Abstract

We compared eleven OCT devices in their ability to quantify retinal layer thicknesses under different signal-strength conditions, using a commercially available phantom eye. We analyzed a medium-intensity 50 µm layer in an identical manner for all devices, using the provided log-scale images and a reconstructed linear-scale tissue reflectivity metric. Thickness measurements were highly comparable when the data were analyzed in an identical manner. With optimal signal strength, the thickness of the 50 µm layer was overestimated by a mean of 4.3 µm in the log-scale images and of 2.7 µm in the linear-scale images.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Influence of coherence length, signal-to-noise ratio, log transform, and low-pass filtering on layer thickness assessment with OCT in the retina

Nomdo M. Jansonius, Joel Cervantes, Maddipatla Reddikumar, and Barry Cense
Biomed. Opt. Express 7(11) 4490-4500 (2016)

Spectral domain-optical coherence tomography to detect localized retinal nerve fiber layer defects in glaucomatous eyes

Gianmarco Vizzeri, Madhusudhanan Balasubramanian, Christopher Bowd, Robert N. Weinreb, Felipe A. Medeiros, and Linda M. Zangwill
Opt. Express 17(5) 4004-4018 (2009)

Effect of image quality on tissue thickness measurements obtained with spectral domain-optical coherence tomography

Madhusudhanan Balasubramanian, Christopher Bowd, Gianmarco Vizzeri, Robert N. Weinreb, and Linda M. Zangwill
Opt. Express 17(5) 4019-4036 (2009)

References

  • View by:
  • |
  • |
  • |

  1. S. Grover, R. K. Murthy, V. S. Brar, and K. V. Chalam, “Comparison of Retinal Thickness in Normal Eyes Using Stratus and Spectralis Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 51(5), 2644 (2010).
    [Crossref]
  2. G. Mylonas, C. Ahlers, P. Malamos, I. Golbaz, G. Deak, C. Schuetze, S. Sacu, and U. Schmidt-Erfurth, “Comparison of retinal thickness measurements and segmentation performance of four different spectral and time domain OCT devices in neovascular age-related macular degeneration,” Br. J. Ophthalmol. 93(11), 1453–1460 (2009).
    [Crossref]
  3. U. E. K. Wolf-Schnurrbusch, L. Ceklic, C. K. Brinkmann, M. E. Iliev, M. Frey, S. P. Rothenbuehler, V. Enzmann, and S. Wolf, “Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments,” Invest. Ophthalmol. Vis. Sci. 50(7), 3432–3437 (2009).
    [Crossref]
  4. L. M. Brandao, A. A. Ledolter, A. Schötzau, and A. M. Palmowski-Wolfe, “Comparison of Two Different OCT Systems: Retina Layer Segmentation and Impact on Structure-Function Analysis in Glaucoma,” J. Ophthalmol. 2016, 1–9 (2016).
    [Crossref]
  5. N. B. Patel, J. L. Wheat, A. Rodriguez, V. Tran, and R. S. Harwerth, “Agreement between retinal nerve fiber layer measures from Spectralis and Cirrus spectral domain OCT,” Optom. Vis. Sci. 89(5), E652–E666 (2012).
    [Crossref]
  6. S. N. Arthur, S. D. Smith, M. M. Wright, A. L. Grajewski, Q. Wang, J. M. Terry, and M. S. Lee, “Reproducibility and agreement in evaluating retinal nerve fibre layer thickness between Stratus and Spectralis OCT,” Eye 25(2), 192–200 (2011).
    [Crossref]
  7. G. Savini, P. Barboni, M. Carbonelli, A. Sbreglia, G. Deluigi, and V. Parisi, “Comparison of optic nerve head parameter measurements obtained by time-domain and spectral-domain optical coherence tomography,” J. Glaucoma 22(5), 384–389 (2013).
    [Crossref]
  8. R. de Kinkelder, D. M. de Bruin, F. D. Verbraak, T. G. van Leeuwen, and D. J. Faber, “Comparison of retinal nerve fiber layer thickness measurements by spectral-domain optical coherence tomography systems using a phantom eye model,” J. Biophotonics 6(4), 314–320 (2013).
    [Crossref]
  9. A. Agrawal, J. Baxi, W. Calhoun, C.-L. Chen, H. Ishikawa, J. S. Schuman, G. Wollstein, and D. X. Hammer, “Optic Nerve Head Measurements With Optical Coherence Tomography: A Phantom-Based Study Reveals Differences Among Clinical Devices,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT413 (2016).
    [Crossref]
  10. J. Baxi, W. Calhoun, Y. J. Sepah, D. X. Hammer, I. Ilev, T. Joshua Pfefer, Q. D. Nguyen, and A. Agrawal, “Retina-simulating phantom for optical coherence tomography,” J. Biomed. Opt. 19(2), 021106 (2013).
    [Crossref]
  11. G. C. F. Lee, G. T. Smith, M. Agrawal, T. Leng, and A. K. Ellerbee, “Fabrication of healthy and disease-mimicking retinal phantoms with tapered foveal pits for optical coherence tomography,” J. Biomed. Opt. 20(8), 085004 (2015).
    [Crossref]
  12. A. Agrawal, M. A. Gavrielides, S. Weininger, K. Chakrabarti, and J. Pfefer, “Regulatory perspectives and research activities at the FDA on the use of phantoms with in vivo diagnostic devices,” Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurements of Tissue (2008).
  13. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
    [Crossref]
  14. G. Savini, P. Barboni, V. Parisi, and M. Carbonelli, “The influence of axial length on retinal nerve fibre layer thickness and optic-disc size measurements by spectral-domain OCT,” Br. J. Ophthalmol. 96(1), 57–61 (2012).
    [Crossref]
  15. P. H. B. Kok, T. J. T. P. van den Berg, H. W. van Dijk, M. Stehouwer, I. J. E. van der Meulen, M. P. Mourits, and F. D. Verbraak, “The relationship between the optical density of cataract and its influence on retinal nerve fibre layer thickness measured with spectral domain optical coherence tomography,” Acta Ophthalmol. 91(5), 418–424 (2013).
    [Crossref]
  16. C. Y. L. Cheung, C. K. S. Leung, D. Lin, C.-P. Pang, and D. S. C. Lam, “Relationship between retinal nerve fiber layer measurement and signal strength in optical coherence tomography,” Ophthalmology 115(8), 1347–1351.e2 (2008).
    [Crossref]
  17. D. W. Lee, J. M. Kim, K. H. Park, C. Y. Choi, and J. G. Cho, “Effect of media opacity on retinal nerve fiber layer thickness measurements by optical coherence tomography,” J. Ophthalmic Vis. Res. 5(3), 151–157 (2010).
  18. S. Darma, P. H. B. Kok, T. J. T. P. van den Berg, M. D. Abràmoff, D. J. Faber, C. A. Hulsman, F. Zantvoord, M. P. Mourits, R. O. Schlingemann, and F. D. Verbraak, “Optical density filters modeling media opacities cause decreased SD-OCT retinal layer thickness measurements with inter- and intra-individual variation,” Acta Ophthalmol. 93(4), 355–361 (2015).
    [Crossref]
  19. N. M. Jansonius, J. Cervantes, M. Reddikumar, and B. Cense, “Influence of coherence length, signal-to-noise ratio, log transform, and low-pass filtering on layer thickness assessment with OCT in the retina,” Biomed. Opt. Express 7(11), 4490–4500 (2016).
    [Crossref]
  20. N. Nassif, B. Cense, B. Hyle Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29(5), 480 (2004).
    [Crossref]
  21. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, 2015), Chap. 5.
  22. M. Zhang, T. S. Hwang, J. Peter Campbell, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Projection-resolved optical coherence tomographic angiography,” Biomed. Opt. Express 7(3), 816 (2016).
    [Crossref]
  23. Z. Turani, E. Fatemizadeh, Q. Xu, S. Daveluy, D. Mehregan, and M. R. Nasiri Avanaki, “Refractive index correction in optical coherence tomography images of multilayer tissues,” J. Biomed. Opt. 23(07), 1–4 (2018).
    [Crossref]
  24. B. B. Tan, M. Natividad, K.-C. Chua, and L. W. Yip, “Comparison of retinal nerve fiber layer measurement between 2 spectral domain OCT instruments,” J. Glaucoma 21(4), 266–273 (2012).
    [Crossref]
  25. L. Pierro, M. Gagliardi, L. Iuliano, A. Ambrosi, and F. Bandello, “Retinal nerve fiber layer thickness reproducibility using seven different OCT instruments,” Invest. Ophthalmol. Vis. Sci. 53(9), 5912–5920 (2012).
    [Crossref]
  26. J. Huang, X. Liu, Z. Wu, X. Guo, H. Xu, L. Dustin, and S. Sadda, “Macular and retinal nerve fiber layer thickness measurements in normal eyes with the Stratus OCT, the Cirrus HD-OCT, and the Topcon 3D OCT-1000,” J. Glaucoma 20(2), 118–125 (2011).
    [Crossref]
  27. P. Bhargava, A. Lang, O. Al-Louzi, A. Carass, J. Prince, P. A. Calabresi, and S. Saidha, “Applying an Open-Source Segmentation Algorithm to Different OCT Devices in Multiple Sclerosis Patients and Healthy Controls: Implications for Clinical Trials,” Mult. Scler. Int. 2015, 1–10 (2015).
    [Crossref]
  28. H. Faghihi, F. Hajizadeh, H. Hashemi, and M. Khabazkhoob, “Agreement of two different spectral domain optical coherence tomography instruments for retinal nerve fiber layer measurements,” J. Ophthalmic Vis. Res. 9(1), 31–37 (2014).

2018 (1)

Z. Turani, E. Fatemizadeh, Q. Xu, S. Daveluy, D. Mehregan, and M. R. Nasiri Avanaki, “Refractive index correction in optical coherence tomography images of multilayer tissues,” J. Biomed. Opt. 23(07), 1–4 (2018).
[Crossref]

2016 (4)

M. Zhang, T. S. Hwang, J. Peter Campbell, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Projection-resolved optical coherence tomographic angiography,” Biomed. Opt. Express 7(3), 816 (2016).
[Crossref]

L. M. Brandao, A. A. Ledolter, A. Schötzau, and A. M. Palmowski-Wolfe, “Comparison of Two Different OCT Systems: Retina Layer Segmentation and Impact on Structure-Function Analysis in Glaucoma,” J. Ophthalmol. 2016, 1–9 (2016).
[Crossref]

A. Agrawal, J. Baxi, W. Calhoun, C.-L. Chen, H. Ishikawa, J. S. Schuman, G. Wollstein, and D. X. Hammer, “Optic Nerve Head Measurements With Optical Coherence Tomography: A Phantom-Based Study Reveals Differences Among Clinical Devices,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT413 (2016).
[Crossref]

N. M. Jansonius, J. Cervantes, M. Reddikumar, and B. Cense, “Influence of coherence length, signal-to-noise ratio, log transform, and low-pass filtering on layer thickness assessment with OCT in the retina,” Biomed. Opt. Express 7(11), 4490–4500 (2016).
[Crossref]

2015 (3)

G. C. F. Lee, G. T. Smith, M. Agrawal, T. Leng, and A. K. Ellerbee, “Fabrication of healthy and disease-mimicking retinal phantoms with tapered foveal pits for optical coherence tomography,” J. Biomed. Opt. 20(8), 085004 (2015).
[Crossref]

S. Darma, P. H. B. Kok, T. J. T. P. van den Berg, M. D. Abràmoff, D. J. Faber, C. A. Hulsman, F. Zantvoord, M. P. Mourits, R. O. Schlingemann, and F. D. Verbraak, “Optical density filters modeling media opacities cause decreased SD-OCT retinal layer thickness measurements with inter- and intra-individual variation,” Acta Ophthalmol. 93(4), 355–361 (2015).
[Crossref]

P. Bhargava, A. Lang, O. Al-Louzi, A. Carass, J. Prince, P. A. Calabresi, and S. Saidha, “Applying an Open-Source Segmentation Algorithm to Different OCT Devices in Multiple Sclerosis Patients and Healthy Controls: Implications for Clinical Trials,” Mult. Scler. Int. 2015, 1–10 (2015).
[Crossref]

2014 (1)

H. Faghihi, F. Hajizadeh, H. Hashemi, and M. Khabazkhoob, “Agreement of two different spectral domain optical coherence tomography instruments for retinal nerve fiber layer measurements,” J. Ophthalmic Vis. Res. 9(1), 31–37 (2014).

2013 (4)

P. H. B. Kok, T. J. T. P. van den Berg, H. W. van Dijk, M. Stehouwer, I. J. E. van der Meulen, M. P. Mourits, and F. D. Verbraak, “The relationship between the optical density of cataract and its influence on retinal nerve fibre layer thickness measured with spectral domain optical coherence tomography,” Acta Ophthalmol. 91(5), 418–424 (2013).
[Crossref]

J. Baxi, W. Calhoun, Y. J. Sepah, D. X. Hammer, I. Ilev, T. Joshua Pfefer, Q. D. Nguyen, and A. Agrawal, “Retina-simulating phantom for optical coherence tomography,” J. Biomed. Opt. 19(2), 021106 (2013).
[Crossref]

G. Savini, P. Barboni, M. Carbonelli, A. Sbreglia, G. Deluigi, and V. Parisi, “Comparison of optic nerve head parameter measurements obtained by time-domain and spectral-domain optical coherence tomography,” J. Glaucoma 22(5), 384–389 (2013).
[Crossref]

R. de Kinkelder, D. M. de Bruin, F. D. Verbraak, T. G. van Leeuwen, and D. J. Faber, “Comparison of retinal nerve fiber layer thickness measurements by spectral-domain optical coherence tomography systems using a phantom eye model,” J. Biophotonics 6(4), 314–320 (2013).
[Crossref]

2012 (4)

N. B. Patel, J. L. Wheat, A. Rodriguez, V. Tran, and R. S. Harwerth, “Agreement between retinal nerve fiber layer measures from Spectralis and Cirrus spectral domain OCT,” Optom. Vis. Sci. 89(5), E652–E666 (2012).
[Crossref]

G. Savini, P. Barboni, V. Parisi, and M. Carbonelli, “The influence of axial length on retinal nerve fibre layer thickness and optic-disc size measurements by spectral-domain OCT,” Br. J. Ophthalmol. 96(1), 57–61 (2012).
[Crossref]

B. B. Tan, M. Natividad, K.-C. Chua, and L. W. Yip, “Comparison of retinal nerve fiber layer measurement between 2 spectral domain OCT instruments,” J. Glaucoma 21(4), 266–273 (2012).
[Crossref]

L. Pierro, M. Gagliardi, L. Iuliano, A. Ambrosi, and F. Bandello, “Retinal nerve fiber layer thickness reproducibility using seven different OCT instruments,” Invest. Ophthalmol. Vis. Sci. 53(9), 5912–5920 (2012).
[Crossref]

2011 (2)

J. Huang, X. Liu, Z. Wu, X. Guo, H. Xu, L. Dustin, and S. Sadda, “Macular and retinal nerve fiber layer thickness measurements in normal eyes with the Stratus OCT, the Cirrus HD-OCT, and the Topcon 3D OCT-1000,” J. Glaucoma 20(2), 118–125 (2011).
[Crossref]

S. N. Arthur, S. D. Smith, M. M. Wright, A. L. Grajewski, Q. Wang, J. M. Terry, and M. S. Lee, “Reproducibility and agreement in evaluating retinal nerve fibre layer thickness between Stratus and Spectralis OCT,” Eye 25(2), 192–200 (2011).
[Crossref]

2010 (2)

S. Grover, R. K. Murthy, V. S. Brar, and K. V. Chalam, “Comparison of Retinal Thickness in Normal Eyes Using Stratus and Spectralis Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 51(5), 2644 (2010).
[Crossref]

D. W. Lee, J. M. Kim, K. H. Park, C. Y. Choi, and J. G. Cho, “Effect of media opacity on retinal nerve fiber layer thickness measurements by optical coherence tomography,” J. Ophthalmic Vis. Res. 5(3), 151–157 (2010).

2009 (2)

G. Mylonas, C. Ahlers, P. Malamos, I. Golbaz, G. Deak, C. Schuetze, S. Sacu, and U. Schmidt-Erfurth, “Comparison of retinal thickness measurements and segmentation performance of four different spectral and time domain OCT devices in neovascular age-related macular degeneration,” Br. J. Ophthalmol. 93(11), 1453–1460 (2009).
[Crossref]

U. E. K. Wolf-Schnurrbusch, L. Ceklic, C. K. Brinkmann, M. E. Iliev, M. Frey, S. P. Rothenbuehler, V. Enzmann, and S. Wolf, “Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments,” Invest. Ophthalmol. Vis. Sci. 50(7), 3432–3437 (2009).
[Crossref]

2008 (1)

C. Y. L. Cheung, C. K. S. Leung, D. Lin, C.-P. Pang, and D. S. C. Lam, “Relationship between retinal nerve fiber layer measurement and signal strength in optical coherence tomography,” Ophthalmology 115(8), 1347–1351.e2 (2008).
[Crossref]

2006 (1)

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref]

2004 (1)

Abràmoff, M. D.

S. Darma, P. H. B. Kok, T. J. T. P. van den Berg, M. D. Abràmoff, D. J. Faber, C. A. Hulsman, F. Zantvoord, M. P. Mourits, R. O. Schlingemann, and F. D. Verbraak, “Optical density filters modeling media opacities cause decreased SD-OCT retinal layer thickness measurements with inter- and intra-individual variation,” Acta Ophthalmol. 93(4), 355–361 (2015).
[Crossref]

Agrawal, A.

A. Agrawal, J. Baxi, W. Calhoun, C.-L. Chen, H. Ishikawa, J. S. Schuman, G. Wollstein, and D. X. Hammer, “Optic Nerve Head Measurements With Optical Coherence Tomography: A Phantom-Based Study Reveals Differences Among Clinical Devices,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT413 (2016).
[Crossref]

J. Baxi, W. Calhoun, Y. J. Sepah, D. X. Hammer, I. Ilev, T. Joshua Pfefer, Q. D. Nguyen, and A. Agrawal, “Retina-simulating phantom for optical coherence tomography,” J. Biomed. Opt. 19(2), 021106 (2013).
[Crossref]

A. Agrawal, M. A. Gavrielides, S. Weininger, K. Chakrabarti, and J. Pfefer, “Regulatory perspectives and research activities at the FDA on the use of phantoms with in vivo diagnostic devices,” Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurements of Tissue (2008).

Agrawal, M.

G. C. F. Lee, G. T. Smith, M. Agrawal, T. Leng, and A. K. Ellerbee, “Fabrication of healthy and disease-mimicking retinal phantoms with tapered foveal pits for optical coherence tomography,” J. Biomed. Opt. 20(8), 085004 (2015).
[Crossref]

Ahlers, C.

G. Mylonas, C. Ahlers, P. Malamos, I. Golbaz, G. Deak, C. Schuetze, S. Sacu, and U. Schmidt-Erfurth, “Comparison of retinal thickness measurements and segmentation performance of four different spectral and time domain OCT devices in neovascular age-related macular degeneration,” Br. J. Ophthalmol. 93(11), 1453–1460 (2009).
[Crossref]

Al-Louzi, O.

P. Bhargava, A. Lang, O. Al-Louzi, A. Carass, J. Prince, P. A. Calabresi, and S. Saidha, “Applying an Open-Source Segmentation Algorithm to Different OCT Devices in Multiple Sclerosis Patients and Healthy Controls: Implications for Clinical Trials,” Mult. Scler. Int. 2015, 1–10 (2015).
[Crossref]

Ambrosi, A.

L. Pierro, M. Gagliardi, L. Iuliano, A. Ambrosi, and F. Bandello, “Retinal nerve fiber layer thickness reproducibility using seven different OCT instruments,” Invest. Ophthalmol. Vis. Sci. 53(9), 5912–5920 (2012).
[Crossref]

Arthur, S. N.

S. N. Arthur, S. D. Smith, M. M. Wright, A. L. Grajewski, Q. Wang, J. M. Terry, and M. S. Lee, “Reproducibility and agreement in evaluating retinal nerve fibre layer thickness between Stratus and Spectralis OCT,” Eye 25(2), 192–200 (2011).
[Crossref]

Bailey, S. T.

Bandello, F.

L. Pierro, M. Gagliardi, L. Iuliano, A. Ambrosi, and F. Bandello, “Retinal nerve fiber layer thickness reproducibility using seven different OCT instruments,” Invest. Ophthalmol. Vis. Sci. 53(9), 5912–5920 (2012).
[Crossref]

Barboni, P.

G. Savini, P. Barboni, M. Carbonelli, A. Sbreglia, G. Deluigi, and V. Parisi, “Comparison of optic nerve head parameter measurements obtained by time-domain and spectral-domain optical coherence tomography,” J. Glaucoma 22(5), 384–389 (2013).
[Crossref]

G. Savini, P. Barboni, V. Parisi, and M. Carbonelli, “The influence of axial length on retinal nerve fibre layer thickness and optic-disc size measurements by spectral-domain OCT,” Br. J. Ophthalmol. 96(1), 57–61 (2012).
[Crossref]

Baxi, J.

A. Agrawal, J. Baxi, W. Calhoun, C.-L. Chen, H. Ishikawa, J. S. Schuman, G. Wollstein, and D. X. Hammer, “Optic Nerve Head Measurements With Optical Coherence Tomography: A Phantom-Based Study Reveals Differences Among Clinical Devices,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT413 (2016).
[Crossref]

J. Baxi, W. Calhoun, Y. J. Sepah, D. X. Hammer, I. Ilev, T. Joshua Pfefer, Q. D. Nguyen, and A. Agrawal, “Retina-simulating phantom for optical coherence tomography,” J. Biomed. Opt. 19(2), 021106 (2013).
[Crossref]

Bhargava, P.

P. Bhargava, A. Lang, O. Al-Louzi, A. Carass, J. Prince, P. A. Calabresi, and S. Saidha, “Applying an Open-Source Segmentation Algorithm to Different OCT Devices in Multiple Sclerosis Patients and Healthy Controls: Implications for Clinical Trials,” Mult. Scler. Int. 2015, 1–10 (2015).
[Crossref]

Bouma, B. E.

Brandao, L. M.

L. M. Brandao, A. A. Ledolter, A. Schötzau, and A. M. Palmowski-Wolfe, “Comparison of Two Different OCT Systems: Retina Layer Segmentation and Impact on Structure-Function Analysis in Glaucoma,” J. Ophthalmol. 2016, 1–9 (2016).
[Crossref]

Brar, V. S.

S. Grover, R. K. Murthy, V. S. Brar, and K. V. Chalam, “Comparison of Retinal Thickness in Normal Eyes Using Stratus and Spectralis Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 51(5), 2644 (2010).
[Crossref]

Brinkmann, C. K.

U. E. K. Wolf-Schnurrbusch, L. Ceklic, C. K. Brinkmann, M. E. Iliev, M. Frey, S. P. Rothenbuehler, V. Enzmann, and S. Wolf, “Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments,” Invest. Ophthalmol. Vis. Sci. 50(7), 3432–3437 (2009).
[Crossref]

Calabresi, P. A.

P. Bhargava, A. Lang, O. Al-Louzi, A. Carass, J. Prince, P. A. Calabresi, and S. Saidha, “Applying an Open-Source Segmentation Algorithm to Different OCT Devices in Multiple Sclerosis Patients and Healthy Controls: Implications for Clinical Trials,” Mult. Scler. Int. 2015, 1–10 (2015).
[Crossref]

Calhoun, W.

A. Agrawal, J. Baxi, W. Calhoun, C.-L. Chen, H. Ishikawa, J. S. Schuman, G. Wollstein, and D. X. Hammer, “Optic Nerve Head Measurements With Optical Coherence Tomography: A Phantom-Based Study Reveals Differences Among Clinical Devices,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT413 (2016).
[Crossref]

J. Baxi, W. Calhoun, Y. J. Sepah, D. X. Hammer, I. Ilev, T. Joshua Pfefer, Q. D. Nguyen, and A. Agrawal, “Retina-simulating phantom for optical coherence tomography,” J. Biomed. Opt. 19(2), 021106 (2013).
[Crossref]

Carass, A.

P. Bhargava, A. Lang, O. Al-Louzi, A. Carass, J. Prince, P. A. Calabresi, and S. Saidha, “Applying an Open-Source Segmentation Algorithm to Different OCT Devices in Multiple Sclerosis Patients and Healthy Controls: Implications for Clinical Trials,” Mult. Scler. Int. 2015, 1–10 (2015).
[Crossref]

Carbonelli, M.

G. Savini, P. Barboni, M. Carbonelli, A. Sbreglia, G. Deluigi, and V. Parisi, “Comparison of optic nerve head parameter measurements obtained by time-domain and spectral-domain optical coherence tomography,” J. Glaucoma 22(5), 384–389 (2013).
[Crossref]

G. Savini, P. Barboni, V. Parisi, and M. Carbonelli, “The influence of axial length on retinal nerve fibre layer thickness and optic-disc size measurements by spectral-domain OCT,” Br. J. Ophthalmol. 96(1), 57–61 (2012).
[Crossref]

Ceklic, L.

U. E. K. Wolf-Schnurrbusch, L. Ceklic, C. K. Brinkmann, M. E. Iliev, M. Frey, S. P. Rothenbuehler, V. Enzmann, and S. Wolf, “Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments,” Invest. Ophthalmol. Vis. Sci. 50(7), 3432–3437 (2009).
[Crossref]

Cense, B.

Cervantes, J.

Chakrabarti, K.

A. Agrawal, M. A. Gavrielides, S. Weininger, K. Chakrabarti, and J. Pfefer, “Regulatory perspectives and research activities at the FDA on the use of phantoms with in vivo diagnostic devices,” Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurements of Tissue (2008).

Chalam, K. V.

S. Grover, R. K. Murthy, V. S. Brar, and K. V. Chalam, “Comparison of Retinal Thickness in Normal Eyes Using Stratus and Spectralis Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 51(5), 2644 (2010).
[Crossref]

Chen, C.-L.

A. Agrawal, J. Baxi, W. Calhoun, C.-L. Chen, H. Ishikawa, J. S. Schuman, G. Wollstein, and D. X. Hammer, “Optic Nerve Head Measurements With Optical Coherence Tomography: A Phantom-Based Study Reveals Differences Among Clinical Devices,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT413 (2016).
[Crossref]

Chen, T. C.

Cheung, C. Y. L.

C. Y. L. Cheung, C. K. S. Leung, D. Lin, C.-P. Pang, and D. S. C. Lam, “Relationship between retinal nerve fiber layer measurement and signal strength in optical coherence tomography,” Ophthalmology 115(8), 1347–1351.e2 (2008).
[Crossref]

Cho, J. G.

D. W. Lee, J. M. Kim, K. H. Park, C. Y. Choi, and J. G. Cho, “Effect of media opacity on retinal nerve fiber layer thickness measurements by optical coherence tomography,” J. Ophthalmic Vis. Res. 5(3), 151–157 (2010).

Choi, C. Y.

D. W. Lee, J. M. Kim, K. H. Park, C. Y. Choi, and J. G. Cho, “Effect of media opacity on retinal nerve fiber layer thickness measurements by optical coherence tomography,” J. Ophthalmic Vis. Res. 5(3), 151–157 (2010).

Chua, K.-C.

B. B. Tan, M. Natividad, K.-C. Chua, and L. W. Yip, “Comparison of retinal nerve fiber layer measurement between 2 spectral domain OCT instruments,” J. Glaucoma 21(4), 266–273 (2012).
[Crossref]

Darma, S.

S. Darma, P. H. B. Kok, T. J. T. P. van den Berg, M. D. Abràmoff, D. J. Faber, C. A. Hulsman, F. Zantvoord, M. P. Mourits, R. O. Schlingemann, and F. D. Verbraak, “Optical density filters modeling media opacities cause decreased SD-OCT retinal layer thickness measurements with inter- and intra-individual variation,” Acta Ophthalmol. 93(4), 355–361 (2015).
[Crossref]

Daveluy, S.

Z. Turani, E. Fatemizadeh, Q. Xu, S. Daveluy, D. Mehregan, and M. R. Nasiri Avanaki, “Refractive index correction in optical coherence tomography images of multilayer tissues,” J. Biomed. Opt. 23(07), 1–4 (2018).
[Crossref]

de Boer, J. F.

de Bruin, D. M.

R. de Kinkelder, D. M. de Bruin, F. D. Verbraak, T. G. van Leeuwen, and D. J. Faber, “Comparison of retinal nerve fiber layer thickness measurements by spectral-domain optical coherence tomography systems using a phantom eye model,” J. Biophotonics 6(4), 314–320 (2013).
[Crossref]

de Kinkelder, R.

R. de Kinkelder, D. M. de Bruin, F. D. Verbraak, T. G. van Leeuwen, and D. J. Faber, “Comparison of retinal nerve fiber layer thickness measurements by spectral-domain optical coherence tomography systems using a phantom eye model,” J. Biophotonics 6(4), 314–320 (2013).
[Crossref]

Deak, G.

G. Mylonas, C. Ahlers, P. Malamos, I. Golbaz, G. Deak, C. Schuetze, S. Sacu, and U. Schmidt-Erfurth, “Comparison of retinal thickness measurements and segmentation performance of four different spectral and time domain OCT devices in neovascular age-related macular degeneration,” Br. J. Ophthalmol. 93(11), 1453–1460 (2009).
[Crossref]

Deluigi, G.

G. Savini, P. Barboni, M. Carbonelli, A. Sbreglia, G. Deluigi, and V. Parisi, “Comparison of optic nerve head parameter measurements obtained by time-domain and spectral-domain optical coherence tomography,” J. Glaucoma 22(5), 384–389 (2013).
[Crossref]

Drexler, W.

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, 2015), Chap. 5.

Dustin, L.

J. Huang, X. Liu, Z. Wu, X. Guo, H. Xu, L. Dustin, and S. Sadda, “Macular and retinal nerve fiber layer thickness measurements in normal eyes with the Stratus OCT, the Cirrus HD-OCT, and the Topcon 3D OCT-1000,” J. Glaucoma 20(2), 118–125 (2011).
[Crossref]

Ellerbee, A. K.

G. C. F. Lee, G. T. Smith, M. Agrawal, T. Leng, and A. K. Ellerbee, “Fabrication of healthy and disease-mimicking retinal phantoms with tapered foveal pits for optical coherence tomography,” J. Biomed. Opt. 20(8), 085004 (2015).
[Crossref]

Enzmann, V.

U. E. K. Wolf-Schnurrbusch, L. Ceklic, C. K. Brinkmann, M. E. Iliev, M. Frey, S. P. Rothenbuehler, V. Enzmann, and S. Wolf, “Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments,” Invest. Ophthalmol. Vis. Sci. 50(7), 3432–3437 (2009).
[Crossref]

Faber, D. J.

S. Darma, P. H. B. Kok, T. J. T. P. van den Berg, M. D. Abràmoff, D. J. Faber, C. A. Hulsman, F. Zantvoord, M. P. Mourits, R. O. Schlingemann, and F. D. Verbraak, “Optical density filters modeling media opacities cause decreased SD-OCT retinal layer thickness measurements with inter- and intra-individual variation,” Acta Ophthalmol. 93(4), 355–361 (2015).
[Crossref]

R. de Kinkelder, D. M. de Bruin, F. D. Verbraak, T. G. van Leeuwen, and D. J. Faber, “Comparison of retinal nerve fiber layer thickness measurements by spectral-domain optical coherence tomography systems using a phantom eye model,” J. Biophotonics 6(4), 314–320 (2013).
[Crossref]

Faghihi, H.

H. Faghihi, F. Hajizadeh, H. Hashemi, and M. Khabazkhoob, “Agreement of two different spectral domain optical coherence tomography instruments for retinal nerve fiber layer measurements,” J. Ophthalmic Vis. Res. 9(1), 31–37 (2014).

Fatemizadeh, E.

Z. Turani, E. Fatemizadeh, Q. Xu, S. Daveluy, D. Mehregan, and M. R. Nasiri Avanaki, “Refractive index correction in optical coherence tomography images of multilayer tissues,” J. Biomed. Opt. 23(07), 1–4 (2018).
[Crossref]

Frey, M.

U. E. K. Wolf-Schnurrbusch, L. Ceklic, C. K. Brinkmann, M. E. Iliev, M. Frey, S. P. Rothenbuehler, V. Enzmann, and S. Wolf, “Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments,” Invest. Ophthalmol. Vis. Sci. 50(7), 3432–3437 (2009).
[Crossref]

Fujimoto, J. G.

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, 2015), Chap. 5.

Gagliardi, M.

L. Pierro, M. Gagliardi, L. Iuliano, A. Ambrosi, and F. Bandello, “Retinal nerve fiber layer thickness reproducibility using seven different OCT instruments,” Invest. Ophthalmol. Vis. Sci. 53(9), 5912–5920 (2012).
[Crossref]

Gavrielides, M. A.

A. Agrawal, M. A. Gavrielides, S. Weininger, K. Chakrabarti, and J. Pfefer, “Regulatory perspectives and research activities at the FDA on the use of phantoms with in vivo diagnostic devices,” Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurements of Tissue (2008).

Golbaz, I.

G. Mylonas, C. Ahlers, P. Malamos, I. Golbaz, G. Deak, C. Schuetze, S. Sacu, and U. Schmidt-Erfurth, “Comparison of retinal thickness measurements and segmentation performance of four different spectral and time domain OCT devices in neovascular age-related macular degeneration,” Br. J. Ophthalmol. 93(11), 1453–1460 (2009).
[Crossref]

Grajewski, A. L.

S. N. Arthur, S. D. Smith, M. M. Wright, A. L. Grajewski, Q. Wang, J. M. Terry, and M. S. Lee, “Reproducibility and agreement in evaluating retinal nerve fibre layer thickness between Stratus and Spectralis OCT,” Eye 25(2), 192–200 (2011).
[Crossref]

Grover, S.

S. Grover, R. K. Murthy, V. S. Brar, and K. V. Chalam, “Comparison of Retinal Thickness in Normal Eyes Using Stratus and Spectralis Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 51(5), 2644 (2010).
[Crossref]

Guo, X.

J. Huang, X. Liu, Z. Wu, X. Guo, H. Xu, L. Dustin, and S. Sadda, “Macular and retinal nerve fiber layer thickness measurements in normal eyes with the Stratus OCT, the Cirrus HD-OCT, and the Topcon 3D OCT-1000,” J. Glaucoma 20(2), 118–125 (2011).
[Crossref]

Hajizadeh, F.

H. Faghihi, F. Hajizadeh, H. Hashemi, and M. Khabazkhoob, “Agreement of two different spectral domain optical coherence tomography instruments for retinal nerve fiber layer measurements,” J. Ophthalmic Vis. Res. 9(1), 31–37 (2014).

Hammer, D. X.

A. Agrawal, J. Baxi, W. Calhoun, C.-L. Chen, H. Ishikawa, J. S. Schuman, G. Wollstein, and D. X. Hammer, “Optic Nerve Head Measurements With Optical Coherence Tomography: A Phantom-Based Study Reveals Differences Among Clinical Devices,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT413 (2016).
[Crossref]

J. Baxi, W. Calhoun, Y. J. Sepah, D. X. Hammer, I. Ilev, T. Joshua Pfefer, Q. D. Nguyen, and A. Agrawal, “Retina-simulating phantom for optical coherence tomography,” J. Biomed. Opt. 19(2), 021106 (2013).
[Crossref]

Harwerth, R. S.

N. B. Patel, J. L. Wheat, A. Rodriguez, V. Tran, and R. S. Harwerth, “Agreement between retinal nerve fiber layer measures from Spectralis and Cirrus spectral domain OCT,” Optom. Vis. Sci. 89(5), E652–E666 (2012).
[Crossref]

Hashemi, H.

H. Faghihi, F. Hajizadeh, H. Hashemi, and M. Khabazkhoob, “Agreement of two different spectral domain optical coherence tomography instruments for retinal nerve fiber layer measurements,” J. Ophthalmic Vis. Res. 9(1), 31–37 (2014).

Huang, D.

Huang, J.

J. Huang, X. Liu, Z. Wu, X. Guo, H. Xu, L. Dustin, and S. Sadda, “Macular and retinal nerve fiber layer thickness measurements in normal eyes with the Stratus OCT, the Cirrus HD-OCT, and the Topcon 3D OCT-1000,” J. Glaucoma 20(2), 118–125 (2011).
[Crossref]

Hulsman, C. A.

S. Darma, P. H. B. Kok, T. J. T. P. van den Berg, M. D. Abràmoff, D. J. Faber, C. A. Hulsman, F. Zantvoord, M. P. Mourits, R. O. Schlingemann, and F. D. Verbraak, “Optical density filters modeling media opacities cause decreased SD-OCT retinal layer thickness measurements with inter- and intra-individual variation,” Acta Ophthalmol. 93(4), 355–361 (2015).
[Crossref]

Hwang, T. S.

Hyle Park, B.

Ilev, I.

J. Baxi, W. Calhoun, Y. J. Sepah, D. X. Hammer, I. Ilev, T. Joshua Pfefer, Q. D. Nguyen, and A. Agrawal, “Retina-simulating phantom for optical coherence tomography,” J. Biomed. Opt. 19(2), 021106 (2013).
[Crossref]

Iliev, M. E.

U. E. K. Wolf-Schnurrbusch, L. Ceklic, C. K. Brinkmann, M. E. Iliev, M. Frey, S. P. Rothenbuehler, V. Enzmann, and S. Wolf, “Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments,” Invest. Ophthalmol. Vis. Sci. 50(7), 3432–3437 (2009).
[Crossref]

Ishikawa, H.

A. Agrawal, J. Baxi, W. Calhoun, C.-L. Chen, H. Ishikawa, J. S. Schuman, G. Wollstein, and D. X. Hammer, “Optic Nerve Head Measurements With Optical Coherence Tomography: A Phantom-Based Study Reveals Differences Among Clinical Devices,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT413 (2016).
[Crossref]

Iuliano, L.

L. Pierro, M. Gagliardi, L. Iuliano, A. Ambrosi, and F. Bandello, “Retinal nerve fiber layer thickness reproducibility using seven different OCT instruments,” Invest. Ophthalmol. Vis. Sci. 53(9), 5912–5920 (2012).
[Crossref]

Jansonius, N. M.

Jia, Y.

Joshua Pfefer, T.

J. Baxi, W. Calhoun, Y. J. Sepah, D. X. Hammer, I. Ilev, T. Joshua Pfefer, Q. D. Nguyen, and A. Agrawal, “Retina-simulating phantom for optical coherence tomography,” J. Biomed. Opt. 19(2), 021106 (2013).
[Crossref]

Khabazkhoob, M.

H. Faghihi, F. Hajizadeh, H. Hashemi, and M. Khabazkhoob, “Agreement of two different spectral domain optical coherence tomography instruments for retinal nerve fiber layer measurements,” J. Ophthalmic Vis. Res. 9(1), 31–37 (2014).

Kim, J. M.

D. W. Lee, J. M. Kim, K. H. Park, C. Y. Choi, and J. G. Cho, “Effect of media opacity on retinal nerve fiber layer thickness measurements by optical coherence tomography,” J. Ophthalmic Vis. Res. 5(3), 151–157 (2010).

Kok, P. H. B.

S. Darma, P. H. B. Kok, T. J. T. P. van den Berg, M. D. Abràmoff, D. J. Faber, C. A. Hulsman, F. Zantvoord, M. P. Mourits, R. O. Schlingemann, and F. D. Verbraak, “Optical density filters modeling media opacities cause decreased SD-OCT retinal layer thickness measurements with inter- and intra-individual variation,” Acta Ophthalmol. 93(4), 355–361 (2015).
[Crossref]

P. H. B. Kok, T. J. T. P. van den Berg, H. W. van Dijk, M. Stehouwer, I. J. E. van der Meulen, M. P. Mourits, and F. D. Verbraak, “The relationship between the optical density of cataract and its influence on retinal nerve fibre layer thickness measured with spectral domain optical coherence tomography,” Acta Ophthalmol. 91(5), 418–424 (2013).
[Crossref]

Lam, D. S. C.

C. Y. L. Cheung, C. K. S. Leung, D. Lin, C.-P. Pang, and D. S. C. Lam, “Relationship between retinal nerve fiber layer measurement and signal strength in optical coherence tomography,” Ophthalmology 115(8), 1347–1351.e2 (2008).
[Crossref]

Lang, A.

P. Bhargava, A. Lang, O. Al-Louzi, A. Carass, J. Prince, P. A. Calabresi, and S. Saidha, “Applying an Open-Source Segmentation Algorithm to Different OCT Devices in Multiple Sclerosis Patients and Healthy Controls: Implications for Clinical Trials,” Mult. Scler. Int. 2015, 1–10 (2015).
[Crossref]

Ledolter, A. A.

L. M. Brandao, A. A. Ledolter, A. Schötzau, and A. M. Palmowski-Wolfe, “Comparison of Two Different OCT Systems: Retina Layer Segmentation and Impact on Structure-Function Analysis in Glaucoma,” J. Ophthalmol. 2016, 1–9 (2016).
[Crossref]

Lee, D. W.

D. W. Lee, J. M. Kim, K. H. Park, C. Y. Choi, and J. G. Cho, “Effect of media opacity on retinal nerve fiber layer thickness measurements by optical coherence tomography,” J. Ophthalmic Vis. Res. 5(3), 151–157 (2010).

Lee, G. C. F.

G. C. F. Lee, G. T. Smith, M. Agrawal, T. Leng, and A. K. Ellerbee, “Fabrication of healthy and disease-mimicking retinal phantoms with tapered foveal pits for optical coherence tomography,” J. Biomed. Opt. 20(8), 085004 (2015).
[Crossref]

Lee, M. S.

S. N. Arthur, S. D. Smith, M. M. Wright, A. L. Grajewski, Q. Wang, J. M. Terry, and M. S. Lee, “Reproducibility and agreement in evaluating retinal nerve fibre layer thickness between Stratus and Spectralis OCT,” Eye 25(2), 192–200 (2011).
[Crossref]

Leng, T.

G. C. F. Lee, G. T. Smith, M. Agrawal, T. Leng, and A. K. Ellerbee, “Fabrication of healthy and disease-mimicking retinal phantoms with tapered foveal pits for optical coherence tomography,” J. Biomed. Opt. 20(8), 085004 (2015).
[Crossref]

Leung, C. K. S.

C. Y. L. Cheung, C. K. S. Leung, D. Lin, C.-P. Pang, and D. S. C. Lam, “Relationship between retinal nerve fiber layer measurement and signal strength in optical coherence tomography,” Ophthalmology 115(8), 1347–1351.e2 (2008).
[Crossref]

Lin, D.

C. Y. L. Cheung, C. K. S. Leung, D. Lin, C.-P. Pang, and D. S. C. Lam, “Relationship between retinal nerve fiber layer measurement and signal strength in optical coherence tomography,” Ophthalmology 115(8), 1347–1351.e2 (2008).
[Crossref]

Liu, X.

J. Huang, X. Liu, Z. Wu, X. Guo, H. Xu, L. Dustin, and S. Sadda, “Macular and retinal nerve fiber layer thickness measurements in normal eyes with the Stratus OCT, the Cirrus HD-OCT, and the Topcon 3D OCT-1000,” J. Glaucoma 20(2), 118–125 (2011).
[Crossref]

Malamos, P.

G. Mylonas, C. Ahlers, P. Malamos, I. Golbaz, G. Deak, C. Schuetze, S. Sacu, and U. Schmidt-Erfurth, “Comparison of retinal thickness measurements and segmentation performance of four different spectral and time domain OCT devices in neovascular age-related macular degeneration,” Br. J. Ophthalmol. 93(11), 1453–1460 (2009).
[Crossref]

Mehregan, D.

Z. Turani, E. Fatemizadeh, Q. Xu, S. Daveluy, D. Mehregan, and M. R. Nasiri Avanaki, “Refractive index correction in optical coherence tomography images of multilayer tissues,” J. Biomed. Opt. 23(07), 1–4 (2018).
[Crossref]

Mourits, M. P.

S. Darma, P. H. B. Kok, T. J. T. P. van den Berg, M. D. Abràmoff, D. J. Faber, C. A. Hulsman, F. Zantvoord, M. P. Mourits, R. O. Schlingemann, and F. D. Verbraak, “Optical density filters modeling media opacities cause decreased SD-OCT retinal layer thickness measurements with inter- and intra-individual variation,” Acta Ophthalmol. 93(4), 355–361 (2015).
[Crossref]

P. H. B. Kok, T. J. T. P. van den Berg, H. W. van Dijk, M. Stehouwer, I. J. E. van der Meulen, M. P. Mourits, and F. D. Verbraak, “The relationship between the optical density of cataract and its influence on retinal nerve fibre layer thickness measured with spectral domain optical coherence tomography,” Acta Ophthalmol. 91(5), 418–424 (2013).
[Crossref]

Murthy, R. K.

S. Grover, R. K. Murthy, V. S. Brar, and K. V. Chalam, “Comparison of Retinal Thickness in Normal Eyes Using Stratus and Spectralis Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 51(5), 2644 (2010).
[Crossref]

Mylonas, G.

G. Mylonas, C. Ahlers, P. Malamos, I. Golbaz, G. Deak, C. Schuetze, S. Sacu, and U. Schmidt-Erfurth, “Comparison of retinal thickness measurements and segmentation performance of four different spectral and time domain OCT devices in neovascular age-related macular degeneration,” Br. J. Ophthalmol. 93(11), 1453–1460 (2009).
[Crossref]

Nasiri Avanaki, M. R.

Z. Turani, E. Fatemizadeh, Q. Xu, S. Daveluy, D. Mehregan, and M. R. Nasiri Avanaki, “Refractive index correction in optical coherence tomography images of multilayer tissues,” J. Biomed. Opt. 23(07), 1–4 (2018).
[Crossref]

Nassif, N.

Natividad, M.

B. B. Tan, M. Natividad, K.-C. Chua, and L. W. Yip, “Comparison of retinal nerve fiber layer measurement between 2 spectral domain OCT instruments,” J. Glaucoma 21(4), 266–273 (2012).
[Crossref]

Nguyen, Q. D.

J. Baxi, W. Calhoun, Y. J. Sepah, D. X. Hammer, I. Ilev, T. Joshua Pfefer, Q. D. Nguyen, and A. Agrawal, “Retina-simulating phantom for optical coherence tomography,” J. Biomed. Opt. 19(2), 021106 (2013).
[Crossref]

Palmowski-Wolfe, A. M.

L. M. Brandao, A. A. Ledolter, A. Schötzau, and A. M. Palmowski-Wolfe, “Comparison of Two Different OCT Systems: Retina Layer Segmentation and Impact on Structure-Function Analysis in Glaucoma,” J. Ophthalmol. 2016, 1–9 (2016).
[Crossref]

Pang, C.-P.

C. Y. L. Cheung, C. K. S. Leung, D. Lin, C.-P. Pang, and D. S. C. Lam, “Relationship between retinal nerve fiber layer measurement and signal strength in optical coherence tomography,” Ophthalmology 115(8), 1347–1351.e2 (2008).
[Crossref]

Parisi, V.

G. Savini, P. Barboni, M. Carbonelli, A. Sbreglia, G. Deluigi, and V. Parisi, “Comparison of optic nerve head parameter measurements obtained by time-domain and spectral-domain optical coherence tomography,” J. Glaucoma 22(5), 384–389 (2013).
[Crossref]

G. Savini, P. Barboni, V. Parisi, and M. Carbonelli, “The influence of axial length on retinal nerve fibre layer thickness and optic-disc size measurements by spectral-domain OCT,” Br. J. Ophthalmol. 96(1), 57–61 (2012).
[Crossref]

Park, K. H.

D. W. Lee, J. M. Kim, K. H. Park, C. Y. Choi, and J. G. Cho, “Effect of media opacity on retinal nerve fiber layer thickness measurements by optical coherence tomography,” J. Ophthalmic Vis. Res. 5(3), 151–157 (2010).

Patel, N. B.

N. B. Patel, J. L. Wheat, A. Rodriguez, V. Tran, and R. S. Harwerth, “Agreement between retinal nerve fiber layer measures from Spectralis and Cirrus spectral domain OCT,” Optom. Vis. Sci. 89(5), E652–E666 (2012).
[Crossref]

Patterson, M. S.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref]

Peter Campbell, J.

Pfefer, J.

A. Agrawal, M. A. Gavrielides, S. Weininger, K. Chakrabarti, and J. Pfefer, “Regulatory perspectives and research activities at the FDA on the use of phantoms with in vivo diagnostic devices,” Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurements of Tissue (2008).

Pierro, L.

L. Pierro, M. Gagliardi, L. Iuliano, A. Ambrosi, and F. Bandello, “Retinal nerve fiber layer thickness reproducibility using seven different OCT instruments,” Invest. Ophthalmol. Vis. Sci. 53(9), 5912–5920 (2012).
[Crossref]

Pogue, B. W.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref]

Prince, J.

P. Bhargava, A. Lang, O. Al-Louzi, A. Carass, J. Prince, P. A. Calabresi, and S. Saidha, “Applying an Open-Source Segmentation Algorithm to Different OCT Devices in Multiple Sclerosis Patients and Healthy Controls: Implications for Clinical Trials,” Mult. Scler. Int. 2015, 1–10 (2015).
[Crossref]

Reddikumar, M.

Rodriguez, A.

N. B. Patel, J. L. Wheat, A. Rodriguez, V. Tran, and R. S. Harwerth, “Agreement between retinal nerve fiber layer measures from Spectralis and Cirrus spectral domain OCT,” Optom. Vis. Sci. 89(5), E652–E666 (2012).
[Crossref]

Rothenbuehler, S. P.

U. E. K. Wolf-Schnurrbusch, L. Ceklic, C. K. Brinkmann, M. E. Iliev, M. Frey, S. P. Rothenbuehler, V. Enzmann, and S. Wolf, “Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments,” Invest. Ophthalmol. Vis. Sci. 50(7), 3432–3437 (2009).
[Crossref]

Sacu, S.

G. Mylonas, C. Ahlers, P. Malamos, I. Golbaz, G. Deak, C. Schuetze, S. Sacu, and U. Schmidt-Erfurth, “Comparison of retinal thickness measurements and segmentation performance of four different spectral and time domain OCT devices in neovascular age-related macular degeneration,” Br. J. Ophthalmol. 93(11), 1453–1460 (2009).
[Crossref]

Sadda, S.

J. Huang, X. Liu, Z. Wu, X. Guo, H. Xu, L. Dustin, and S. Sadda, “Macular and retinal nerve fiber layer thickness measurements in normal eyes with the Stratus OCT, the Cirrus HD-OCT, and the Topcon 3D OCT-1000,” J. Glaucoma 20(2), 118–125 (2011).
[Crossref]

Saidha, S.

P. Bhargava, A. Lang, O. Al-Louzi, A. Carass, J. Prince, P. A. Calabresi, and S. Saidha, “Applying an Open-Source Segmentation Algorithm to Different OCT Devices in Multiple Sclerosis Patients and Healthy Controls: Implications for Clinical Trials,” Mult. Scler. Int. 2015, 1–10 (2015).
[Crossref]

Savini, G.

G. Savini, P. Barboni, M. Carbonelli, A. Sbreglia, G. Deluigi, and V. Parisi, “Comparison of optic nerve head parameter measurements obtained by time-domain and spectral-domain optical coherence tomography,” J. Glaucoma 22(5), 384–389 (2013).
[Crossref]

G. Savini, P. Barboni, V. Parisi, and M. Carbonelli, “The influence of axial length on retinal nerve fibre layer thickness and optic-disc size measurements by spectral-domain OCT,” Br. J. Ophthalmol. 96(1), 57–61 (2012).
[Crossref]

Sbreglia, A.

G. Savini, P. Barboni, M. Carbonelli, A. Sbreglia, G. Deluigi, and V. Parisi, “Comparison of optic nerve head parameter measurements obtained by time-domain and spectral-domain optical coherence tomography,” J. Glaucoma 22(5), 384–389 (2013).
[Crossref]

Schlingemann, R. O.

S. Darma, P. H. B. Kok, T. J. T. P. van den Berg, M. D. Abràmoff, D. J. Faber, C. A. Hulsman, F. Zantvoord, M. P. Mourits, R. O. Schlingemann, and F. D. Verbraak, “Optical density filters modeling media opacities cause decreased SD-OCT retinal layer thickness measurements with inter- and intra-individual variation,” Acta Ophthalmol. 93(4), 355–361 (2015).
[Crossref]

Schmidt-Erfurth, U.

G. Mylonas, C. Ahlers, P. Malamos, I. Golbaz, G. Deak, C. Schuetze, S. Sacu, and U. Schmidt-Erfurth, “Comparison of retinal thickness measurements and segmentation performance of four different spectral and time domain OCT devices in neovascular age-related macular degeneration,” Br. J. Ophthalmol. 93(11), 1453–1460 (2009).
[Crossref]

Schötzau, A.

L. M. Brandao, A. A. Ledolter, A. Schötzau, and A. M. Palmowski-Wolfe, “Comparison of Two Different OCT Systems: Retina Layer Segmentation and Impact on Structure-Function Analysis in Glaucoma,” J. Ophthalmol. 2016, 1–9 (2016).
[Crossref]

Schuetze, C.

G. Mylonas, C. Ahlers, P. Malamos, I. Golbaz, G. Deak, C. Schuetze, S. Sacu, and U. Schmidt-Erfurth, “Comparison of retinal thickness measurements and segmentation performance of four different spectral and time domain OCT devices in neovascular age-related macular degeneration,” Br. J. Ophthalmol. 93(11), 1453–1460 (2009).
[Crossref]

Schuman, J. S.

A. Agrawal, J. Baxi, W. Calhoun, C.-L. Chen, H. Ishikawa, J. S. Schuman, G. Wollstein, and D. X. Hammer, “Optic Nerve Head Measurements With Optical Coherence Tomography: A Phantom-Based Study Reveals Differences Among Clinical Devices,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT413 (2016).
[Crossref]

Sepah, Y. J.

J. Baxi, W. Calhoun, Y. J. Sepah, D. X. Hammer, I. Ilev, T. Joshua Pfefer, Q. D. Nguyen, and A. Agrawal, “Retina-simulating phantom for optical coherence tomography,” J. Biomed. Opt. 19(2), 021106 (2013).
[Crossref]

Smith, G. T.

G. C. F. Lee, G. T. Smith, M. Agrawal, T. Leng, and A. K. Ellerbee, “Fabrication of healthy and disease-mimicking retinal phantoms with tapered foveal pits for optical coherence tomography,” J. Biomed. Opt. 20(8), 085004 (2015).
[Crossref]

Smith, S. D.

S. N. Arthur, S. D. Smith, M. M. Wright, A. L. Grajewski, Q. Wang, J. M. Terry, and M. S. Lee, “Reproducibility and agreement in evaluating retinal nerve fibre layer thickness between Stratus and Spectralis OCT,” Eye 25(2), 192–200 (2011).
[Crossref]

Stehouwer, M.

P. H. B. Kok, T. J. T. P. van den Berg, H. W. van Dijk, M. Stehouwer, I. J. E. van der Meulen, M. P. Mourits, and F. D. Verbraak, “The relationship between the optical density of cataract and its influence on retinal nerve fibre layer thickness measured with spectral domain optical coherence tomography,” Acta Ophthalmol. 91(5), 418–424 (2013).
[Crossref]

Tan, B. B.

B. B. Tan, M. Natividad, K.-C. Chua, and L. W. Yip, “Comparison of retinal nerve fiber layer measurement between 2 spectral domain OCT instruments,” J. Glaucoma 21(4), 266–273 (2012).
[Crossref]

Tearney, G. J.

Terry, J. M.

S. N. Arthur, S. D. Smith, M. M. Wright, A. L. Grajewski, Q. Wang, J. M. Terry, and M. S. Lee, “Reproducibility and agreement in evaluating retinal nerve fibre layer thickness between Stratus and Spectralis OCT,” Eye 25(2), 192–200 (2011).
[Crossref]

Tran, V.

N. B. Patel, J. L. Wheat, A. Rodriguez, V. Tran, and R. S. Harwerth, “Agreement between retinal nerve fiber layer measures from Spectralis and Cirrus spectral domain OCT,” Optom. Vis. Sci. 89(5), E652–E666 (2012).
[Crossref]

Turani, Z.

Z. Turani, E. Fatemizadeh, Q. Xu, S. Daveluy, D. Mehregan, and M. R. Nasiri Avanaki, “Refractive index correction in optical coherence tomography images of multilayer tissues,” J. Biomed. Opt. 23(07), 1–4 (2018).
[Crossref]

van den Berg, T. J. T. P.

S. Darma, P. H. B. Kok, T. J. T. P. van den Berg, M. D. Abràmoff, D. J. Faber, C. A. Hulsman, F. Zantvoord, M. P. Mourits, R. O. Schlingemann, and F. D. Verbraak, “Optical density filters modeling media opacities cause decreased SD-OCT retinal layer thickness measurements with inter- and intra-individual variation,” Acta Ophthalmol. 93(4), 355–361 (2015).
[Crossref]

P. H. B. Kok, T. J. T. P. van den Berg, H. W. van Dijk, M. Stehouwer, I. J. E. van der Meulen, M. P. Mourits, and F. D. Verbraak, “The relationship between the optical density of cataract and its influence on retinal nerve fibre layer thickness measured with spectral domain optical coherence tomography,” Acta Ophthalmol. 91(5), 418–424 (2013).
[Crossref]

van der Meulen, I. J. E.

P. H. B. Kok, T. J. T. P. van den Berg, H. W. van Dijk, M. Stehouwer, I. J. E. van der Meulen, M. P. Mourits, and F. D. Verbraak, “The relationship between the optical density of cataract and its influence on retinal nerve fibre layer thickness measured with spectral domain optical coherence tomography,” Acta Ophthalmol. 91(5), 418–424 (2013).
[Crossref]

van Dijk, H. W.

P. H. B. Kok, T. J. T. P. van den Berg, H. W. van Dijk, M. Stehouwer, I. J. E. van der Meulen, M. P. Mourits, and F. D. Verbraak, “The relationship between the optical density of cataract and its influence on retinal nerve fibre layer thickness measured with spectral domain optical coherence tomography,” Acta Ophthalmol. 91(5), 418–424 (2013).
[Crossref]

van Leeuwen, T. G.

R. de Kinkelder, D. M. de Bruin, F. D. Verbraak, T. G. van Leeuwen, and D. J. Faber, “Comparison of retinal nerve fiber layer thickness measurements by spectral-domain optical coherence tomography systems using a phantom eye model,” J. Biophotonics 6(4), 314–320 (2013).
[Crossref]

Verbraak, F. D.

S. Darma, P. H. B. Kok, T. J. T. P. van den Berg, M. D. Abràmoff, D. J. Faber, C. A. Hulsman, F. Zantvoord, M. P. Mourits, R. O. Schlingemann, and F. D. Verbraak, “Optical density filters modeling media opacities cause decreased SD-OCT retinal layer thickness measurements with inter- and intra-individual variation,” Acta Ophthalmol. 93(4), 355–361 (2015).
[Crossref]

R. de Kinkelder, D. M. de Bruin, F. D. Verbraak, T. G. van Leeuwen, and D. J. Faber, “Comparison of retinal nerve fiber layer thickness measurements by spectral-domain optical coherence tomography systems using a phantom eye model,” J. Biophotonics 6(4), 314–320 (2013).
[Crossref]

P. H. B. Kok, T. J. T. P. van den Berg, H. W. van Dijk, M. Stehouwer, I. J. E. van der Meulen, M. P. Mourits, and F. D. Verbraak, “The relationship between the optical density of cataract and its influence on retinal nerve fibre layer thickness measured with spectral domain optical coherence tomography,” Acta Ophthalmol. 91(5), 418–424 (2013).
[Crossref]

Wang, Q.

S. N. Arthur, S. D. Smith, M. M. Wright, A. L. Grajewski, Q. Wang, J. M. Terry, and M. S. Lee, “Reproducibility and agreement in evaluating retinal nerve fibre layer thickness between Stratus and Spectralis OCT,” Eye 25(2), 192–200 (2011).
[Crossref]

Weininger, S.

A. Agrawal, M. A. Gavrielides, S. Weininger, K. Chakrabarti, and J. Pfefer, “Regulatory perspectives and research activities at the FDA on the use of phantoms with in vivo diagnostic devices,” Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurements of Tissue (2008).

Wheat, J. L.

N. B. Patel, J. L. Wheat, A. Rodriguez, V. Tran, and R. S. Harwerth, “Agreement between retinal nerve fiber layer measures from Spectralis and Cirrus spectral domain OCT,” Optom. Vis. Sci. 89(5), E652–E666 (2012).
[Crossref]

Wilson, D. J.

Wolf, S.

U. E. K. Wolf-Schnurrbusch, L. Ceklic, C. K. Brinkmann, M. E. Iliev, M. Frey, S. P. Rothenbuehler, V. Enzmann, and S. Wolf, “Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments,” Invest. Ophthalmol. Vis. Sci. 50(7), 3432–3437 (2009).
[Crossref]

Wolf-Schnurrbusch, U. E. K.

U. E. K. Wolf-Schnurrbusch, L. Ceklic, C. K. Brinkmann, M. E. Iliev, M. Frey, S. P. Rothenbuehler, V. Enzmann, and S. Wolf, “Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments,” Invest. Ophthalmol. Vis. Sci. 50(7), 3432–3437 (2009).
[Crossref]

Wollstein, G.

A. Agrawal, J. Baxi, W. Calhoun, C.-L. Chen, H. Ishikawa, J. S. Schuman, G. Wollstein, and D. X. Hammer, “Optic Nerve Head Measurements With Optical Coherence Tomography: A Phantom-Based Study Reveals Differences Among Clinical Devices,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT413 (2016).
[Crossref]

Wright, M. M.

S. N. Arthur, S. D. Smith, M. M. Wright, A. L. Grajewski, Q. Wang, J. M. Terry, and M. S. Lee, “Reproducibility and agreement in evaluating retinal nerve fibre layer thickness between Stratus and Spectralis OCT,” Eye 25(2), 192–200 (2011).
[Crossref]

Wu, Z.

J. Huang, X. Liu, Z. Wu, X. Guo, H. Xu, L. Dustin, and S. Sadda, “Macular and retinal nerve fiber layer thickness measurements in normal eyes with the Stratus OCT, the Cirrus HD-OCT, and the Topcon 3D OCT-1000,” J. Glaucoma 20(2), 118–125 (2011).
[Crossref]

Xu, H.

J. Huang, X. Liu, Z. Wu, X. Guo, H. Xu, L. Dustin, and S. Sadda, “Macular and retinal nerve fiber layer thickness measurements in normal eyes with the Stratus OCT, the Cirrus HD-OCT, and the Topcon 3D OCT-1000,” J. Glaucoma 20(2), 118–125 (2011).
[Crossref]

Xu, Q.

Z. Turani, E. Fatemizadeh, Q. Xu, S. Daveluy, D. Mehregan, and M. R. Nasiri Avanaki, “Refractive index correction in optical coherence tomography images of multilayer tissues,” J. Biomed. Opt. 23(07), 1–4 (2018).
[Crossref]

Yip, L. W.

B. B. Tan, M. Natividad, K.-C. Chua, and L. W. Yip, “Comparison of retinal nerve fiber layer measurement between 2 spectral domain OCT instruments,” J. Glaucoma 21(4), 266–273 (2012).
[Crossref]

Yun, S. H.

Zantvoord, F.

S. Darma, P. H. B. Kok, T. J. T. P. van den Berg, M. D. Abràmoff, D. J. Faber, C. A. Hulsman, F. Zantvoord, M. P. Mourits, R. O. Schlingemann, and F. D. Verbraak, “Optical density filters modeling media opacities cause decreased SD-OCT retinal layer thickness measurements with inter- and intra-individual variation,” Acta Ophthalmol. 93(4), 355–361 (2015).
[Crossref]

Zhang, M.

Acta Ophthalmol. (2)

P. H. B. Kok, T. J. T. P. van den Berg, H. W. van Dijk, M. Stehouwer, I. J. E. van der Meulen, M. P. Mourits, and F. D. Verbraak, “The relationship between the optical density of cataract and its influence on retinal nerve fibre layer thickness measured with spectral domain optical coherence tomography,” Acta Ophthalmol. 91(5), 418–424 (2013).
[Crossref]

S. Darma, P. H. B. Kok, T. J. T. P. van den Berg, M. D. Abràmoff, D. J. Faber, C. A. Hulsman, F. Zantvoord, M. P. Mourits, R. O. Schlingemann, and F. D. Verbraak, “Optical density filters modeling media opacities cause decreased SD-OCT retinal layer thickness measurements with inter- and intra-individual variation,” Acta Ophthalmol. 93(4), 355–361 (2015).
[Crossref]

Biomed. Opt. Express (2)

Br. J. Ophthalmol. (2)

G. Savini, P. Barboni, V. Parisi, and M. Carbonelli, “The influence of axial length on retinal nerve fibre layer thickness and optic-disc size measurements by spectral-domain OCT,” Br. J. Ophthalmol. 96(1), 57–61 (2012).
[Crossref]

G. Mylonas, C. Ahlers, P. Malamos, I. Golbaz, G. Deak, C. Schuetze, S. Sacu, and U. Schmidt-Erfurth, “Comparison of retinal thickness measurements and segmentation performance of four different spectral and time domain OCT devices in neovascular age-related macular degeneration,” Br. J. Ophthalmol. 93(11), 1453–1460 (2009).
[Crossref]

Eye (1)

S. N. Arthur, S. D. Smith, M. M. Wright, A. L. Grajewski, Q. Wang, J. M. Terry, and M. S. Lee, “Reproducibility and agreement in evaluating retinal nerve fibre layer thickness between Stratus and Spectralis OCT,” Eye 25(2), 192–200 (2011).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (4)

S. Grover, R. K. Murthy, V. S. Brar, and K. V. Chalam, “Comparison of Retinal Thickness in Normal Eyes Using Stratus and Spectralis Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 51(5), 2644 (2010).
[Crossref]

U. E. K. Wolf-Schnurrbusch, L. Ceklic, C. K. Brinkmann, M. E. Iliev, M. Frey, S. P. Rothenbuehler, V. Enzmann, and S. Wolf, “Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments,” Invest. Ophthalmol. Vis. Sci. 50(7), 3432–3437 (2009).
[Crossref]

A. Agrawal, J. Baxi, W. Calhoun, C.-L. Chen, H. Ishikawa, J. S. Schuman, G. Wollstein, and D. X. Hammer, “Optic Nerve Head Measurements With Optical Coherence Tomography: A Phantom-Based Study Reveals Differences Among Clinical Devices,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT413 (2016).
[Crossref]

L. Pierro, M. Gagliardi, L. Iuliano, A. Ambrosi, and F. Bandello, “Retinal nerve fiber layer thickness reproducibility using seven different OCT instruments,” Invest. Ophthalmol. Vis. Sci. 53(9), 5912–5920 (2012).
[Crossref]

J. Biomed. Opt. (4)

Z. Turani, E. Fatemizadeh, Q. Xu, S. Daveluy, D. Mehregan, and M. R. Nasiri Avanaki, “Refractive index correction in optical coherence tomography images of multilayer tissues,” J. Biomed. Opt. 23(07), 1–4 (2018).
[Crossref]

J. Baxi, W. Calhoun, Y. J. Sepah, D. X. Hammer, I. Ilev, T. Joshua Pfefer, Q. D. Nguyen, and A. Agrawal, “Retina-simulating phantom for optical coherence tomography,” J. Biomed. Opt. 19(2), 021106 (2013).
[Crossref]

G. C. F. Lee, G. T. Smith, M. Agrawal, T. Leng, and A. K. Ellerbee, “Fabrication of healthy and disease-mimicking retinal phantoms with tapered foveal pits for optical coherence tomography,” J. Biomed. Opt. 20(8), 085004 (2015).
[Crossref]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref]

J. Biophotonics (1)

R. de Kinkelder, D. M. de Bruin, F. D. Verbraak, T. G. van Leeuwen, and D. J. Faber, “Comparison of retinal nerve fiber layer thickness measurements by spectral-domain optical coherence tomography systems using a phantom eye model,” J. Biophotonics 6(4), 314–320 (2013).
[Crossref]

J. Glaucoma (3)

G. Savini, P. Barboni, M. Carbonelli, A. Sbreglia, G. Deluigi, and V. Parisi, “Comparison of optic nerve head parameter measurements obtained by time-domain and spectral-domain optical coherence tomography,” J. Glaucoma 22(5), 384–389 (2013).
[Crossref]

B. B. Tan, M. Natividad, K.-C. Chua, and L. W. Yip, “Comparison of retinal nerve fiber layer measurement between 2 spectral domain OCT instruments,” J. Glaucoma 21(4), 266–273 (2012).
[Crossref]

J. Huang, X. Liu, Z. Wu, X. Guo, H. Xu, L. Dustin, and S. Sadda, “Macular and retinal nerve fiber layer thickness measurements in normal eyes with the Stratus OCT, the Cirrus HD-OCT, and the Topcon 3D OCT-1000,” J. Glaucoma 20(2), 118–125 (2011).
[Crossref]

J. Ophthalmic Vis. Res. (2)

D. W. Lee, J. M. Kim, K. H. Park, C. Y. Choi, and J. G. Cho, “Effect of media opacity on retinal nerve fiber layer thickness measurements by optical coherence tomography,” J. Ophthalmic Vis. Res. 5(3), 151–157 (2010).

H. Faghihi, F. Hajizadeh, H. Hashemi, and M. Khabazkhoob, “Agreement of two different spectral domain optical coherence tomography instruments for retinal nerve fiber layer measurements,” J. Ophthalmic Vis. Res. 9(1), 31–37 (2014).

J. Ophthalmol. (1)

L. M. Brandao, A. A. Ledolter, A. Schötzau, and A. M. Palmowski-Wolfe, “Comparison of Two Different OCT Systems: Retina Layer Segmentation and Impact on Structure-Function Analysis in Glaucoma,” J. Ophthalmol. 2016, 1–9 (2016).
[Crossref]

Mult. Scler. Int. (1)

P. Bhargava, A. Lang, O. Al-Louzi, A. Carass, J. Prince, P. A. Calabresi, and S. Saidha, “Applying an Open-Source Segmentation Algorithm to Different OCT Devices in Multiple Sclerosis Patients and Healthy Controls: Implications for Clinical Trials,” Mult. Scler. Int. 2015, 1–10 (2015).
[Crossref]

Ophthalmology (1)

C. Y. L. Cheung, C. K. S. Leung, D. Lin, C.-P. Pang, and D. S. C. Lam, “Relationship between retinal nerve fiber layer measurement and signal strength in optical coherence tomography,” Ophthalmology 115(8), 1347–1351.e2 (2008).
[Crossref]

Opt. Lett. (1)

Optom. Vis. Sci. (1)

N. B. Patel, J. L. Wheat, A. Rodriguez, V. Tran, and R. S. Harwerth, “Agreement between retinal nerve fiber layer measures from Spectralis and Cirrus spectral domain OCT,” Optom. Vis. Sci. 89(5), E652–E666 (2012).
[Crossref]

Other (2)

A. Agrawal, M. A. Gavrielides, S. Weininger, K. Chakrabarti, and J. Pfefer, “Regulatory perspectives and research activities at the FDA on the use of phantoms with in vivo diagnostic devices,” Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurements of Tissue (2008).

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, 2015), Chap. 5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. A) Model eye in front of one of the Canon OCT. B) Fundus photograph from the model eye used for the correct positioning of the eye. Red and blue lines show vertical and horizontal B-scan imaging direction, respectively. C) B-scan obtained with Canon OCT. Arrow indicates the primary layer of interest; vertical blue lines depict the size of the analyzed area. D) B-scan acquired with Heidelberg Engineering Spectralis 1 showing hyperreflectivity at the center of the imaged area.
Fig. 2.
Fig. 2. A) A-scan from log-scale values with the 50 µm layer marked. B) Corresponding first derivative. Peaks corresponding to the edges of the 50 µm layer are marked with red circles. The layer thickness was defined as the distance between these two peaks. C) A-scan from linear-scale values and D) corresponding first derivative. Data from HE Spectralis 1.
Fig. 3.
Fig. 3. B-scans from the phantom eye measured using different OCT devices and different optical densities (OD). All scans were cropped to show the same area of interest. Normal image size for each device is described in Table 1.

Tables (2)

Tables Icon

Table 1. Device specifics

Tables Icon

Table 2. Layer thicknesses obtained from the data acquired with the 11 OCT devices

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I l i n e a r ( i , j ) = 10 I log ( i , j ) 255 5
I l i n e a r ( i , j ) = 6.88 × 10 7 × 10 I log ( i , j ) 800