Abstract

Visualizing and assessing the function of microscopic retinal structures in the human eye is a challenging task that has been greatly facilitated by ophthalmic adaptive optics (AO). Yet, as AO imaging systems advance in functionality by employing multiple spectral channels and larger vergence ranges, achieving optimal resolution and signal-to-noise ratios (SNR) becomes difficult and is often compromised. While current-generation AO retinal imaging systems have demonstrated excellent, near diffraction-limited imaging performance over wide vergence and spectral ranges, a full theoretical and experimental analysis of an AOSLO that includes both the light delivery and collection optics has not been done, and neither has the effects of extending wavefront correction from one wavelength to imaging performance in different spectral channels. Here, we report a methodology and system design for simultaneously achieving diffraction-limited performance in both the illumination and collection paths for a wide-vergence, multi-spectral AO scanning laser ophthalmoscope (SLO) over a 1.2 diopter vergence range while correcting the wavefront in a separate wavelength. To validate the design, an AOSLO was constructed to have three imaging channels spanning different wavelength ranges (543 ± 11 nm, 680 ± 11 nm, and 840 ± 6 nm, respectively) and one near-infrared wavefront sensing channel (940 ± 5 nm). The AOSLO optics and their alignment were determined via simulations in optical and optomechanical design software and then experimentally verified by measuring the AOSLO’s illumination and collection point spread functions (PSF) for each channel using a phase retrieval technique. The collection efficiency was then measured for each channel as a function of confocal pinhole size when imaging a model eye achieving near-theoretical performance. Imaging results from healthy human adult volunteers demonstrate the system’s ability to resolve the foveal cone mosaic in all three imaging channels despite a wide spectral separation between the wavefront sensing and imaging channels.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
MEMS segmented-based adaptive optics scanning laser ophthalmoscope

Silvestre Manzanera, Michael A. Helmbrecht, Carl J. Kempf, and Austin Roorda
Biomed. Opt. Express 2(5) 1204-1217 (2011)

Reflective afocal broadband adaptive optics scanning ophthalmoscope

Alfredo Dubra and Yusufu Sulai
Biomed. Opt. Express 2(6) 1757-1768 (2011)

Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope

Stephen A. Burns, Remy Tumbar, Ann E. Elsner, Daniel Ferguson, and Daniel X. Hammer
J. Opt. Soc. Am. A 24(5) 1313-1326 (2007)

References

  • View by:
  • |
  • |
  • |

  1. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
    [Crossref]
  2. A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
    [Crossref]
  3. J. Carroll, “Adaptive optics retinal imaging: applications for studying retinal degeneration,” Arch. Ophthalmol. 126(6), 857 (2008).
    [Crossref]
  4. D. Merino and P. Loza-Alvarez, “Adaptive optics scanning laser ophthalmoscope imaging: technology update,” Clin. Ophthalmol. 10, 743–755 (2016).
    [Crossref]
  5. A. Dubra and Y. Sulai, “Reflective afocal broadband adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2(6), 1757–1768 (2011).
    [Crossref]
  6. H. Li, J. Lu, G. Shi, and Y. Zhang, “Measurement of oxygen saturation in small retinal vessels with adaptive optics confocal scanning laser ophthalmoscope,” J. Biomed. Opt. 16(11), 110504 (2011).
    [Crossref]
  7. W. S. Tuten, P. Tiruveedhula, and A. Roorda, “Adaptive optics scanning laser ophthalmoscope-based microperimetry,” Optom. Vis. Sci. 89(5), 563–574 (2012).
    [Crossref]
  8. W. S. Tuten, G. K. Vergilio, G. J. Young, J. Bennett, A. M. Maguire, T. S. Aleman, D. H. Brainard, and J. I. W. Morgan, “Visual Function at the Atrophic Border in Choroideremia Assessed with Adaptive Optics Microperimetry,” Ophthalmol Retina 3(10), 888–899 (2019).
    [Crossref]
  9. J. I. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Visual Sci. 50(3), 1350–1359 (2009).
    [Crossref]
  10. J. Tam, J. Liu, A. Dubra, and R. Fariss, “In Vivo Imaging of the Human Retinal Pigment Epithelial Mosaic Using Adaptive Optics Enhanced Indocyanine Green Ophthalmoscopy,” Invest. Ophthalmol. Visual Sci. 57(10), 4376–4384 (2016).
    [Crossref]
  11. J. Schallek, Y. Geng, H. Nguyen, and D. R. Williams, “Morphology and topography of retinal pericytes in the living mouse retina using in vivo adaptive optics imaging and ex vivo characterization,” Invest. Ophthalmol. Visual Sci. 54(13), 8237–8250 (2013).
    [Crossref]
  12. Z. Liu, J. Tam, O. Saeedi, and D. X. Hammer, “Trans-retinal cellular imaging with multimodal adaptive optics,” Biomed. Opt. Express 9(9), 4246–4262 (2018).
    [Crossref]
  13. M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biofizika 6, 687–703 (1961).
  14. S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, “A new approach to study ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
    [Crossref]
  15. D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22(1), 29–37 (2005).
    [Crossref]
  16. R. E. Bedford and G. Wyszecki, “Axial chromatic aberration of the human eye,” J. Opt. Soc. Am. 47(6), 564–565 (1957).
    [Crossref]
  17. Y. U. Ogboso and H. E. Bedell, “Magnitude of lateral chromatic aberration across the retina of the human eye,” J. Opt. Soc. Am. A 4(8), 1666–1672 (1987).
    [Crossref]
  18. P. Simonet and M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30(2), 187–206 (1990).
    [Crossref]
  19. I. Powell, “Lenses for correcting chromatic aberration of the eye,” Appl. Opt. 20(24), 4152–4155 (1981).
    [Crossref]
  20. A. L. Lewis, M. Katz, and C. Oehrlein, “A modified achromatizing lens,” Optom. Vis. Sci. 59(11), 909–911 (1982).
    [Crossref]
  21. R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express 16(11), 8126–8143 (2008).
    [Crossref]
  22. E. J. Fernández, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, “Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina,” Opt. Express 16(15), 11083–11094 (2008).
    [Crossref]
  23. F. LaRocca, D. Nankivil, S. Farsiu, and J. A. Izatt, “True color scanning laser ophthalmoscopy and optical coherence tomography handheld probe,” Biomed. Opt. Express 5(9), 3204–3216 (2014).
    [Crossref]
  24. Y. Qiu, Y. Yang, Y. Liu, X. Yue, and Y. Zhang, “A method to correct longitudinal chromatic aberration between imaging and beacon beams of ocular adaptive optics imaging system,” J. Opt. 22(2), 025301 (2020).
    [Crossref]
  25. X. Jiang, J. A. Kuchenbecker, P. Touch, and R. Sabesan, “Measuring and compensating for ocular longitudinal chromatic aberration,” Optica 6, 981–990 (2019).
    [Crossref]
  26. L. N. Thibos, A. Bradley, D. L. Still, X. X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
    [Crossref]
  27. S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
    [Crossref]
  28. W. M. Harmening, P. Tiruveedhula, A. Roorda, and L. C. Sincich, “Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye,” Biomed. Opt. Express 3(9), 2066–2077 (2012).
    [Crossref]
  29. A. E. Boehm, C. M. Privitera, B. P. Schmidt, and A. Roorda, “Transverse chromatic offsets with pupil displacements in the human eye: sources of variability and methods for real-time correction,” Biomed. Opt. Express 10(4), 1691–1706 (2019).
    [Crossref]
  30. E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express 14(13), 6213–6225 (2006).
    [Crossref]
  31. N. López-Gil and P. Artal, “Comparison of double-pass estimates of the retinal image quality obtained with green and near-infrared light,” J. Opt. Soc. Am. A 14(5), 961–971 (1997).
    [Crossref]
  32. L. Llorente, L. Díaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80(1), 26–35 (2003).
    [Crossref]
  33. E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, “Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser,” Opt. Express 13(2), 400–409 (2005).
    [Crossref]
  34. M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
    [Crossref]
  35. S. Manzanera, C. Canovas, P. M. Prieto, and P. Artal, “A wavelength tunable wavefront sensor for the human eye,” Opt. Express 16(11), 7748–7755 (2008).
    [Crossref]
  36. A. Gómez-Vieyra, A. Dubra, D. Malacara-Hernández, and D. R. Williams, “First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes,” Opt. Express 17(21), 18906–18919 (2009).
    [Crossref]
  37. Z. Liu, O. P. Kocaoglu, and D. T. Miller, “In-the-plane design of an off-axis ophthalmic adaptive optics system using toroidal mirrors,” Biomed. Opt. Express 4(12), 3007–3030 (2013).
    [Crossref]
  38. F. Felberer, J.-S. Kroisamer, C. K. Hitzenberger, and M. Pircher, “Lens based adaptive optics scanning laser ophthalmoscope,” Opt. Express 20(16), 17297–17310 (2012).
    [Crossref]
  39. R.H. Webb, G.W. Hughes, and F.C. Delori, “Confocal scanning laser ophthalmoscope,” Appl. Opt. 26(8), 1492–1499 (1987).
    [Crossref]
  40. T. Wilson and C. J. R. Sheppard, “Theory and Practice of Scanning Optical Microscopy,” (Academic, 1984).
  41. H. Hofer, N. Sredar, H. Queener, C. Li, and J. Porter, “Wavefront sensorless adaptive optics ophthalmoscopy in the human eye,” Opt. Express 19(15), 14160–14171 (2011).
    [Crossref]
  42. D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15(21), 13731–13744 (2007).
    [Crossref]
  43. Q. Yang, D. W. Arathorn, P. Tiruveedhula, C. R. Vogel, and A. Roorda, “Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery,” Opt. Express 18(17), 17841–17858 (2010).
    [Crossref]
  44. S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE 5688, 145–151 (2005).
    [Crossref]
  45. S. B. Stevenson, A. Roorda, and G. Kumar, “Eye Tracking with the Adaptive Optics Scanning Laser Ophthalmoscope,” Proceedings of the 2010 Symposium on Eye-Tracking Research and Applications, Austin, TX, March 22-24 (ACM, NY), 495–498 (2010).
    [Crossref]
  46. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett. 33(2), 156–158 (2008).
    [Crossref]
  47. L. Waller and L. Tian, “3D Phase Retrieval with Computational Illumination,” Imaging and Applied Optics, OSA Technical Digest, paper CW4E (2015).
  48. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237 (1972).
  49. K. Venkateswaran, F. Romero-Borja, and A. Roorda, “Theoretical Modeling and Evaluation of the Axial Resolution of the Adaptive Optics Scanning Laser Ophthalmoscope,” J. Biomed. Opt. 9(1), 132–138 (2004).
    [Crossref]
  50. D. Modrić, K. P. Maretić, and A. Hladnik, “Determination of point-spread function of paper substrate based on light-scattering simulation,” Appl. Opt. 53(33), 7854–7862 (2014).
    [Crossref]
  51. N. Sredar, O. E. Fagbemi, and A. Dubra, “Sub-Airy Confocal Adaptive Optics Scanning Ophthalmoscopy,” Trans. Vis. Sci. Tech. 7(2), 17 (2018).
    [Crossref]
  52. ANSI, “American National Standard for safe use of lasers (ANSI 136.1),” The Laser Institute of America. ANSI 136.1. (2014).
  53. F. C. Delori, R. H. Webb, and D. H. SlineyAmerican National Standards Institute, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A 24(5), 1250–1265 (2007).
    [Crossref]
  54. E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen,” Archiv f. mikrosk. Anatomie 9(1), 413–468 (1873).
    [Crossref]

2020 (1)

Y. Qiu, Y. Yang, Y. Liu, X. Yue, and Y. Zhang, “A method to correct longitudinal chromatic aberration between imaging and beacon beams of ocular adaptive optics imaging system,” J. Opt. 22(2), 025301 (2020).
[Crossref]

2019 (3)

2018 (2)

Z. Liu, J. Tam, O. Saeedi, and D. X. Hammer, “Trans-retinal cellular imaging with multimodal adaptive optics,” Biomed. Opt. Express 9(9), 4246–4262 (2018).
[Crossref]

N. Sredar, O. E. Fagbemi, and A. Dubra, “Sub-Airy Confocal Adaptive Optics Scanning Ophthalmoscopy,” Trans. Vis. Sci. Tech. 7(2), 17 (2018).
[Crossref]

2016 (3)

J. Tam, J. Liu, A. Dubra, and R. Fariss, “In Vivo Imaging of the Human Retinal Pigment Epithelial Mosaic Using Adaptive Optics Enhanced Indocyanine Green Ophthalmoscopy,” Invest. Ophthalmol. Visual Sci. 57(10), 4376–4384 (2016).
[Crossref]

D. Merino and P. Loza-Alvarez, “Adaptive optics scanning laser ophthalmoscope imaging: technology update,” Clin. Ophthalmol. 10, 743–755 (2016).
[Crossref]

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref]

2015 (1)

2014 (2)

2013 (2)

Z. Liu, O. P. Kocaoglu, and D. T. Miller, “In-the-plane design of an off-axis ophthalmic adaptive optics system using toroidal mirrors,” Biomed. Opt. Express 4(12), 3007–3030 (2013).
[Crossref]

J. Schallek, Y. Geng, H. Nguyen, and D. R. Williams, “Morphology and topography of retinal pericytes in the living mouse retina using in vivo adaptive optics imaging and ex vivo characterization,” Invest. Ophthalmol. Visual Sci. 54(13), 8237–8250 (2013).
[Crossref]

2012 (3)

2011 (3)

2010 (1)

2009 (2)

A. Gómez-Vieyra, A. Dubra, D. Malacara-Hernández, and D. R. Williams, “First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes,” Opt. Express 17(21), 18906–18919 (2009).
[Crossref]

J. I. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Visual Sci. 50(3), 1350–1359 (2009).
[Crossref]

2008 (5)

2007 (2)

2006 (1)

2005 (3)

2004 (1)

K. Venkateswaran, F. Romero-Borja, and A. Roorda, “Theoretical Modeling and Evaluation of the Axial Resolution of the Adaptive Optics Scanning Laser Ophthalmoscope,” J. Biomed. Opt. 9(1), 132–138 (2004).
[Crossref]

2003 (1)

L. Llorente, L. Díaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80(1), 26–35 (2003).
[Crossref]

2002 (1)

1999 (1)

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, “A new approach to study ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[Crossref]

1997 (2)

1990 (2)

P. Simonet and M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30(2), 187–206 (1990).
[Crossref]

L. N. Thibos, A. Bradley, D. L. Still, X. X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref]

1987 (2)

1982 (1)

A. L. Lewis, M. Katz, and C. Oehrlein, “A modified achromatizing lens,” Optom. Vis. Sci. 59(11), 909–911 (1982).
[Crossref]

1981 (1)

1972 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237 (1972).

1961 (1)

M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biofizika 6, 687–703 (1961).

1957 (1)

1873 (1)

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen,” Archiv f. mikrosk. Anatomie 9(1), 413–468 (1873).
[Crossref]

Abbe, E.

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen,” Archiv f. mikrosk. Anatomie 9(1), 413–468 (1873).
[Crossref]

Ahnelt, P. K.

Aleman, T. S.

W. S. Tuten, G. K. Vergilio, G. J. Young, J. Bennett, A. M. Maguire, T. S. Aleman, D. H. Brainard, and J. I. W. Morgan, “Visual Function at the Atrophic Border in Choroideremia Assessed with Adaptive Optics Microperimetry,” Ophthalmol Retina 3(10), 888–899 (2019).
[Crossref]

Arathorn, D. W.

Artal, P.

Atchison, D. A.

Bedell, H. E.

Bedford, R. E.

Bennett, J.

W. S. Tuten, G. K. Vergilio, G. J. Young, J. Bennett, A. M. Maguire, T. S. Aleman, D. H. Brainard, and J. I. W. Morgan, “Visual Function at the Atrophic Border in Choroideremia Assessed with Adaptive Optics Microperimetry,” Ophthalmol Retina 3(10), 888–899 (2019).
[Crossref]

Boehm, A. E.

Bradley, A.

L. N. Thibos, A. Bradley, D. L. Still, X. X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref]

Brainard, D. H.

W. S. Tuten, G. K. Vergilio, G. J. Young, J. Bennett, A. M. Maguire, T. S. Aleman, D. H. Brainard, and J. I. W. Morgan, “Visual Function at the Atrophic Border in Choroideremia Assessed with Adaptive Optics Microperimetry,” Ophthalmol Retina 3(10), 888–899 (2019).
[Crossref]

Burns, S. A.

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, “A new approach to study ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[Crossref]

Campbell, M. C. W.

A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
[Crossref]

P. Simonet and M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30(2), 187–206 (1990).
[Crossref]

Canovas, C.

Carroll, J.

J. Carroll, “Adaptive optics retinal imaging: applications for studying retinal degeneration,” Arch. Ophthalmol. 126(6), 857 (2008).
[Crossref]

Cense, B.

Choi, S. S.

Cortes, D.

Delori, F. C.

Delori, F.C.

Díaz-Santana, L.

L. Llorente, L. Díaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80(1), 26–35 (2003).
[Crossref]

Donnelly, W. J.

Dorronsoro, C.

Drexler, W.

Dubra, A.

N. Sredar, O. E. Fagbemi, and A. Dubra, “Sub-Airy Confocal Adaptive Optics Scanning Ophthalmoscopy,” Trans. Vis. Sci. Tech. 7(2), 17 (2018).
[Crossref]

J. Tam, J. Liu, A. Dubra, and R. Fariss, “In Vivo Imaging of the Human Retinal Pigment Epithelial Mosaic Using Adaptive Optics Enhanced Indocyanine Green Ophthalmoscopy,” Invest. Ophthalmol. Visual Sci. 57(10), 4376–4384 (2016).
[Crossref]

A. Dubra and Y. Sulai, “Reflective afocal broadband adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2(6), 1757–1768 (2011).
[Crossref]

J. I. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Visual Sci. 50(3), 1350–1359 (2009).
[Crossref]

A. Gómez-Vieyra, A. Dubra, D. Malacara-Hernández, and D. R. Williams, “First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes,” Opt. Express 17(21), 18906–18919 (2009).
[Crossref]

Fagbemi, O. E.

N. Sredar, O. E. Fagbemi, and A. Dubra, “Sub-Airy Confocal Adaptive Optics Scanning Ophthalmoscopy,” Trans. Vis. Sci. Tech. 7(2), 17 (2018).
[Crossref]

Fariss, R.

J. Tam, J. Liu, A. Dubra, and R. Fariss, “In Vivo Imaging of the Human Retinal Pigment Epithelial Mosaic Using Adaptive Optics Enhanced Indocyanine Green Ophthalmoscopy,” Invest. Ophthalmol. Visual Sci. 57(10), 4376–4384 (2016).
[Crossref]

Farsiu, S.

Felberer, F.

Fernández, E. J.

Fienup, J. R.

Geng, Y.

J. Schallek, Y. Geng, H. Nguyen, and D. R. Williams, “Morphology and topography of retinal pericytes in the living mouse retina using in vivo adaptive optics imaging and ex vivo characterization,” Invest. Ophthalmol. Visual Sci. 54(13), 8237–8250 (2013).
[Crossref]

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237 (1972).

Gómez-Vieyra, A.

Guizar-Sicairos, M.

Hammer, D. X.

Harmening, W. M.

Hebert, T. J.

Hermann, B.

Hitzenberger, C. K.

Hladnik, A.

Hofer, B.

Hofer, H.

Howarth, P. A.

L. N. Thibos, A. Bradley, D. L. Still, X. X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref]

Hughes, G.W.

Izatt, J. A.

Jiang, X.

Katz, M.

A. L. Lewis, M. Katz, and C. Oehrlein, “A modified achromatizing lens,” Optom. Vis. Sci. 59(11), 909–911 (1982).
[Crossref]

Kocaoglu, O. P.

Kroisamer, J.-S.

Kuchenbecker, J. A.

Kumar, G.

S. B. Stevenson, A. Roorda, and G. Kumar, “Eye Tracking with the Adaptive Optics Scanning Laser Ophthalmoscope,” Proceedings of the 2010 Symposium on Eye-Tracking Research and Applications, Austin, TX, March 22-24 (ACM, NY), 495–498 (2010).
[Crossref]

Lara-Saucedo, D.

L. Llorente, L. Díaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80(1), 26–35 (2003).
[Crossref]

LaRocca, F.

Lewis, A. L.

A. L. Lewis, M. Katz, and C. Oehrlein, “A modified achromatizing lens,” Optom. Vis. Sci. 59(11), 909–911 (1982).
[Crossref]

Li, C.

Li, H.

H. Li, J. Lu, G. Shi, and Y. Zhang, “Measurement of oxygen saturation in small retinal vessels with adaptive optics confocal scanning laser ophthalmoscope,” J. Biomed. Opt. 16(11), 110504 (2011).
[Crossref]

Liang, J.

Liu, J.

J. Tam, J. Liu, A. Dubra, and R. Fariss, “In Vivo Imaging of the Human Retinal Pigment Epithelial Mosaic Using Adaptive Optics Enhanced Indocyanine Green Ophthalmoscopy,” Invest. Ophthalmol. Visual Sci. 57(10), 4376–4384 (2016).
[Crossref]

Liu, Y.

Y. Qiu, Y. Yang, Y. Liu, X. Yue, and Y. Zhang, “A method to correct longitudinal chromatic aberration between imaging and beacon beams of ocular adaptive optics imaging system,” J. Opt. 22(2), 025301 (2020).
[Crossref]

Liu, Z.

Llorente, L.

L. Llorente, L. Díaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80(1), 26–35 (2003).
[Crossref]

López-Gil, N.

Loza-Alvarez, P.

D. Merino and P. Loza-Alvarez, “Adaptive optics scanning laser ophthalmoscope imaging: technology update,” Clin. Ophthalmol. 10, 743–755 (2016).
[Crossref]

Lu, J.

H. Li, J. Lu, G. Shi, and Y. Zhang, “Measurement of oxygen saturation in small retinal vessels with adaptive optics confocal scanning laser ophthalmoscope,” J. Biomed. Opt. 16(11), 110504 (2011).
[Crossref]

Lundström, L.

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref]

Maguire, A. M.

W. S. Tuten, G. K. Vergilio, G. J. Young, J. Bennett, A. M. Maguire, T. S. Aleman, D. H. Brainard, and J. I. W. Morgan, “Visual Function at the Atrophic Border in Choroideremia Assessed with Adaptive Optics Microperimetry,” Ophthalmol Retina 3(10), 888–899 (2019).
[Crossref]

Malacara-Hernández, D.

Manzanera, S.

Marcos, S.

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
[Crossref]

L. Llorente, L. Díaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80(1), 26–35 (2003).
[Crossref]

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, “A new approach to study ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[Crossref]

Maretic, K. P.

Merigan, W. H.

J. I. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Visual Sci. 50(3), 1350–1359 (2009).
[Crossref]

Merino, D.

D. Merino and P. Loza-Alvarez, “Adaptive optics scanning laser ophthalmoscope imaging: technology update,” Clin. Ophthalmol. 10, 743–755 (2016).
[Crossref]

Miller, D. T.

Modric, D.

Moreno-Barriuso, E.

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, “A new approach to study ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[Crossref]

Morgan, J. I.

J. I. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Visual Sci. 50(3), 1350–1359 (2009).
[Crossref]

Morgan, J. I. W.

W. S. Tuten, G. K. Vergilio, G. J. Young, J. Bennett, A. M. Maguire, T. S. Aleman, D. H. Brainard, and J. I. W. Morgan, “Visual Function at the Atrophic Border in Choroideremia Assessed with Adaptive Optics Microperimetry,” Ophthalmol Retina 3(10), 888–899 (2019).
[Crossref]

Nankivil, D.

Navarro, R.

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, “A new approach to study ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[Crossref]

Nguyen, H.

J. Schallek, Y. Geng, H. Nguyen, and D. R. Williams, “Morphology and topography of retinal pericytes in the living mouse retina using in vivo adaptive optics imaging and ex vivo characterization,” Invest. Ophthalmol. Visual Sci. 54(13), 8237–8250 (2013).
[Crossref]

Oehrlein, C.

A. L. Lewis, M. Katz, and C. Oehrlein, “A modified achromatizing lens,” Optom. Vis. Sci. 59(11), 909–911 (1982).
[Crossref]

Ogboso, Y. U.

Pascual, D.

Pircher, M.

Porter, J.

Považay, B.

Powell, I.

Prieto, P. M.

Privitera, C.

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref]

Privitera, C. M.

Qiu, Y.

Y. Qiu, Y. Yang, Y. Liu, X. Yue, and Y. Zhang, “A method to correct longitudinal chromatic aberration between imaging and beacon beams of ocular adaptive optics imaging system,” J. Opt. 22(2), 025301 (2020).
[Crossref]

Queener, H.

Romero-Borja, F.

K. Venkateswaran, F. Romero-Borja, and A. Roorda, “Theoretical Modeling and Evaluation of the Axial Resolution of the Adaptive Optics Scanning Laser Ophthalmoscope,” J. Biomed. Opt. 9(1), 132–138 (2004).
[Crossref]

A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
[Crossref]

Roorda, A.

A. E. Boehm, C. M. Privitera, B. P. Schmidt, and A. Roorda, “Transverse chromatic offsets with pupil displacements in the human eye: sources of variability and methods for real-time correction,” Biomed. Opt. Express 10(4), 1691–1706 (2019).
[Crossref]

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref]

W. S. Tuten, P. Tiruveedhula, and A. Roorda, “Adaptive optics scanning laser ophthalmoscope-based microperimetry,” Optom. Vis. Sci. 89(5), 563–574 (2012).
[Crossref]

W. M. Harmening, P. Tiruveedhula, A. Roorda, and L. C. Sincich, “Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye,” Biomed. Opt. Express 3(9), 2066–2077 (2012).
[Crossref]

Q. Yang, D. W. Arathorn, P. Tiruveedhula, C. R. Vogel, and A. Roorda, “Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery,” Opt. Express 18(17), 17841–17858 (2010).
[Crossref]

D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15(21), 13731–13744 (2007).
[Crossref]

S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE 5688, 145–151 (2005).
[Crossref]

K. Venkateswaran, F. Romero-Borja, and A. Roorda, “Theoretical Modeling and Evaluation of the Axial Resolution of the Adaptive Optics Scanning Laser Ophthalmoscope,” J. Biomed. Opt. 9(1), 132–138 (2004).
[Crossref]

A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
[Crossref]

S. B. Stevenson, A. Roorda, and G. Kumar, “Eye Tracking with the Adaptive Optics Scanning Laser Ophthalmoscope,” Proceedings of the 2010 Symposium on Eye-Tracking Research and Applications, Austin, TX, March 22-24 (ACM, NY), 495–498 (2010).
[Crossref]

Sabesan, R.

X. Jiang, J. A. Kuchenbecker, P. Touch, and R. Sabesan, “Measuring and compensating for ocular longitudinal chromatic aberration,” Optica 6, 981–990 (2019).
[Crossref]

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref]

Saeedi, O.

Sattmann, H.

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237 (1972).

Schallek, J.

J. Schallek, Y. Geng, H. Nguyen, and D. R. Williams, “Morphology and topography of retinal pericytes in the living mouse retina using in vivo adaptive optics imaging and ex vivo characterization,” Invest. Ophthalmol. Visual Sci. 54(13), 8237–8250 (2013).
[Crossref]

Schmidt, B. P.

Sheppard, C. J. R.

T. Wilson and C. J. R. Sheppard, “Theory and Practice of Scanning Optical Microscopy,” (Academic, 1984).

Shi, G.

H. Li, J. Lu, G. Shi, and Y. Zhang, “Measurement of oxygen saturation in small retinal vessels with adaptive optics confocal scanning laser ophthalmoscope,” J. Biomed. Opt. 16(11), 110504 (2011).
[Crossref]

Simonet, P.

P. Simonet and M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30(2), 187–206 (1990).
[Crossref]

Sincich, L. C.

Sliney, D. H.

Smirnov, M. S.

M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biofizika 6, 687–703 (1961).

Smith, G.

Sredar, N.

N. Sredar, O. E. Fagbemi, and A. Dubra, “Sub-Airy Confocal Adaptive Optics Scanning Ophthalmoscopy,” Trans. Vis. Sci. Tech. 7(2), 17 (2018).
[Crossref]

H. Hofer, N. Sredar, H. Queener, C. Li, and J. Porter, “Wavefront sensorless adaptive optics ophthalmoscopy in the human eye,” Opt. Express 19(15), 14160–14171 (2011).
[Crossref]

Stevenson, S. B.

S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE 5688, 145–151 (2005).
[Crossref]

S. B. Stevenson, A. Roorda, and G. Kumar, “Eye Tracking with the Adaptive Optics Scanning Laser Ophthalmoscope,” Proceedings of the 2010 Symposium on Eye-Tracking Research and Applications, Austin, TX, March 22-24 (ACM, NY), 495–498 (2010).
[Crossref]

Still, D. L.

L. N. Thibos, A. Bradley, D. L. Still, X. X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref]

Sulai, Y.

Tam, J.

Z. Liu, J. Tam, O. Saeedi, and D. X. Hammer, “Trans-retinal cellular imaging with multimodal adaptive optics,” Biomed. Opt. Express 9(9), 4246–4262 (2018).
[Crossref]

J. Tam, J. Liu, A. Dubra, and R. Fariss, “In Vivo Imaging of the Human Retinal Pigment Epithelial Mosaic Using Adaptive Optics Enhanced Indocyanine Green Ophthalmoscopy,” Invest. Ophthalmol. Visual Sci. 57(10), 4376–4384 (2016).
[Crossref]

Thibos, L. N.

L. N. Thibos, A. Bradley, D. L. Still, X. X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref]

Thurman, S. T.

Tian, L.

L. Waller and L. Tian, “3D Phase Retrieval with Computational Illumination,” Imaging and Applied Optics, OSA Technical Digest, paper CW4E (2015).

Tiruveedhula, P.

Touch, P.

Tuten, W. S.

W. S. Tuten, G. K. Vergilio, G. J. Young, J. Bennett, A. M. Maguire, T. S. Aleman, D. H. Brainard, and J. I. W. Morgan, “Visual Function at the Atrophic Border in Choroideremia Assessed with Adaptive Optics Microperimetry,” Ophthalmol Retina 3(10), 888–899 (2019).
[Crossref]

W. S. Tuten, P. Tiruveedhula, and A. Roorda, “Adaptive optics scanning laser ophthalmoscope-based microperimetry,” Optom. Vis. Sci. 89(5), 563–574 (2012).
[Crossref]

Unsbo, P.

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref]

Unterhuber, A.

Venkateswaran, K.

K. Venkateswaran, F. Romero-Borja, and A. Roorda, “Theoretical Modeling and Evaluation of the Axial Resolution of the Adaptive Optics Scanning Laser Ophthalmoscope,” J. Biomed. Opt. 9(1), 132–138 (2004).
[Crossref]

Vergilio, G. K.

W. S. Tuten, G. K. Vergilio, G. J. Young, J. Bennett, A. M. Maguire, T. S. Aleman, D. H. Brainard, and J. I. W. Morgan, “Visual Function at the Atrophic Border in Choroideremia Assessed with Adaptive Optics Microperimetry,” Ophthalmol Retina 3(10), 888–899 (2019).
[Crossref]

Vinas, M.

Vogel, C. R.

Waller, L.

L. Waller and L. Tian, “3D Phase Retrieval with Computational Illumination,” Imaging and Applied Optics, OSA Technical Digest, paper CW4E (2015).

Webb, R. H.

Webb, R.H.

Werner, J. S.

Williams, D. R.

J. Schallek, Y. Geng, H. Nguyen, and D. R. Williams, “Morphology and topography of retinal pericytes in the living mouse retina using in vivo adaptive optics imaging and ex vivo characterization,” Invest. Ophthalmol. Visual Sci. 54(13), 8237–8250 (2013).
[Crossref]

J. I. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Visual Sci. 50(3), 1350–1359 (2009).
[Crossref]

A. Gómez-Vieyra, A. Dubra, D. Malacara-Hernández, and D. R. Williams, “First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes,” Opt. Express 17(21), 18906–18919 (2009).
[Crossref]

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
[Crossref]

Wilson, T.

T. Wilson and C. J. R. Sheppard, “Theory and Practice of Scanning Optical Microscopy,” (Academic, 1984).

Winter, S.

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref]

Wolfe, R.

J. I. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Visual Sci. 50(3), 1350–1359 (2009).
[Crossref]

Wyszecki, G.

Yang, Q.

Yang, Y.

Y. Qiu, Y. Yang, Y. Liu, X. Yue, and Y. Zhang, “A method to correct longitudinal chromatic aberration between imaging and beacon beams of ocular adaptive optics imaging system,” J. Opt. 22(2), 025301 (2020).
[Crossref]

Young, G. J.

W. S. Tuten, G. K. Vergilio, G. J. Young, J. Bennett, A. M. Maguire, T. S. Aleman, D. H. Brainard, and J. I. W. Morgan, “Visual Function at the Atrophic Border in Choroideremia Assessed with Adaptive Optics Microperimetry,” Ophthalmol Retina 3(10), 888–899 (2019).
[Crossref]

Yue, X.

Y. Qiu, Y. Yang, Y. Liu, X. Yue, and Y. Zhang, “A method to correct longitudinal chromatic aberration between imaging and beacon beams of ocular adaptive optics imaging system,” J. Opt. 22(2), 025301 (2020).
[Crossref]

Zawadzki, R. J.

Zhang, X. X.

L. N. Thibos, A. Bradley, D. L. Still, X. X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref]

Zhang, Y.

Y. Qiu, Y. Yang, Y. Liu, X. Yue, and Y. Zhang, “A method to correct longitudinal chromatic aberration between imaging and beacon beams of ocular adaptive optics imaging system,” J. Opt. 22(2), 025301 (2020).
[Crossref]

H. Li, J. Lu, G. Shi, and Y. Zhang, “Measurement of oxygen saturation in small retinal vessels with adaptive optics confocal scanning laser ophthalmoscope,” J. Biomed. Opt. 16(11), 110504 (2011).
[Crossref]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express 16(11), 8126–8143 (2008).
[Crossref]

D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15(21), 13731–13744 (2007).
[Crossref]

Appl. Opt. (3)

Arch. Ophthalmol. (1)

J. Carroll, “Adaptive optics retinal imaging: applications for studying retinal degeneration,” Arch. Ophthalmol. 126(6), 857 (2008).
[Crossref]

Archiv f. mikrosk. Anatomie (1)

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen,” Archiv f. mikrosk. Anatomie 9(1), 413–468 (1873).
[Crossref]

Biofizika (1)

M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biofizika 6, 687–703 (1961).

Biomed. Opt. Express (7)

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
[Crossref]

Z. Liu, J. Tam, O. Saeedi, and D. X. Hammer, “Trans-retinal cellular imaging with multimodal adaptive optics,” Biomed. Opt. Express 9(9), 4246–4262 (2018).
[Crossref]

A. E. Boehm, C. M. Privitera, B. P. Schmidt, and A. Roorda, “Transverse chromatic offsets with pupil displacements in the human eye: sources of variability and methods for real-time correction,” Biomed. Opt. Express 10(4), 1691–1706 (2019).
[Crossref]

W. M. Harmening, P. Tiruveedhula, A. Roorda, and L. C. Sincich, “Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye,” Biomed. Opt. Express 3(9), 2066–2077 (2012).
[Crossref]

Z. Liu, O. P. Kocaoglu, and D. T. Miller, “In-the-plane design of an off-axis ophthalmic adaptive optics system using toroidal mirrors,” Biomed. Opt. Express 4(12), 3007–3030 (2013).
[Crossref]

F. LaRocca, D. Nankivil, S. Farsiu, and J. A. Izatt, “True color scanning laser ophthalmoscopy and optical coherence tomography handheld probe,” Biomed. Opt. Express 5(9), 3204–3216 (2014).
[Crossref]

A. Dubra and Y. Sulai, “Reflective afocal broadband adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2(6), 1757–1768 (2011).
[Crossref]

Clin. Ophthalmol. (1)

D. Merino and P. Loza-Alvarez, “Adaptive optics scanning laser ophthalmoscope imaging: technology update,” Clin. Ophthalmol. 10, 743–755 (2016).
[Crossref]

Invest. Ophthalmol. Visual Sci. (3)

J. I. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Visual Sci. 50(3), 1350–1359 (2009).
[Crossref]

J. Tam, J. Liu, A. Dubra, and R. Fariss, “In Vivo Imaging of the Human Retinal Pigment Epithelial Mosaic Using Adaptive Optics Enhanced Indocyanine Green Ophthalmoscopy,” Invest. Ophthalmol. Visual Sci. 57(10), 4376–4384 (2016).
[Crossref]

J. Schallek, Y. Geng, H. Nguyen, and D. R. Williams, “Morphology and topography of retinal pericytes in the living mouse retina using in vivo adaptive optics imaging and ex vivo characterization,” Invest. Ophthalmol. Visual Sci. 54(13), 8237–8250 (2013).
[Crossref]

J. Biomed. Opt. (2)

H. Li, J. Lu, G. Shi, and Y. Zhang, “Measurement of oxygen saturation in small retinal vessels with adaptive optics confocal scanning laser ophthalmoscope,” J. Biomed. Opt. 16(11), 110504 (2011).
[Crossref]

K. Venkateswaran, F. Romero-Borja, and A. Roorda, “Theoretical Modeling and Evaluation of the Axial Resolution of the Adaptive Optics Scanning Laser Ophthalmoscope,” J. Biomed. Opt. 9(1), 132–138 (2004).
[Crossref]

J. Opt. (1)

Y. Qiu, Y. Yang, Y. Liu, X. Yue, and Y. Zhang, “A method to correct longitudinal chromatic aberration between imaging and beacon beams of ocular adaptive optics imaging system,” J. Opt. 22(2), 025301 (2020).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (5)

J. Vis. (1)

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref]

Ophthalmol Retina (1)

W. S. Tuten, G. K. Vergilio, G. J. Young, J. Bennett, A. M. Maguire, T. S. Aleman, D. H. Brainard, and J. I. W. Morgan, “Visual Function at the Atrophic Border in Choroideremia Assessed with Adaptive Optics Microperimetry,” Ophthalmol Retina 3(10), 888–899 (2019).
[Crossref]

Opt. Express (11)

E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, “Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser,” Opt. Express 13(2), 400–409 (2005).
[Crossref]

E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express 14(13), 6213–6225 (2006).
[Crossref]

A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
[Crossref]

D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15(21), 13731–13744 (2007).
[Crossref]

H. Hofer, N. Sredar, H. Queener, C. Li, and J. Porter, “Wavefront sensorless adaptive optics ophthalmoscopy in the human eye,” Opt. Express 19(15), 14160–14171 (2011).
[Crossref]

F. Felberer, J.-S. Kroisamer, C. K. Hitzenberger, and M. Pircher, “Lens based adaptive optics scanning laser ophthalmoscope,” Opt. Express 20(16), 17297–17310 (2012).
[Crossref]

S. Manzanera, C. Canovas, P. M. Prieto, and P. Artal, “A wavelength tunable wavefront sensor for the human eye,” Opt. Express 16(11), 7748–7755 (2008).
[Crossref]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express 16(11), 8126–8143 (2008).
[Crossref]

E. J. Fernández, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, “Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina,” Opt. Express 16(15), 11083–11094 (2008).
[Crossref]

A. Gómez-Vieyra, A. Dubra, D. Malacara-Hernández, and D. R. Williams, “First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes,” Opt. Express 17(21), 18906–18919 (2009).
[Crossref]

Q. Yang, D. W. Arathorn, P. Tiruveedhula, C. R. Vogel, and A. Roorda, “Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery,” Opt. Express 18(17), 17841–17858 (2010).
[Crossref]

Opt. Lett. (1)

Optica (1)

Optik (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237 (1972).

Optom. Vis. Sci. (3)

L. Llorente, L. Díaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80(1), 26–35 (2003).
[Crossref]

A. L. Lewis, M. Katz, and C. Oehrlein, “A modified achromatizing lens,” Optom. Vis. Sci. 59(11), 909–911 (1982).
[Crossref]

W. S. Tuten, P. Tiruveedhula, and A. Roorda, “Adaptive optics scanning laser ophthalmoscope-based microperimetry,” Optom. Vis. Sci. 89(5), 563–574 (2012).
[Crossref]

Proc. SPIE (1)

S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE 5688, 145–151 (2005).
[Crossref]

Trans. Vis. Sci. Tech. (1)

N. Sredar, O. E. Fagbemi, and A. Dubra, “Sub-Airy Confocal Adaptive Optics Scanning Ophthalmoscopy,” Trans. Vis. Sci. Tech. 7(2), 17 (2018).
[Crossref]

Vision Res. (3)

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, “A new approach to study ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[Crossref]

P. Simonet and M. C. W. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res. 30(2), 187–206 (1990).
[Crossref]

L. N. Thibos, A. Bradley, D. L. Still, X. X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref]

Other (4)

T. Wilson and C. J. R. Sheppard, “Theory and Practice of Scanning Optical Microscopy,” (Academic, 1984).

L. Waller and L. Tian, “3D Phase Retrieval with Computational Illumination,” Imaging and Applied Optics, OSA Technical Digest, paper CW4E (2015).

ANSI, “American National Standard for safe use of lasers (ANSI 136.1),” The Laser Institute of America. ANSI 136.1. (2014).

S. B. Stevenson, A. Roorda, and G. Kumar, “Eye Tracking with the Adaptive Optics Scanning Laser Ophthalmoscope,” Proceedings of the 2010 Symposium on Eye-Tracking Research and Applications, Austin, TX, March 22-24 (ACM, NY), 495–498 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Multi-spectral AOSLO optical design and schematic. All optical components are labeled and described in the legend. Green, red, maroon, and magenta paths correspond to the optical paths of the 543 nm, 680 nm, 840 nm, and 940 nm channels, respectively. Paths with combined channels are blue (all wavelengths), orange (680nm + 840nm + 940 nm), brown (840nm + 940 nm), and yellow (543nm + 680 nm). Spot diagrams for all illumination spots spanning a 1° field of view (FOV) are shown below the schematic while those for specific collection channels are placed adjacent to the corresponding collection PMT or WFS as insets. Beneath each spot diagram are the Airy radius, root-mean-square (RMS) spot radius, and Strehl ratio. The model eye consists of a paraxial lens with a 16.7 mm focal length in air.
Fig. 2.
Fig. 2. Ghost reflection ray trace analysis for wedge plate beam splitters (BS) of different wedge angles. Ray traces for the light reflecting from the back surface of the wedge beam splitter are shown for wedge angles of 0°, 0.5°, and 1° for (a-c), respectively. The corresponding footprint diagrams for beam profiles at the pupil plane of a model eye are given in (d-f), demonstrating decreasing amounts of the ghost reflection with increases in wedge angle. The magenta arrow in b) indicates a location in the non-scanning portion of the AOSLO system for which an iris can be placed to completely block the ghost artifact without affecting the imaging optical path of the AOSLO.
Fig. 3.
Fig. 3. Wedge angle’s effect on aberrations of a converging beam. Schematics on the left each start with a 3.6 mm diameter incident beam of 550 nm light that transmits through a paraxial lens with f = 400 mm (corresponding to a vergence of 0.625 D if preceded by a transverse magnification of ½). Light after the lens focuses through 6 mm thick wedge plate beam splitter made of fused silica and tilted at 45°. The wedge angle is varied from 0° to 1° (from top row to bottom row) and the corresponding spot diagrams at the focal plane are shown at the right.
Fig. 4.
Fig. 4. Beamsplitter position’s effect on aberrations of a converging beam. Simulation setups are identical to those in Fig. 3 except that the wedge angle of the beamsplitter is fixed at 1° and the beamsplitter position is altered instead. The schematic shown in the second row has a beamsplitter placed 100 mm closer to the focal plane than that of the schematic in the first row while the beamsplitter in the schematic of the third row is placed 200 mm closer. The beam diameter at the plane of the beam splitter is given to the left of the schematics while the corresponding spot diagrams are shown at the right.
Fig. 5.
Fig. 5. Footprint diagrams show the real ray coordinates over the eye’s pupil (a) and WFS lenslet plane (b) for 9 scan locations spanning a 1° square FOV on the eye. A magnification-corrected image of the system’s pupil, lenslet array, and DM actuator array are overlaid on top of the footprint diagrams revealing that the wavefront measurement is mainly limited by the sampling density dictated by the WFS’s lenslet array rather than the combination of other effects such as pupil aberrations, distortion, and wobble in the illumination and collection paths. The sampling density of the real ray coordinates for the footprint diagrams was chosen to roughly correspond to the magnification-corrected lenslet spacing at the conjugate planes shown in a-b). Magnified insets of a lenslet to the top right of the pupil (where the optical aberrations are worst) are shown at the top right of (a) and (b).
Fig. 6.
Fig. 6. Mechanical design and fabrication of the multi-spectral AOSLO system. a) Top down view of the optomechanical model of the system within Solidworks. b) Oblique view of the optomechanical model to replicate the orientation shown in 6(f) of the fully fabricated system. c) Stencil design indicating the post placement as dictated by the solid model shown in a-b). d) Fabricated stencil. e) Stencil applied to optical table. f) Fully-fabricated and aligned multi-color AOSLO system.
Fig. 7.
Fig. 7. Theoretical and experimental energy at the confocal pinhole for the AOSLO and a separate diffraction-limited setup when imaging the same model eye and spectral imaging channels. Theoretical estimates without scattering were calculated by integrating the double-pass point spread function at the plane of the confocal pinhole for different pinhole sizes. Theoretical estimates incorporating scattering were calculated by convolving the double-pass point spread functions by a 2 µm FWHM Lorentzian function and integrating the result for different pinhole sizes. All curves were normalized to unity for a confocal pinhole size of 1.4 ADD. The detected energy of the largest pinhole size for each spectral channel was normalized to the value of the curve generated from measurements using the diffraction-limited setup on paper for the corresponding spectral channel and pinhole size.
Fig. 8.
Fig. 8. Foveal imaging results across all spectral channels from healthy hyperopic (a-c, Subject 20076) and emmetropic (d-f, Subject 20112) volunteers after artificial dilation and ∼0.5 ADD pinhole configuration. a,d) 543 nm channel image. b,e) 680 nm channel image. c,f) 840 nm channel image. g,h) Radial power spectrums across all imaging channels for Subjects’ 20076 and 20112, respectively. Scale bars, 20 µm.

Tables (3)

Tables Icon

Table 1. System components and hardware

Tables Icon

Table 2. Focal length, diameter, and angles of incidence on reflective optical elements of the AOSLO

Tables Icon

Table 3. Strehl Ratio measurements for the AOSLO’s illumination and collection paths per spectral channel

Metrics