiol., B 138, 1–7 (2014).
[Crossref]

Musiol, S.

A. Kawczyk-Krupka, K. Wawrzyniec, S. Musiol, M. Potempa, A. Bugaj, and A. Sieroń, “Treatment of localized prostate cancer using WST-09 and WST-11 mediated vascular targeted photodynamic therapy-A review,” Photodiagn. Photodyn. Ther. 12(4), 567–574 (2015).
[Crossref]

Neumann, H. A.

T. A. Middelburg, H. S. de Bruijn, L. Tettero, A. van der Ploeg van den Heuvel, H. A. Neumann, E. R. de Haas, and D. J. Robinson, “Topical hexylaminolevulinate and aminolevulinic acid photodynamic therapy: complete arteriole vasoconstriction occurs frequently and depends on protoporphyrin IX concentration in vessel wall,” J. Photochem. Photobiol., B 126, 26–32 (2013).
[Crossref]

Ni, X.

X. Ni and P. Wu, “Study on target dimension measurement using linear CCD,” Opt. Instruments 33(6), 11–13 (2011).

Noweski, A.

A. Noweski, A. Roosen, S. Lebdai, E. Barret, M. Emberton, F. Benzaghou, M. Apfelbeck, B. Gaillac, C. Gratzke, C. Stief, and A. R. Azzouzi, “Medium-term follow-up of vascular-targeted photodynamic therapy of localized prostate cancer using TOOKAD soluble WST-11 (Phase II Trials),” Eur. Urol. Focus 5(6), 1022–1028 (2019).
[Crossref]

Otsu, N.

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst., Man, Cybern. 9(1), 62–66 (1979).
[Crossref]

Owen, C. G.

M. M. Fraz, S. A. Barman, P. Remagnino, A. Hoppe, A. Basit, B. Uyyanonvara, A. R. Rudnicka, and C. G. Owen, “An approach to localize the retinal blood vessels using bit planes and centerline detection,” Comput. Meth. Prog. Bio. 108(2), 600–616 (2012).
[Crossref]

Palmer, G. M.

G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
[Crossref]

Pellegrini, M.

M. Pellegrini, M. Cozzi, G. Staurenghi, and F. Corvi, “Comparison of wide field optical coherence tomography angiography with extended field imaging and fluorescein angiography in retinal vascular disorders,” PLoS One 14(4), e0214892 (2019).
[Crossref]

Perentes, J. Y.

S. Cavin, T. Riedel, P. Rosskopfova, M. Gonzalez, G. Baldini, M. Zellweger, G. Wagnieres, P. J. Dyson, H. B. Ris, T. Krueger, and J. Y. Perentes, “Vascular-targeted low dose photodynamic therapy stabilizes tumor vessels by modulating pericyte contractility,” Lasers Surg. Med. 51(6), 550–561 (2019).
[Crossref]

Peshock, R. M.

A. Goel, R. McColl, K. S. King, A. Whittemore, and R. M. Peshock, “Fully automated tool to identify the aorta and compute flow using phase-contrast MRI: Validation and application in a large population based study,” J. Magn. Reson. Imaging 40(1), 221–228 (2014).
[Crossref]

Potempa, M.

A. Kawczyk-Krupka, K. Wawrzyniec, S. Musiol, M. Potempa, A. Bugaj, and A. Sieroń, “Treatment of localized prostate cancer using WST-09 and WST-11 mediated vascular targeted photodynamic therapy-A review,” Photodiagn. Photodyn. Ther. 12(4), 567–574 (2015).
[Crossref]

A. Kawczyk-Krupka, A. Bugaj, M. Potempa, K. Wasilewska, W. Latos, and A. Sieroń, “Vascular-targeted photodynamic therapy in the treatment of neovascular age-related macular degeneration: Clinical perspectives,” Photodiagn. Photodyn. Ther. 12(2), 161–175 (2015).
[Crossref]

Princen, J.

H. Yuen, J. Princen, J. Illingworth, and J. Kittler, “Comparative study of Hough transform methods for circle finding,” Image Vision Comput. 8(1), 71–77 (1990).
[Crossref]

Qiu, H.

H. Qiu, Y. Mao, J. Zeng, Y. Wang, J. Zhang, N. Huang, Q. Liu, Y. Yang, E. Linghu, and Y. Gu, “Vascular-targeted photodynamic therapy of gastric antral vascular ectasia (GAVE),” J. Photochem. Photobiol., B 166, 58–62 (2017).
[Crossref]

H. Qiu, Y. Mao, Y. Gu, Y. Wang, J. Zhu, and J. Zeng, “Vascular targeted photodynamic therapy for bleeding gastrointestinal mucosal vascular lesions: A preliminary study,” Photodiagn. Photodyn. Ther. 9(2), 109–117 (2012).
[Crossref]

Remagnino, P.

M. M. Fraz, S. A. Barman, P. Remagnino, A. Hoppe, A. Basit, B. Uyyanonvara, A. R. Rudnicka, and C. G. Owen, “An approach to localize the retinal blood vessels using bit planes and centerline detection,” Comput. Meth. Prog. Bio. 108(2), 600–616 (2012).
[Crossref]

Ren, J.

D. Chen, J. Ren, Y. Wang, B. Li, and Y. Gu, “Intraoperative monitoring of blood perfusion in port wine stains by laser Doppler imaging during vascular targeted photodynamic therapy: A preliminary study,” Photodiagn. Photodyn. Ther. 14, 142–151 (2016).
[Crossref]

D. Chen, J. Ren, Y. Wang, H. Zhao, B. Li, and Y. Gu, “Relationship between the blood perfusion values determined by laser speckle imaging and laser Doppler imaging in normal skin and port wine stains,” Photodiagn. Photodyn. Ther. 13, 1–9 (2016).
[Crossref]

Riedel, T.

S. Cavin, T. Riedel, P. Rosskopfova, M. Gonzalez, G. Baldini, M. Zellweger, G. Wagnieres, P. J. Dyson, H. B. Ris, T. Krueger, and J. Y. Perentes, “Vascular-targeted low dose photodynamic therapy stabilizes tumor vessels by modulating pericyte contractility,” Lasers Surg. Med. 51(6), 550–561 (2019).
[Crossref]

Ris, H. B.

S. Cavin, T. Riedel, P. Rosskopfova, M. Gonzalez, G. Baldini, M. Zellweger, G. Wagnieres, P. J. Dyson, H. B. Ris, T. Krueger, and J. Y. Perentes, “Vascular-targeted low dose photodynamic therapy stabilizes tumor vessels by modulating pericyte contractility,” Lasers Surg. Med. 51(6), 550–561 (2019).
[Crossref]

Robinson, D. J.

H. S. de Bruijn, S. Brooks, T. L. ten Hagen, E. R. de Haas, and D. J. Robinson, “Light fractionation significantly increases the efficacy of photodynamic therapy using BF-200 ALA in normal mouse skin,” PLoS One 11(2), e0148850 (2016).
[Crossref]

T. A. Middelburg, H. S. de Bruijn, L. Tettero, A. van der Ploeg van den Heuvel, H. A. Neumann, E. R. de Haas, and D. J. Robinson, “Topical hexylaminolevulinate and aminolevulinic acid photodynamic therapy: complete arteriole vasoconstriction occurs frequently and depends on protoporphyrin IX concentration in vessel wall,” J. Photochem. Photobiol., B 126, 26–32 (2013).
[Crossref]

Ronneberger, O.

O. Ronneberger, P. Fischer, and T. Brox, “U-Net : Convolutional networks for biomedical image segmentation,” in Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention, N. Naval, ed (Springer International Publishing, Switzerland, 2015), pp. 234–241.

Roosen, A.

A. Noweski, A. Roosen, S. Lebdai, E. Barret, M. Emberton, F. Benzaghou, M. Apfelbeck, B. Gaillac, C. Gratzke, C. Stief, and A. R. Azzouzi, “Medium-term follow-up of vascular-targeted photodynamic therapy of localized prostate cancer using TOOKAD soluble WST-11 (Phase II Trials),” Eur. Urol. Focus 5(6), 1022–1028 (2019).
[Crossref]

Rosskopfova, P.

S. Cavin, T. Riedel, P. Rosskopfova, M. Gonzalez, G. Baldini, M. Zellweger, G. Wagnieres, P. J. Dyson, H. B. Ris, T. Krueger, and J. Y. Perentes, “Vascular-targeted low dose photodynamic therapy stabilizes tumor vessels by modulating pericyte contractility,” Lasers Surg. Med. 51(6), 550–561 (2019).
[Crossref]

Rudnicka, A. R.

M. M. Fraz, S. A. Barman, P. Remagnino, A. Hoppe, A. Basit, B. Uyyanonvara, A. R. Rudnicka, and C. G. Owen, “An approach to localize the retinal blood vessels using bit planes and centerline detection,” Comput. Meth. Prog. Bio. 108(2), 600–616 (2012).
[Crossref]

Sabuncu, M. R.

G. Balakrishnan, A. Zhao, M. R. Sabuncu, J. Guttag, and A. V. Dalca, “VoxelMorph: A learning framework for deformable medical image registration,” IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019).
[Crossref]

Samkoe, K. S.

K. S. Samkoe, A. A. Clancy, A. Karotki, B. C. Wilson, and D. T. Cramb, “Complete blood vessel occlusion in the chick chorioallantoic membrane using two-photon excitation photodynamic therapy: implications for treatment of wet age-related macular degeneration,” J. Biomed. Opt. 12(3), 034025 (2007).
[Crossref]

Shan, S.

G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
[Crossref]

Sieron, A.

A. Kawczyk-Krupka, K. Wawrzyniec, S. Musiol, M. Potempa, A. Bugaj, and A. Sieroń, “Treatment of localized prostate cancer using WST-09 and WST-11 mediated vascular targeted photodynamic therapy-A review,” Photodiagn. Photodyn. Ther. 12(4), 567–574 (2015).
[Crossref]

A. Kawczyk-Krupka, A. Bugaj, M. Potempa, K. Wasilewska, W. Latos, and A. Sieroń, “Vascular-targeted photodynamic therapy in the treatment of neovascular age-related macular degeneration: Clinical perspectives,” Photodiagn. Photodyn. Ther. 12(2), 161–175 (2015).
[Crossref]

Silva, L.

H. Buzzá, L. Silva, L. Moriyama, V. Bagnato, and C. Kurachi, “Evaluation of vascular effect of photodynamic therapy in chorioallantoic membrane using different photosensitizers,” J. Photochem. Photobiol., B 138, 1–7 (2014).
[Crossref]

Sirotkina, M. A.

M. A. Sirotkina, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, V. V. Elagin, S. S. Kuznetsov, G. V. Gelikonov, S. Y. Ksenofontov, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “Accurate early prediction of tumour response to PDT using optical coherence angiography,” Sci. Rep. 9(1), 6492 (2019).
[Crossref]

Staurenghi, G.

M. Pellegrini, M. Cozzi, G. Staurenghi, and F. Corvi, “Comparison of wide field optical coherence tomography angiography with extended field imaging and fluorescein angiography in retinal vascular disorders,” PLoS One 14(4), e0214892 (2019).
[Crossref]

Stefanidis, A.

C. Wang, A. Stefanidis, A. Croitoru, and P. Agouris, “Map registration of image sequences using linear features,” Photogramm. Eng. Remote Sens. 74(1), 25–38 (2008).
[Crossref]

Stief, C.

A. Noweski, A. Roosen, S. Lebdai, E. Barret, M. Emberton, F. Benzaghou, M. Apfelbeck, B. Gaillac, C. Gratzke, C. Stief, and A. R. Azzouzi, “Medium-term follow-up of vascular-targeted photodynamic therapy of localized prostate cancer using TOOKAD soluble WST-11 (Phase II Trials),” Eur. Urol. Focus 5(6), 1022–1028 (2019).
[Crossref]

Tan, Z.

L. Lin, Y. Li, J. Zhang, Z. Tan, D. Chen, S. Xie, Y. Gu, and B. Li, “Vessel constriction correlated with local singlet oxygen generation during vascular targeted photodynamic therapy,” Proc. SPIE 9268, 92680T (2014).
[Crossref]

Tasdizen, T.

T. Tasdizen, E. Jurrus, and R. T. Whitaker, “Non-uniform illumination correction in transmission electron microscopy,” in Proceedings of MICCAI Workshop on Microscopic Image Analysis with Applications in Biology (2008), pp. 5–6.

ten Hagen, T. L.

H. S. de Bruijn, S. Brooks, T. L. ten Hagen, E. R. de Haas, and D. J. Robinson, “Light fractionation significantly increases the efficacy of photodynamic therapy using BF-200 ALA in normal mouse skin,” PLoS One 11(2), e0148850 (2016).
[Crossref]

Tettero, L.

T. A. Middelburg, H. S. de Bruijn, L. Tettero, A. van der Ploeg van den Heuvel, H. A. Neumann, E. R. de Haas, and D. J. Robinson, “Topical hexylaminolevulinate and aminolevulinic acid photodynamic therapy: complete arteriole vasoconstriction occurs frequently and depends on protoporphyrin IX concentration in vessel wall,” J. Photochem. Photobiol., B 126, 26–32 (2013).
[Crossref]

Tuytelaars, T.

H. Bay, T. Tuytelaars, and L. V. Gool, “SURF: speeded up robust features,” Comput. Vis. Image Und. 110(3), 346–359 (2008).
[Crossref]

Tzaridis, S.

S. Tzaridis, M. W. M. Wintergerst, C. Mai, T. F. C. Heeren, F. G. Holz, P. Charbel Issa, and P. Herrmann, “Quantification of retinal and choriocapillaris perfusion in different stages of macular telangiectasia type 2,” Invest. Ophthalmol. Visual Sci. 60(10), 3556–3562 (2019).
[Crossref]

Uyyanonvara, B.

M. M. Fraz, S. A. Barman, P. Remagnino, A. Hoppe, A. Basit, B. Uyyanonvara, A. R. Rudnicka, and C. G. Owen, “An approach to localize the retinal blood vessels using bit planes and centerline detection,” Comput. Meth. Prog. Bio. 108(2), 600–616 (2012).
[Crossref]

van der Ploeg van den Heuvel, A.

T. A. Middelburg, H. S. de Bruijn, L. Tettero, A. van der Ploeg van den Heuvel, H. A. Neumann, E. R. de Haas, and D. J. Robinson, “Topical hexylaminolevulinate and aminolevulinic acid photodynamic therapy: complete arteriole vasoconstriction occurs frequently and depends on protoporphyrin IX concentration in vessel wall,” J. Photochem. Photobiol., B 126, 26–32 (2013).
[Crossref]

Vitkin, A.

M. A. Sirotkina, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, V. V. Elagin, S. S. Kuznetsov, G. V. Gelikonov, S. Y. Ksenofontov, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “Accurate early prediction of tumour response to PDT using optical coherence angiography,” Sci. Rep. 9(1), 6492 (2019).
[Crossref]

Wagnieres, G.

S. Cavin, T. Riedel, P. Rosskopfova, M. Gonzalez, G. Baldini, M. Zellweger, G. Wagnieres, P. J. Dyson, H. B. Ris, T. Krueger, and J. Y. Perentes, “Vascular-targeted low dose photodynamic therapy stabilizes tumor vessels by modulating pericyte contractility,” Lasers Surg. Med. 51(6), 550–561 (2019).
[Crossref]

Wang, C.

C. Wang, A. Stefanidis, A. Croitoru, and P. Agouris, “Map registration of image sequences using linear features,” Photogramm. Eng. Remote Sens. 74(1), 25–38 (2008).
[Crossref]

Wang, Y.

H. Qiu, Y. Mao, J. Zeng, Y. Wang, J. Zhang, N. Huang, Q. Liu, Y. Yang, E. Linghu, and Y. Gu, “Vascular-targeted photodynamic therapy of gastric antral vascular ectasia (GAVE),” J. Photochem. Photobiol., B 166, 58–62 (2017).
[Crossref]

D. Chen, J. Ren, Y. Wang, H. Zhao, B. Li, and Y. Gu, “Relationship between the blood perfusion values determined by laser speckle imaging and laser Doppler imaging in normal skin and port wine stains,” Photodiagn. Photodyn. Ther. 13, 1–9 (2016).
[Crossref]

D. Chen, J. Ren, Y. Wang, B. Li, and Y. Gu, “Intraoperative monitoring of blood perfusion in port wine stains by laser Doppler imaging during vascular targeted photodynamic therapy: A preliminary study,” Photodiagn. Photodyn. Ther. 14, 142–151 (2016).
[Crossref]

H. Qiu, Y. Mao, Y. Gu, Y. Wang, J. Zhu, and J. Zeng, “Vascular targeted photodynamic therapy for bleeding gastrointestinal mucosal vascular lesions: A preliminary study,” Photodiagn. Photodyn. Ther. 9(2), 109–117 (2012).
[Crossref]

Wasilewska, K.

A. Kawczyk-Krupka, A. Bugaj, M. Potempa, K. Wasilewska, W. Latos, and A. Sieroń, “Vascular-targeted photodynamic therapy in the treatment of neovascular age-related macular degeneration: Clinical perspectives,” Photodiagn. Photodyn. Ther. 12(2), 161–175 (2015).
[Crossref]

Wawrzyniec, K.

A. Kawczyk-Krupka, K. Wawrzyniec, S. Musiol, M. Potempa, A. Bugaj, and A. Sieroń, “Treatment of localized prostate cancer using WST-09 and WST-11 mediated vascular targeted photodynamic therapy-A review,” Photodiagn. Photodyn. Ther. 12(4), 567–574 (2015).
[Crossref]

Whitaker, R. T.

T. Tasdizen, E. Jurrus, and R. T. Whitaker, “Non-uniform illumination correction in transmission electron microscopy,” in Proceedings of MICCAI Workshop on Microscopic Image Analysis with Applications in Biology (2008), pp. 5–6.

Whittemore, A.

A. Goel, R. McColl, K. S. King, A. Whittemore, and R. M. Peshock, “Fully automated tool to identify the aorta and compute flow using phase-contrast MRI: Validation and application in a large population based study,” J. Magn. Reson. Imaging 40(1), 221–228 (2014).
[Crossref]

Wilson, B. C.

B. Li, L. Lin, H. Lin, and B. C. Wilson, “Photosensitized singlet oxygen generation and detection: Recent advances and future perspectives in cancer photodynamic therapy,” J. Biophotonics 9(11-12), 1314–1325 (2016).
[Crossref]

K. S. Samkoe, A. A. Clancy, A. Karotki, B. C. Wilson, and D. T. Cramb, “Complete blood vessel occlusion in the chick chorioallantoic membrane using two-photon excitation photodynamic therapy: implications for treatment of wet age-related macular degeneration,” J. Biomed. Opt. 12(3), 034025 (2007).
[Crossref]

Wintergerst, M. W. M.

S. Tzaridis, M. W. M. Wintergerst, C. Mai, T. F. C. Heeren, F. G. Holz, P. Charbel Issa, and P. Herrmann, “Quantification of retinal and choriocapillaris perfusion in different stages of macular telangiectasia type 2,” Invest. Ophthalmol. Visual Sci. 60(10), 3556–3562 (2019).
[Crossref]

Woods, R. E.

R. C. Gonzalez and R. E. Woods, “Digital image processing,” (Prentice hall, Upper Saddle River, 2002).

Wu, P.

X. Ni and P. Wu, “Study on target dimension measurement using linear CCD,” Opt. Instruments 33(6), 11–13 (2011).

Xie, S.

L. Lin, Y. Li, J. Zhang, Z. Tan, D. Chen, S. Xie, Y. Gu, and B. Li, “Vessel constriction correlated with local singlet oxygen generation during vascular targeted photodynamic therapy,” Proc. SPIE 9268, 92680T (2014).
[Crossref]

Yang, Y.

H. Qiu, Y. Mao, J. Zeng, Y. Wang, J. Zhang, N. Huang, Q. Liu, Y. Yang, E. Linghu, and Y. Gu, “Vascular-targeted photodynamic therapy of gastric antral vascular ectasia (GAVE),” J. Photochem. Photobiol., B 166, 58–62 (2017).
[Crossref]

Yuen, H.

H. Yuen, J. Princen, J. Illingworth, and J. Kittler, “Comparative study of Hough transform methods for circle finding,” Image Vision Comput. 8(1), 71–77 (1990).
[Crossref]

Zagaynova, E. V.

M. A. Sirotkina, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, V. V. Elagin, S. S. Kuznetsov, G. V. Gelikonov, S. Y. Ksenofontov, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “Accurate early prediction of tumour response to PDT using optical coherence angiography,” Sci. Rep. 9(1), 6492 (2019).
[Crossref]

Zaitsev, V. Y.

M. A. Sirotkina, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, V. V. Elagin, S. S. Kuznetsov, G. V. Gelikonov, S. Y. Ksenofontov, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “Accurate early prediction of tumour response to PDT using optical coherence angiography,” Sci. Rep. 9(1), 6492 (2019).
[Crossref]

Zellweger, M.

S. Cavin, T. Riedel, P. Rosskopfova, M. Gonzalez, G. Baldini, M. Zellweger, G. Wagnieres, P. J. Dyson, H. B. Ris, T. Krueger, and J. Y. Perentes, “Vascular-targeted low dose photodynamic therapy stabilizes tumor vessels by modulating pericyte contractility,” Lasers Surg. Med. 51(6), 550–561 (2019).
[Crossref]

Zeng, J.

H. Qiu, Y. Mao, J. Zeng, Y. Wang, J. Zhang, N. Huang, Q. Liu, Y. Yang, E. Linghu, and Y. Gu, “Vascular-targeted photodynamic therapy of gastric antral vascular ectasia (GAVE),” J. Photochem. Photobiol., B 166, 58–62 (2017).
[Crossref]

H. Qiu, Y. Mao, Y. Gu, Y. Wang, J. Zhu, and J. Zeng, “Vascular targeted photodynamic therapy for bleeding gastrointestinal mucosal vascular lesions: A preliminary study,” Photodiagn. Photodyn. Ther. 9(2), 109–117 (2012).
[Crossref]

Zhang, G.

G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
[Crossref]

Zhang, J.

H. Qiu, Y. Mao, J. Zeng, Y. Wang, J. Zhang, N. Huang, Q. Liu, Y. Yang, E. Linghu, and Y. Gu, “Vascular-targeted photodynamic therapy of gastric antral vascular ectasia (GAVE),” J. Photochem. Photobiol., B 166, 58–62 (2017).
[Crossref]

L. Lin, Y. Li, J. Zhang, Z. Tan, D. Chen, S. Xie, Y. Gu, and B. Li, “Vessel constriction correlated with local singlet oxygen generation during vascular targeted photodynamic therapy,” Proc. SPIE 9268, 92680T (2014).
[Crossref]

Zhao, A.

G. Balakrishnan, A. Zhao, M. R. Sabuncu, J. Guttag, and A. V. Dalca, “VoxelMorph: A learning framework for deformable medical image registration,” IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019).
[Crossref]

Zhao, H.

D. Chen, J. Ren, Y. Wang, H. Zhao, B. Li, and Y. Gu, “Relationship between the blood perfusion values determined by laser speckle imaging and laser Doppler imaging in normal skin and port wine stains,” Photodiagn. Photodyn. Ther. 13, 1–9 (2016).
[Crossref]

Zhu, J.

H. Qiu, Y. Mao, Y. Gu, Y. Wang, J. Zhu, and J. Zeng, “Vascular targeted photodynamic therapy for bleeding gastrointestinal mucosal vascular lesions: A preliminary study,” Photodiagn. Photodyn. Ther. 9(2), 109–117 (2012).
[Crossref]

Cancer Lett. (1)

Z. Li, P. Agharkar, and B. Chen, “Therapeutic enhancement of vascular-targeted photodynamic therapy by inhibiting proteasomal function,” Cancer Lett. 339(1), 128–134 (2013).
[Crossref]

Comput. Meth. Prog. Bio. (1)

M. M. Fraz, S. A. Barman, P. Remagnino, A. Hoppe, A. Basit, B. Uyyanonvara, A. R. Rudnicka, and C. G. Owen, “An approach to localize the retinal blood vessels using bit planes and centerline detection,” Comput. Meth. Prog. Bio. 108(2), 600–616 (2012).
[Crossref]

Comput. Vis. Image Und. (1)

H. Bay, T. Tuytelaars, and L. V. Gool, “SURF: speeded up robust features,” Comput. Vis. Image Und. 110(3), 346–359 (2008).
[Crossref]

Eur. Urol. Focus (1)

A. Noweski, A. Roosen, S. Lebdai, E. Barret, M. Emberton, F. Benzaghou, M. Apfelbeck, B. Gaillac, C. Gratzke, C. Stief, and A. R. Azzouzi, “Medium-term follow-up of vascular-targeted photodynamic therapy of localized prostate cancer using TOOKAD soluble WST-11 (Phase II Trials),” Eur. Urol. Focus 5(6), 1022–1028 (2019).
[Crossref]

IEEE Trans. Med. Imaging (1)

G. Balakrishnan, A. Zhao, M. R. Sabuncu, J. Guttag, and A. V. Dalca, “VoxelMorph: A learning framework for deformable medical image registration,” IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019).
[Crossref]

IEEE Trans. Syst., Man, Cybern. (1)

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst., Man, Cybern. 9(1), 62–66 (1979).
[Crossref]

Image Vision Comput. (1)

H. Yuen, J. Princen, J. Illingworth, and J. Kittler, “Comparative study of Hough transform methods for circle finding,” Image Vision Comput. 8(1), 71–77 (1990).
[Crossref]

Invest. Ophthalmol. Visual Sci. (1)

S. Tzaridis, M. W. M. Wintergerst, C. Mai, T. F. C. Heeren, F. G. Holz, P. Charbel Issa, and P. Herrmann, “Quantification of retinal and choriocapillaris perfusion in different stages of macular telangiectasia type 2,” Invest. Ophthalmol. Visual Sci. 60(10), 3556–3562 (2019).
[Crossref]

J. Biomed. Opt. (1)

K. S. Samkoe, A. A. Clancy, A. Karotki, B. C. Wilson, and D. T. Cramb, “Complete blood vessel occlusion in the chick chorioallantoic membrane using two-photon excitation photodynamic therapy: implications for treatment of wet age-related macular degeneration,” J. Biomed. Opt. 12(3), 034025 (2007).
[Crossref]

J. Biophotonics (1)

B. Li, L. Lin, H. Lin, and B. C. Wilson, “Photosensitized singlet oxygen generation and detection: Recent advances and future perspectives in cancer photodynamic therapy,” J. Biophotonics 9(11-12), 1314–1325 (2016).
[Crossref]

J. Magn. Reson. Imaging (1)

A. Goel, R. McColl, K. S. King, A. Whittemore, and R. M. Peshock, “Fully automated tool to identify the aorta and compute flow using phase-contrast MRI: Validation and application in a large population based study,” J. Magn. Reson. Imaging 40(1), 221–228 (2014).
[Crossref]

J. Photochem. Photobiol., B (3)

H. Buzzá, L. Silva, L. Moriyama, V. Bagnato, and C. Kurachi, “Evaluation of vascular effect of photodynamic therapy in chorioallantoic membrane using different photosensitizers,” J. Photochem. Photobiol., B 138, 1–7 (2014).
[Crossref]

T. A. Middelburg, H. S. de Bruijn, L. Tettero, A. van der Ploeg van den Heuvel, H. A. Neumann, E. R. de Haas, and D. J. Robinson, “Topical hexylaminolevulinate and aminolevulinic acid photodynamic therapy: complete arteriole vasoconstriction occurs frequently and depends on protoporphyrin IX concentration in vessel wall,” J. Photochem. Photobiol., B 126, 26–32 (2013).
[Crossref]

H. Qiu, Y. Mao, J. Zeng, Y. Wang, J. Zhang, N. Huang, Q. Liu, Y. Yang, E. Linghu, and Y. Gu, “Vascular-targeted photodynamic therapy of gastric antral vascular ectasia (GAVE),” J. Photochem. Photobiol., B 166, 58–62 (2017).
[Crossref]

Lasers Surg. Med. (1)

S. Cavin, T. Riedel, P. Rosskopfova, M. Gonzalez, G. Baldini, M. Zellweger, G. Wagnieres, P. J. Dyson, H. B. Ris, T. Krueger, and J. Y. Perentes, “Vascular-targeted low dose photodynamic therapy stabilizes tumor vessels by modulating pericyte contractility,” Lasers Surg. Med. 51(6), 550–561 (2019).
[Crossref]

Nat. Protoc. (1)

G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
[Crossref]

Opt. Instruments (1)

X. Ni and P. Wu, “Study on target dimension measurement using linear CCD,” Opt. Instruments 33(6), 11–13 (2011).

Pattern Recogn. (1)

D. H. Ballard, “Generalizing the Hough transform to detect arbitrary shapes,” Pattern Recogn. 13(2), 111–122 (1981).
[Crossref]

Photodiagn. Photodyn. Ther. (5)

A. Kawczyk-Krupka, K. Wawrzyniec, S. Musiol, M. Potempa, A. Bugaj, and A. Sieroń, “Treatment of localized prostate cancer using WST-09 and WST-11 mediated vascular targeted photodynamic therapy-A review,” Photodiagn. Photodyn. Ther. 12(4), 567–574 (2015).
[Crossref]

A. Kawczyk-Krupka, A. Bugaj, M. Potempa, K. Wasilewska, W. Latos, and A. Sieroń, “Vascular-targeted photodynamic therapy in the treatment of neovascular age-related macular degeneration: Clinical perspectives,” Photodiagn. Photodyn. Ther. 12(2), 161–175 (2015).
[Crossref]

D. Chen, J. Ren, Y. Wang, H. Zhao, B. Li, and Y. Gu, “Relationship between the blood perfusion values determined by laser speckle imaging and laser Doppler imaging in normal skin and port wine stains,” Photodiagn. Photodyn. Ther. 13, 1–9 (2016).
[Crossref]

D. Chen, J. Ren, Y. Wang, B. Li, and Y. Gu, “Intraoperative monitoring of blood perfusion in port wine stains by laser Doppler imaging during vascular targeted photodynamic therapy: A preliminary study,” Photodiagn. Photodyn. Ther. 14, 142–151 (2016).
[Crossref]

H. Qiu, Y. Mao, Y. Gu, Y. Wang, J. Zhu, and J. Zeng, “Vascular targeted photodynamic therapy for bleeding gastrointestinal mucosal vascular lesions: A preliminary study,” Photodiagn. Photodyn. Ther. 9(2), 109–117 (2012).
[Crossref]

Photogramm. Eng. Remote Sens. (1)

C. Wang, A. Stefanidis, A. Croitoru, and P. Agouris, “Map registration of image sequences using linear features,” Photogramm. Eng. Remote Sens. 74(1), 25–38 (2008).
[Crossref]

PLoS One (2)

H. S. de Bruijn, S. Brooks, T. L. ten Hagen, E. R. de Haas, and D. J. Robinson, “Light fractionation significantly increases the efficacy of photodynamic therapy using BF-200 ALA in normal mouse skin,” PLoS One 11(2), e0148850 (2016).
[Crossref]

M. Pellegrini, M. Cozzi, G. Staurenghi, and F. Corvi, “Comparison of wide field optical coherence tomography angiography with extended field imaging and fluorescein angiography in retinal vascular disorders,” PLoS One 14(4), e0214892 (2019).
[Crossref]

Proc. SPIE (1)

L. Lin, Y. Li, J. Zhang, Z. Tan, D. Chen, S. Xie, Y. Gu, and B. Li, “Vessel constriction correlated with local singlet oxygen generation during vascular targeted photodynamic therapy,” Proc. SPIE 9268, 92680T (2014).
[Crossref]

Sci. Rep. (1)

M. A. Sirotkina, A. A. Moiseev, L. A. Matveev, V. Y. Zaitsev, V. V. Elagin, S. S. Kuznetsov, G. V. Gelikonov, S. Y. Ksenofontov, E. V. Zagaynova, F. I. Feldchtein, N. D. Gladkova, and A. Vitkin, “Accurate early prediction of tumour response to PDT using optical coherence angiography,” Sci. Rep. 9(1), 6492 (2019).
[Crossref]

Other (5)

R. C. Gonzalez and R. E. Woods, “Digital image processing,” (Prentice hall, Upper Saddle River, 2002).

O. Ronneberger, P. Fischer, and T. Brox, “U-Net : Convolutional networks for biomedical image segmentation,” in Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention, N. Naval, ed (Springer International Publishing, Switzerland, 2015), pp. 234–241.

DRIVE, Digital Retinal Images for Vessel Extraction. http://www.isi.uu.nl/Research/Databases/DRIVE/ , 2004.

T. Tasdizen, E. Jurrus, and R. T. Whitaker, “Non-uniform illumination correction in transmission electron microscopy,” in Proceedings of MICCAI Workshop on Microscopic Image Analysis with Applications in Biology (2008), pp. 5–6.

T. Chanwimaluang and G. Fan, “An efficient blood vessel detection algorithm for retinal images using local entropy thresholding,” in Proceedings of IEEE International Symposium on Circuits and Systems (IEEE, 2003), pp. V-21–V-24.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1. Flow chart for auto-selected circular ROI using Hough Transform.
Fig. 2.
Fig. 2. Flow chart for training mixed sample by the U-Net model.
Fig. 3.
Fig. 3. Feature points are extracted by the SURF algorithm are constrained based on the position and the direction of the circular region. O and O’ are registration centers of the circles. A and A’ are registration points as one group.
Fig. 4.
Fig. 4. Flow chart for image registration.
Fig. 5.
Fig. 5. (a) Orginal and (b) Enhanced images of DSWC model. (c) Binary image; (d) Contour image; (e) Image of the detected circles with the different centre and radius; (f) Image of the detected circle overlaped with the orginal image.
Fig. 6.
Fig. 6. Images of DSWC model for (a) pre- and (d) post- V-PDT. Auto-selected circular ROI images for (b) pre- and (e) post-V-PDT by using Hough Transform. Segmentation images of (c) pre- (f) post- V-PDT. The binarized circle boundary was removed by reducing the ROI radius.
Fig. 7.
Fig. 7. Segmentation images of blood vessels achieved by dynamic threshold algorithm: (a) $N = 35$, $C = 1$; (b) $N = 35$, $C = 3$; (c) $N = 35$, $C = 7$; (d) $C = 3$, $N = 7$; (e) $C = 3$, $N = 35$; (f) $C = 3$, $N = 90$.
Fig. 8.
Fig. 8. Segmentation images of blood vessels processed by (a) artificial method; U-Net model without (b) Area filter and (c) with Area filter.
Fig. 9.
Fig. 9. (a) Original image and (b) segmented black-white image of syringe needle.
Fig. 10.
Fig. 10. (a) Non-registration and (b) registration images for pre- and post- V-PDT of DSWC model (blue and red images indicate pre- and post- V-PDT, respectively); of pre- and post-treatment images; (c) The white region is the overlapping mask; (d) vasoconstriction image (blue line is the overlap mask edge).
Fig. 11.
Fig. 11. Vasoconstriction of blood vessels in the DSWC model for post-treatment. Case 1 was treated without RB and light; case 2 was treated with RB but without light; case 3 was treated with light but without RB.
Fig. 12.
Fig. 12. Vasoconstriction of blood vessels in the DSWC model post- V-PDT. BALB/c nude mice were intravenously injected with RB solution (25 mg/kg body weight), and V-PDT was performed with laser irradiance of 50 mW/cm2 and a total light dose of 30 J/cm2.
Fig. 13.
Fig. 13. Enhanced binary images processed (a) with and (c) without Max filter, and the edge of a metal frame in the DSWC model processed by Canny detector (b) with and (d) without the Max filter.
Fig. 14.
Fig. 14. (a) Original image; (b) Ground true image; Segmentation image with (c) dynamic threshold algorithm and (d) U-Net model for the retina.
Fig. 15.
Fig. 15. Image registration with feature points in ROI image (a) before segmentation and (b) after segmentation.
Fig. 16.
Fig. 16. Image registration implemented by (a) Manual method and (b) SURF algorithm; (c) Difference between (a) and (b) image.
Fig. 17.
Fig. 17. Images of DSWC model for (a) pre- and (d) post- V-PDT. (c)-(h) vasoconstriction maps obtained by different methods for image segmentation and registration.

Tables (1)

Tables Icon

Table 1. Performance determined from retina and vascular image of DSWC model datasets

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

x = a + r cos θ y = b + r sin θ
D = D β = ( N 2 N 1 ) L 0 β
B ( x , y ) = { 255 , 0 , C I ( x , y ) I ( x , y ) C > I ( x , y ) I ( x , y )
V a s o c o n s t r i c t i o n = T c o n s t r i c t i o n / T b e f o r e