Abstract

Cerebrovascular imaging of rodents is one of the trending applications of optoacoustics aimed at studying brain activity and pathology. Imaging of deep brain structures is often hindered by sub-optimal arrangement of the light delivery and acoustic detection systems. In our work we revisit the physics behind opto-acoustic signal generation for theoretical evaluation of optimal laser wavelengths to perform cerebrovascular optoacoustic angiography of rodents beyond the penetration barriers imposed by light diffusion in highly scattering and absorbing brain tissues. A comprehensive model based on diffusion approximation was developed to simulate optoacoustic signal generation using optical and acoustic parameters closely mimicking a typical murine brain. The model revealed three characteristic wavelength ranges in the visible and near-infrared spectra optimally suited for imaging cerebral vasculature of different size and depth. The theoretical conclusions are confirmed by numerical simulations while in vivo imaging experiments further validated the ability to accurately resolve brain vasculature at depths ranging between 0.7 and 7 mm.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent

Xueding Wang, Geng Ku, Malgorzata A. Wegiel, Darryl J. Bornhop, George Stoica, and Lihong V. Wang
Opt. Lett. 29(7) 730-732 (2004)

Measurement of cerebral microvascular compliance in a model of atherosclerosis with optical coherence tomography

E. Baraghis, V. Bolduc, J. Lefebvre, V. J. Srinivasan, C. Boudoux, E. Thorin, and F. Lesage
Biomed. Opt. Express 2(11) 3079-3093 (2011)

In vivo whole-body optoacoustic scanner with real-time volumetric imaging capacity

Thomas Felix Fehm, Xosé Luís Deán-Ben, Steven James Ford, and Daniel Razansky
Optica 3(11) 1153-1159 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
    [Crossref]
  2. P. Subochev, A. Orlova, E. Smolina, A. Kirillov, N. Shakhova, and I. Turchin, “Raster-scan optoacoustic angiography reveals 3D microcirculatory changes during cuffed occlusion,” Laser Phys. Lett. 15(4), 045602 (2018).
    [Crossref]
  3. M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, and M. Kawashima, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
    [Crossref]
  4. A. Karlas, N.-A. Fasoula, K. Paul-Yuan, J. Reber, M. Kallmayer, D. Bozhko, M. Seeger, H.-H. Eckstein, M. Wildgruber, and V. Ntziachristos, “Cardiovascular optoacoustics: From mice to men–A review,” J. Photoacoust. 14, 19–30 (2019).
    [Crossref]
  5. S. V. Ovsepian, I. Olefir, G. Westmeyer, D. Razansky, and V. Ntziachristos, “Pushing the boundaries of neuroimaging with optoacoustics,” Neuron 96(5), 966–988 (2017).
    [Crossref]
  6. X. Wang, Y. Pang, G. Ku, G. Stoica, and L. V. Wang, “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Opt. Lett. 28(19), 1739–1741 (2003).
    [Crossref]
  7. J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
    [Crossref]
  8. J. Rebling, H. Estrada, S. Gottschalk, G. Sela, M. Zwack, G. Wissmeyer, V. Ntziachristos, and D. Razansky, “Dual-wavelength hybrid optoacoustic-ultrasound biomicroscopy for functional imaging of large-scale cerebral vascular networks,” J. Biophotonics 11(9), e201800057 (2018).
    [Crossref]
  9. P. Zhang, L. Li, L. Lin, P. Hu, J. Shi, Y. He, L. Zhu, Y. Zhou, and L. V. Wang, “High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo,” J. Biophotonics 11(1), e201700024 (2018).
    [Crossref]
  10. S. Gottschalk, O. Degtyaruk, B. Mc Larney, J. Rebling, M. A. Hutter, X. L. Deán-Ben, S. Shoham, and D. Razansky, “Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain,” Nat. Biomed. Eng. 3(5), 392–401 (2019).
    [Crossref]
  11. P. K. Upputuri and M. Pramanik, “Photoacoustic imaging in the second near-infrared window: a review,” J. Biomed. Opt. 24(04), 1 (2019).
    [Crossref]
  12. Z. Sheng, B. Guo, D. Hu, S. Xu, W. Wu, W. H. Liew, K. Yao, J. Jiang, C. Liu, and H. Zheng, “Bright Aggregation-Induced-Emission Dots for Targeted Synergetic NIR-II Fluorescence and NIR-I Photoacoustic Imaging of Orthotopic Brain Tumors,” Adv. Mater. 30(29), 1800766 (2018).
    [Crossref]
  13. A. Orlova, A. Maslennikova, G. Y. Golubiatnikov, A. Suryakova, M. Y. Kirillin, D. Kurakina, T. Kalganova, A. Volovetsky, and I. Turchin, “Diffuse optical spectroscopy assessment of rodent tumor model oxygen state after single-dose irradiation,” Biomed. Phys. Eng. Express 5(3), 035010 (2019).
    [Crossref]
  14. N. Bosschaart, G. J. Edelman, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
    [Crossref]
  15. P. Van der Zee, “Measurement and modelling of the optical properties of human tissue in the near infrared,” (1992).
  16. A. Sarvazyan and C. Hill, “Physical chemistry of the ultrasound-tissue interaction,” Physical Principles of Medical Ultrasonics 7, 223–235 (2004).
    [Crossref]
  17. B. T. Cox, J. G. Laufer, P. C. Beard, and S. R. Arridge, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
    [Crossref]
  18. A. N. S. Institute, American national standard for safe use of lasers (Laser Institute of America, 2007).
  19. H. Soleimanzad, H. Gurden, and F. Pain, “Optical properties of mice skull bone in the 455-to 705-nm range,” J. Biomed. Opt. 22(1), 010503 (2017).
    [Crossref]
  20. C. P. Sabino, A. M. Deana, T. M. Yoshimura, D. F. da Silva, C. M. França, M. R. Hamblin, and M. S. Ribeiro, “The optical properties of mouse skin in the visible and near infrared spectral regions,” J. Photochem. Photobiol., B 160, 72–78 (2016).
    [Crossref]
  21. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
    [Crossref]
  22. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11(10), 2727–2741 (1994).
    [Crossref]
  23. S. L. Jacques, “How tissue optics affect dosimetry of photodynamic therapy,” J. Biomed. Opt. 15(5), 051608 (2010).
    [Crossref]
  24. M. Kneipp, J. Turner, H. Estrada, J. Rebling, S. Shoham, and D. Razansky, “Effects of the murine skull in optoacoustic brain microscopy,” J. Biophotonics 9(1-2), 117–123 (2016).
    [Crossref]
  25. H. Estrada, J. Rebling, and D. Razansky, “Prediction and near-field observation of skull-guided acoustic waves,” Phys. Med. Biol. 62(12), 4728–4740 (2017).
    [Crossref]
  26. J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, and E. Z. Zhang, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
    [Crossref]
  27. A. Orlova, M. Sirotkina, E. Smolina, V. Elagin, A. Kovalchuk, I. Turchin, and P. Subochev, “Raster-scan optoacoustic angiography of blood vessel development in colon cancer models,” J. Photoacoust. 13, 25–32 (2019).
    [Crossref]
  28. P. Subochev, A. Orlova, I. Mikhailova, N. Shilyagina, and I. Turchin, “Simultaneous in vivo imaging of diffuse optical reflectance, optoacoustic pressure, and ultrasonic scattering,” Biomed. Opt. Express 7(10), 3951–3957 (2016).
    [Crossref]
  29. M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Problems 23(6), S51–S63 (2007).
    [Crossref]
  30. T. Oruganti, J. G. Laufer, and B. E. Treeby, “Vessel filtering of photoacoustic images,” Proc. SPIE 8581, 85811W (2013).
    [Crossref]
  31. P. V. Subochev, M. Prudnikov, V. Vorobyev, A. S. Postnikova, E. Sergeev, V. V. Perekatova, A. G. Orlova, V. Kotomina, and I. V. Turchin, “Wideband linear detector arrays for optoacoustic imaging based on polyvinylidene difluoride films,” J. Biomed. Opt. 23(09), 1 (2018).
    [Crossref]
  32. S. Ghanavati, J. P. Lerch, and J. G. Sled, “Automatic anatomical labeling of the complete cerebral vasculature in mouse models,” NeuroImage 95, 117–128 (2014).
    [Crossref]

2019 (5)

A. Karlas, N.-A. Fasoula, K. Paul-Yuan, J. Reber, M. Kallmayer, D. Bozhko, M. Seeger, H.-H. Eckstein, M. Wildgruber, and V. Ntziachristos, “Cardiovascular optoacoustics: From mice to men–A review,” J. Photoacoust. 14, 19–30 (2019).
[Crossref]

S. Gottschalk, O. Degtyaruk, B. Mc Larney, J. Rebling, M. A. Hutter, X. L. Deán-Ben, S. Shoham, and D. Razansky, “Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain,” Nat. Biomed. Eng. 3(5), 392–401 (2019).
[Crossref]

P. K. Upputuri and M. Pramanik, “Photoacoustic imaging in the second near-infrared window: a review,” J. Biomed. Opt. 24(04), 1 (2019).
[Crossref]

A. Orlova, A. Maslennikova, G. Y. Golubiatnikov, A. Suryakova, M. Y. Kirillin, D. Kurakina, T. Kalganova, A. Volovetsky, and I. Turchin, “Diffuse optical spectroscopy assessment of rodent tumor model oxygen state after single-dose irradiation,” Biomed. Phys. Eng. Express 5(3), 035010 (2019).
[Crossref]

A. Orlova, M. Sirotkina, E. Smolina, V. Elagin, A. Kovalchuk, I. Turchin, and P. Subochev, “Raster-scan optoacoustic angiography of blood vessel development in colon cancer models,” J. Photoacoust. 13, 25–32 (2019).
[Crossref]

2018 (5)

P. V. Subochev, M. Prudnikov, V. Vorobyev, A. S. Postnikova, E. Sergeev, V. V. Perekatova, A. G. Orlova, V. Kotomina, and I. V. Turchin, “Wideband linear detector arrays for optoacoustic imaging based on polyvinylidene difluoride films,” J. Biomed. Opt. 23(09), 1 (2018).
[Crossref]

Z. Sheng, B. Guo, D. Hu, S. Xu, W. Wu, W. H. Liew, K. Yao, J. Jiang, C. Liu, and H. Zheng, “Bright Aggregation-Induced-Emission Dots for Targeted Synergetic NIR-II Fluorescence and NIR-I Photoacoustic Imaging of Orthotopic Brain Tumors,” Adv. Mater. 30(29), 1800766 (2018).
[Crossref]

P. Subochev, A. Orlova, E. Smolina, A. Kirillov, N. Shakhova, and I. Turchin, “Raster-scan optoacoustic angiography reveals 3D microcirculatory changes during cuffed occlusion,” Laser Phys. Lett. 15(4), 045602 (2018).
[Crossref]

J. Rebling, H. Estrada, S. Gottschalk, G. Sela, M. Zwack, G. Wissmeyer, V. Ntziachristos, and D. Razansky, “Dual-wavelength hybrid optoacoustic-ultrasound biomicroscopy for functional imaging of large-scale cerebral vascular networks,” J. Biophotonics 11(9), e201800057 (2018).
[Crossref]

P. Zhang, L. Li, L. Lin, P. Hu, J. Shi, Y. He, L. Zhu, Y. Zhou, and L. V. Wang, “High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo,” J. Biophotonics 11(1), e201700024 (2018).
[Crossref]

2017 (5)

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, and M. Kawashima, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref]

S. V. Ovsepian, I. Olefir, G. Westmeyer, D. Razansky, and V. Ntziachristos, “Pushing the boundaries of neuroimaging with optoacoustics,” Neuron 96(5), 966–988 (2017).
[Crossref]

H. Soleimanzad, H. Gurden, and F. Pain, “Optical properties of mice skull bone in the 455-to 705-nm range,” J. Biomed. Opt. 22(1), 010503 (2017).
[Crossref]

H. Estrada, J. Rebling, and D. Razansky, “Prediction and near-field observation of skull-guided acoustic waves,” Phys. Med. Biol. 62(12), 4728–4740 (2017).
[Crossref]

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, and E. Z. Zhang, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

2016 (3)

M. Kneipp, J. Turner, H. Estrada, J. Rebling, S. Shoham, and D. Razansky, “Effects of the murine skull in optoacoustic brain microscopy,” J. Biophotonics 9(1-2), 117–123 (2016).
[Crossref]

P. Subochev, A. Orlova, I. Mikhailova, N. Shilyagina, and I. Turchin, “Simultaneous in vivo imaging of diffuse optical reflectance, optoacoustic pressure, and ultrasonic scattering,” Biomed. Opt. Express 7(10), 3951–3957 (2016).
[Crossref]

C. P. Sabino, A. M. Deana, T. M. Yoshimura, D. F. da Silva, C. M. França, M. R. Hamblin, and M. S. Ribeiro, “The optical properties of mouse skin in the visible and near infrared spectral regions,” J. Photochem. Photobiol., B 160, 72–78 (2016).
[Crossref]

2015 (1)

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref]

2014 (2)

N. Bosschaart, G. J. Edelman, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref]

S. Ghanavati, J. P. Lerch, and J. G. Sled, “Automatic anatomical labeling of the complete cerebral vasculature in mouse models,” NeuroImage 95, 117–128 (2014).
[Crossref]

2013 (1)

T. Oruganti, J. G. Laufer, and B. E. Treeby, “Vessel filtering of photoacoustic images,” Proc. SPIE 8581, 85811W (2013).
[Crossref]

2012 (2)

B. T. Cox, J. G. Laufer, P. C. Beard, and S. R. Arridge, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
[Crossref]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref]

2010 (1)

S. L. Jacques, “How tissue optics affect dosimetry of photodynamic therapy,” J. Biomed. Opt. 15(5), 051608 (2010).
[Crossref]

2007 (1)

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Problems 23(6), S51–S63 (2007).
[Crossref]

2004 (1)

A. Sarvazyan and C. Hill, “Physical chemistry of the ultrasound-tissue interaction,” Physical Principles of Medical Ultrasonics 7, 223–235 (2004).
[Crossref]

2003 (1)

1994 (1)

1992 (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref]

Aalders, M. C.

N. Bosschaart, G. J. Edelman, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref]

Allen, T. J.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, and E. Z. Zhang, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

Arridge, S. R.

B. T. Cox, J. G. Laufer, P. C. Beard, and S. R. Arridge, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
[Crossref]

Asao, Y.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, and M. Kawashima, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref]

Beard, P. C.

B. T. Cox, J. G. Laufer, P. C. Beard, and S. R. Arridge, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
[Crossref]

Bosschaart, N.

N. Bosschaart, G. J. Edelman, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref]

Bozhko, D.

A. Karlas, N.-A. Fasoula, K. Paul-Yuan, J. Reber, M. Kallmayer, D. Bozhko, M. Seeger, H.-H. Eckstein, M. Wildgruber, and V. Ntziachristos, “Cardiovascular optoacoustics: From mice to men–A review,” J. Photoacoust. 14, 19–30 (2019).
[Crossref]

Colchester, R. J.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, and E. Z. Zhang, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

Cox, B. T.

B. T. Cox, J. G. Laufer, P. C. Beard, and S. R. Arridge, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
[Crossref]

da Silva, D. F.

C. P. Sabino, A. M. Deana, T. M. Yoshimura, D. F. da Silva, C. M. França, M. R. Hamblin, and M. S. Ribeiro, “The optical properties of mouse skin in the visible and near infrared spectral regions,” J. Photochem. Photobiol., B 160, 72–78 (2016).
[Crossref]

Deana, A. M.

C. P. Sabino, A. M. Deana, T. M. Yoshimura, D. F. da Silva, C. M. França, M. R. Hamblin, and M. S. Ribeiro, “The optical properties of mouse skin in the visible and near infrared spectral regions,” J. Photochem. Photobiol., B 160, 72–78 (2016).
[Crossref]

Deán-Ben, X. L.

S. Gottschalk, O. Degtyaruk, B. Mc Larney, J. Rebling, M. A. Hutter, X. L. Deán-Ben, S. Shoham, and D. Razansky, “Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain,” Nat. Biomed. Eng. 3(5), 392–401 (2019).
[Crossref]

Degtyaruk, O.

S. Gottschalk, O. Degtyaruk, B. Mc Larney, J. Rebling, M. A. Hutter, X. L. Deán-Ben, S. Shoham, and D. Razansky, “Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain,” Nat. Biomed. Eng. 3(5), 392–401 (2019).
[Crossref]

Desjardins, A. E.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, and E. Z. Zhang, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

Eckstein, H.-H.

A. Karlas, N.-A. Fasoula, K. Paul-Yuan, J. Reber, M. Kallmayer, D. Bozhko, M. Seeger, H.-H. Eckstein, M. Wildgruber, and V. Ntziachristos, “Cardiovascular optoacoustics: From mice to men–A review,” J. Photoacoust. 14, 19–30 (2019).
[Crossref]

Edelman, G. J.

N. Bosschaart, G. J. Edelman, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref]

Elagin, V.

A. Orlova, M. Sirotkina, E. Smolina, V. Elagin, A. Kovalchuk, I. Turchin, and P. Subochev, “Raster-scan optoacoustic angiography of blood vessel development in colon cancer models,” J. Photoacoust. 13, 25–32 (2019).
[Crossref]

Endo, T.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, and M. Kawashima, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref]

Estrada, H.

J. Rebling, H. Estrada, S. Gottschalk, G. Sela, M. Zwack, G. Wissmeyer, V. Ntziachristos, and D. Razansky, “Dual-wavelength hybrid optoacoustic-ultrasound biomicroscopy for functional imaging of large-scale cerebral vascular networks,” J. Biophotonics 11(9), e201800057 (2018).
[Crossref]

H. Estrada, J. Rebling, and D. Razansky, “Prediction and near-field observation of skull-guided acoustic waves,” Phys. Med. Biol. 62(12), 4728–4740 (2017).
[Crossref]

M. Kneipp, J. Turner, H. Estrada, J. Rebling, S. Shoham, and D. Razansky, “Effects of the murine skull in optoacoustic brain microscopy,” J. Biophotonics 9(1-2), 117–123 (2016).
[Crossref]

Faber, D. J.

N. Bosschaart, G. J. Edelman, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref]

Farrell, T. J.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref]

Fasoula, N.-A.

A. Karlas, N.-A. Fasoula, K. Paul-Yuan, J. Reber, M. Kallmayer, D. Bozhko, M. Seeger, H.-H. Eckstein, M. Wildgruber, and V. Ntziachristos, “Cardiovascular optoacoustics: From mice to men–A review,” J. Photoacoust. 14, 19–30 (2019).
[Crossref]

Feng, T.-C.

França, C. M.

C. P. Sabino, A. M. Deana, T. M. Yoshimura, D. F. da Silva, C. M. França, M. R. Hamblin, and M. S. Ribeiro, “The optical properties of mouse skin in the visible and near infrared spectral regions,” J. Photochem. Photobiol., B 160, 72–78 (2016).
[Crossref]

Frenz, M.

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Problems 23(6), S51–S63 (2007).
[Crossref]

Gertsch, A.

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Problems 23(6), S51–S63 (2007).
[Crossref]

Ghanavati, S.

S. Ghanavati, J. P. Lerch, and J. G. Sled, “Automatic anatomical labeling of the complete cerebral vasculature in mouse models,” NeuroImage 95, 117–128 (2014).
[Crossref]

Golubiatnikov, G. Y.

A. Orlova, A. Maslennikova, G. Y. Golubiatnikov, A. Suryakova, M. Y. Kirillin, D. Kurakina, T. Kalganova, A. Volovetsky, and I. Turchin, “Diffuse optical spectroscopy assessment of rodent tumor model oxygen state after single-dose irradiation,” Biomed. Phys. Eng. Express 5(3), 035010 (2019).
[Crossref]

Gottschalk, S.

S. Gottschalk, O. Degtyaruk, B. Mc Larney, J. Rebling, M. A. Hutter, X. L. Deán-Ben, S. Shoham, and D. Razansky, “Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain,” Nat. Biomed. Eng. 3(5), 392–401 (2019).
[Crossref]

J. Rebling, H. Estrada, S. Gottschalk, G. Sela, M. Zwack, G. Wissmeyer, V. Ntziachristos, and D. Razansky, “Dual-wavelength hybrid optoacoustic-ultrasound biomicroscopy for functional imaging of large-scale cerebral vascular networks,” J. Biophotonics 11(9), e201800057 (2018).
[Crossref]

Guggenheim, J. A.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, and E. Z. Zhang, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

Guo, B.

Z. Sheng, B. Guo, D. Hu, S. Xu, W. Wu, W. H. Liew, K. Yao, J. Jiang, C. Liu, and H. Zheng, “Bright Aggregation-Induced-Emission Dots for Targeted Synergetic NIR-II Fluorescence and NIR-I Photoacoustic Imaging of Orthotopic Brain Tumors,” Adv. Mater. 30(29), 1800766 (2018).
[Crossref]

Gurden, H.

H. Soleimanzad, H. Gurden, and F. Pain, “Optical properties of mice skull bone in the 455-to 705-nm range,” J. Biomed. Opt. 22(1), 010503 (2017).
[Crossref]

Hamblin, M. R.

C. P. Sabino, A. M. Deana, T. M. Yoshimura, D. F. da Silva, C. M. França, M. R. Hamblin, and M. S. Ribeiro, “The optical properties of mouse skin in the visible and near infrared spectral regions,” J. Photochem. Photobiol., B 160, 72–78 (2016).
[Crossref]

Haskell, R. C.

He, Y.

P. Zhang, L. Li, L. Lin, P. Hu, J. Shi, Y. He, L. Zhu, Y. Zhou, and L. V. Wang, “High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo,” J. Biophotonics 11(1), e201700024 (2018).
[Crossref]

Hill, C.

A. Sarvazyan and C. Hill, “Physical chemistry of the ultrasound-tissue interaction,” Physical Principles of Medical Ultrasonics 7, 223–235 (2004).
[Crossref]

Hu, D.

Z. Sheng, B. Guo, D. Hu, S. Xu, W. Wu, W. H. Liew, K. Yao, J. Jiang, C. Liu, and H. Zheng, “Bright Aggregation-Induced-Emission Dots for Targeted Synergetic NIR-II Fluorescence and NIR-I Photoacoustic Imaging of Orthotopic Brain Tumors,” Adv. Mater. 30(29), 1800766 (2018).
[Crossref]

Hu, P.

P. Zhang, L. Li, L. Lin, P. Hu, J. Shi, Y. He, L. Zhu, Y. Zhou, and L. V. Wang, “High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo,” J. Biophotonics 11(1), e201700024 (2018).
[Crossref]

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref]

Huang, C.-H.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref]

Hutter, M. A.

S. Gottschalk, O. Degtyaruk, B. Mc Larney, J. Rebling, M. A. Hutter, X. L. Deán-Ben, S. Shoham, and D. Razansky, “Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain,” Nat. Biomed. Eng. 3(5), 392–401 (2019).
[Crossref]

Institute, A. N. S.

A. N. S. Institute, American national standard for safe use of lasers (Laser Institute of America, 2007).

Jacques, S. L.

S. L. Jacques, “How tissue optics affect dosimetry of photodynamic therapy,” J. Biomed. Opt. 15(5), 051608 (2010).
[Crossref]

Jaeger, M.

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Problems 23(6), S51–S63 (2007).
[Crossref]

Jiang, J.

Z. Sheng, B. Guo, D. Hu, S. Xu, W. Wu, W. H. Liew, K. Yao, J. Jiang, C. Liu, and H. Zheng, “Bright Aggregation-Induced-Emission Dots for Targeted Synergetic NIR-II Fluorescence and NIR-I Photoacoustic Imaging of Orthotopic Brain Tumors,” Adv. Mater. 30(29), 1800766 (2018).
[Crossref]

Kalganova, T.

A. Orlova, A. Maslennikova, G. Y. Golubiatnikov, A. Suryakova, M. Y. Kirillin, D. Kurakina, T. Kalganova, A. Volovetsky, and I. Turchin, “Diffuse optical spectroscopy assessment of rodent tumor model oxygen state after single-dose irradiation,” Biomed. Phys. Eng. Express 5(3), 035010 (2019).
[Crossref]

Kallmayer, M.

A. Karlas, N.-A. Fasoula, K. Paul-Yuan, J. Reber, M. Kallmayer, D. Bozhko, M. Seeger, H.-H. Eckstein, M. Wildgruber, and V. Ntziachristos, “Cardiovascular optoacoustics: From mice to men–A review,” J. Photoacoust. 14, 19–30 (2019).
[Crossref]

Karlas, A.

A. Karlas, N.-A. Fasoula, K. Paul-Yuan, J. Reber, M. Kallmayer, D. Bozhko, M. Seeger, H.-H. Eckstein, M. Wildgruber, and V. Ntziachristos, “Cardiovascular optoacoustics: From mice to men–A review,” J. Photoacoust. 14, 19–30 (2019).
[Crossref]

Kataoka, M.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, and M. Kawashima, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref]

Kawaguchi-Sakita, N.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, and M. Kawashima, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref]

Kawashima, M.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, and M. Kawashima, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref]

Kirillin, M. Y.

A. Orlova, A. Maslennikova, G. Y. Golubiatnikov, A. Suryakova, M. Y. Kirillin, D. Kurakina, T. Kalganova, A. Volovetsky, and I. Turchin, “Diffuse optical spectroscopy assessment of rodent tumor model oxygen state after single-dose irradiation,” Biomed. Phys. Eng. Express 5(3), 035010 (2019).
[Crossref]

Kirillov, A.

P. Subochev, A. Orlova, E. Smolina, A. Kirillov, N. Shakhova, and I. Turchin, “Raster-scan optoacoustic angiography reveals 3D microcirculatory changes during cuffed occlusion,” Laser Phys. Lett. 15(4), 045602 (2018).
[Crossref]

Kitz, M.

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Problems 23(6), S51–S63 (2007).
[Crossref]

Kneipp, M.

M. Kneipp, J. Turner, H. Estrada, J. Rebling, S. Shoham, and D. Razansky, “Effects of the murine skull in optoacoustic brain microscopy,” J. Biophotonics 9(1-2), 117–123 (2016).
[Crossref]

Kotomina, V.

P. V. Subochev, M. Prudnikov, V. Vorobyev, A. S. Postnikova, E. Sergeev, V. V. Perekatova, A. G. Orlova, V. Kotomina, and I. V. Turchin, “Wideband linear detector arrays for optoacoustic imaging based on polyvinylidene difluoride films,” J. Biomed. Opt. 23(09), 1 (2018).
[Crossref]

Kovalchuk, A.

A. Orlova, M. Sirotkina, E. Smolina, V. Elagin, A. Kovalchuk, I. Turchin, and P. Subochev, “Raster-scan optoacoustic angiography of blood vessel development in colon cancer models,” J. Photoacoust. 13, 25–32 (2019).
[Crossref]

Ku, G.

Kurakina, D.

A. Orlova, A. Maslennikova, G. Y. Golubiatnikov, A. Suryakova, M. Y. Kirillin, D. Kurakina, T. Kalganova, A. Volovetsky, and I. Turchin, “Diffuse optical spectroscopy assessment of rodent tumor model oxygen state after single-dose irradiation,” Biomed. Phys. Eng. Express 5(3), 035010 (2019).
[Crossref]

Laufer, J. G.

T. Oruganti, J. G. Laufer, and B. E. Treeby, “Vessel filtering of photoacoustic images,” Proc. SPIE 8581, 85811W (2013).
[Crossref]

B. T. Cox, J. G. Laufer, P. C. Beard, and S. R. Arridge, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
[Crossref]

Lerch, J. P.

S. Ghanavati, J. P. Lerch, and J. G. Sled, “Automatic anatomical labeling of the complete cerebral vasculature in mouse models,” NeuroImage 95, 117–128 (2014).
[Crossref]

Li, J.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, and E. Z. Zhang, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

Li, L.

P. Zhang, L. Li, L. Lin, P. Hu, J. Shi, Y. He, L. Zhu, Y. Zhou, and L. V. Wang, “High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo,” J. Biophotonics 11(1), e201700024 (2018).
[Crossref]

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref]

Liew, W. H.

Z. Sheng, B. Guo, D. Hu, S. Xu, W. Wu, W. H. Liew, K. Yao, J. Jiang, C. Liu, and H. Zheng, “Bright Aggregation-Induced-Emission Dots for Targeted Synergetic NIR-II Fluorescence and NIR-I Photoacoustic Imaging of Orthotopic Brain Tumors,” Adv. Mater. 30(29), 1800766 (2018).
[Crossref]

Lin, L.

P. Zhang, L. Li, L. Lin, P. Hu, J. Shi, Y. He, L. Zhu, Y. Zhou, and L. V. Wang, “High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo,” J. Biophotonics 11(1), e201700024 (2018).
[Crossref]

Liu, C.

Z. Sheng, B. Guo, D. Hu, S. Xu, W. Wu, W. H. Liew, K. Yao, J. Jiang, C. Liu, and H. Zheng, “Bright Aggregation-Induced-Emission Dots for Targeted Synergetic NIR-II Fluorescence and NIR-I Photoacoustic Imaging of Orthotopic Brain Tumors,” Adv. Mater. 30(29), 1800766 (2018).
[Crossref]

Maslennikova, A.

A. Orlova, A. Maslennikova, G. Y. Golubiatnikov, A. Suryakova, M. Y. Kirillin, D. Kurakina, T. Kalganova, A. Volovetsky, and I. Turchin, “Diffuse optical spectroscopy assessment of rodent tumor model oxygen state after single-dose irradiation,” Biomed. Phys. Eng. Express 5(3), 035010 (2019).
[Crossref]

Maslov, K. I.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref]

Matsumoto, Y.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, and M. Kawashima, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref]

Mc Larney, B.

S. Gottschalk, O. Degtyaruk, B. Mc Larney, J. Rebling, M. A. Hutter, X. L. Deán-Ben, S. Shoham, and D. Razansky, “Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain,” Nat. Biomed. Eng. 3(5), 392–401 (2019).
[Crossref]

McAdams, M. S.

Mikhailova, I.

Noimark, S.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, and E. Z. Zhang, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

Ntziachristos, V.

A. Karlas, N.-A. Fasoula, K. Paul-Yuan, J. Reber, M. Kallmayer, D. Bozhko, M. Seeger, H.-H. Eckstein, M. Wildgruber, and V. Ntziachristos, “Cardiovascular optoacoustics: From mice to men–A review,” J. Photoacoust. 14, 19–30 (2019).
[Crossref]

J. Rebling, H. Estrada, S. Gottschalk, G. Sela, M. Zwack, G. Wissmeyer, V. Ntziachristos, and D. Razansky, “Dual-wavelength hybrid optoacoustic-ultrasound biomicroscopy for functional imaging of large-scale cerebral vascular networks,” J. Biophotonics 11(9), e201800057 (2018).
[Crossref]

S. V. Ovsepian, I. Olefir, G. Westmeyer, D. Razansky, and V. Ntziachristos, “Pushing the boundaries of neuroimaging with optoacoustics,” Neuron 96(5), 966–988 (2017).
[Crossref]

Ogunlade, O.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, and E. Z. Zhang, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

Olefir, I.

S. V. Ovsepian, I. Olefir, G. Westmeyer, D. Razansky, and V. Ntziachristos, “Pushing the boundaries of neuroimaging with optoacoustics,” Neuron 96(5), 966–988 (2017).
[Crossref]

Orlova, A.

A. Orlova, M. Sirotkina, E. Smolina, V. Elagin, A. Kovalchuk, I. Turchin, and P. Subochev, “Raster-scan optoacoustic angiography of blood vessel development in colon cancer models,” J. Photoacoust. 13, 25–32 (2019).
[Crossref]

A. Orlova, A. Maslennikova, G. Y. Golubiatnikov, A. Suryakova, M. Y. Kirillin, D. Kurakina, T. Kalganova, A. Volovetsky, and I. Turchin, “Diffuse optical spectroscopy assessment of rodent tumor model oxygen state after single-dose irradiation,” Biomed. Phys. Eng. Express 5(3), 035010 (2019).
[Crossref]

P. Subochev, A. Orlova, E. Smolina, A. Kirillov, N. Shakhova, and I. Turchin, “Raster-scan optoacoustic angiography reveals 3D microcirculatory changes during cuffed occlusion,” Laser Phys. Lett. 15(4), 045602 (2018).
[Crossref]

P. Subochev, A. Orlova, I. Mikhailova, N. Shilyagina, and I. Turchin, “Simultaneous in vivo imaging of diffuse optical reflectance, optoacoustic pressure, and ultrasonic scattering,” Biomed. Opt. Express 7(10), 3951–3957 (2016).
[Crossref]

Orlova, A. G.

P. V. Subochev, M. Prudnikov, V. Vorobyev, A. S. Postnikova, E. Sergeev, V. V. Perekatova, A. G. Orlova, V. Kotomina, and I. V. Turchin, “Wideband linear detector arrays for optoacoustic imaging based on polyvinylidene difluoride films,” J. Biomed. Opt. 23(09), 1 (2018).
[Crossref]

Oruganti, T.

T. Oruganti, J. G. Laufer, and B. E. Treeby, “Vessel filtering of photoacoustic images,” Proc. SPIE 8581, 85811W (2013).
[Crossref]

Ovsepian, S. V.

S. V. Ovsepian, I. Olefir, G. Westmeyer, D. Razansky, and V. Ntziachristos, “Pushing the boundaries of neuroimaging with optoacoustics,” Neuron 96(5), 966–988 (2017).
[Crossref]

Pain, F.

H. Soleimanzad, H. Gurden, and F. Pain, “Optical properties of mice skull bone in the 455-to 705-nm range,” J. Biomed. Opt. 22(1), 010503 (2017).
[Crossref]

Pang, Y.

Papakonstantinou, I.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, and E. Z. Zhang, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

Parkin, I. P.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, and E. Z. Zhang, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

Patterson, M. S.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref]

Paul-Yuan, K.

A. Karlas, N.-A. Fasoula, K. Paul-Yuan, J. Reber, M. Kallmayer, D. Bozhko, M. Seeger, H.-H. Eckstein, M. Wildgruber, and V. Ntziachristos, “Cardiovascular optoacoustics: From mice to men–A review,” J. Photoacoust. 14, 19–30 (2019).
[Crossref]

Perekatova, V. V.

P. V. Subochev, M. Prudnikov, V. Vorobyev, A. S. Postnikova, E. Sergeev, V. V. Perekatova, A. G. Orlova, V. Kotomina, and I. V. Turchin, “Wideband linear detector arrays for optoacoustic imaging based on polyvinylidene difluoride films,” J. Biomed. Opt. 23(09), 1 (2018).
[Crossref]

Postnikova, A. S.

P. V. Subochev, M. Prudnikov, V. Vorobyev, A. S. Postnikova, E. Sergeev, V. V. Perekatova, A. G. Orlova, V. Kotomina, and I. V. Turchin, “Wideband linear detector arrays for optoacoustic imaging based on polyvinylidene difluoride films,” J. Biomed. Opt. 23(09), 1 (2018).
[Crossref]

Pramanik, M.

P. K. Upputuri and M. Pramanik, “Photoacoustic imaging in the second near-infrared window: a review,” J. Biomed. Opt. 24(04), 1 (2019).
[Crossref]

Prudnikov, M.

P. V. Subochev, M. Prudnikov, V. Vorobyev, A. S. Postnikova, E. Sergeev, V. V. Perekatova, A. G. Orlova, V. Kotomina, and I. V. Turchin, “Wideband linear detector arrays for optoacoustic imaging based on polyvinylidene difluoride films,” J. Biomed. Opt. 23(09), 1 (2018).
[Crossref]

Razansky, D.

S. Gottschalk, O. Degtyaruk, B. Mc Larney, J. Rebling, M. A. Hutter, X. L. Deán-Ben, S. Shoham, and D. Razansky, “Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain,” Nat. Biomed. Eng. 3(5), 392–401 (2019).
[Crossref]

J. Rebling, H. Estrada, S. Gottschalk, G. Sela, M. Zwack, G. Wissmeyer, V. Ntziachristos, and D. Razansky, “Dual-wavelength hybrid optoacoustic-ultrasound biomicroscopy for functional imaging of large-scale cerebral vascular networks,” J. Biophotonics 11(9), e201800057 (2018).
[Crossref]

S. V. Ovsepian, I. Olefir, G. Westmeyer, D. Razansky, and V. Ntziachristos, “Pushing the boundaries of neuroimaging with optoacoustics,” Neuron 96(5), 966–988 (2017).
[Crossref]

H. Estrada, J. Rebling, and D. Razansky, “Prediction and near-field observation of skull-guided acoustic waves,” Phys. Med. Biol. 62(12), 4728–4740 (2017).
[Crossref]

M. Kneipp, J. Turner, H. Estrada, J. Rebling, S. Shoham, and D. Razansky, “Effects of the murine skull in optoacoustic brain microscopy,” J. Biophotonics 9(1-2), 117–123 (2016).
[Crossref]

Reber, J.

A. Karlas, N.-A. Fasoula, K. Paul-Yuan, J. Reber, M. Kallmayer, D. Bozhko, M. Seeger, H.-H. Eckstein, M. Wildgruber, and V. Ntziachristos, “Cardiovascular optoacoustics: From mice to men–A review,” J. Photoacoust. 14, 19–30 (2019).
[Crossref]

Rebling, J.

S. Gottschalk, O. Degtyaruk, B. Mc Larney, J. Rebling, M. A. Hutter, X. L. Deán-Ben, S. Shoham, and D. Razansky, “Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain,” Nat. Biomed. Eng. 3(5), 392–401 (2019).
[Crossref]

J. Rebling, H. Estrada, S. Gottschalk, G. Sela, M. Zwack, G. Wissmeyer, V. Ntziachristos, and D. Razansky, “Dual-wavelength hybrid optoacoustic-ultrasound biomicroscopy for functional imaging of large-scale cerebral vascular networks,” J. Biophotonics 11(9), e201800057 (2018).
[Crossref]

H. Estrada, J. Rebling, and D. Razansky, “Prediction and near-field observation of skull-guided acoustic waves,” Phys. Med. Biol. 62(12), 4728–4740 (2017).
[Crossref]

M. Kneipp, J. Turner, H. Estrada, J. Rebling, S. Shoham, and D. Razansky, “Effects of the murine skull in optoacoustic brain microscopy,” J. Biophotonics 9(1-2), 117–123 (2016).
[Crossref]

Ribeiro, M. S.

C. P. Sabino, A. M. Deana, T. M. Yoshimura, D. F. da Silva, C. M. França, M. R. Hamblin, and M. S. Ribeiro, “The optical properties of mouse skin in the visible and near infrared spectral regions,” J. Photochem. Photobiol., B 160, 72–78 (2016).
[Crossref]

Sabino, C. P.

C. P. Sabino, A. M. Deana, T. M. Yoshimura, D. F. da Silva, C. M. França, M. R. Hamblin, and M. S. Ribeiro, “The optical properties of mouse skin in the visible and near infrared spectral regions,” J. Photochem. Photobiol., B 160, 72–78 (2016).
[Crossref]

Sarvazyan, A.

A. Sarvazyan and C. Hill, “Physical chemistry of the ultrasound-tissue interaction,” Physical Principles of Medical Ultrasonics 7, 223–235 (2004).
[Crossref]

Schüpbach, S.

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Problems 23(6), S51–S63 (2007).
[Crossref]

Seeger, M.

A. Karlas, N.-A. Fasoula, K. Paul-Yuan, J. Reber, M. Kallmayer, D. Bozhko, M. Seeger, H.-H. Eckstein, M. Wildgruber, and V. Ntziachristos, “Cardiovascular optoacoustics: From mice to men–A review,” J. Photoacoust. 14, 19–30 (2019).
[Crossref]

Sekiguchi, H.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, and M. Kawashima, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref]

Sela, G.

J. Rebling, H. Estrada, S. Gottschalk, G. Sela, M. Zwack, G. Wissmeyer, V. Ntziachristos, and D. Razansky, “Dual-wavelength hybrid optoacoustic-ultrasound biomicroscopy for functional imaging of large-scale cerebral vascular networks,” J. Biophotonics 11(9), e201800057 (2018).
[Crossref]

Sergeev, E.

P. V. Subochev, M. Prudnikov, V. Vorobyev, A. S. Postnikova, E. Sergeev, V. V. Perekatova, A. G. Orlova, V. Kotomina, and I. V. Turchin, “Wideband linear detector arrays for optoacoustic imaging based on polyvinylidene difluoride films,” J. Biomed. Opt. 23(09), 1 (2018).
[Crossref]

Shakhova, N.

P. Subochev, A. Orlova, E. Smolina, A. Kirillov, N. Shakhova, and I. Turchin, “Raster-scan optoacoustic angiography reveals 3D microcirculatory changes during cuffed occlusion,” Laser Phys. Lett. 15(4), 045602 (2018).
[Crossref]

Sheng, Z.

Z. Sheng, B. Guo, D. Hu, S. Xu, W. Wu, W. H. Liew, K. Yao, J. Jiang, C. Liu, and H. Zheng, “Bright Aggregation-Induced-Emission Dots for Targeted Synergetic NIR-II Fluorescence and NIR-I Photoacoustic Imaging of Orthotopic Brain Tumors,” Adv. Mater. 30(29), 1800766 (2018).
[Crossref]

Shi, J.

P. Zhang, L. Li, L. Lin, P. Hu, J. Shi, Y. He, L. Zhu, Y. Zhou, and L. V. Wang, “High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo,” J. Biophotonics 11(1), e201700024 (2018).
[Crossref]

Shilyagina, N.

Shoham, S.

S. Gottschalk, O. Degtyaruk, B. Mc Larney, J. Rebling, M. A. Hutter, X. L. Deán-Ben, S. Shoham, and D. Razansky, “Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain,” Nat. Biomed. Eng. 3(5), 392–401 (2019).
[Crossref]

M. Kneipp, J. Turner, H. Estrada, J. Rebling, S. Shoham, and D. Razansky, “Effects of the murine skull in optoacoustic brain microscopy,” J. Biophotonics 9(1-2), 117–123 (2016).
[Crossref]

Sirotkina, M.

A. Orlova, M. Sirotkina, E. Smolina, V. Elagin, A. Kovalchuk, I. Turchin, and P. Subochev, “Raster-scan optoacoustic angiography of blood vessel development in colon cancer models,” J. Photoacoust. 13, 25–32 (2019).
[Crossref]

Sled, J. G.

S. Ghanavati, J. P. Lerch, and J. G. Sled, “Automatic anatomical labeling of the complete cerebral vasculature in mouse models,” NeuroImage 95, 117–128 (2014).
[Crossref]

Smolina, E.

A. Orlova, M. Sirotkina, E. Smolina, V. Elagin, A. Kovalchuk, I. Turchin, and P. Subochev, “Raster-scan optoacoustic angiography of blood vessel development in colon cancer models,” J. Photoacoust. 13, 25–32 (2019).
[Crossref]

P. Subochev, A. Orlova, E. Smolina, A. Kirillov, N. Shakhova, and I. Turchin, “Raster-scan optoacoustic angiography reveals 3D microcirculatory changes during cuffed occlusion,” Laser Phys. Lett. 15(4), 045602 (2018).
[Crossref]

Soleimanzad, H.

H. Soleimanzad, H. Gurden, and F. Pain, “Optical properties of mice skull bone in the 455-to 705-nm range,” J. Biomed. Opt. 22(1), 010503 (2017).
[Crossref]

Stoica, G.

Subochev, P.

A. Orlova, M. Sirotkina, E. Smolina, V. Elagin, A. Kovalchuk, I. Turchin, and P. Subochev, “Raster-scan optoacoustic angiography of blood vessel development in colon cancer models,” J. Photoacoust. 13, 25–32 (2019).
[Crossref]

P. Subochev, A. Orlova, E. Smolina, A. Kirillov, N. Shakhova, and I. Turchin, “Raster-scan optoacoustic angiography reveals 3D microcirculatory changes during cuffed occlusion,” Laser Phys. Lett. 15(4), 045602 (2018).
[Crossref]

P. Subochev, A. Orlova, I. Mikhailova, N. Shilyagina, and I. Turchin, “Simultaneous in vivo imaging of diffuse optical reflectance, optoacoustic pressure, and ultrasonic scattering,” Biomed. Opt. Express 7(10), 3951–3957 (2016).
[Crossref]

Subochev, P. V.

P. V. Subochev, M. Prudnikov, V. Vorobyev, A. S. Postnikova, E. Sergeev, V. V. Perekatova, A. G. Orlova, V. Kotomina, and I. V. Turchin, “Wideband linear detector arrays for optoacoustic imaging based on polyvinylidene difluoride films,” J. Biomed. Opt. 23(09), 1 (2018).
[Crossref]

Suryakova, A.

A. Orlova, A. Maslennikova, G. Y. Golubiatnikov, A. Suryakova, M. Y. Kirillin, D. Kurakina, T. Kalganova, A. Volovetsky, and I. Turchin, “Diffuse optical spectroscopy assessment of rodent tumor model oxygen state after single-dose irradiation,” Biomed. Phys. Eng. Express 5(3), 035010 (2019).
[Crossref]

Svaasand, L. O.

Takada, M.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, and M. Kawashima, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref]

Toi, M.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, and M. Kawashima, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref]

Treeby, B. E.

T. Oruganti, J. G. Laufer, and B. E. Treeby, “Vessel filtering of photoacoustic images,” Proc. SPIE 8581, 85811W (2013).
[Crossref]

Tromberg, B. J.

Tsay, T.-T.

Turchin, I.

A. Orlova, A. Maslennikova, G. Y. Golubiatnikov, A. Suryakova, M. Y. Kirillin, D. Kurakina, T. Kalganova, A. Volovetsky, and I. Turchin, “Diffuse optical spectroscopy assessment of rodent tumor model oxygen state after single-dose irradiation,” Biomed. Phys. Eng. Express 5(3), 035010 (2019).
[Crossref]

A. Orlova, M. Sirotkina, E. Smolina, V. Elagin, A. Kovalchuk, I. Turchin, and P. Subochev, “Raster-scan optoacoustic angiography of blood vessel development in colon cancer models,” J. Photoacoust. 13, 25–32 (2019).
[Crossref]

P. Subochev, A. Orlova, E. Smolina, A. Kirillov, N. Shakhova, and I. Turchin, “Raster-scan optoacoustic angiography reveals 3D microcirculatory changes during cuffed occlusion,” Laser Phys. Lett. 15(4), 045602 (2018).
[Crossref]

P. Subochev, A. Orlova, I. Mikhailova, N. Shilyagina, and I. Turchin, “Simultaneous in vivo imaging of diffuse optical reflectance, optoacoustic pressure, and ultrasonic scattering,” Biomed. Opt. Express 7(10), 3951–3957 (2016).
[Crossref]

Turchin, I. V.

P. V. Subochev, M. Prudnikov, V. Vorobyev, A. S. Postnikova, E. Sergeev, V. V. Perekatova, A. G. Orlova, V. Kotomina, and I. V. Turchin, “Wideband linear detector arrays for optoacoustic imaging based on polyvinylidene difluoride films,” J. Biomed. Opt. 23(09), 1 (2018).
[Crossref]

Turner, J.

M. Kneipp, J. Turner, H. Estrada, J. Rebling, S. Shoham, and D. Razansky, “Effects of the murine skull in optoacoustic brain microscopy,” J. Biophotonics 9(1-2), 117–123 (2016).
[Crossref]

Upputuri, P. K.

P. K. Upputuri and M. Pramanik, “Photoacoustic imaging in the second near-infrared window: a review,” J. Biomed. Opt. 24(04), 1 (2019).
[Crossref]

Van der Zee, P.

P. Van der Zee, “Measurement and modelling of the optical properties of human tissue in the near infrared,” (1992).

van Leeuwen, T. G.

N. Bosschaart, G. J. Edelman, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref]

Volovetsky, A.

A. Orlova, A. Maslennikova, G. Y. Golubiatnikov, A. Suryakova, M. Y. Kirillin, D. Kurakina, T. Kalganova, A. Volovetsky, and I. Turchin, “Diffuse optical spectroscopy assessment of rodent tumor model oxygen state after single-dose irradiation,” Biomed. Phys. Eng. Express 5(3), 035010 (2019).
[Crossref]

Vorobyev, V.

P. V. Subochev, M. Prudnikov, V. Vorobyev, A. S. Postnikova, E. Sergeev, V. V. Perekatova, A. G. Orlova, V. Kotomina, and I. V. Turchin, “Wideband linear detector arrays for optoacoustic imaging based on polyvinylidene difluoride films,” J. Biomed. Opt. 23(09), 1 (2018).
[Crossref]

Wang, L.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref]

Wang, L. V.

P. Zhang, L. Li, L. Lin, P. Hu, J. Shi, Y. He, L. Zhu, Y. Zhou, and L. V. Wang, “High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo,” J. Biophotonics 11(1), e201700024 (2018).
[Crossref]

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref]

X. Wang, Y. Pang, G. Ku, G. Stoica, and L. V. Wang, “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Opt. Lett. 28(19), 1739–1741 (2003).
[Crossref]

Wang, X.

Westmeyer, G.

S. V. Ovsepian, I. Olefir, G. Westmeyer, D. Razansky, and V. Ntziachristos, “Pushing the boundaries of neuroimaging with optoacoustics,” Neuron 96(5), 966–988 (2017).
[Crossref]

Wildgruber, M.

A. Karlas, N.-A. Fasoula, K. Paul-Yuan, J. Reber, M. Kallmayer, D. Bozhko, M. Seeger, H.-H. Eckstein, M. Wildgruber, and V. Ntziachristos, “Cardiovascular optoacoustics: From mice to men–A review,” J. Photoacoust. 14, 19–30 (2019).
[Crossref]

Wilson, B.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref]

Wissmeyer, G.

J. Rebling, H. Estrada, S. Gottschalk, G. Sela, M. Zwack, G. Wissmeyer, V. Ntziachristos, and D. Razansky, “Dual-wavelength hybrid optoacoustic-ultrasound biomicroscopy for functional imaging of large-scale cerebral vascular networks,” J. Biophotonics 11(9), e201800057 (2018).
[Crossref]

Wong, T. T.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref]

Wu, W.

Z. Sheng, B. Guo, D. Hu, S. Xu, W. Wu, W. H. Liew, K. Yao, J. Jiang, C. Liu, and H. Zheng, “Bright Aggregation-Induced-Emission Dots for Targeted Synergetic NIR-II Fluorescence and NIR-I Photoacoustic Imaging of Orthotopic Brain Tumors,” Adv. Mater. 30(29), 1800766 (2018).
[Crossref]

Xu, S.

Z. Sheng, B. Guo, D. Hu, S. Xu, W. Wu, W. H. Liew, K. Yao, J. Jiang, C. Liu, and H. Zheng, “Bright Aggregation-Induced-Emission Dots for Targeted Synergetic NIR-II Fluorescence and NIR-I Photoacoustic Imaging of Orthotopic Brain Tumors,” Adv. Mater. 30(29), 1800766 (2018).
[Crossref]

Yang, J.-M.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref]

Yao, J.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref]

Yao, K.

Z. Sheng, B. Guo, D. Hu, S. Xu, W. Wu, W. H. Liew, K. Yao, J. Jiang, C. Liu, and H. Zheng, “Bright Aggregation-Induced-Emission Dots for Targeted Synergetic NIR-II Fluorescence and NIR-I Photoacoustic Imaging of Orthotopic Brain Tumors,” Adv. Mater. 30(29), 1800766 (2018).
[Crossref]

Yoshikawa, A.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, and M. Kawashima, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref]

Yoshimura, T. M.

C. P. Sabino, A. M. Deana, T. M. Yoshimura, D. F. da Silva, C. M. França, M. R. Hamblin, and M. S. Ribeiro, “The optical properties of mouse skin in the visible and near infrared spectral regions,” J. Photochem. Photobiol., B 160, 72–78 (2016).
[Crossref]

Zhang, E. Z.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, and E. Z. Zhang, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

Zhang, P.

P. Zhang, L. Li, L. Lin, P. Hu, J. Shi, Y. He, L. Zhu, Y. Zhou, and L. V. Wang, “High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo,” J. Biophotonics 11(1), e201700024 (2018).
[Crossref]

Zheng, H.

Z. Sheng, B. Guo, D. Hu, S. Xu, W. Wu, W. H. Liew, K. Yao, J. Jiang, C. Liu, and H. Zheng, “Bright Aggregation-Induced-Emission Dots for Targeted Synergetic NIR-II Fluorescence and NIR-I Photoacoustic Imaging of Orthotopic Brain Tumors,” Adv. Mater. 30(29), 1800766 (2018).
[Crossref]

Zhou, Y.

P. Zhang, L. Li, L. Lin, P. Hu, J. Shi, Y. He, L. Zhu, Y. Zhou, and L. V. Wang, “High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo,” J. Biophotonics 11(1), e201700024 (2018).
[Crossref]

Zhu, L.

P. Zhang, L. Li, L. Lin, P. Hu, J. Shi, Y. He, L. Zhu, Y. Zhou, and L. V. Wang, “High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo,” J. Biophotonics 11(1), e201700024 (2018).
[Crossref]

Zou, J.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref]

Zwack, M.

J. Rebling, H. Estrada, S. Gottschalk, G. Sela, M. Zwack, G. Wissmeyer, V. Ntziachristos, and D. Razansky, “Dual-wavelength hybrid optoacoustic-ultrasound biomicroscopy for functional imaging of large-scale cerebral vascular networks,” J. Biophotonics 11(9), e201800057 (2018).
[Crossref]

Adv. Mater. (1)

Z. Sheng, B. Guo, D. Hu, S. Xu, W. Wu, W. H. Liew, K. Yao, J. Jiang, C. Liu, and H. Zheng, “Bright Aggregation-Induced-Emission Dots for Targeted Synergetic NIR-II Fluorescence and NIR-I Photoacoustic Imaging of Orthotopic Brain Tumors,” Adv. Mater. 30(29), 1800766 (2018).
[Crossref]

Biomed. Opt. Express (1)

Biomed. Phys. Eng. Express (1)

A. Orlova, A. Maslennikova, G. Y. Golubiatnikov, A. Suryakova, M. Y. Kirillin, D. Kurakina, T. Kalganova, A. Volovetsky, and I. Turchin, “Diffuse optical spectroscopy assessment of rodent tumor model oxygen state after single-dose irradiation,” Biomed. Phys. Eng. Express 5(3), 035010 (2019).
[Crossref]

Inverse Problems (1)

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Problems 23(6), S51–S63 (2007).
[Crossref]

J. Biomed. Opt. (5)

S. L. Jacques, “How tissue optics affect dosimetry of photodynamic therapy,” J. Biomed. Opt. 15(5), 051608 (2010).
[Crossref]

P. V. Subochev, M. Prudnikov, V. Vorobyev, A. S. Postnikova, E. Sergeev, V. V. Perekatova, A. G. Orlova, V. Kotomina, and I. V. Turchin, “Wideband linear detector arrays for optoacoustic imaging based on polyvinylidene difluoride films,” J. Biomed. Opt. 23(09), 1 (2018).
[Crossref]

P. K. Upputuri and M. Pramanik, “Photoacoustic imaging in the second near-infrared window: a review,” J. Biomed. Opt. 24(04), 1 (2019).
[Crossref]

H. Soleimanzad, H. Gurden, and F. Pain, “Optical properties of mice skull bone in the 455-to 705-nm range,” J. Biomed. Opt. 22(1), 010503 (2017).
[Crossref]

B. T. Cox, J. G. Laufer, P. C. Beard, and S. R. Arridge, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
[Crossref]

J. Biophotonics (3)

J. Rebling, H. Estrada, S. Gottschalk, G. Sela, M. Zwack, G. Wissmeyer, V. Ntziachristos, and D. Razansky, “Dual-wavelength hybrid optoacoustic-ultrasound biomicroscopy for functional imaging of large-scale cerebral vascular networks,” J. Biophotonics 11(9), e201800057 (2018).
[Crossref]

P. Zhang, L. Li, L. Lin, P. Hu, J. Shi, Y. He, L. Zhu, Y. Zhou, and L. V. Wang, “High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo,” J. Biophotonics 11(1), e201700024 (2018).
[Crossref]

M. Kneipp, J. Turner, H. Estrada, J. Rebling, S. Shoham, and D. Razansky, “Effects of the murine skull in optoacoustic brain microscopy,” J. Biophotonics 9(1-2), 117–123 (2016).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Photoacoust. (2)

A. Orlova, M. Sirotkina, E. Smolina, V. Elagin, A. Kovalchuk, I. Turchin, and P. Subochev, “Raster-scan optoacoustic angiography of blood vessel development in colon cancer models,” J. Photoacoust. 13, 25–32 (2019).
[Crossref]

A. Karlas, N.-A. Fasoula, K. Paul-Yuan, J. Reber, M. Kallmayer, D. Bozhko, M. Seeger, H.-H. Eckstein, M. Wildgruber, and V. Ntziachristos, “Cardiovascular optoacoustics: From mice to men–A review,” J. Photoacoust. 14, 19–30 (2019).
[Crossref]

J. Photochem. Photobiol., B (1)

C. P. Sabino, A. M. Deana, T. M. Yoshimura, D. F. da Silva, C. M. França, M. R. Hamblin, and M. S. Ribeiro, “The optical properties of mouse skin in the visible and near infrared spectral regions,” J. Photochem. Photobiol., B 160, 72–78 (2016).
[Crossref]

Laser Phys. Lett. (1)

P. Subochev, A. Orlova, E. Smolina, A. Kirillov, N. Shakhova, and I. Turchin, “Raster-scan optoacoustic angiography reveals 3D microcirculatory changes during cuffed occlusion,” Laser Phys. Lett. 15(4), 045602 (2018).
[Crossref]

Lasers Med. Sci. (1)

N. Bosschaart, G. J. Edelman, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).
[Crossref]

Med. Phys. (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref]

Nat. Biomed. Eng. (1)

S. Gottschalk, O. Degtyaruk, B. Mc Larney, J. Rebling, M. A. Hutter, X. L. Deán-Ben, S. Shoham, and D. Razansky, “Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain,” Nat. Biomed. Eng. 3(5), 392–401 (2019).
[Crossref]

Nat. Methods (1)

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref]

Nat. Photonics (1)

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, and E. Z. Zhang, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

NeuroImage (1)

S. Ghanavati, J. P. Lerch, and J. G. Sled, “Automatic anatomical labeling of the complete cerebral vasculature in mouse models,” NeuroImage 95, 117–128 (2014).
[Crossref]

Neuron (1)

S. V. Ovsepian, I. Olefir, G. Westmeyer, D. Razansky, and V. Ntziachristos, “Pushing the boundaries of neuroimaging with optoacoustics,” Neuron 96(5), 966–988 (2017).
[Crossref]

Opt. Lett. (1)

Phys. Med. Biol. (1)

H. Estrada, J. Rebling, and D. Razansky, “Prediction and near-field observation of skull-guided acoustic waves,” Phys. Med. Biol. 62(12), 4728–4740 (2017).
[Crossref]

Physical Principles of Medical Ultrasonics (1)

A. Sarvazyan and C. Hill, “Physical chemistry of the ultrasound-tissue interaction,” Physical Principles of Medical Ultrasonics 7, 223–235 (2004).
[Crossref]

Proc. SPIE (1)

T. Oruganti, J. G. Laufer, and B. E. Treeby, “Vessel filtering of photoacoustic images,” Proc. SPIE 8581, 85811W (2013).
[Crossref]

Sci. Rep. (1)

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, and M. Kawashima, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref]

Other (2)

A. N. S. Institute, American national standard for safe use of lasers (Laser Institute of America, 2007).

P. Van der Zee, “Measurement and modelling of the optical properties of human tissue in the near infrared,” (1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Spectra of optical absorption (solid lines) and transport (dotted lines) coefficients of the mouse brain tissues ex vivo: (a) - whole blood with 95% oxygen saturation (red lines) and whole blood with 70% oxygen saturation (blue lines) [14]; (b) – dissected brain soft tissue.
Fig. 2.
Fig. 2. Multi-layered model of the mouse head with a typical distribution of the absorbed optical energy density ${p_0}(z )$. Layers thicknesses are indicated as $\eta$ (scalp), ${\xi}$ (skull), D (upper brain soft tissue layer), d (vessel).
Fig. 3.
Fig. 3. Schematics of the raster-scan experimental setup employed for in vivo OA angiography.
Fig. 4.
Fig. 4. Optimization of optical wavelengths for cerebrovascular OA imaging: (a) Parametric map of optimal spectral regions for different d and D. The generated OA pressure distribution along the depth axis is depicted in (b), (c) and (d) for [D, d] = [0.6, 0.1], [1.4, 0.3] and [5, 0.5], respectively (also labeled by asterisks in panel a). Wavelength dependence of the cumulative OA contrast factor PΣ for different vessel depths of D = 0.6, 1.4 and 5 mm is plotted in (e), (f) and (g), respectively.
Fig. 5.
Fig. 5. Numerical simulation of OA imaging of murine cerebral vasculature. (a) Segmented vasculature from contrast-enhanced μCT angiography [32]. (b) Vascular network consisting of two plexuses that was employed for simulations. (c-h) Simulated OA images corresponding to the laser wavelengths of 580 nm (c,f), 895 nm (d,g) and 1100 nm (e,h) and different ultrasound detector sensitivities (maximal intensity projections are shown).
Fig. 6.
Fig. 6. Whole-brain in vivo OA angiography of intact newborn rat at 1064 nm in transmission mode: raw OA image (a), OA image after reconstruction (b), and conventional (c) and depth-encoded (d) OA images after reconstruction and Frangi-filtration. The images represent maximal intensity projections along the depth axis.
Fig. 7.
Fig. 7. In vivo images of the mouse brain through removed or intact scalp. (a) Photography of the scanning region. (b) Laser-ultrasound image of the skull taken at 532 nm in reflection mode. (c) OA image taken at 532 nm in reflection mode. (d) Whole-brain OA angiography at 1064 nm in transmission mode through intact skin and skull. Scale bar - 1 mm. F – frontal bone, RP – right parietal bone, LP – left parietal bone, BV-basal vein, SS-sagittal sinus, PCA - posterior communicating artery, TS - transverse sinus, ICV- inferior cerebral vein; BA - basilar artery.

Tables (1)

Tables Icon

Table 1. Morphological and acoustical properties of the mouse brain, scalp and skull.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

p 0 ( z ) = Γ H 0 k B [ Π 01 μ a , B e μ B ( z z 0 ) + Π 12 μ a e μ ( z z 1 ) μ B D + Π 23 μ a , B e μ B ( z z 2 ) μ B D μ d ] ,
k B = 3 μ t , B μ B exp ( μ B 3 μ t , B ) sinh ( μ B 3 μ t , B ) exp ( μ t , s c a l p η ) exp ( μ t , s ξ ) .
p 0 ~ ( z ) = 1 2 n = p n exp ( α B | f n | x B D ) exp ( α s | f n | x s ξ ) e i k n z ,
P ( λ , D , d ) = z 1 = z 0 + D z 2 = z 0 + D + d | p 0 ~ ( z ) θ ( p 0 ~ ( z ) N E P ) p b ~ ( z ) θ ( p b ~ ( z ) N E P ) | d z
p b ( z ) = Γ H 0 k B [ Π 03 μ a , B e μ B ( z z 0 ) ]
P Σ ( λ , D ) = d min d max P ( λ , D , x ) d x
P Σ ( λ , D ) > 0.5 max λ P Σ ( λ , D ) ,
P 3 D ( r , z ) = 3 μ t , B 4 π ( exp ( μ B R 1 ) R 1 exp ( μ B R 2 ) R 2 ) ,
P 1 D ( z ) = 3 μ t , B 2 μ B ( exp ( μ B z ) exp ( μ B ( z + 2 / ( 3 μ t , B ) ) ) .
P B ( z ) = 3 μ t , B μ B exp ( ( μ t , s c a l p η + μ t , s ξ ) ) exp ( μ B 3 μ t , B ) sinh ( μ B 3 μ t , B ) exp ( μ B z ) = k B exp ( μ B z ) ,
k B = 3 μ t , B μ B exp ( μ B 3 μ t , B ) sinh ( μ B 3 μ t , B ) exp ( ( μ t , s c a l p η + μ t , s ξ ) ) .

Metrics