Abstract

Fluorescent observation of cells generally suffers from the limited axial resolution due to the elongated point spread function of the microscope optics. Consequently, three-dimensional imaging results in axial resolution that is several times worse than the transversal. The optical solutions to this problem usually require complicated optics and extreme spatial stability. A straightforward way to eliminate anisotropic resolution is to fuse images recorded from multiple viewing directions achieved mostly by the mechanical rotation of the entire sample. In the presented approach, multiview imaging of single cells is implemented by rotating them around an axis perpendicular to the optical axis by means of holographic optical tweezers. For this, the cells are indirectly trapped and manipulated with special microtools made with two-photon polymerization. The cell is firmly attached to the microtool and is precisely manipulated with 6 degrees of freedom. The total control over the cells' position allows for its multiview fluorescence imaging from arbitrarily selected directions. The image stacks obtained this way are combined into one 3D image array with a multiview image processing pipeline resulting in isotropic optical resolution that approaches the lateral diffraction limit. The presented tool and manipulation scheme can be readily applied in various microscope platforms.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Surface-modified complex SU-8 microstructures for indirect optical manipulation of single cells

Badri L. Aekbote, Tamás Fekete, Jaroslaw Jacak, Gaszton Vizsnyiczai, Pál Ormos, and Lóránd Kelemen
Biomed. Opt. Express 7(1) 45-56 (2016)

Optical manipulation in combination with multiphoton microscopy for single-cell studies

Mattias Goksör, Jonas Enger, and Dag Hanstorp
Appl. Opt. 43(25) 4831-4837 (2004)

Multiple imaging axis microscopy improves resolution for thick-sample applications

Jim Swoger, Jan Huisken, and Ernst H. K. Stelzer
Opt. Lett. 28(18) 1654-1656 (2003)

References

  • View by:
  • |
  • |
  • |

  1. E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).
    [Crossref]
  2. J. C. Meiners and S. R. Quake, “Femtonewton force spectroscopy of single extended DNA molecules,” Phys. Rev. Lett. 84(21), 5014–5017 (2000).
    [Crossref]
  3. I. Brouwer, G. Sitters, A. Candelli, S. J. Heerema, I. Heller, A. J. Melo de, H. Zhang, D. Normanno, M. Modesti, E. J. G. Peterman, and G. J. L. Wuite, “Sliding sleeves of XRCC4-XLF bridge DNA and connect fragments of broken DNA,” Nature 535(7613), 566–569 (2016).
    [Crossref]
  4. S. B. Smith, Y. J. Cui, and C. Bustamante, “Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271(5250), 795–799 (1996).
    [Crossref]
  5. C. Cecconi, E. A. Shank, F. W. Dahlquist, S. Marqusee, and C. Bustamante, “Protein-DNA chimeras for single molecule mechanical folding studies with the optical tweezers,” Eur. Biophys. J. 37(6), 729–738 (2008).
    [Crossref]
  6. M. S. Z. Kellermayer, S. B. Smith, H. L. Granzier, and C. Bustamante, “Folding-unfolding transitions in single titin molecules characterized with laser tweezers,” Science 276(5315), 1112–1116 (1997).
    [Crossref]
  7. J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics - piconewton forces and nanometer steps,” Nature 368(6467), 113–119 (1994).
    [Crossref]
  8. K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993).
    [Crossref]
  9. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared-laser beams,” Nature 330(6150), 769–771 (1987).
    [Crossref]
  10. H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc., Interface 5(24), 671–690 (2008).
    [Crossref]
  11. N. McAlinden, D. G. Glass, O. R. Millington, and A. J. Wright, “Accurate position tracking of optically trapped live cells,” Biomed. Opt. Express 5(4), 1026–1037 (2014).
    [Crossref]
  12. C. Lopez-Quesada, A. S. Fontaine, A. Farre, M. Joseph, J. Selva, G. Egea, M. D. Ludevid, E. Martin-Badosa, and M. Montes-Usategui, “Artificially-induced organelles are optimal targets for optical trapping experiments in living cells,” Biomed. Opt. Express 5(7), 1993–2008 (2014).
    [Crossref]
  13. S. Ayano, Y. Wakamoto, S. Yamashita, and K. Yasuda, “Quantitative measurement of damage caused by 1064-nm wavelength optical trapping of Escherichia coli cells using on-chip single cell cultivation system,” Biochem. Biophys. Res. Commun. 350(3), 678–684 (2006).
    [Crossref]
  14. H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J. 70(3), 1529–1533 (1996).
    [Crossref]
  15. Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
    [Crossref]
  16. K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
    [Crossref]
  17. M. B. Rasmussen, L. B. Oddershede, and H. Siegumfeldt, “Optical tweezers cause physiological damage to Escherichia coli and listeria bacteria,” Appl. Environ. Microbiol. 74(8), 2441–2446 (2008).
    [Crossref]
  18. H. Turlier, D. A. Fedosov, B. Audoly, T. Auth, N. S. Gov, C. Sykes, J. F. Joanny, G. Gompper, and T. Betz, “Equilibrium physics breakdown reveals the active nature of red blood cell flickering,” Nat. Phys. 12(5), 513–519 (2016).
    [Crossref]
  19. D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” EPL 99(5), 58004 (2012).
    [Crossref]
  20. B. L. Aekbote, T. Fekete, J. Jacak, G. Vizsnyiczai, P. Ormos, and L. Kelemen, “Surface-modified complex su-8 microstructures for indirect optical manipulation of single cells,” Biomed. Opt. Express 7(1), 45–56 (2016).
    [Crossref]
  21. G. Vizsnyiczai, B. L. Aekbote, A. Buzas, I. Grexa, P. Ormos, and L. Kelemen, High accuracy indirect optical manipulation of live cells with functionalized microtools (2016), vol. 9922 of Proceedings of SPIE, p. 992216.
  22. M. Fritzsche, R. A. Fernandes, V. T. Chang, H. Colin-York, M. P. Clausen, J. H. Felce, S. Galiani, C. Erlenkämper, A. M. Santos, J. M. Heddleston, I. Pedroza-Pacheco, D. Waithe, J. B. de la Serna, B. C. Lagerholm, T.-L. Liu, T.-L. Chew, E. Betzig, S. J. Davis, and C. Eggeling, “Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation,” Sci. Adv. 3(6), e1603032 (2017).
    [Crossref]
  23. S. Hell and E. H. K. Stelzer, “Fundamental improvement of resolution with a 4pi-confocal fluorescence microscope using two-photon excitation,” Opt. Commun. 93(5-6), 277–282 (1992).
    [Crossref]
  24. H. Choi, E. Yew, B. Hallacoglu, S. Fantini, C. Sheppard, and P. So, “Improvement of axial resolution and contrast in temporally focused widefield two-photon microscopy with structured light illumination,” Biomed. Opt. Express 4(7), 995–1005 (2013).
    [Crossref]
  25. C. J. R. Sheppard and M. Gu, “Improvement of axial resolution in confocal microscopy using an annular pupil,” Opt. Commun. 84(1-2), 7–13 (1991).
    [Crossref]
  26. N. Siegel and G. Brooker, “Improved axial resolution of finch fluorescence microscopy when combined with spinning disk confocal microscopy,” Opt. Express 22(19), 22298–22307 (2014).
    [Crossref]
  27. R. Heintzmann and C. Cremer, “Axial tomographic confocal fluorescence microscopy,” J. Microsc. 206(1), 7–23 (2002).
    [Crossref]
  28. Y. Chen, A. D. Aguirre, P. L. Hsiung, S. W. Huang, H. Mashimo, J. M. Schmitt, and J. G. Fujimoto, “Effects of axial resolution improvement on optical coherence tomography (OCT) imaging of gastrointestinal tissues,” Opt. Express 16(4), 2469–2485 (2008).
    [Crossref]
  29. L. Kelbauskas, R. Shetty, B. Cao, K.-C. Wang, D. Smith, H. Wang, S.-H. Chao, S. Gangaraju, B. Ashcroft, M. Kritzer, H. Glenn, R. H. Johnson, and D. R. Meldrum, “Optical computed tomography for spatially isotropic four-dimensional imaging of live single cells,” Sci. Adv. 3(12), e1602580 (2017).
    [Crossref]
  30. B. Cao, R. Shetty, D. Smith, L. Kelbauskas, and D. R. Meldrum, “Integrating fluorescence computed tomography with optical sheet illumination for imaging of live single cells,” Opt. Express 26(18), 24020–24030 (2018).
    [Crossref]
  31. M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3d refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv. Sci. 4(2), 1600205 (2017).
    [Crossref]
  32. D. Wolfson, M. Steck, M. Persson, G. McNerney, A. Popovich, M. Goksor, and T. Huser, “Rapid 3D fluorescence imaging of individual optically trapped living immune cells,” J. Biophotonics 8(3), 208–216 (2015).
    [Crossref]
  33. P. J. Shaw, D. A. Agard, Y. Hiraoka, and J. W. Sedat, “Tilted view reconstruction in optical microscopy - 3-dimensional reconstruction of drosophila-melanogaster embryo nuclei,” Biophys. J. 55(1), 101–110 (1989).
    [Crossref]
  34. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
    [Crossref]
  35. U. Krzic, S. Gunther, T. E. Saunders, S. J. Streichan, and L. Hufnagel, “Multiview light-sheet microscope for rapid in toto imaging,” Nat. Methods 9(7), 730–733 (2012).
    [Crossref]
  36. J. Swoger, J. Huisken, and E. H. Stelzer, “Multiple imaging axis microscopy improves resolution for thick-sample applications,” Opt. Lett. 28(18), 1654–1656 (2003).
    [Crossref]
  37. M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles (vol 394, pg 348, 1998),” Nature 395(6702), 621 (1998).
    [Crossref]
  38. A. La Porta and M. Wang, “Optical torque wrench: Angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett. 92(19), 190801 (2004).
    [Crossref]
  39. T. Kolb, S. Albert, M. Haug, and G. Whyte, “Dynamically reconfigurable fibre optical spanner,” Lab Chip 14(6), 1186–1190 (2014).
    [Crossref]
  40. A. Forrester, J. Courtial, and M. Padgett, “Performance of a rotating aperture for spinning and orienting objects in optical tweezers,” J. Mod. Opt. 50(10), 1533–1538 (2003).
    [Crossref]
  41. L. Kelemen, S. Valkai, and P. Ormos, “Integrated optical motor,” Appl. Opt. 45(12), 2777–2780 (2006).
    [Crossref]
  42. P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
    [Crossref]
  43. T. Kolb, S. Albert, M. Haug, and G. Whyte, “Optofluidic rotation of living cells for single-cell tomography,” J. Biophotonics 8(3), 239–246 (2015).
    [Crossref]
  44. G. Vizsnyiczai, L. Kelemen, and P. Ormos, “Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms,” Opt. Express 22(20), 24217–24223 (2014).
    [Crossref]
  45. M. Simons, M. R. Pollard, C. D. Hughes, A. D. Ward, B. Van Houten, M. Towrie, S. W. Botchway, A. W. Parker, and N. M. Kad, “Directly interrogating single quantum dot labelled UvrA2 molecules on DNA tightropes using an optically trapped nanoprobe,” Sci. Rep. 5(1), 18486 (2015).
    [Crossref]
  46. D. Palima, A. R. Banas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Gluckstad, “Wave-guided optical waveguides,” Opt. Express 20(3), 2004–2014 (2012).
    [Crossref]
  47. G. Vizsnyiczai, T. Lestyan, J. Joniova, B. L. Aekbote, A. Strejckova, P. Ormos, P. Miskovsky, L. Kelemen, and G. Bano, “Optically trapped surface-enhanced raman probes prepared by silver photoreduction to 3D microstructures,” Langmuir 31(36), 10087–10093 (2015).
    [Crossref]
  48. R. Di Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15(4), 1913–1922 (2007).
    [Crossref]
  49. T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
    [Crossref]
  50. J. Swoger, P. Verveer, K. Greger, J. Huisken, and E. H. K. Stelzer, “Multi-view image fusion improves resolution in three-dimensional microscopy,” Opt. Express 15(13), 8029–8042 (2007).
    [Crossref]
  51. P. Fei, J. Nie, J. Lee, Y. Ding, S. Li, H. Zhang, M. Hagiwara, T. Yu, T. Segura, C.-M. Ho, D. Zhu, and T. K. Hsiai, “Subvoxel light-sheet microscopy for high-resolution high-throughput volumetric imaging of large biomedical specimens,” Adv. Photonics 1(1), 016002 (2019).
    [Crossref]
  52. M. Habaza, B. Gilboa, Y. Roichman, and N. T. Shaked, “Tomographic phase microscopy with 180° rotation of live cells in suspension by holographic optical tweezers,” Opt. Lett. 40(8), 1881–1884 (2015).
    [Crossref]
  53. Y. Wu, P. Chandris, P. W. Winter, E. Y. Kim, V. Jaumouillé, A. Kumar, M. Guo, J. M. Leung, C. Smith, I. Rey-Suarez, H. Liu, C. M. Waterman, K. S. Ramamurthi, P. J. L. Riviere, and H. Shroff, “Simultaneous multiview capture and fusion improves spatial resolution in wide-field and light-sheet microscopy,” Optica 3(8), 897–910 (2016).
    [Crossref]
  54. K. Greger, J. Swoger, and E. H. K. Stelzer, “Basic building units and properties of a fluorescence single plane illumination microscope,” Rev. Sci. Instrum. 78(2), 023705 (2007).
    [Crossref]

2019 (1)

P. Fei, J. Nie, J. Lee, Y. Ding, S. Li, H. Zhang, M. Hagiwara, T. Yu, T. Segura, C.-M. Ho, D. Zhu, and T. K. Hsiai, “Subvoxel light-sheet microscopy for high-resolution high-throughput volumetric imaging of large biomedical specimens,” Adv. Photonics 1(1), 016002 (2019).
[Crossref]

2018 (1)

2017 (3)

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3d refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv. Sci. 4(2), 1600205 (2017).
[Crossref]

L. Kelbauskas, R. Shetty, B. Cao, K.-C. Wang, D. Smith, H. Wang, S.-H. Chao, S. Gangaraju, B. Ashcroft, M. Kritzer, H. Glenn, R. H. Johnson, and D. R. Meldrum, “Optical computed tomography for spatially isotropic four-dimensional imaging of live single cells,” Sci. Adv. 3(12), e1602580 (2017).
[Crossref]

M. Fritzsche, R. A. Fernandes, V. T. Chang, H. Colin-York, M. P. Clausen, J. H. Felce, S. Galiani, C. Erlenkämper, A. M. Santos, J. M. Heddleston, I. Pedroza-Pacheco, D. Waithe, J. B. de la Serna, B. C. Lagerholm, T.-L. Liu, T.-L. Chew, E. Betzig, S. J. Davis, and C. Eggeling, “Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation,” Sci. Adv. 3(6), e1603032 (2017).
[Crossref]

2016 (4)

B. L. Aekbote, T. Fekete, J. Jacak, G. Vizsnyiczai, P. Ormos, and L. Kelemen, “Surface-modified complex su-8 microstructures for indirect optical manipulation of single cells,” Biomed. Opt. Express 7(1), 45–56 (2016).
[Crossref]

I. Brouwer, G. Sitters, A. Candelli, S. J. Heerema, I. Heller, A. J. Melo de, H. Zhang, D. Normanno, M. Modesti, E. J. G. Peterman, and G. J. L. Wuite, “Sliding sleeves of XRCC4-XLF bridge DNA and connect fragments of broken DNA,” Nature 535(7613), 566–569 (2016).
[Crossref]

H. Turlier, D. A. Fedosov, B. Audoly, T. Auth, N. S. Gov, C. Sykes, J. F. Joanny, G. Gompper, and T. Betz, “Equilibrium physics breakdown reveals the active nature of red blood cell flickering,” Nat. Phys. 12(5), 513–519 (2016).
[Crossref]

Y. Wu, P. Chandris, P. W. Winter, E. Y. Kim, V. Jaumouillé, A. Kumar, M. Guo, J. M. Leung, C. Smith, I. Rey-Suarez, H. Liu, C. M. Waterman, K. S. Ramamurthi, P. J. L. Riviere, and H. Shroff, “Simultaneous multiview capture and fusion improves spatial resolution in wide-field and light-sheet microscopy,” Optica 3(8), 897–910 (2016).
[Crossref]

2015 (5)

M. Habaza, B. Gilboa, Y. Roichman, and N. T. Shaked, “Tomographic phase microscopy with 180° rotation of live cells in suspension by holographic optical tweezers,” Opt. Lett. 40(8), 1881–1884 (2015).
[Crossref]

M. Simons, M. R. Pollard, C. D. Hughes, A. D. Ward, B. Van Houten, M. Towrie, S. W. Botchway, A. W. Parker, and N. M. Kad, “Directly interrogating single quantum dot labelled UvrA2 molecules on DNA tightropes using an optically trapped nanoprobe,” Sci. Rep. 5(1), 18486 (2015).
[Crossref]

G. Vizsnyiczai, T. Lestyan, J. Joniova, B. L. Aekbote, A. Strejckova, P. Ormos, P. Miskovsky, L. Kelemen, and G. Bano, “Optically trapped surface-enhanced raman probes prepared by silver photoreduction to 3D microstructures,” Langmuir 31(36), 10087–10093 (2015).
[Crossref]

T. Kolb, S. Albert, M. Haug, and G. Whyte, “Optofluidic rotation of living cells for single-cell tomography,” J. Biophotonics 8(3), 239–246 (2015).
[Crossref]

D. Wolfson, M. Steck, M. Persson, G. McNerney, A. Popovich, M. Goksor, and T. Huser, “Rapid 3D fluorescence imaging of individual optically trapped living immune cells,” J. Biophotonics 8(3), 208–216 (2015).
[Crossref]

2014 (5)

2013 (1)

2012 (3)

U. Krzic, S. Gunther, T. E. Saunders, S. J. Streichan, and L. Hufnagel, “Multiview light-sheet microscope for rapid in toto imaging,” Nat. Methods 9(7), 730–733 (2012).
[Crossref]

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” EPL 99(5), 58004 (2012).
[Crossref]

D. Palima, A. R. Banas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Gluckstad, “Wave-guided optical waveguides,” Opt. Express 20(3), 2004–2014 (2012).
[Crossref]

2010 (1)

T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

2008 (4)

H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc., Interface 5(24), 671–690 (2008).
[Crossref]

C. Cecconi, E. A. Shank, F. W. Dahlquist, S. Marqusee, and C. Bustamante, “Protein-DNA chimeras for single molecule mechanical folding studies with the optical tweezers,” Eur. Biophys. J. 37(6), 729–738 (2008).
[Crossref]

Y. Chen, A. D. Aguirre, P. L. Hsiung, S. W. Huang, H. Mashimo, J. M. Schmitt, and J. G. Fujimoto, “Effects of axial resolution improvement on optical coherence tomography (OCT) imaging of gastrointestinal tissues,” Opt. Express 16(4), 2469–2485 (2008).
[Crossref]

M. B. Rasmussen, L. B. Oddershede, and H. Siegumfeldt, “Optical tweezers cause physiological damage to Escherichia coli and listeria bacteria,” Appl. Environ. Microbiol. 74(8), 2441–2446 (2008).
[Crossref]

2007 (3)

2006 (2)

L. Kelemen, S. Valkai, and P. Ormos, “Integrated optical motor,” Appl. Opt. 45(12), 2777–2780 (2006).
[Crossref]

S. Ayano, Y. Wakamoto, S. Yamashita, and K. Yasuda, “Quantitative measurement of damage caused by 1064-nm wavelength optical trapping of Escherichia coli cells using on-chip single cell cultivation system,” Biochem. Biophys. Res. Commun. 350(3), 678–684 (2006).
[Crossref]

2005 (1)

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).
[Crossref]

2004 (2)

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref]

A. La Porta and M. Wang, “Optical torque wrench: Angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett. 92(19), 190801 (2004).
[Crossref]

2003 (2)

A. Forrester, J. Courtial, and M. Padgett, “Performance of a rotating aperture for spinning and orienting objects in optical tweezers,” J. Mod. Opt. 50(10), 1533–1538 (2003).
[Crossref]

J. Swoger, J. Huisken, and E. H. Stelzer, “Multiple imaging axis microscopy improves resolution for thick-sample applications,” Opt. Lett. 28(18), 1654–1656 (2003).
[Crossref]

2002 (1)

R. Heintzmann and C. Cremer, “Axial tomographic confocal fluorescence microscopy,” J. Microsc. 206(1), 7–23 (2002).
[Crossref]

2001 (1)

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[Crossref]

2000 (1)

J. C. Meiners and S. R. Quake, “Femtonewton force spectroscopy of single extended DNA molecules,” Phys. Rev. Lett. 84(21), 5014–5017 (2000).
[Crossref]

1999 (1)

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[Crossref]

1998 (1)

M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles (vol 394, pg 348, 1998),” Nature 395(6702), 621 (1998).
[Crossref]

1997 (1)

M. S. Z. Kellermayer, S. B. Smith, H. L. Granzier, and C. Bustamante, “Folding-unfolding transitions in single titin molecules characterized with laser tweezers,” Science 276(5315), 1112–1116 (1997).
[Crossref]

1996 (2)

S. B. Smith, Y. J. Cui, and C. Bustamante, “Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271(5250), 795–799 (1996).
[Crossref]

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J. 70(3), 1529–1533 (1996).
[Crossref]

1995 (1)

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
[Crossref]

1994 (1)

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics - piconewton forces and nanometer steps,” Nature 368(6467), 113–119 (1994).
[Crossref]

1993 (1)

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993).
[Crossref]

1992 (1)

S. Hell and E. H. K. Stelzer, “Fundamental improvement of resolution with a 4pi-confocal fluorescence microscope using two-photon excitation,” Opt. Commun. 93(5-6), 277–282 (1992).
[Crossref]

1991 (1)

C. J. R. Sheppard and M. Gu, “Improvement of axial resolution in confocal microscopy using an annular pupil,” Opt. Commun. 84(1-2), 7–13 (1991).
[Crossref]

1989 (1)

P. J. Shaw, D. A. Agard, Y. Hiraoka, and J. W. Sedat, “Tilted view reconstruction in optical microscopy - 3-dimensional reconstruction of drosophila-melanogaster embryo nuclei,” Biophys. J. 55(1), 101–110 (1989).
[Crossref]

1987 (1)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared-laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref]

Abbondanzieri, E. A.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).
[Crossref]

Aekbote, B. L.

B. L. Aekbote, T. Fekete, J. Jacak, G. Vizsnyiczai, P. Ormos, and L. Kelemen, “Surface-modified complex su-8 microstructures for indirect optical manipulation of single cells,” Biomed. Opt. Express 7(1), 45–56 (2016).
[Crossref]

G. Vizsnyiczai, T. Lestyan, J. Joniova, B. L. Aekbote, A. Strejckova, P. Ormos, P. Miskovsky, L. Kelemen, and G. Bano, “Optically trapped surface-enhanced raman probes prepared by silver photoreduction to 3D microstructures,” Langmuir 31(36), 10087–10093 (2015).
[Crossref]

G. Vizsnyiczai, B. L. Aekbote, A. Buzas, I. Grexa, P. Ormos, and L. Kelemen, High accuracy indirect optical manipulation of live cells with functionalized microtools (2016), vol. 9922 of Proceedings of SPIE, p. 992216.

Agard, D. A.

P. J. Shaw, D. A. Agard, Y. Hiraoka, and J. W. Sedat, “Tilted view reconstruction in optical microscopy - 3-dimensional reconstruction of drosophila-melanogaster embryo nuclei,” Biophys. J. 55(1), 101–110 (1989).
[Crossref]

Aguirre, A. D.

Albert, S.

T. Kolb, S. Albert, M. Haug, and G. Whyte, “Optofluidic rotation of living cells for single-cell tomography,” J. Biophotonics 8(3), 239–246 (2015).
[Crossref]

T. Kolb, S. Albert, M. Haug, and G. Whyte, “Dynamically reconfigurable fibre optical spanner,” Lab Chip 14(6), 1186–1190 (2014).
[Crossref]

Ashcroft, B.

L. Kelbauskas, R. Shetty, B. Cao, K.-C. Wang, D. Smith, H. Wang, S.-H. Chao, S. Gangaraju, B. Ashcroft, M. Kritzer, H. Glenn, R. H. Johnson, and D. R. Meldrum, “Optical computed tomography for spatially isotropic four-dimensional imaging of live single cells,” Sci. Adv. 3(12), e1602580 (2017).
[Crossref]

Ashkin, A.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared-laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref]

Audoly, B.

H. Turlier, D. A. Fedosov, B. Audoly, T. Auth, N. S. Gov, C. Sykes, J. F. Joanny, G. Gompper, and T. Betz, “Equilibrium physics breakdown reveals the active nature of red blood cell flickering,” Nat. Phys. 12(5), 513–519 (2016).
[Crossref]

Auth, T.

H. Turlier, D. A. Fedosov, B. Audoly, T. Auth, N. S. Gov, C. Sykes, J. F. Joanny, G. Gompper, and T. Betz, “Equilibrium physics breakdown reveals the active nature of red blood cell flickering,” Nat. Phys. 12(5), 513–519 (2016).
[Crossref]

Ayano, S.

S. Ayano, Y. Wakamoto, S. Yamashita, and K. Yasuda, “Quantitative measurement of damage caused by 1064-nm wavelength optical trapping of Escherichia coli cells using on-chip single cell cultivation system,” Biochem. Biophys. Res. Commun. 350(3), 678–684 (2006).
[Crossref]

Banas, A. R.

Bano, G.

G. Vizsnyiczai, T. Lestyan, J. Joniova, B. L. Aekbote, A. Strejckova, P. Ormos, P. Miskovsky, L. Kelemen, and G. Bano, “Optically trapped surface-enhanced raman probes prepared by silver photoreduction to 3D microstructures,” Langmuir 31(36), 10087–10093 (2015).
[Crossref]

Barnea, I.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3d refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv. Sci. 4(2), 1600205 (2017).
[Crossref]

Bergman, K.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[Crossref]

Berns, M. W.

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J. 70(3), 1529–1533 (1996).
[Crossref]

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
[Crossref]

Betz, T.

H. Turlier, D. A. Fedosov, B. Audoly, T. Auth, N. S. Gov, C. Sykes, J. F. Joanny, G. Gompper, and T. Betz, “Equilibrium physics breakdown reveals the active nature of red blood cell flickering,” Nat. Phys. 12(5), 513–519 (2016).
[Crossref]

Betzig, E.

M. Fritzsche, R. A. Fernandes, V. T. Chang, H. Colin-York, M. P. Clausen, J. H. Felce, S. Galiani, C. Erlenkämper, A. M. Santos, J. M. Heddleston, I. Pedroza-Pacheco, D. Waithe, J. B. de la Serna, B. C. Lagerholm, T.-L. Liu, T.-L. Chew, E. Betzig, S. J. Davis, and C. Eggeling, “Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation,” Sci. Adv. 3(6), e1603032 (2017).
[Crossref]

Block, S. M.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).
[Crossref]

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[Crossref]

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993).
[Crossref]

Botchway, S. W.

M. Simons, M. R. Pollard, C. D. Hughes, A. D. Ward, B. Van Houten, M. Towrie, S. W. Botchway, A. W. Parker, and N. M. Kad, “Directly interrogating single quantum dot labelled UvrA2 molecules on DNA tightropes using an optically trapped nanoprobe,” Sci. Rep. 5(1), 18486 (2015).
[Crossref]

Bowman, R.

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” EPL 99(5), 58004 (2012).
[Crossref]

Brooker, G.

Brouwer, I.

I. Brouwer, G. Sitters, A. Candelli, S. J. Heerema, I. Heller, A. J. Melo de, H. Zhang, D. Normanno, M. Modesti, E. J. G. Peterman, and G. J. L. Wuite, “Sliding sleeves of XRCC4-XLF bridge DNA and connect fragments of broken DNA,” Nature 535(7613), 566–569 (2016).
[Crossref]

Bustamante, C.

C. Cecconi, E. A. Shank, F. W. Dahlquist, S. Marqusee, and C. Bustamante, “Protein-DNA chimeras for single molecule mechanical folding studies with the optical tweezers,” Eur. Biophys. J. 37(6), 729–738 (2008).
[Crossref]

M. S. Z. Kellermayer, S. B. Smith, H. L. Granzier, and C. Bustamante, “Folding-unfolding transitions in single titin molecules characterized with laser tweezers,” Science 276(5315), 1112–1116 (1997).
[Crossref]

S. B. Smith, Y. J. Cui, and C. Bustamante, “Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271(5250), 795–799 (1996).
[Crossref]

Buzas, A.

G. Vizsnyiczai, B. L. Aekbote, A. Buzas, I. Grexa, P. Ormos, and L. Kelemen, High accuracy indirect optical manipulation of live cells with functionalized microtools (2016), vol. 9922 of Proceedings of SPIE, p. 992216.

Candelli, A.

I. Brouwer, G. Sitters, A. Candelli, S. J. Heerema, I. Heller, A. J. Melo de, H. Zhang, D. Normanno, M. Modesti, E. J. G. Peterman, and G. J. L. Wuite, “Sliding sleeves of XRCC4-XLF bridge DNA and connect fragments of broken DNA,” Nature 535(7613), 566–569 (2016).
[Crossref]

Cao, B.

B. Cao, R. Shetty, D. Smith, L. Kelbauskas, and D. R. Meldrum, “Integrating fluorescence computed tomography with optical sheet illumination for imaging of live single cells,” Opt. Express 26(18), 24020–24030 (2018).
[Crossref]

L. Kelbauskas, R. Shetty, B. Cao, K.-C. Wang, D. Smith, H. Wang, S.-H. Chao, S. Gangaraju, B. Ashcroft, M. Kritzer, H. Glenn, R. H. Johnson, and D. R. Meldrum, “Optical computed tomography for spatially isotropic four-dimensional imaging of live single cells,” Sci. Adv. 3(12), e1602580 (2017).
[Crossref]

Carberry, D. M.

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” EPL 99(5), 58004 (2012).
[Crossref]

Cecconi, C.

C. Cecconi, E. A. Shank, F. W. Dahlquist, S. Marqusee, and C. Bustamante, “Protein-DNA chimeras for single molecule mechanical folding studies with the optical tweezers,” Eur. Biophys. J. 37(6), 729–738 (2008).
[Crossref]

Chadd, E. H.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[Crossref]

Chandris, P.

Chang, V. T.

M. Fritzsche, R. A. Fernandes, V. T. Chang, H. Colin-York, M. P. Clausen, J. H. Felce, S. Galiani, C. Erlenkämper, A. M. Santos, J. M. Heddleston, I. Pedroza-Pacheco, D. Waithe, J. B. de la Serna, B. C. Lagerholm, T.-L. Liu, T.-L. Chew, E. Betzig, S. J. Davis, and C. Eggeling, “Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation,” Sci. Adv. 3(6), e1603032 (2017).
[Crossref]

Chao, S.-H.

L. Kelbauskas, R. Shetty, B. Cao, K.-C. Wang, D. Smith, H. Wang, S.-H. Chao, S. Gangaraju, B. Ashcroft, M. Kritzer, H. Glenn, R. H. Johnson, and D. R. Meldrum, “Optical computed tomography for spatially isotropic four-dimensional imaging of live single cells,” Sci. Adv. 3(12), e1602580 (2017).
[Crossref]

Chapman, C. F.

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
[Crossref]

Chen, Y.

Cheng, D. K.

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
[Crossref]

Chew, T.-L.

M. Fritzsche, R. A. Fernandes, V. T. Chang, H. Colin-York, M. P. Clausen, J. H. Felce, S. Galiani, C. Erlenkämper, A. M. Santos, J. M. Heddleston, I. Pedroza-Pacheco, D. Waithe, J. B. de la Serna, B. C. Lagerholm, T.-L. Liu, T.-L. Chew, E. Betzig, S. J. Davis, and C. Eggeling, “Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation,” Sci. Adv. 3(6), e1603032 (2017).
[Crossref]

Choi, H.

Cizmar, T.

T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

Clausen, M. P.

M. Fritzsche, R. A. Fernandes, V. T. Chang, H. Colin-York, M. P. Clausen, J. H. Felce, S. Galiani, C. Erlenkämper, A. M. Santos, J. M. Heddleston, I. Pedroza-Pacheco, D. Waithe, J. B. de la Serna, B. C. Lagerholm, T.-L. Liu, T.-L. Chew, E. Betzig, S. J. Davis, and C. Eggeling, “Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation,” Sci. Adv. 3(6), e1603032 (2017).
[Crossref]

Colin-York, H.

M. Fritzsche, R. A. Fernandes, V. T. Chang, H. Colin-York, M. P. Clausen, J. H. Felce, S. Galiani, C. Erlenkämper, A. M. Santos, J. M. Heddleston, I. Pedroza-Pacheco, D. Waithe, J. B. de la Serna, B. C. Lagerholm, T.-L. Liu, T.-L. Chew, E. Betzig, S. J. Davis, and C. Eggeling, “Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation,” Sci. Adv. 3(6), e1603032 (2017).
[Crossref]

Courtial, J.

A. Forrester, J. Courtial, and M. Padgett, “Performance of a rotating aperture for spinning and orienting objects in optical tweezers,” J. Mod. Opt. 50(10), 1533–1538 (2003).
[Crossref]

Cremer, C.

R. Heintzmann and C. Cremer, “Axial tomographic confocal fluorescence microscopy,” J. Microsc. 206(1), 7–23 (2002).
[Crossref]

Cui, Y. J.

S. B. Smith, Y. J. Cui, and C. Bustamante, “Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271(5250), 795–799 (1996).
[Crossref]

Dahlquist, F. W.

C. Cecconi, E. A. Shank, F. W. Dahlquist, S. Marqusee, and C. Bustamante, “Protein-DNA chimeras for single molecule mechanical folding studies with the optical tweezers,” Eur. Biophys. J. 37(6), 729–738 (2008).
[Crossref]

Dardikman, G.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3d refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv. Sci. 4(2), 1600205 (2017).
[Crossref]

Davis, S. J.

M. Fritzsche, R. A. Fernandes, V. T. Chang, H. Colin-York, M. P. Clausen, J. H. Felce, S. Galiani, C. Erlenkämper, A. M. Santos, J. M. Heddleston, I. Pedroza-Pacheco, D. Waithe, J. B. de la Serna, B. C. Lagerholm, T.-L. Liu, T.-L. Chew, E. Betzig, S. J. Davis, and C. Eggeling, “Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation,” Sci. Adv. 3(6), e1603032 (2017).
[Crossref]

de la Serna, J. B.

M. Fritzsche, R. A. Fernandes, V. T. Chang, H. Colin-York, M. P. Clausen, J. H. Felce, S. Galiani, C. Erlenkämper, A. M. Santos, J. M. Heddleston, I. Pedroza-Pacheco, D. Waithe, J. B. de la Serna, B. C. Lagerholm, T.-L. Liu, T.-L. Chew, E. Betzig, S. J. Davis, and C. Eggeling, “Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation,” Sci. Adv. 3(6), e1603032 (2017).
[Crossref]

Del Bene, F.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref]

Dholakia, K.

T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

Di Leonardo, R.

Ding, Y.

P. Fei, J. Nie, J. Lee, Y. Ding, S. Li, H. Zhang, M. Hagiwara, T. Yu, T. Segura, C.-M. Ho, D. Zhu, and T. K. Hsiai, “Subvoxel light-sheet microscopy for high-resolution high-throughput volumetric imaging of large biomedical specimens,” Adv. Photonics 1(1), 016002 (2019).
[Crossref]

Duschl, C.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3d refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv. Sci. 4(2), 1600205 (2017).
[Crossref]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared-laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref]

Egea, G.

Eggeling, C.

M. Fritzsche, R. A. Fernandes, V. T. Chang, H. Colin-York, M. P. Clausen, J. H. Felce, S. Galiani, C. Erlenkämper, A. M. Santos, J. M. Heddleston, I. Pedroza-Pacheco, D. Waithe, J. B. de la Serna, B. C. Lagerholm, T.-L. Liu, T.-L. Chew, E. Betzig, S. J. Davis, and C. Eggeling, “Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation,” Sci. Adv. 3(6), e1603032 (2017).
[Crossref]

Erlenkämper, C.

M. Fritzsche, R. A. Fernandes, V. T. Chang, H. Colin-York, M. P. Clausen, J. H. Felce, S. Galiani, C. Erlenkämper, A. M. Santos, J. M. Heddleston, I. Pedroza-Pacheco, D. Waithe, J. B. de la Serna, B. C. Lagerholm, T.-L. Liu, T.-L. Chew, E. Betzig, S. J. Davis, and C. Eggeling, “Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation,” Sci. Adv. 3(6), e1603032 (2017).
[Crossref]

Fantini, S.

Farre, A.

Fedosov, D. A.

H. Turlier, D. A. Fedosov, B. Audoly, T. Auth, N. S. Gov, C. Sykes, J. F. Joanny, G. Gompper, and T. Betz, “Equilibrium physics breakdown reveals the active nature of red blood cell flickering,” Nat. Phys. 12(5), 513–519 (2016).
[Crossref]

Fei, P.

P. Fei, J. Nie, J. Lee, Y. Ding, S. Li, H. Zhang, M. Hagiwara, T. Yu, T. Segura, C.-M. Ho, D. Zhu, and T. K. Hsiai, “Subvoxel light-sheet microscopy for high-resolution high-throughput volumetric imaging of large biomedical specimens,” Adv. Photonics 1(1), 016002 (2019).
[Crossref]

Fekete, T.

Felce, J. H.

M. Fritzsche, R. A. Fernandes, V. T. Chang, H. Colin-York, M. P. Clausen, J. H. Felce, S. Galiani, C. Erlenkämper, A. M. Santos, J. M. Heddleston, I. Pedroza-Pacheco, D. Waithe, J. B. de la Serna, B. C. Lagerholm, T.-L. Liu, T.-L. Chew, E. Betzig, S. J. Davis, and C. Eggeling, “Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation,” Sci. Adv. 3(6), e1603032 (2017).
[Crossref]

Fernandes, R. A.

M. Fritzsche, R. A. Fernandes, V. T. Chang, H. Colin-York, M. P. Clausen, J. H. Felce, S. Galiani, C. Erlenkämper, A. M. Santos, J. M. Heddleston, I. Pedroza-Pacheco, D. Waithe, J. B. de la Serna, B. C. Lagerholm, T.-L. Liu, T.-L. Chew, E. Betzig, S. J. Davis, and C. Eggeling, “Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation,” Sci. Adv. 3(6), e1603032 (2017).
[Crossref]

Finer, J. T.

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics - piconewton forces and nanometer steps,” Nature 368(6467), 113–119 (1994).
[Crossref]

Fontaine, A. S.

Forrester, A.

A. Forrester, J. Courtial, and M. Padgett, “Performance of a rotating aperture for spinning and orienting objects in optical tweezers,” J. Mod. Opt. 50(10), 1533–1538 (2003).
[Crossref]

Friese, M.

M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles (vol 394, pg 348, 1998),” Nature 395(6702), 621 (1998).
[Crossref]

Fritzsche, M.

M. Fritzsche, R. A. Fernandes, V. T. Chang, H. Colin-York, M. P. Clausen, J. H. Felce, S. Galiani, C. Erlenkämper, A. M. Santos, J. M. Heddleston, I. Pedroza-Pacheco, D. Waithe, J. B. de la Serna, B. C. Lagerholm, T.-L. Liu, T.-L. Chew, E. Betzig, S. J. Davis, and C. Eggeling, “Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation,” Sci. Adv. 3(6), e1603032 (2017).
[Crossref]

Fujimoto, J. G.

Galajda, P.

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[Crossref]

Galiani, S.

M. Fritzsche, R. A. Fernandes, V. T. Chang, H. Colin-York, M. P. Clausen, J. H. Felce, S. Galiani, C. Erlenkämper, A. M. Santos, J. M. Heddleston, I. Pedroza-Pacheco, D. Waithe, J. B. de la Serna, B. C. Lagerholm, T.-L. Liu, T.-L. Chew, E. Betzig, S. J. Davis, and C. Eggeling, “Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation,” Sci. Adv. 3(6), e1603032 (2017).
[Crossref]

Gangaraju, S.

L. Kelbauskas, R. Shetty, B. Cao, K.-C. Wang, D. Smith, H. Wang, S.-H. Chao, S. Gangaraju, B. Ashcroft, M. Kritzer, H. Glenn, R. H. Johnson, and D. R. Meldrum, “Optical computed tomography for spatially isotropic four-dimensional imaging of live single cells,” Sci. Adv. 3(12), e1602580 (2017).
[Crossref]

Gibson, G. M.

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” EPL 99(5), 58004 (2012).
[Crossref]

Gilboa, B.

Glass, D. G.

Glenn, H.

L. Kelbauskas, R. Shetty, B. Cao, K.-C. Wang, D. Smith, H. Wang, S.-H. Chao, S. Gangaraju, B. Ashcroft, M. Kritzer, H. Glenn, R. H. Johnson, and D. R. Meldrum, “Optical computed tomography for spatially isotropic four-dimensional imaging of live single cells,” Sci. Adv. 3(12), e1602580 (2017).
[Crossref]

Gluckstad, J.

Goksor, M.

D. Wolfson, M. Steck, M. Persson, G. McNerney, A. Popovich, M. Goksor, and T. Huser, “Rapid 3D fluorescence imaging of individual optically trapped living immune cells,” J. Biophotonics 8(3), 208–216 (2015).
[Crossref]

Gompper, G.

H. Turlier, D. A. Fedosov, B. Audoly, T. Auth, N. S. Gov, C. Sykes, J. F. Joanny, G. Gompper, and T. Betz, “Equilibrium physics breakdown reveals the active nature of red blood cell flickering,” Nat. Phys. 12(5), 513–519 (2016).
[Crossref]

Gov, N. S.

H. Turlier, D. A. Fedosov, B. Audoly, T. Auth, N. S. Gov, C. Sykes, J. F. Joanny, G. Gompper, and T. Betz, “Equilibrium physics breakdown reveals the active nature of red blood cell flickering,” Nat. Phys. 12(5), 513–519 (2016).
[Crossref]

Granzier, H. L.

M. S. Z. Kellermayer, S. B. Smith, H. L. Granzier, and C. Bustamante, “Folding-unfolding transitions in single titin molecules characterized with laser tweezers,” Science 276(5315), 1112–1116 (1997).
[Crossref]

Greenleaf, W. J.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).
[Crossref]

Greger, K.

J. Swoger, P. Verveer, K. Greger, J. Huisken, and E. H. K. Stelzer, “Multi-view image fusion improves resolution in three-dimensional microscopy,” Opt. Express 15(13), 8029–8042 (2007).
[Crossref]

K. Greger, J. Swoger, and E. H. K. Stelzer, “Basic building units and properties of a fluorescence single plane illumination microscope,” Rev. Sci. Instrum. 78(2), 023705 (2007).
[Crossref]

Grexa, I.

G. Vizsnyiczai, B. L. Aekbote, A. Buzas, I. Grexa, P. Ormos, and L. Kelemen, High accuracy indirect optical manipulation of live cells with functionalized microtools (2016), vol. 9922 of Proceedings of SPIE, p. 992216.

Grieve, J. A.

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” EPL 99(5), 58004 (2012).
[Crossref]

Gu, M.

C. J. R. Sheppard and M. Gu, “Improvement of axial resolution in confocal microscopy using an annular pupil,” Opt. Commun. 84(1-2), 7–13 (1991).
[Crossref]

Guernth-Marschner, C.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3d refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv. Sci. 4(2), 1600205 (2017).
[Crossref]

Gunther, S.

U. Krzic, S. Gunther, T. E. Saunders, S. J. Streichan, and L. Hufnagel, “Multiview light-sheet microscope for rapid in toto imaging,” Nat. Methods 9(7), 730–733 (2012).
[Crossref]

Guo, M.

Habaza, M.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3d refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv. Sci. 4(2), 1600205 (2017).
[Crossref]

M. Habaza, B. Gilboa, Y. Roichman, and N. T. Shaked, “Tomographic phase microscopy with 180° rotation of live cells in suspension by holographic optical tweezers,” Opt. Lett. 40(8), 1881–1884 (2015).
[Crossref]

Hagiwara, M.

P. Fei, J. Nie, J. Lee, Y. Ding, S. Li, H. Zhang, M. Hagiwara, T. Yu, T. Segura, C.-M. Ho, D. Zhu, and T. K. Hsiai, “Subvoxel light-sheet microscopy for high-resolution high-throughput volumetric imaging of large biomedical specimens,” Adv. Photonics 1(1), 016002 (2019).
[Crossref]

Hallacoglu, B.

Hanna, S.

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” EPL 99(5), 58004 (2012).
[Crossref]

Haug, M.

T. Kolb, S. Albert, M. Haug, and G. Whyte, “Optofluidic rotation of living cells for single-cell tomography,” J. Biophotonics 8(3), 239–246 (2015).
[Crossref]

T. Kolb, S. Albert, M. Haug, and G. Whyte, “Dynamically reconfigurable fibre optical spanner,” Lab Chip 14(6), 1186–1190 (2014).
[Crossref]

Heckenberg, N.

M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles (vol 394, pg 348, 1998),” Nature 395(6702), 621 (1998).
[Crossref]

Heddleston, J. M.

M. Fritzsche, R. A. Fernandes, V. T. Chang, H. Colin-York, M. P. Clausen, J. H. Felce, S. Galiani, C. Erlenkämper, A. M. Santos, J. M. Heddleston, I. Pedroza-Pacheco, D. Waithe, J. B. de la Serna, B. C. Lagerholm, T.-L. Liu, T.-L. Chew, E. Betzig, S. J. Davis, and C. Eggeling, “Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation,” Sci. Adv. 3(6), e1603032 (2017).
[Crossref]

Heerema, S. J.

I. Brouwer, G. Sitters, A. Candelli, S. J. Heerema, I. Heller, A. J. Melo de, H. Zhang, D. Normanno, M. Modesti, E. J. G. Peterman, and G. J. L. Wuite, “Sliding sleeves of XRCC4-XLF bridge DNA and connect fragments of broken DNA,” Nature 535(7613), 566–569 (2016).
[Crossref]

Heintzmann, R.

R. Heintzmann and C. Cremer, “Axial tomographic confocal fluorescence microscopy,” J. Microsc. 206(1), 7–23 (2002).
[Crossref]

Hell, S.

S. Hell and E. H. K. Stelzer, “Fundamental improvement of resolution with a 4pi-confocal fluorescence microscope using two-photon excitation,” Opt. Commun. 93(5-6), 277–282 (1992).
[Crossref]

Heller, I.

I. Brouwer, G. Sitters, A. Candelli, S. J. Heerema, I. Heller, A. J. Melo de, H. Zhang, D. Normanno, M. Modesti, E. J. G. Peterman, and G. J. L. Wuite, “Sliding sleeves of XRCC4-XLF bridge DNA and connect fragments of broken DNA,” Nature 535(7613), 566–569 (2016).
[Crossref]

Hiraoka, Y.

P. J. Shaw, D. A. Agard, Y. Hiraoka, and J. W. Sedat, “Tilted view reconstruction in optical microscopy - 3-dimensional reconstruction of drosophila-melanogaster embryo nuclei,” Biophys. J. 55(1), 101–110 (1989).
[Crossref]

Ho, C.-M.

P. Fei, J. Nie, J. Lee, Y. Ding, S. Li, H. Zhang, M. Hagiwara, T. Yu, T. Segura, C.-M. Ho, D. Zhu, and T. K. Hsiai, “Subvoxel light-sheet microscopy for high-resolution high-throughput volumetric imaging of large biomedical specimens,” Adv. Photonics 1(1), 016002 (2019).
[Crossref]

Hsiai, T. K.

P. Fei, J. Nie, J. Lee, Y. Ding, S. Li, H. Zhang, M. Hagiwara, T. Yu, T. Segura, C.-M. Ho, D. Zhu, and T. K. Hsiai, “Subvoxel light-sheet microscopy for high-resolution high-throughput volumetric imaging of large biomedical specimens,” Adv. Photonics 1(1), 016002 (2019).
[Crossref]

Hsiung, P. L.

Huang, S. W.

Hufnagel, L.

U. Krzic, S. Gunther, T. E. Saunders, S. J. Streichan, and L. Hufnagel, “Multiview light-sheet microscope for rapid in toto imaging,” Nat. Methods 9(7), 730–733 (2012).
[Crossref]

Hughes, C. D.

M. Simons, M. R. Pollard, C. D. Hughes, A. D. Ward, B. Van Houten, M. Towrie, S. W. Botchway, A. W. Parker, and N. M. Kad, “Directly interrogating single quantum dot labelled UvrA2 molecules on DNA tightropes using an optically trapped nanoprobe,” Sci. Rep. 5(1), 18486 (2015).
[Crossref]

Huisken, J.

Huser, T.

D. Wolfson, M. Steck, M. Persson, G. McNerney, A. Popovich, M. Goksor, and T. Huser, “Rapid 3D fluorescence imaging of individual optically trapped living immune cells,” J. Biophotonics 8(3), 208–216 (2015).
[Crossref]

Ianni, F.

Jacak, J.

Jaumouillé, V.

Joanny, J. F.

H. Turlier, D. A. Fedosov, B. Audoly, T. Auth, N. S. Gov, C. Sykes, J. F. Joanny, G. Gompper, and T. Betz, “Equilibrium physics breakdown reveals the active nature of red blood cell flickering,” Nat. Phys. 12(5), 513–519 (2016).
[Crossref]

Johnson, R. H.

L. Kelbauskas, R. Shetty, B. Cao, K.-C. Wang, D. Smith, H. Wang, S.-H. Chao, S. Gangaraju, B. Ashcroft, M. Kritzer, H. Glenn, R. H. Johnson, and D. R. Meldrum, “Optical computed tomography for spatially isotropic four-dimensional imaging of live single cells,” Sci. Adv. 3(12), e1602580 (2017).
[Crossref]

Joniova, J.

G. Vizsnyiczai, T. Lestyan, J. Joniova, B. L. Aekbote, A. Strejckova, P. Ormos, P. Miskovsky, L. Kelemen, and G. Bano, “Optically trapped surface-enhanced raman probes prepared by silver photoreduction to 3D microstructures,” Langmuir 31(36), 10087–10093 (2015).
[Crossref]

Joseph, M.

Kad, N. M.

M. Simons, M. R. Pollard, C. D. Hughes, A. D. Ward, B. Van Houten, M. Towrie, S. W. Botchway, A. W. Parker, and N. M. Kad, “Directly interrogating single quantum dot labelled UvrA2 molecules on DNA tightropes using an optically trapped nanoprobe,” Sci. Rep. 5(1), 18486 (2015).
[Crossref]

Kelbauskas, L.

B. Cao, R. Shetty, D. Smith, L. Kelbauskas, and D. R. Meldrum, “Integrating fluorescence computed tomography with optical sheet illumination for imaging of live single cells,” Opt. Express 26(18), 24020–24030 (2018).
[Crossref]

L. Kelbauskas, R. Shetty, B. Cao, K.-C. Wang, D. Smith, H. Wang, S.-H. Chao, S. Gangaraju, B. Ashcroft, M. Kritzer, H. Glenn, R. H. Johnson, and D. R. Meldrum, “Optical computed tomography for spatially isotropic four-dimensional imaging of live single cells,” Sci. Adv. 3(12), e1602580 (2017).
[Crossref]

Kelemen, L.

B. L. Aekbote, T. Fekete, J. Jacak, G. Vizsnyiczai, P. Ormos, and L. Kelemen, “Surface-modified complex su-8 microstructures for indirect optical manipulation of single cells,” Biomed. Opt. Express 7(1), 45–56 (2016).
[Crossref]

G. Vizsnyiczai, T. Lestyan, J. Joniova, B. L. Aekbote, A. Strejckova, P. Ormos, P. Miskovsky, L. Kelemen, and G. Bano, “Optically trapped surface-enhanced raman probes prepared by silver photoreduction to 3D microstructures,” Langmuir 31(36), 10087–10093 (2015).
[Crossref]

G. Vizsnyiczai, L. Kelemen, and P. Ormos, “Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms,” Opt. Express 22(20), 24217–24223 (2014).
[Crossref]

D. Palima, A. R. Banas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Gluckstad, “Wave-guided optical waveguides,” Opt. Express 20(3), 2004–2014 (2012).
[Crossref]

L. Kelemen, S. Valkai, and P. Ormos, “Integrated optical motor,” Appl. Opt. 45(12), 2777–2780 (2006).
[Crossref]

G. Vizsnyiczai, B. L. Aekbote, A. Buzas, I. Grexa, P. Ormos, and L. Kelemen, High accuracy indirect optical manipulation of live cells with functionalized microtools (2016), vol. 9922 of Proceedings of SPIE, p. 992216.

Kellermayer, M. S. Z.

M. S. Z. Kellermayer, S. B. Smith, H. L. Granzier, and C. Bustamante, “Folding-unfolding transitions in single titin molecules characterized with laser tweezers,” Science 276(5315), 1112–1116 (1997).
[Crossref]

Kim, E. Y.

Kimel, S.

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J. 70(3), 1529–1533 (1996).
[Crossref]

Kirschbaum, M.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3d refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv. Sci. 4(2), 1600205 (2017).
[Crossref]

Kolb, T.

T. Kolb, S. Albert, M. Haug, and G. Whyte, “Optofluidic rotation of living cells for single-cell tomography,” J. Biophotonics 8(3), 239–246 (2015).
[Crossref]

T. Kolb, S. Albert, M. Haug, and G. Whyte, “Dynamically reconfigurable fibre optical spanner,” Lab Chip 14(6), 1186–1190 (2014).
[Crossref]

Korenstein, R.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3d refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv. Sci. 4(2), 1600205 (2017).
[Crossref]

Krishnan, P.

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J. 70(3), 1529–1533 (1996).
[Crossref]

Kritzer, M.

L. Kelbauskas, R. Shetty, B. Cao, K.-C. Wang, D. Smith, H. Wang, S.-H. Chao, S. Gangaraju, B. Ashcroft, M. Kritzer, H. Glenn, R. H. Johnson, and D. R. Meldrum, “Optical computed tomography for spatially isotropic four-dimensional imaging of live single cells,” Sci. Adv. 3(12), e1602580 (2017).
[Crossref]

Krzic, U.

U. Krzic, S. Gunther, T. E. Saunders, S. J. Streichan, and L. Hufnagel, “Multiview light-sheet microscope for rapid in toto imaging,” Nat. Methods 9(7), 730–733 (2012).
[Crossref]

Kumar, A.

La Porta, A.

A. La Porta and M. Wang, “Optical torque wrench: Angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett. 92(19), 190801 (2004).
[Crossref]

Lagerholm, B. C.

M. Fritzsche, R. A. Fernandes, V. T. Chang, H. Colin-York, M. P. Clausen, J. H. Felce, S. Galiani, C. Erlenkämper, A. M. Santos, J. M. Heddleston, I. Pedroza-Pacheco, D. Waithe, J. B. de la Serna, B. C. Lagerholm, T.-L. Liu, T.-L. Chew, E. Betzig, S. J. Davis, and C. Eggeling, “Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation,” Sci. Adv. 3(6), e1603032 (2017).
[Crossref]

Landick, R.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).
[Crossref]

Lee, J.

P. Fei, J. Nie, J. Lee, Y. Ding, S. Li, H. Zhang, M. Hagiwara, T. Yu, T. Segura, C.-M. Ho, D. Zhu, and T. K. Hsiai, “Subvoxel light-sheet microscopy for high-resolution high-throughput volumetric imaging of large biomedical specimens,” Adv. Photonics 1(1), 016002 (2019).
[Crossref]

Lestyan, T.

G. Vizsnyiczai, T. Lestyan, J. Joniova, B. L. Aekbote, A. Strejckova, P. Ormos, P. Miskovsky, L. Kelemen, and G. Bano, “Optically trapped surface-enhanced raman probes prepared by silver photoreduction to 3D microstructures,” Langmuir 31(36), 10087–10093 (2015).
[Crossref]

Leung, J. M.

Li, S.

P. Fei, J. Nie, J. Lee, Y. Ding, S. Li, H. Zhang, M. Hagiwara, T. Yu, T. Segura, C.-M. Ho, D. Zhu, and T. K. Hsiai, “Subvoxel light-sheet microscopy for high-resolution high-throughput volumetric imaging of large biomedical specimens,” Adv. Photonics 1(1), 016002 (2019).
[Crossref]

Liang, H.

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J. 70(3), 1529–1533 (1996).
[Crossref]

Liou, G. F.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[Crossref]

Liu, H.

Liu, K. K.

H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc., Interface 5(24), 671–690 (2008).
[Crossref]

Liu, T.-L.

M. Fritzsche, R. A. Fernandes, V. T. Chang, H. Colin-York, M. P. Clausen, J. H. Felce, S. Galiani, C. Erlenkämper, A. M. Santos, J. M. Heddleston, I. Pedroza-Pacheco, D. Waithe, J. B. de la Serna, B. C. Lagerholm, T.-L. Liu, T.-L. Chew, E. Betzig, S. J. Davis, and C. Eggeling, “Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation,” Sci. Adv. 3(6), e1603032 (2017).
[Crossref]

Liu, Y.

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
[Crossref]

Lopez-Quesada, C.

Ludevid, M. D.

Marqusee, S.

C. Cecconi, E. A. Shank, F. W. Dahlquist, S. Marqusee, and C. Bustamante, “Protein-DNA chimeras for single molecule mechanical folding studies with the optical tweezers,” Eur. Biophys. J. 37(6), 729–738 (2008).
[Crossref]

Martin-Badosa, E.

Mashimo, H.

Mazilu, M.

T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

McAlinden, N.

McNerney, G.

D. Wolfson, M. Steck, M. Persson, G. McNerney, A. Popovich, M. Goksor, and T. Huser, “Rapid 3D fluorescence imaging of individual optically trapped living immune cells,” J. Biophotonics 8(3), 208–216 (2015).
[Crossref]

Meiners, J. C.

J. C. Meiners and S. R. Quake, “Femtonewton force spectroscopy of single extended DNA molecules,” Phys. Rev. Lett. 84(21), 5014–5017 (2000).
[Crossref]

Meldrum, D. R.

B. Cao, R. Shetty, D. Smith, L. Kelbauskas, and D. R. Meldrum, “Integrating fluorescence computed tomography with optical sheet illumination for imaging of live single cells,” Opt. Express 26(18), 24020–24030 (2018).
[Crossref]

L. Kelbauskas, R. Shetty, B. Cao, K.-C. Wang, D. Smith, H. Wang, S.-H. Chao, S. Gangaraju, B. Ashcroft, M. Kritzer, H. Glenn, R. H. Johnson, and D. R. Meldrum, “Optical computed tomography for spatially isotropic four-dimensional imaging of live single cells,” Sci. Adv. 3(12), e1602580 (2017).
[Crossref]

Melo de, A. J.

I. Brouwer, G. Sitters, A. Candelli, S. J. Heerema, I. Heller, A. J. Melo de, H. Zhang, D. Normanno, M. Modesti, E. J. G. Peterman, and G. J. L. Wuite, “Sliding sleeves of XRCC4-XLF bridge DNA and connect fragments of broken DNA,” Nature 535(7613), 566–569 (2016).
[Crossref]

Miles, M. J.

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” EPL 99(5), 58004 (2012).
[Crossref]

Millington, O. R.

Miskovsky, P.

G. Vizsnyiczai, T. Lestyan, J. Joniova, B. L. Aekbote, A. Strejckova, P. Ormos, P. Miskovsky, L. Kelemen, and G. Bano, “Optically trapped surface-enhanced raman probes prepared by silver photoreduction to 3D microstructures,” Langmuir 31(36), 10087–10093 (2015).
[Crossref]

Modesti, M.

I. Brouwer, G. Sitters, A. Candelli, S. J. Heerema, I. Heller, A. J. Melo de, H. Zhang, D. Normanno, M. Modesti, E. J. G. Peterman, and G. J. L. Wuite, “Sliding sleeves of XRCC4-XLF bridge DNA and connect fragments of broken DNA,” Nature 535(7613), 566–569 (2016).
[Crossref]

Montes-Usategui, M.

Neuman, K. C.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[Crossref]

Nie, J.

P. Fei, J. Nie, J. Lee, Y. Ding, S. Li, H. Zhang, M. Hagiwara, T. Yu, T. Segura, C.-M. Ho, D. Zhu, and T. K. Hsiai, “Subvoxel light-sheet microscopy for high-resolution high-throughput volumetric imaging of large biomedical specimens,” Adv. Photonics 1(1), 016002 (2019).
[Crossref]

Nieminen, T.

M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles (vol 394, pg 348, 1998),” Nature 395(6702), 621 (1998).
[Crossref]

Normanno, D.

I. Brouwer, G. Sitters, A. Candelli, S. J. Heerema, I. Heller, A. J. Melo de, H. Zhang, D. Normanno, M. Modesti, E. J. G. Peterman, and G. J. L. Wuite, “Sliding sleeves of XRCC4-XLF bridge DNA and connect fragments of broken DNA,” Nature 535(7613), 566–569 (2016).
[Crossref]

Oddershede, L. B.

M. B. Rasmussen, L. B. Oddershede, and H. Siegumfeldt, “Optical tweezers cause physiological damage to Escherichia coli and listeria bacteria,” Appl. Environ. Microbiol. 74(8), 2441–2446 (2008).
[Crossref]

Ormos, P.

B. L. Aekbote, T. Fekete, J. Jacak, G. Vizsnyiczai, P. Ormos, and L. Kelemen, “Surface-modified complex su-8 microstructures for indirect optical manipulation of single cells,” Biomed. Opt. Express 7(1), 45–56 (2016).
[Crossref]

G. Vizsnyiczai, T. Lestyan, J. Joniova, B. L. Aekbote, A. Strejckova, P. Ormos, P. Miskovsky, L. Kelemen, and G. Bano, “Optically trapped surface-enhanced raman probes prepared by silver photoreduction to 3D microstructures,” Langmuir 31(36), 10087–10093 (2015).
[Crossref]

G. Vizsnyiczai, L. Kelemen, and P. Ormos, “Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms,” Opt. Express 22(20), 24217–24223 (2014).
[Crossref]

D. Palima, A. R. Banas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Gluckstad, “Wave-guided optical waveguides,” Opt. Express 20(3), 2004–2014 (2012).
[Crossref]

L. Kelemen, S. Valkai, and P. Ormos, “Integrated optical motor,” Appl. Opt. 45(12), 2777–2780 (2006).
[Crossref]

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[Crossref]

G. Vizsnyiczai, B. L. Aekbote, A. Buzas, I. Grexa, P. Ormos, and L. Kelemen, High accuracy indirect optical manipulation of live cells with functionalized microtools (2016), vol. 9922 of Proceedings of SPIE, p. 992216.

Padgett, M.

A. Forrester, J. Courtial, and M. Padgett, “Performance of a rotating aperture for spinning and orienting objects in optical tweezers,” J. Mod. Opt. 50(10), 1533–1538 (2003).
[Crossref]

Padgett, M. J.

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” EPL 99(5), 58004 (2012).
[Crossref]

Palima, D.

Parker, A. W.

M. Simons, M. R. Pollard, C. D. Hughes, A. D. Ward, B. Van Houten, M. Towrie, S. W. Botchway, A. W. Parker, and N. M. Kad, “Directly interrogating single quantum dot labelled UvrA2 molecules on DNA tightropes using an optically trapped nanoprobe,” Sci. Rep. 5(1), 18486 (2015).
[Crossref]

Pedroza-Pacheco, I.

M. Fritzsche, R. A. Fernandes, V. T. Chang, H. Colin-York, M. P. Clausen, J. H. Felce, S. Galiani, C. Erlenkämper, A. M. Santos, J. M. Heddleston, I. Pedroza-Pacheco, D. Waithe, J. B. de la Serna, B. C. Lagerholm, T.-L. Liu, T.-L. Chew, E. Betzig, S. J. Davis, and C. Eggeling, “Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation,” Sci. Adv. 3(6), e1603032 (2017).
[Crossref]

Persson, M.

D. Wolfson, M. Steck, M. Persson, G. McNerney, A. Popovich, M. Goksor, and T. Huser, “Rapid 3D fluorescence imaging of individual optically trapped living immune cells,” J. Biophotonics 8(3), 208–216 (2015).
[Crossref]

Peterman, E. J. G.

I. Brouwer, G. Sitters, A. Candelli, S. J. Heerema, I. Heller, A. J. Melo de, H. Zhang, D. Normanno, M. Modesti, E. J. G. Peterman, and G. J. L. Wuite, “Sliding sleeves of XRCC4-XLF bridge DNA and connect fragments of broken DNA,” Nature 535(7613), 566–569 (2016).
[Crossref]

Phillips, D. B.

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” EPL 99(5), 58004 (2012).
[Crossref]

Pollard, M. R.

M. Simons, M. R. Pollard, C. D. Hughes, A. D. Ward, B. Van Houten, M. Towrie, S. W. Botchway, A. W. Parker, and N. M. Kad, “Directly interrogating single quantum dot labelled UvrA2 molecules on DNA tightropes using an optically trapped nanoprobe,” Sci. Rep. 5(1), 18486 (2015).
[Crossref]

Popovich, A.

D. Wolfson, M. Steck, M. Persson, G. McNerney, A. Popovich, M. Goksor, and T. Huser, “Rapid 3D fluorescence imaging of individual optically trapped living immune cells,” J. Biophotonics 8(3), 208–216 (2015).
[Crossref]

Quake, S. R.

J. C. Meiners and S. R. Quake, “Femtonewton force spectroscopy of single extended DNA molecules,” Phys. Rev. Lett. 84(21), 5014–5017 (2000).
[Crossref]

Ramamurthi, K. S.

Rarity, J. G.

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” EPL 99(5), 58004 (2012).
[Crossref]

Rasmussen, M. B.

M. B. Rasmussen, L. B. Oddershede, and H. Siegumfeldt, “Optical tweezers cause physiological damage to Escherichia coli and listeria bacteria,” Appl. Environ. Microbiol. 74(8), 2441–2446 (2008).
[Crossref]

Rey-Suarez, I.

Riviere, P. J. L.

Roichman, Y.

Rubinsztein-Dunlop, H.

M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles (vol 394, pg 348, 1998),” Nature 395(6702), 621 (1998).
[Crossref]

Ruocco, G.

Santos, A. M.

M. Fritzsche, R. A. Fernandes, V. T. Chang, H. Colin-York, M. P. Clausen, J. H. Felce, S. Galiani, C. Erlenkämper, A. M. Santos, J. M. Heddleston, I. Pedroza-Pacheco, D. Waithe, J. B. de la Serna, B. C. Lagerholm, T.-L. Liu, T.-L. Chew, E. Betzig, S. J. Davis, and C. Eggeling, “Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation,” Sci. Adv. 3(6), e1603032 (2017).
[Crossref]

Saunders, T. E.

U. Krzic, S. Gunther, T. E. Saunders, S. J. Streichan, and L. Hufnagel, “Multiview light-sheet microscope for rapid in toto imaging,” Nat. Methods 9(7), 730–733 (2012).
[Crossref]

Schmidt, C. F.

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993).
[Crossref]

Schmitt, J. M.

Schnapp, B. J.

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993).
[Crossref]

Sedat, J. W.

P. J. Shaw, D. A. Agard, Y. Hiraoka, and J. W. Sedat, “Tilted view reconstruction in optical microscopy - 3-dimensional reconstruction of drosophila-melanogaster embryo nuclei,” Biophys. J. 55(1), 101–110 (1989).
[Crossref]

Segura, T.

P. Fei, J. Nie, J. Lee, Y. Ding, S. Li, H. Zhang, M. Hagiwara, T. Yu, T. Segura, C.-M. Ho, D. Zhu, and T. K. Hsiai, “Subvoxel light-sheet microscopy for high-resolution high-throughput volumetric imaging of large biomedical specimens,” Adv. Photonics 1(1), 016002 (2019).
[Crossref]

Selva, J.

Shaevitz, J. W.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).
[Crossref]

Shaked, N. T.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3d refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv. Sci. 4(2), 1600205 (2017).
[Crossref]

M. Habaza, B. Gilboa, Y. Roichman, and N. T. Shaked, “Tomographic phase microscopy with 180° rotation of live cells in suspension by holographic optical tweezers,” Opt. Lett. 40(8), 1881–1884 (2015).
[Crossref]

Shank, E. A.

C. Cecconi, E. A. Shank, F. W. Dahlquist, S. Marqusee, and C. Bustamante, “Protein-DNA chimeras for single molecule mechanical folding studies with the optical tweezers,” Eur. Biophys. J. 37(6), 729–738 (2008).
[Crossref]

Shaw, P. J.

P. J. Shaw, D. A. Agard, Y. Hiraoka, and J. W. Sedat, “Tilted view reconstruction in optical microscopy - 3-dimensional reconstruction of drosophila-melanogaster embryo nuclei,” Biophys. J. 55(1), 101–110 (1989).
[Crossref]

Sheppard, C.

Sheppard, C. J. R.

C. J. R. Sheppard and M. Gu, “Improvement of axial resolution in confocal microscopy using an annular pupil,” Opt. Commun. 84(1-2), 7–13 (1991).
[Crossref]

Shetty, R.

B. Cao, R. Shetty, D. Smith, L. Kelbauskas, and D. R. Meldrum, “Integrating fluorescence computed tomography with optical sheet illumination for imaging of live single cells,” Opt. Express 26(18), 24020–24030 (2018).
[Crossref]

L. Kelbauskas, R. Shetty, B. Cao, K.-C. Wang, D. Smith, H. Wang, S.-H. Chao, S. Gangaraju, B. Ashcroft, M. Kritzer, H. Glenn, R. H. Johnson, and D. R. Meldrum, “Optical computed tomography for spatially isotropic four-dimensional imaging of live single cells,” Sci. Adv. 3(12), e1602580 (2017).
[Crossref]

Shin, D.

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J. 70(3), 1529–1533 (1996).
[Crossref]

Shroff, H.

Siegel, N.

Siegumfeldt, H.

M. B. Rasmussen, L. B. Oddershede, and H. Siegumfeldt, “Optical tweezers cause physiological damage to Escherichia coli and listeria bacteria,” Appl. Environ. Microbiol. 74(8), 2441–2446 (2008).
[Crossref]

Simmons, R. M.

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics - piconewton forces and nanometer steps,” Nature 368(6467), 113–119 (1994).
[Crossref]

Simons, M.

M. Simons, M. R. Pollard, C. D. Hughes, A. D. Ward, B. Van Houten, M. Towrie, S. W. Botchway, A. W. Parker, and N. M. Kad, “Directly interrogating single quantum dot labelled UvrA2 molecules on DNA tightropes using an optically trapped nanoprobe,” Sci. Rep. 5(1), 18486 (2015).
[Crossref]

Simpson, S. H.

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” EPL 99(5), 58004 (2012).
[Crossref]

Sitters, G.

I. Brouwer, G. Sitters, A. Candelli, S. J. Heerema, I. Heller, A. J. Melo de, H. Zhang, D. Normanno, M. Modesti, E. J. G. Peterman, and G. J. L. Wuite, “Sliding sleeves of XRCC4-XLF bridge DNA and connect fragments of broken DNA,” Nature 535(7613), 566–569 (2016).
[Crossref]

Smith, C.

Smith, D.

B. Cao, R. Shetty, D. Smith, L. Kelbauskas, and D. R. Meldrum, “Integrating fluorescence computed tomography with optical sheet illumination for imaging of live single cells,” Opt. Express 26(18), 24020–24030 (2018).
[Crossref]

L. Kelbauskas, R. Shetty, B. Cao, K.-C. Wang, D. Smith, H. Wang, S.-H. Chao, S. Gangaraju, B. Ashcroft, M. Kritzer, H. Glenn, R. H. Johnson, and D. R. Meldrum, “Optical computed tomography for spatially isotropic four-dimensional imaging of live single cells,” Sci. Adv. 3(12), e1602580 (2017).
[Crossref]

Smith, S. B.

M. S. Z. Kellermayer, S. B. Smith, H. L. Granzier, and C. Bustamante, “Folding-unfolding transitions in single titin molecules characterized with laser tweezers,” Science 276(5315), 1112–1116 (1997).
[Crossref]

S. B. Smith, Y. J. Cui, and C. Bustamante, “Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271(5250), 795–799 (1996).
[Crossref]

So, P.

Sonek, G. J.

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
[Crossref]

Spudich, J. A.

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics - piconewton forces and nanometer steps,” Nature 368(6467), 113–119 (1994).
[Crossref]

Steck, M.

D. Wolfson, M. Steck, M. Persson, G. McNerney, A. Popovich, M. Goksor, and T. Huser, “Rapid 3D fluorescence imaging of individual optically trapped living immune cells,” J. Biophotonics 8(3), 208–216 (2015).
[Crossref]

Stelzer, E. H.

Stelzer, E. H. K.

J. Swoger, P. Verveer, K. Greger, J. Huisken, and E. H. K. Stelzer, “Multi-view image fusion improves resolution in three-dimensional microscopy,” Opt. Express 15(13), 8029–8042 (2007).
[Crossref]

K. Greger, J. Swoger, and E. H. K. Stelzer, “Basic building units and properties of a fluorescence single plane illumination microscope,” Rev. Sci. Instrum. 78(2), 023705 (2007).
[Crossref]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref]

S. Hell and E. H. K. Stelzer, “Fundamental improvement of resolution with a 4pi-confocal fluorescence microscope using two-photon excitation,” Opt. Commun. 93(5-6), 277–282 (1992).
[Crossref]

Streichan, S. J.

U. Krzic, S. Gunther, T. E. Saunders, S. J. Streichan, and L. Hufnagel, “Multiview light-sheet microscope for rapid in toto imaging,” Nat. Methods 9(7), 730–733 (2012).
[Crossref]

Strejckova, A.

G. Vizsnyiczai, T. Lestyan, J. Joniova, B. L. Aekbote, A. Strejckova, P. Ormos, P. Miskovsky, L. Kelemen, and G. Bano, “Optically trapped surface-enhanced raman probes prepared by silver photoreduction to 3D microstructures,” Langmuir 31(36), 10087–10093 (2015).
[Crossref]

Svoboda, K.

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993).
[Crossref]

Swoger, J.

K. Greger, J. Swoger, and E. H. K. Stelzer, “Basic building units and properties of a fluorescence single plane illumination microscope,” Rev. Sci. Instrum. 78(2), 023705 (2007).
[Crossref]

J. Swoger, P. Verveer, K. Greger, J. Huisken, and E. H. K. Stelzer, “Multi-view image fusion improves resolution in three-dimensional microscopy,” Opt. Express 15(13), 8029–8042 (2007).
[Crossref]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref]

J. Swoger, J. Huisken, and E. H. Stelzer, “Multiple imaging axis microscopy improves resolution for thick-sample applications,” Opt. Lett. 28(18), 1654–1656 (2003).
[Crossref]

Sykes, C.

H. Turlier, D. A. Fedosov, B. Audoly, T. Auth, N. S. Gov, C. Sykes, J. F. Joanny, G. Gompper, and T. Betz, “Equilibrium physics breakdown reveals the active nature of red blood cell flickering,” Nat. Phys. 12(5), 513–519 (2016).
[Crossref]

Towrie, M.

M. Simons, M. R. Pollard, C. D. Hughes, A. D. Ward, B. Van Houten, M. Towrie, S. W. Botchway, A. W. Parker, and N. M. Kad, “Directly interrogating single quantum dot labelled UvrA2 molecules on DNA tightropes using an optically trapped nanoprobe,” Sci. Rep. 5(1), 18486 (2015).
[Crossref]

Trang, T. C.

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J. 70(3), 1529–1533 (1996).
[Crossref]

Tromberg, B. J.

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
[Crossref]

Turlier, H.

H. Turlier, D. A. Fedosov, B. Audoly, T. Auth, N. S. Gov, C. Sykes, J. F. Joanny, G. Gompper, and T. Betz, “Equilibrium physics breakdown reveals the active nature of red blood cell flickering,” Nat. Phys. 12(5), 513–519 (2016).
[Crossref]

Valkai, S.

Van Houten, B.

M. Simons, M. R. Pollard, C. D. Hughes, A. D. Ward, B. Van Houten, M. Towrie, S. W. Botchway, A. W. Parker, and N. M. Kad, “Directly interrogating single quantum dot labelled UvrA2 molecules on DNA tightropes using an optically trapped nanoprobe,” Sci. Rep. 5(1), 18486 (2015).
[Crossref]

Verveer, P.

Vizsnyiczai, G.

B. L. Aekbote, T. Fekete, J. Jacak, G. Vizsnyiczai, P. Ormos, and L. Kelemen, “Surface-modified complex su-8 microstructures for indirect optical manipulation of single cells,” Biomed. Opt. Express 7(1), 45–56 (2016).
[Crossref]

G. Vizsnyiczai, T. Lestyan, J. Joniova, B. L. Aekbote, A. Strejckova, P. Ormos, P. Miskovsky, L. Kelemen, and G. Bano, “Optically trapped surface-enhanced raman probes prepared by silver photoreduction to 3D microstructures,” Langmuir 31(36), 10087–10093 (2015).
[Crossref]

G. Vizsnyiczai, L. Kelemen, and P. Ormos, “Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms,” Opt. Express 22(20), 24217–24223 (2014).
[Crossref]

D. Palima, A. R. Banas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Gluckstad, “Wave-guided optical waveguides,” Opt. Express 20(3), 2004–2014 (2012).
[Crossref]

G. Vizsnyiczai, B. L. Aekbote, A. Buzas, I. Grexa, P. Ormos, and L. Kelemen, High accuracy indirect optical manipulation of live cells with functionalized microtools (2016), vol. 9922 of Proceedings of SPIE, p. 992216.

Vu, K. T.

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J. 70(3), 1529–1533 (1996).
[Crossref]

Waithe, D.

M. Fritzsche, R. A. Fernandes, V. T. Chang, H. Colin-York, M. P. Clausen, J. H. Felce, S. Galiani, C. Erlenkämper, A. M. Santos, J. M. Heddleston, I. Pedroza-Pacheco, D. Waithe, J. B. de la Serna, B. C. Lagerholm, T.-L. Liu, T.-L. Chew, E. Betzig, S. J. Davis, and C. Eggeling, “Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation,” Sci. Adv. 3(6), e1603032 (2017).
[Crossref]

Wakamoto, Y.

S. Ayano, Y. Wakamoto, S. Yamashita, and K. Yasuda, “Quantitative measurement of damage caused by 1064-nm wavelength optical trapping of Escherichia coli cells using on-chip single cell cultivation system,” Biochem. Biophys. Res. Commun. 350(3), 678–684 (2006).
[Crossref]

Wang, H.

L. Kelbauskas, R. Shetty, B. Cao, K.-C. Wang, D. Smith, H. Wang, S.-H. Chao, S. Gangaraju, B. Ashcroft, M. Kritzer, H. Glenn, R. H. Johnson, and D. R. Meldrum, “Optical computed tomography for spatially isotropic four-dimensional imaging of live single cells,” Sci. Adv. 3(12), e1602580 (2017).
[Crossref]

Wang, K.-C.

L. Kelbauskas, R. Shetty, B. Cao, K.-C. Wang, D. Smith, H. Wang, S.-H. Chao, S. Gangaraju, B. Ashcroft, M. Kritzer, H. Glenn, R. H. Johnson, and D. R. Meldrum, “Optical computed tomography for spatially isotropic four-dimensional imaging of live single cells,” Sci. Adv. 3(12), e1602580 (2017).
[Crossref]

Wang, M.

A. La Porta and M. Wang, “Optical torque wrench: Angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett. 92(19), 190801 (2004).
[Crossref]

Ward, A. D.

M. Simons, M. R. Pollard, C. D. Hughes, A. D. Ward, B. Van Houten, M. Towrie, S. W. Botchway, A. W. Parker, and N. M. Kad, “Directly interrogating single quantum dot labelled UvrA2 molecules on DNA tightropes using an optically trapped nanoprobe,” Sci. Rep. 5(1), 18486 (2015).
[Crossref]

Waterman, C. M.

Whyte, G.

T. Kolb, S. Albert, M. Haug, and G. Whyte, “Optofluidic rotation of living cells for single-cell tomography,” J. Biophotonics 8(3), 239–246 (2015).
[Crossref]

T. Kolb, S. Albert, M. Haug, and G. Whyte, “Dynamically reconfigurable fibre optical spanner,” Lab Chip 14(6), 1186–1190 (2014).
[Crossref]

Winter, P. W.

Wittbrodt, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref]

Wolfson, D.

D. Wolfson, M. Steck, M. Persson, G. McNerney, A. Popovich, M. Goksor, and T. Huser, “Rapid 3D fluorescence imaging of individual optically trapped living immune cells,” J. Biophotonics 8(3), 208–216 (2015).
[Crossref]

Wright, A. J.

Wu, Y.

Wuite, G. J. L.

I. Brouwer, G. Sitters, A. Candelli, S. J. Heerema, I. Heller, A. J. Melo de, H. Zhang, D. Normanno, M. Modesti, E. J. G. Peterman, and G. J. L. Wuite, “Sliding sleeves of XRCC4-XLF bridge DNA and connect fragments of broken DNA,” Nature 535(7613), 566–569 (2016).
[Crossref]

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared-laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref]

Yamashita, S.

S. Ayano, Y. Wakamoto, S. Yamashita, and K. Yasuda, “Quantitative measurement of damage caused by 1064-nm wavelength optical trapping of Escherichia coli cells using on-chip single cell cultivation system,” Biochem. Biophys. Res. Commun. 350(3), 678–684 (2006).
[Crossref]

Yasuda, K.

S. Ayano, Y. Wakamoto, S. Yamashita, and K. Yasuda, “Quantitative measurement of damage caused by 1064-nm wavelength optical trapping of Escherichia coli cells using on-chip single cell cultivation system,” Biochem. Biophys. Res. Commun. 350(3), 678–684 (2006).
[Crossref]

Yew, E.

Yu, T.

P. Fei, J. Nie, J. Lee, Y. Ding, S. Li, H. Zhang, M. Hagiwara, T. Yu, T. Segura, C.-M. Ho, D. Zhu, and T. K. Hsiai, “Subvoxel light-sheet microscopy for high-resolution high-throughput volumetric imaging of large biomedical specimens,” Adv. Photonics 1(1), 016002 (2019).
[Crossref]

Zhang, H.

P. Fei, J. Nie, J. Lee, Y. Ding, S. Li, H. Zhang, M. Hagiwara, T. Yu, T. Segura, C.-M. Ho, D. Zhu, and T. K. Hsiai, “Subvoxel light-sheet microscopy for high-resolution high-throughput volumetric imaging of large biomedical specimens,” Adv. Photonics 1(1), 016002 (2019).
[Crossref]

I. Brouwer, G. Sitters, A. Candelli, S. J. Heerema, I. Heller, A. J. Melo de, H. Zhang, D. Normanno, M. Modesti, E. J. G. Peterman, and G. J. L. Wuite, “Sliding sleeves of XRCC4-XLF bridge DNA and connect fragments of broken DNA,” Nature 535(7613), 566–569 (2016).
[Crossref]

H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc., Interface 5(24), 671–690 (2008).
[Crossref]

Zhu, D.

P. Fei, J. Nie, J. Lee, Y. Ding, S. Li, H. Zhang, M. Hagiwara, T. Yu, T. Segura, C.-M. Ho, D. Zhu, and T. K. Hsiai, “Subvoxel light-sheet microscopy for high-resolution high-throughput volumetric imaging of large biomedical specimens,” Adv. Photonics 1(1), 016002 (2019).
[Crossref]

Adv. Photonics (1)

P. Fei, J. Nie, J. Lee, Y. Ding, S. Li, H. Zhang, M. Hagiwara, T. Yu, T. Segura, C.-M. Ho, D. Zhu, and T. K. Hsiai, “Subvoxel light-sheet microscopy for high-resolution high-throughput volumetric imaging of large biomedical specimens,” Adv. Photonics 1(1), 016002 (2019).
[Crossref]

Adv. Sci. (1)

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3d refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation,” Adv. Sci. 4(2), 1600205 (2017).
[Crossref]

Appl. Environ. Microbiol. (1)

M. B. Rasmussen, L. B. Oddershede, and H. Siegumfeldt, “Optical tweezers cause physiological damage to Escherichia coli and listeria bacteria,” Appl. Environ. Microbiol. 74(8), 2441–2446 (2008).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[Crossref]

Biochem. Biophys. Res. Commun. (1)

S. Ayano, Y. Wakamoto, S. Yamashita, and K. Yasuda, “Quantitative measurement of damage caused by 1064-nm wavelength optical trapping of Escherichia coli cells using on-chip single cell cultivation system,” Biochem. Biophys. Res. Commun. 350(3), 678–684 (2006).
[Crossref]

Biomed. Opt. Express (4)

Biophys. J. (4)

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J. 70(3), 1529–1533 (1996).
[Crossref]

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68(5), 2137–2144 (1995).
[Crossref]

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[Crossref]

P. J. Shaw, D. A. Agard, Y. Hiraoka, and J. W. Sedat, “Tilted view reconstruction in optical microscopy - 3-dimensional reconstruction of drosophila-melanogaster embryo nuclei,” Biophys. J. 55(1), 101–110 (1989).
[Crossref]

EPL (1)

D. B. Phillips, S. H. Simpson, J. A. Grieve, R. Bowman, G. M. Gibson, M. J. Padgett, J. G. Rarity, S. Hanna, M. J. Miles, and D. M. Carberry, “Force sensing with a shaped dielectric micro-tool,” EPL 99(5), 58004 (2012).
[Crossref]

Eur. Biophys. J. (1)

C. Cecconi, E. A. Shank, F. W. Dahlquist, S. Marqusee, and C. Bustamante, “Protein-DNA chimeras for single molecule mechanical folding studies with the optical tweezers,” Eur. Biophys. J. 37(6), 729–738 (2008).
[Crossref]

J. Biophotonics (2)

D. Wolfson, M. Steck, M. Persson, G. McNerney, A. Popovich, M. Goksor, and T. Huser, “Rapid 3D fluorescence imaging of individual optically trapped living immune cells,” J. Biophotonics 8(3), 208–216 (2015).
[Crossref]

T. Kolb, S. Albert, M. Haug, and G. Whyte, “Optofluidic rotation of living cells for single-cell tomography,” J. Biophotonics 8(3), 239–246 (2015).
[Crossref]

J. Microsc. (1)

R. Heintzmann and C. Cremer, “Axial tomographic confocal fluorescence microscopy,” J. Microsc. 206(1), 7–23 (2002).
[Crossref]

J. Mod. Opt. (1)

A. Forrester, J. Courtial, and M. Padgett, “Performance of a rotating aperture for spinning and orienting objects in optical tweezers,” J. Mod. Opt. 50(10), 1533–1538 (2003).
[Crossref]

J. R. Soc., Interface (1)

H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc., Interface 5(24), 671–690 (2008).
[Crossref]

Lab Chip (1)

T. Kolb, S. Albert, M. Haug, and G. Whyte, “Dynamically reconfigurable fibre optical spanner,” Lab Chip 14(6), 1186–1190 (2014).
[Crossref]

Langmuir (1)

G. Vizsnyiczai, T. Lestyan, J. Joniova, B. L. Aekbote, A. Strejckova, P. Ormos, P. Miskovsky, L. Kelemen, and G. Bano, “Optically trapped surface-enhanced raman probes prepared by silver photoreduction to 3D microstructures,” Langmuir 31(36), 10087–10093 (2015).
[Crossref]

Nat. Methods (1)

U. Krzic, S. Gunther, T. E. Saunders, S. J. Streichan, and L. Hufnagel, “Multiview light-sheet microscope for rapid in toto imaging,” Nat. Methods 9(7), 730–733 (2012).
[Crossref]

Nat. Photonics (1)

T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

Nat. Phys. (1)

H. Turlier, D. A. Fedosov, B. Audoly, T. Auth, N. S. Gov, C. Sykes, J. F. Joanny, G. Gompper, and T. Betz, “Equilibrium physics breakdown reveals the active nature of red blood cell flickering,” Nat. Phys. 12(5), 513–519 (2016).
[Crossref]

Nature (6)

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics - piconewton forces and nanometer steps,” Nature 368(6467), 113–119 (1994).
[Crossref]

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993).
[Crossref]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared-laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref]

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).
[Crossref]

I. Brouwer, G. Sitters, A. Candelli, S. J. Heerema, I. Heller, A. J. Melo de, H. Zhang, D. Normanno, M. Modesti, E. J. G. Peterman, and G. J. L. Wuite, “Sliding sleeves of XRCC4-XLF bridge DNA and connect fragments of broken DNA,” Nature 535(7613), 566–569 (2016).
[Crossref]

M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles (vol 394, pg 348, 1998),” Nature 395(6702), 621 (1998).
[Crossref]

Opt. Commun. (2)

S. Hell and E. H. K. Stelzer, “Fundamental improvement of resolution with a 4pi-confocal fluorescence microscope using two-photon excitation,” Opt. Commun. 93(5-6), 277–282 (1992).
[Crossref]

C. J. R. Sheppard and M. Gu, “Improvement of axial resolution in confocal microscopy using an annular pupil,” Opt. Commun. 84(1-2), 7–13 (1991).
[Crossref]

Opt. Express (7)

Opt. Lett. (2)

Optica (1)

Phys. Rev. Lett. (2)

A. La Porta and M. Wang, “Optical torque wrench: Angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett. 92(19), 190801 (2004).
[Crossref]

J. C. Meiners and S. R. Quake, “Femtonewton force spectroscopy of single extended DNA molecules,” Phys. Rev. Lett. 84(21), 5014–5017 (2000).
[Crossref]

Rev. Sci. Instrum. (1)

K. Greger, J. Swoger, and E. H. K. Stelzer, “Basic building units and properties of a fluorescence single plane illumination microscope,” Rev. Sci. Instrum. 78(2), 023705 (2007).
[Crossref]

Sci. Adv. (2)

L. Kelbauskas, R. Shetty, B. Cao, K.-C. Wang, D. Smith, H. Wang, S.-H. Chao, S. Gangaraju, B. Ashcroft, M. Kritzer, H. Glenn, R. H. Johnson, and D. R. Meldrum, “Optical computed tomography for spatially isotropic four-dimensional imaging of live single cells,” Sci. Adv. 3(12), e1602580 (2017).
[Crossref]

M. Fritzsche, R. A. Fernandes, V. T. Chang, H. Colin-York, M. P. Clausen, J. H. Felce, S. Galiani, C. Erlenkämper, A. M. Santos, J. M. Heddleston, I. Pedroza-Pacheco, D. Waithe, J. B. de la Serna, B. C. Lagerholm, T.-L. Liu, T.-L. Chew, E. Betzig, S. J. Davis, and C. Eggeling, “Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation,” Sci. Adv. 3(6), e1603032 (2017).
[Crossref]

Sci. Rep. (1)

M. Simons, M. R. Pollard, C. D. Hughes, A. D. Ward, B. Van Houten, M. Towrie, S. W. Botchway, A. W. Parker, and N. M. Kad, “Directly interrogating single quantum dot labelled UvrA2 molecules on DNA tightropes using an optically trapped nanoprobe,” Sci. Rep. 5(1), 18486 (2015).
[Crossref]

Science (3)

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref]

S. B. Smith, Y. J. Cui, and C. Bustamante, “Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271(5250), 795–799 (1996).
[Crossref]

M. S. Z. Kellermayer, S. B. Smith, H. L. Granzier, and C. Bustamante, “Folding-unfolding transitions in single titin molecules characterized with laser tweezers,” Science 276(5315), 1112–1116 (1997).
[Crossref]

Other (1)

G. Vizsnyiczai, B. L. Aekbote, A. Buzas, I. Grexa, P. Ormos, and L. Kelemen, High accuracy indirect optical manipulation of live cells with functionalized microtools (2016), vol. 9922 of Proceedings of SPIE, p. 992216.

Supplementary Material (6)

NameDescription
» Visualization 1       The video shows the process of trapping a functionalized polymer microtool used for the manipulation of a cell with the holographic optical tweezers, its orientation towards the targeted cell, and the attachment of the structure to the cell. The play
» Visualization 2       The movie demonstrates the free manipulation of a cell with the optically trapped manipulator. As shown, the cell-structure couple can be freely translated along or rotated around any of the three coordinate axes. Rotation around the X axis allows th
» Visualization 3       The movie shows the maximum intensity projections of a fluorescent bead decorated cell from various directions in three stages of the data evaluation process. All three parts of the movie are cropped in size. The original and the deconvolved images s
» Visualization 4       The movie shows three deconvolved image stacks of a mitochondrium stained cell (0 deg, 45 deg and 90 deg) and one that is Fourier-fused using 4 orientations (0, 45, 90) and 135 degs). The 0 deg deconvolved stack is used as reference for the alignment
» Visualization 5       The movie shows the fused 3D image stacks of a mitochondrium-stained cell. The three image stacks shown were made by Fourier-fusing 4 deconvolved image stacks of various iteration numbers.
» Visualization 6       The movie shows the maximum intensity projections of a mitochondriumstained cell from various directions in three stages of the data evaluation process. All three parts of the movie are cropped in size. The original and the deconvolved images show th

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. The scheme of the polymer micromanipulator and its application to indirectly manipulate a single cell for multiview microscopy. (a) The model of the manipulator showing its main functional parts. Three spheres provide trapping sites for three holographic optical traps, while a concave shaped attachment disk provides a binding site for spherical cells. (b) The spatial arrangement of the manipulator-cell couple in the sample space relative to the optical axis of the trapping and observing objective. Pink cones indicate the trapping beams. The cell is rotated around the dashed-line axis for the multiview microscopic observations (parallel to axis y). (c) Scanning electron microscopic image of the cell manipulator structure.
Fig. 2.
Fig. 2. The optical layout of the imaging system. L: trapping laser source, BE: beam expander to slightly overfill the SLM surface, SLM: spatial light modulator, RL1 and RL2: relay lenses to project the SLM surface to the entrance pupil of the objective, DM: dichroic mirror that reflects the trapping beam into the objective but transmits the fluorescence beams, FF: fluorescence filter set, FS: fluorescent light source, CAM: camera, O: objective, S: sample. The inserted hologram creates the three trapping focal spots in the sample plane.
Fig. 3.
Fig. 3. The concept of the application of the cell manipulator microtool for multiview imaging. Step 1: HOT-assisted data acquisition via alternating cell translations to pre-defined positions (pos. 1 through pos. N) and image recordings at each position. Step 2: return the cell to pos. 1 and its rotation to a new orientation.
Fig. 4.
Fig. 4. The process of cell attachment to a microtool and their total positional control. (a) Bright-field image of the three trapping foci (three bright spots on the left side) and a yet untrapped microtool (on the right side); the attachment disk and connector rods are defocused. (b) The microtool trapped and oriented with its disk towards the cell that sits on the bottom of the microfluidic channel. (c) The cell is attached to the microtool and elevated from the supporting glass. (d) The indirectly trapped cell is rotated by 90 degrees relative to its orientation on panel c. (e) The positional distribution of a given point on a fluctuating trapped cell; the insert shows the distribution zoomed-in.
Fig. 5.
Fig. 5. Evaluation of the required deconvolution iteration number and of the required number of 3D stacks in the fusion step. (a) The width of eight selected bead images along the x axis as the function of deconvolution iteration number. The widths were determined with a Gaussian fit to an intensity trace taken across the maximum intensity pixels of the bead images; open circles: calculated widths; the red line connects the average of the widths. (b) Relative differences between successive arrays, calculated with Eq. 3, as the function of deconvolution iteration number. (c) Average widths of six selected bead images along the 3 coordinate axes after fusion of various number of aligned stacks (1 means a single deconvolved image). Fourier-based fusion was used and the width was determined with a Gaussian fit similarly as in panel a.
Fig. 6.
Fig. 6. Maximum intensity projections (MIP) of the 3D fluorescence intensity data arrays recorded on a trapped cell that was labelled with 100 nm fluorescent beads. MIP of an original, unprocessed data array recorded on the entire cell (a), of a deconvolved array (26 iterations) (b), of a fused array with arithmetic averaging (0°, 45°, 90° and 135° orientations) (c) and of one fused with the Fourier transform-based method (d). e-h Enlarged MIP images of four beads in the highlighted areas of the original, deconvolved, averaged and Fourier-fused arrays, respectively. The curves on the inset of (g) show the intensity traces over two adjacent bead images from the arithmetically averaged (blue) and Fourier-fused (red) arrays along the line shown on g. For better visualization of the 3D arrangement of the bead images see Visualization 3.
Fig. 7.
Fig. 7. The resolution improvement characterized with Gaussian fit of line traces along bead images. (a) Normalized intensity traces over the bead image marked on Fig. 6(a) with the arrow, along the three axes taken from the original, deconvolved and fused arrays. (b) Average 1/e widths calculated with selected bead images from the original, deconvolved and Fourier-fused arrays along the three axes. The widths were determined with a Gaussian fit; the fusion included 4 orientations.
Fig. 8.
Fig. 8. Multiview microscopy of a mitochondria stained K562 cell. a-c) Maximum intensity projections of deconvolved and spatially registered recordings of three distinct orientations. The optical axis is marked with an arrow for each recording. (d) Maximum intensity projection of the fused result of the 4 image stacks recorded altogether (0°, 45°, 90°, 135°).
Fig. 9.
Fig. 9. Resolution improvement measured on mitochondria-stained single cells. (a) Corresponding single slices taken from the original, deconvolved and fused 3D data arrays (columns) along the three axes (rows). (b) Intensity traces between the thin white lines on the single image slices of the corresponding rows. (c) MTF calculated from the measured point spread function (PSF), and power spectra obtained from a single array (deconvolved, 60 iterations) of a stained cell and from a fused array obtained with the Fourier transform based method using four deconvolved arrays (0°, 45°, 90° and 135° orientations). For the visualization of the resolution improvement, see Visualization 6.
Fig. 10.
Fig. 10. Histogram describing the lateral fluctuation of a point on an indirectly trapped cell, marked with a yellow X (inset). The point is positioned $\sim$25 µm away from the plane of the three trapping foci (dashed red line). The original video data contained 2589 frames and the first frame was taken as reference. 50 feature points were chosen on the cell’s image with a MATLAB program (see Methods) and the fluctuation was evaluated by comparing the position of these points to those on the first frame. The inset shows the reference frame of the recorded video.
Fig. 11.
Fig. 11. Evaluation of the alignment procedure. a: The average of the maximum correlation coefficients after each iteration during the alignment procedure of the bead images. Each data point is the average of the maximum correlation coefficients of the 8 alignments performed between the reference (0 degree) cell orientation and the 22.5, 45, 67.5, 90, 112.5, 135, 157.5 and 180 degree orientations. It shows that the correlation does not increase significantly after 4 iterations and it completely levels after 8 illustrating the fast convergence of our algorithm. b: Histogram of the average distance of corresponding bead image centers on the aligned images. Altogether 23 beads were selected, and the average distance of the centers of the images of each beads in the aligned 4 arrays (0, 45, 90 and 135 degree orientations) was calculated; mean: 1.1 pixels. c and d: Maximum intensity projections of the reference (white spots) and the aligned 90 degree (black spots) image stacks of the fluorescent beads along two perpendicular direction, laid onto each other. The axes are those of the reference stack.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I f = j = 1 N ( w j I j )
w j = | I j | i = 1 N | I i |
x N | S i ( x ) S i 1 ( x ) | / x N S i 1 ( x )

Metrics