Abstract

We demonstrate lensless imaging of three-dimensional phantoms of fluorescent nanodiamonds in solution. Magnetofluorescence imaging is employed, which relies on a dependence of the fluorescence yield on the magnetic field, and pervading the object with an inhomogeneous magnetic field. This field provides a field-free field line, which is rastered through the object. A 3D image of the object is obtained by imaging a set of 2D slices. Each 2D slice image is computed from a set of 1D projections, obtained under different projection directions, using a backprojection algorithm. Reconstructed images containing up to 36 × 36 × 8 voxels are obtained. A spatial resolution better than 2 mm is achieved in three dimensions. The approach has the potential for scalability.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wide-field in vivo background free imaging by selective magnetic modulation of nanodiamond fluorescence

Susanta K. Sarkar, Ambika Bumb, Xufeng Wu, Kem A. Sochacki, Peter Kellman, Martin W. Brechbiel, and Keir C. Neuman
Biomed. Opt. Express 5(4) 1190-1202 (2014)

3D imaging of biofilms on implants by detection of scattered light with a scanning laser optical tomograph

Marko Heidrich, Mark P. Kühnel, Manuela Kellner, Raoul-Amadeus Lorbeer, Tineke Lange, Andreas Winkel, Meike Stiesch, Heiko Meyer, and Alexander Heisterkamp
Biomed. Opt. Express 2(11) 2982-2994 (2011)

Optical imaging through scattering media via magnetically modulated fluorescence

Nan Yang and Adam E. Cohen
Opt. Express 18(25) 25461-25467 (2010)

References

  • View by:
  • |
  • |
  • |

  1. N. Yang and A. E. Cohen, “Optical imaging through scattering media via magnetically modulated fluorescence,” Opt. Express 18(25), 25461–24567 (2010).
    [Crossref]
  2. A. Hegyi and E. Yablonovitch, “Molecular imaging by optically detected electron spin resonance of nitrogen-vacancies in nanodiamonds,” Nano Lett. 13(3), 1173–1178 (2013).
    [Crossref]
  3. A. Hegyi and E. Yablonovitch, “Nanodiamond molecular imaging with enhanced contrast and expanded field of view,” J. Biomed. Opt. 19(1), 011015 (2013).
    [Crossref]
  4. V. M. Acosta, A. Jarmola, E. Bauch, and D. Budker, “Optical properties of the nitrogen-vacancy singlet levels in diamond,” Phys. Rev. B 82(20), 201202 (2010).
    [Crossref]
  5. V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, “The properties and applications of nanodiamonds,” Nat. Nanotechnol. 7(1), 11–23 (2012).
    [Crossref]
  6. N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B 74(10), 104303 (2006).
    [Crossref]
  7. E. Perevedentseva, Y.-C. Lin, M. Jani, and C.-L. Cheng, “Biomedical applications of nanodiamonds in imaging and therapy,” Nanomedicine 8(12), 2041–2060 (2013).
    [Crossref]
  8. G. Balasubramanian, A. Lazariev, S. R. Arumugam, and D. wen Duan, “Nitrogen-vacancy color center in diamond-emerging nanoscale applications in bioimaging and biosensing,” Curr. Opin. Chem. Biol. 20, 69–77 (2014).
    [Crossref]
  9. J. Slegerova, M. Hajek, I. Rehor, F. Sedlak, J. Stursa, M. Hruby, and P. Cigler, “Designing the nanobiointerface of fluorescent nanodiamonds: highly selective targeting of glioma cancer cells,” Nanoscale 7(2), 415–420 (2015).
    [Crossref]
  10. K. Turcheniuk and V. N. Mochalin, “Biomedical applications of nanodiamond (review),” Nanotechnology 28(25), 252001 (2017).
    [Crossref]
  11. M. H. Alkahtani, F. Alghannam, L. Jiang, A. Almethen, A. A. Rampersaud, R. Brick, C. L. Gomes, M. O. Scully, and P. R. Hemmer, “Fluorescent nanodiamonds: past, present, and future,” Nanophotonics 7(8), 1423–1453 (2018).
    [Crossref]
  12. K. J. van der Laan, M. Hasani, T. Zheng, and R. Schirhagl, “Nanodiamonds for in vivo applications,” Small 14(19), 1703838 (2018).
    [Crossref]
  13. X.-Q. Zhang, R. Lam, X. Xu, E. K. Chow, H.-J. Kim, and D. Ho, “Multimodal nanodiamond drug delivery carriers for selective targeting, imaging, and enhanced chemotherapeutic efficacy,” Adv. Mater. 23(41), 4770–4775 (2011).
    [Crossref]
  14. Z. Wang, Z. Tian, Y. Dong, L. Li, L. Tian, Y. Li, and B. Yang, “Nanodiamond-conjugated transferrin as chemotherapeutic drug delivery,” Diamond Relat. Mater. 58, 84–93 (2015).
    [Crossref]
  15. C.-C. Fu, H.-Y. Lee, K. Chen, T.-S. Lim, H.-Y. Wu, P.-K. Lin, P.-K. Wei, P.-H. Tsao, H.-C. Chang, and W. Fann, “Characterization and application of single fluorescent nanodiamonds as cellular biomarkers,” Proc. Natl. Acad. Sci. 104(3), 727–732 (2007).
    [Crossref]
  16. T.-C. Hsu, K.-K. Liu, H.-C. Chang, E. Hwang, and J.-I. Chao, “Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds,” Sci. Rep. 4(1), 5004 (2015).
    [Crossref]
  17. L. M. Manus, D. J. Mastarone, E. A. Waters, X.-Q. Zhang, E. A. Schultz-Sikma, K. W. MacRenaris, D. Ho, and T. J. Meade, “Gd(III)-nanodiamond conjugates for MRI contrast enhancement,” Nano Lett. 10(2), 484–489 (2010).
    [Crossref]
  18. Y.-K. Tzeng, O. Faklaris, B.-M. Chang, Y. Kuo, J.-H. Hsu, and H.-C. Chang, “Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion,” Angew. Chem., Int. Ed. 50(10), 2262–2265 (2011).
    [Crossref]
  19. R. Igarashi, Y. Yoshinari, H. Yokota, T. Sugi, F. Sugihara, K. Ikeda, H. Sumiya, S. Tsuji, I. Mori, H. Tochio, Y. Harada, and M. Shirakawa, “Real-time background-free selective imaging of fluorescent nanodiamonds in vivo,” Nano Lett. 12(11), 5726–5732 (2012).
    [Crossref]
  20. S. K. Sarkar, A. Bumb, X. Wu, K. A. Sochacki, P. Kellman, M. W. Brechbiel, and K. C. Neuman, “Wide-field in vivo background free imaging by selective magnetic modulation of nanodiamond fluorescence,” Biomed. Opt. Express 5(4), 1190 (2014).
    [Crossref]
  21. S. K. R. Singam, J. Motylewski, A. Monaco, E. Gjorgievska, E. Bourgeois, M. Nesladek, M. Giugliano, and E. Goovaerts, “Contrast induced by a static magnetic field for improved detection in nanodiamond fluorescence microscopy,” Phys. Rev. Appl. 6(6), 064013 (2016).
    [Crossref]
  22. J.-P. Tetienne, L. Rondin, P. Spinicelli, M. Chipaux, T. Debuisschert, J.-F. Roch, and V. Jacques, “Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging,” New J. Phys. 14(10), 103033 (2012).
    [Crossref]
  23. S. V. Anishchik, V. G. Vins, A. P. Yelisseyev, N. N. Lukzen, N. L. Lavrik, and V. A. Bagryansky, “Low-field feature in the magnetic spectra of NV-centers in diamond,” New J. Phys. 17(2), 023040 (2015).
    [Crossref]
  24. V. R. Horowitz, B. J. Aleman, D. J. Christle, A. N. Cleland, and D. D. Awschalom, “Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds,” Proc. Natl. Acad. Sci. 109(34), 13493–13497 (2012).
    [Crossref]
  25. M. Capelli, P. Reineck, D. W. M. Lau, A. Orth, J. Jeske, M. W. Doherty, T. Ohshima, A. D. Greentree, and B. C. Gibson, “Magnetic field-induced enhancement of the nitrogen-vacancy fluorescence quantum yield,” Nanoscale 9(27), 9299–9304 (2017).
    [Crossref]
  26. S. R. Deans, The Radon Transform and Some of Its Applications (Wiley, 1983).
  27. S. Helgason, Groups and Geometric Analysis : Integral Geometry, Invariant Differential Operators, and Spherical Functions (Academic Press, 1984).
  28. S. Helgason, Integral Geometry and Radon Transforms (Springer, 2010).
  29. P. Kuchment, The Radon Transform and Medical Imaging (SIAM - Society for Industrial and Applied Mathematics, 2013).
  30. WolframMathematica, “InverseRadon,” (2014). Retrieved March 17, 2019.
  31. N. Derby and S. Olbert, “Cylindrical magnets and ideal solenoids,” Am. J. Phys. 78(3), 229–235 (2010).
    [Crossref]
  32. J. M. Camacho and V. Sosa, “Alternative method to calculate the magnetic field of permanent magnets with azimuthal symmetry,” Rev. Mex. Fis. 59, 8–17 (2013).

2018 (2)

M. H. Alkahtani, F. Alghannam, L. Jiang, A. Almethen, A. A. Rampersaud, R. Brick, C. L. Gomes, M. O. Scully, and P. R. Hemmer, “Fluorescent nanodiamonds: past, present, and future,” Nanophotonics 7(8), 1423–1453 (2018).
[Crossref]

K. J. van der Laan, M. Hasani, T. Zheng, and R. Schirhagl, “Nanodiamonds for in vivo applications,” Small 14(19), 1703838 (2018).
[Crossref]

2017 (2)

K. Turcheniuk and V. N. Mochalin, “Biomedical applications of nanodiamond (review),” Nanotechnology 28(25), 252001 (2017).
[Crossref]

M. Capelli, P. Reineck, D. W. M. Lau, A. Orth, J. Jeske, M. W. Doherty, T. Ohshima, A. D. Greentree, and B. C. Gibson, “Magnetic field-induced enhancement of the nitrogen-vacancy fluorescence quantum yield,” Nanoscale 9(27), 9299–9304 (2017).
[Crossref]

2016 (1)

S. K. R. Singam, J. Motylewski, A. Monaco, E. Gjorgievska, E. Bourgeois, M. Nesladek, M. Giugliano, and E. Goovaerts, “Contrast induced by a static magnetic field for improved detection in nanodiamond fluorescence microscopy,” Phys. Rev. Appl. 6(6), 064013 (2016).
[Crossref]

2015 (4)

S. V. Anishchik, V. G. Vins, A. P. Yelisseyev, N. N. Lukzen, N. L. Lavrik, and V. A. Bagryansky, “Low-field feature in the magnetic spectra of NV-centers in diamond,” New J. Phys. 17(2), 023040 (2015).
[Crossref]

T.-C. Hsu, K.-K. Liu, H.-C. Chang, E. Hwang, and J.-I. Chao, “Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds,” Sci. Rep. 4(1), 5004 (2015).
[Crossref]

J. Slegerova, M. Hajek, I. Rehor, F. Sedlak, J. Stursa, M. Hruby, and P. Cigler, “Designing the nanobiointerface of fluorescent nanodiamonds: highly selective targeting of glioma cancer cells,” Nanoscale 7(2), 415–420 (2015).
[Crossref]

Z. Wang, Z. Tian, Y. Dong, L. Li, L. Tian, Y. Li, and B. Yang, “Nanodiamond-conjugated transferrin as chemotherapeutic drug delivery,” Diamond Relat. Mater. 58, 84–93 (2015).
[Crossref]

2014 (2)

S. K. Sarkar, A. Bumb, X. Wu, K. A. Sochacki, P. Kellman, M. W. Brechbiel, and K. C. Neuman, “Wide-field in vivo background free imaging by selective magnetic modulation of nanodiamond fluorescence,” Biomed. Opt. Express 5(4), 1190 (2014).
[Crossref]

G. Balasubramanian, A. Lazariev, S. R. Arumugam, and D. wen Duan, “Nitrogen-vacancy color center in diamond-emerging nanoscale applications in bioimaging and biosensing,” Curr. Opin. Chem. Biol. 20, 69–77 (2014).
[Crossref]

2013 (4)

A. Hegyi and E. Yablonovitch, “Molecular imaging by optically detected electron spin resonance of nitrogen-vacancies in nanodiamonds,” Nano Lett. 13(3), 1173–1178 (2013).
[Crossref]

A. Hegyi and E. Yablonovitch, “Nanodiamond molecular imaging with enhanced contrast and expanded field of view,” J. Biomed. Opt. 19(1), 011015 (2013).
[Crossref]

J. M. Camacho and V. Sosa, “Alternative method to calculate the magnetic field of permanent magnets with azimuthal symmetry,” Rev. Mex. Fis. 59, 8–17 (2013).

E. Perevedentseva, Y.-C. Lin, M. Jani, and C.-L. Cheng, “Biomedical applications of nanodiamonds in imaging and therapy,” Nanomedicine 8(12), 2041–2060 (2013).
[Crossref]

2012 (4)

V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, “The properties and applications of nanodiamonds,” Nat. Nanotechnol. 7(1), 11–23 (2012).
[Crossref]

J.-P. Tetienne, L. Rondin, P. Spinicelli, M. Chipaux, T. Debuisschert, J.-F. Roch, and V. Jacques, “Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging,” New J. Phys. 14(10), 103033 (2012).
[Crossref]

V. R. Horowitz, B. J. Aleman, D. J. Christle, A. N. Cleland, and D. D. Awschalom, “Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds,” Proc. Natl. Acad. Sci. 109(34), 13493–13497 (2012).
[Crossref]

R. Igarashi, Y. Yoshinari, H. Yokota, T. Sugi, F. Sugihara, K. Ikeda, H. Sumiya, S. Tsuji, I. Mori, H. Tochio, Y. Harada, and M. Shirakawa, “Real-time background-free selective imaging of fluorescent nanodiamonds in vivo,” Nano Lett. 12(11), 5726–5732 (2012).
[Crossref]

2011 (2)

X.-Q. Zhang, R. Lam, X. Xu, E. K. Chow, H.-J. Kim, and D. Ho, “Multimodal nanodiamond drug delivery carriers for selective targeting, imaging, and enhanced chemotherapeutic efficacy,” Adv. Mater. 23(41), 4770–4775 (2011).
[Crossref]

Y.-K. Tzeng, O. Faklaris, B.-M. Chang, Y. Kuo, J.-H. Hsu, and H.-C. Chang, “Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion,” Angew. Chem., Int. Ed. 50(10), 2262–2265 (2011).
[Crossref]

2010 (4)

N. Yang and A. E. Cohen, “Optical imaging through scattering media via magnetically modulated fluorescence,” Opt. Express 18(25), 25461–24567 (2010).
[Crossref]

N. Derby and S. Olbert, “Cylindrical magnets and ideal solenoids,” Am. J. Phys. 78(3), 229–235 (2010).
[Crossref]

V. M. Acosta, A. Jarmola, E. Bauch, and D. Budker, “Optical properties of the nitrogen-vacancy singlet levels in diamond,” Phys. Rev. B 82(20), 201202 (2010).
[Crossref]

L. M. Manus, D. J. Mastarone, E. A. Waters, X.-Q. Zhang, E. A. Schultz-Sikma, K. W. MacRenaris, D. Ho, and T. J. Meade, “Gd(III)-nanodiamond conjugates for MRI contrast enhancement,” Nano Lett. 10(2), 484–489 (2010).
[Crossref]

2007 (1)

C.-C. Fu, H.-Y. Lee, K. Chen, T.-S. Lim, H.-Y. Wu, P.-K. Lin, P.-K. Wei, P.-H. Tsao, H.-C. Chang, and W. Fann, “Characterization and application of single fluorescent nanodiamonds as cellular biomarkers,” Proc. Natl. Acad. Sci. 104(3), 727–732 (2007).
[Crossref]

2006 (1)

N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B 74(10), 104303 (2006).
[Crossref]

Acosta, V. M.

V. M. Acosta, A. Jarmola, E. Bauch, and D. Budker, “Optical properties of the nitrogen-vacancy singlet levels in diamond,” Phys. Rev. B 82(20), 201202 (2010).
[Crossref]

Aleman, B. J.

V. R. Horowitz, B. J. Aleman, D. J. Christle, A. N. Cleland, and D. D. Awschalom, “Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds,” Proc. Natl. Acad. Sci. 109(34), 13493–13497 (2012).
[Crossref]

Alghannam, F.

M. H. Alkahtani, F. Alghannam, L. Jiang, A. Almethen, A. A. Rampersaud, R. Brick, C. L. Gomes, M. O. Scully, and P. R. Hemmer, “Fluorescent nanodiamonds: past, present, and future,” Nanophotonics 7(8), 1423–1453 (2018).
[Crossref]

Alkahtani, M. H.

M. H. Alkahtani, F. Alghannam, L. Jiang, A. Almethen, A. A. Rampersaud, R. Brick, C. L. Gomes, M. O. Scully, and P. R. Hemmer, “Fluorescent nanodiamonds: past, present, and future,” Nanophotonics 7(8), 1423–1453 (2018).
[Crossref]

Almethen, A.

M. H. Alkahtani, F. Alghannam, L. Jiang, A. Almethen, A. A. Rampersaud, R. Brick, C. L. Gomes, M. O. Scully, and P. R. Hemmer, “Fluorescent nanodiamonds: past, present, and future,” Nanophotonics 7(8), 1423–1453 (2018).
[Crossref]

Anishchik, S. V.

S. V. Anishchik, V. G. Vins, A. P. Yelisseyev, N. N. Lukzen, N. L. Lavrik, and V. A. Bagryansky, “Low-field feature in the magnetic spectra of NV-centers in diamond,” New J. Phys. 17(2), 023040 (2015).
[Crossref]

Arumugam, S. R.

G. Balasubramanian, A. Lazariev, S. R. Arumugam, and D. wen Duan, “Nitrogen-vacancy color center in diamond-emerging nanoscale applications in bioimaging and biosensing,” Curr. Opin. Chem. Biol. 20, 69–77 (2014).
[Crossref]

Awschalom, D. D.

V. R. Horowitz, B. J. Aleman, D. J. Christle, A. N. Cleland, and D. D. Awschalom, “Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds,” Proc. Natl. Acad. Sci. 109(34), 13493–13497 (2012).
[Crossref]

Bagryansky, V. A.

S. V. Anishchik, V. G. Vins, A. P. Yelisseyev, N. N. Lukzen, N. L. Lavrik, and V. A. Bagryansky, “Low-field feature in the magnetic spectra of NV-centers in diamond,” New J. Phys. 17(2), 023040 (2015).
[Crossref]

Balasubramanian, G.

G. Balasubramanian, A. Lazariev, S. R. Arumugam, and D. wen Duan, “Nitrogen-vacancy color center in diamond-emerging nanoscale applications in bioimaging and biosensing,” Curr. Opin. Chem. Biol. 20, 69–77 (2014).
[Crossref]

Bauch, E.

V. M. Acosta, A. Jarmola, E. Bauch, and D. Budker, “Optical properties of the nitrogen-vacancy singlet levels in diamond,” Phys. Rev. B 82(20), 201202 (2010).
[Crossref]

Bourgeois, E.

S. K. R. Singam, J. Motylewski, A. Monaco, E. Gjorgievska, E. Bourgeois, M. Nesladek, M. Giugliano, and E. Goovaerts, “Contrast induced by a static magnetic field for improved detection in nanodiamond fluorescence microscopy,” Phys. Rev. Appl. 6(6), 064013 (2016).
[Crossref]

Brechbiel, M. W.

Brick, R.

M. H. Alkahtani, F. Alghannam, L. Jiang, A. Almethen, A. A. Rampersaud, R. Brick, C. L. Gomes, M. O. Scully, and P. R. Hemmer, “Fluorescent nanodiamonds: past, present, and future,” Nanophotonics 7(8), 1423–1453 (2018).
[Crossref]

Budker, D.

V. M. Acosta, A. Jarmola, E. Bauch, and D. Budker, “Optical properties of the nitrogen-vacancy singlet levels in diamond,” Phys. Rev. B 82(20), 201202 (2010).
[Crossref]

Bumb, A.

Camacho, J. M.

J. M. Camacho and V. Sosa, “Alternative method to calculate the magnetic field of permanent magnets with azimuthal symmetry,” Rev. Mex. Fis. 59, 8–17 (2013).

Capelli, M.

M. Capelli, P. Reineck, D. W. M. Lau, A. Orth, J. Jeske, M. W. Doherty, T. Ohshima, A. D. Greentree, and B. C. Gibson, “Magnetic field-induced enhancement of the nitrogen-vacancy fluorescence quantum yield,” Nanoscale 9(27), 9299–9304 (2017).
[Crossref]

Chang, B.-M.

Y.-K. Tzeng, O. Faklaris, B.-M. Chang, Y. Kuo, J.-H. Hsu, and H.-C. Chang, “Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion,” Angew. Chem., Int. Ed. 50(10), 2262–2265 (2011).
[Crossref]

Chang, H.-C.

T.-C. Hsu, K.-K. Liu, H.-C. Chang, E. Hwang, and J.-I. Chao, “Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds,” Sci. Rep. 4(1), 5004 (2015).
[Crossref]

Y.-K. Tzeng, O. Faklaris, B.-M. Chang, Y. Kuo, J.-H. Hsu, and H.-C. Chang, “Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion,” Angew. Chem., Int. Ed. 50(10), 2262–2265 (2011).
[Crossref]

C.-C. Fu, H.-Y. Lee, K. Chen, T.-S. Lim, H.-Y. Wu, P.-K. Lin, P.-K. Wei, P.-H. Tsao, H.-C. Chang, and W. Fann, “Characterization and application of single fluorescent nanodiamonds as cellular biomarkers,” Proc. Natl. Acad. Sci. 104(3), 727–732 (2007).
[Crossref]

Chao, J.-I.

T.-C. Hsu, K.-K. Liu, H.-C. Chang, E. Hwang, and J.-I. Chao, “Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds,” Sci. Rep. 4(1), 5004 (2015).
[Crossref]

Chen, K.

C.-C. Fu, H.-Y. Lee, K. Chen, T.-S. Lim, H.-Y. Wu, P.-K. Lin, P.-K. Wei, P.-H. Tsao, H.-C. Chang, and W. Fann, “Characterization and application of single fluorescent nanodiamonds as cellular biomarkers,” Proc. Natl. Acad. Sci. 104(3), 727–732 (2007).
[Crossref]

Cheng, C.-L.

E. Perevedentseva, Y.-C. Lin, M. Jani, and C.-L. Cheng, “Biomedical applications of nanodiamonds in imaging and therapy,” Nanomedicine 8(12), 2041–2060 (2013).
[Crossref]

Chipaux, M.

J.-P. Tetienne, L. Rondin, P. Spinicelli, M. Chipaux, T. Debuisschert, J.-F. Roch, and V. Jacques, “Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging,” New J. Phys. 14(10), 103033 (2012).
[Crossref]

Chow, E. K.

X.-Q. Zhang, R. Lam, X. Xu, E. K. Chow, H.-J. Kim, and D. Ho, “Multimodal nanodiamond drug delivery carriers for selective targeting, imaging, and enhanced chemotherapeutic efficacy,” Adv. Mater. 23(41), 4770–4775 (2011).
[Crossref]

Christle, D. J.

V. R. Horowitz, B. J. Aleman, D. J. Christle, A. N. Cleland, and D. D. Awschalom, “Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds,” Proc. Natl. Acad. Sci. 109(34), 13493–13497 (2012).
[Crossref]

Cigler, P.

J. Slegerova, M. Hajek, I. Rehor, F. Sedlak, J. Stursa, M. Hruby, and P. Cigler, “Designing the nanobiointerface of fluorescent nanodiamonds: highly selective targeting of glioma cancer cells,” Nanoscale 7(2), 415–420 (2015).
[Crossref]

Cleland, A. N.

V. R. Horowitz, B. J. Aleman, D. J. Christle, A. N. Cleland, and D. D. Awschalom, “Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds,” Proc. Natl. Acad. Sci. 109(34), 13493–13497 (2012).
[Crossref]

Cohen, A. E.

Deans, S. R.

S. R. Deans, The Radon Transform and Some of Its Applications (Wiley, 1983).

Debuisschert, T.

J.-P. Tetienne, L. Rondin, P. Spinicelli, M. Chipaux, T. Debuisschert, J.-F. Roch, and V. Jacques, “Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging,” New J. Phys. 14(10), 103033 (2012).
[Crossref]

Derby, N.

N. Derby and S. Olbert, “Cylindrical magnets and ideal solenoids,” Am. J. Phys. 78(3), 229–235 (2010).
[Crossref]

Doherty, M. W.

M. Capelli, P. Reineck, D. W. M. Lau, A. Orth, J. Jeske, M. W. Doherty, T. Ohshima, A. D. Greentree, and B. C. Gibson, “Magnetic field-induced enhancement of the nitrogen-vacancy fluorescence quantum yield,” Nanoscale 9(27), 9299–9304 (2017).
[Crossref]

Dong, Y.

Z. Wang, Z. Tian, Y. Dong, L. Li, L. Tian, Y. Li, and B. Yang, “Nanodiamond-conjugated transferrin as chemotherapeutic drug delivery,” Diamond Relat. Mater. 58, 84–93 (2015).
[Crossref]

Faklaris, O.

Y.-K. Tzeng, O. Faklaris, B.-M. Chang, Y. Kuo, J.-H. Hsu, and H.-C. Chang, “Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion,” Angew. Chem., Int. Ed. 50(10), 2262–2265 (2011).
[Crossref]

Fann, W.

C.-C. Fu, H.-Y. Lee, K. Chen, T.-S. Lim, H.-Y. Wu, P.-K. Lin, P.-K. Wei, P.-H. Tsao, H.-C. Chang, and W. Fann, “Characterization and application of single fluorescent nanodiamonds as cellular biomarkers,” Proc. Natl. Acad. Sci. 104(3), 727–732 (2007).
[Crossref]

Fu, C.-C.

C.-C. Fu, H.-Y. Lee, K. Chen, T.-S. Lim, H.-Y. Wu, P.-K. Lin, P.-K. Wei, P.-H. Tsao, H.-C. Chang, and W. Fann, “Characterization and application of single fluorescent nanodiamonds as cellular biomarkers,” Proc. Natl. Acad. Sci. 104(3), 727–732 (2007).
[Crossref]

Gibson, B. C.

M. Capelli, P. Reineck, D. W. M. Lau, A. Orth, J. Jeske, M. W. Doherty, T. Ohshima, A. D. Greentree, and B. C. Gibson, “Magnetic field-induced enhancement of the nitrogen-vacancy fluorescence quantum yield,” Nanoscale 9(27), 9299–9304 (2017).
[Crossref]

Giugliano, M.

S. K. R. Singam, J. Motylewski, A. Monaco, E. Gjorgievska, E. Bourgeois, M. Nesladek, M. Giugliano, and E. Goovaerts, “Contrast induced by a static magnetic field for improved detection in nanodiamond fluorescence microscopy,” Phys. Rev. Appl. 6(6), 064013 (2016).
[Crossref]

Gjorgievska, E.

S. K. R. Singam, J. Motylewski, A. Monaco, E. Gjorgievska, E. Bourgeois, M. Nesladek, M. Giugliano, and E. Goovaerts, “Contrast induced by a static magnetic field for improved detection in nanodiamond fluorescence microscopy,” Phys. Rev. Appl. 6(6), 064013 (2016).
[Crossref]

Gogotsi, Y.

V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, “The properties and applications of nanodiamonds,” Nat. Nanotechnol. 7(1), 11–23 (2012).
[Crossref]

Gomes, C. L.

M. H. Alkahtani, F. Alghannam, L. Jiang, A. Almethen, A. A. Rampersaud, R. Brick, C. L. Gomes, M. O. Scully, and P. R. Hemmer, “Fluorescent nanodiamonds: past, present, and future,” Nanophotonics 7(8), 1423–1453 (2018).
[Crossref]

Goovaerts, E.

S. K. R. Singam, J. Motylewski, A. Monaco, E. Gjorgievska, E. Bourgeois, M. Nesladek, M. Giugliano, and E. Goovaerts, “Contrast induced by a static magnetic field for improved detection in nanodiamond fluorescence microscopy,” Phys. Rev. Appl. 6(6), 064013 (2016).
[Crossref]

Greentree, A. D.

M. Capelli, P. Reineck, D. W. M. Lau, A. Orth, J. Jeske, M. W. Doherty, T. Ohshima, A. D. Greentree, and B. C. Gibson, “Magnetic field-induced enhancement of the nitrogen-vacancy fluorescence quantum yield,” Nanoscale 9(27), 9299–9304 (2017).
[Crossref]

Hajek, M.

J. Slegerova, M. Hajek, I. Rehor, F. Sedlak, J. Stursa, M. Hruby, and P. Cigler, “Designing the nanobiointerface of fluorescent nanodiamonds: highly selective targeting of glioma cancer cells,” Nanoscale 7(2), 415–420 (2015).
[Crossref]

Harada, Y.

R. Igarashi, Y. Yoshinari, H. Yokota, T. Sugi, F. Sugihara, K. Ikeda, H. Sumiya, S. Tsuji, I. Mori, H. Tochio, Y. Harada, and M. Shirakawa, “Real-time background-free selective imaging of fluorescent nanodiamonds in vivo,” Nano Lett. 12(11), 5726–5732 (2012).
[Crossref]

Harrison, J. P.

N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B 74(10), 104303 (2006).
[Crossref]

Hasani, M.

K. J. van der Laan, M. Hasani, T. Zheng, and R. Schirhagl, “Nanodiamonds for in vivo applications,” Small 14(19), 1703838 (2018).
[Crossref]

Hegyi, A.

A. Hegyi and E. Yablonovitch, “Molecular imaging by optically detected electron spin resonance of nitrogen-vacancies in nanodiamonds,” Nano Lett. 13(3), 1173–1178 (2013).
[Crossref]

A. Hegyi and E. Yablonovitch, “Nanodiamond molecular imaging with enhanced contrast and expanded field of view,” J. Biomed. Opt. 19(1), 011015 (2013).
[Crossref]

Helgason, S.

S. Helgason, Groups and Geometric Analysis : Integral Geometry, Invariant Differential Operators, and Spherical Functions (Academic Press, 1984).

S. Helgason, Integral Geometry and Radon Transforms (Springer, 2010).

Hemmer, P. R.

M. H. Alkahtani, F. Alghannam, L. Jiang, A. Almethen, A. A. Rampersaud, R. Brick, C. L. Gomes, M. O. Scully, and P. R. Hemmer, “Fluorescent nanodiamonds: past, present, and future,” Nanophotonics 7(8), 1423–1453 (2018).
[Crossref]

Ho, D.

V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, “The properties and applications of nanodiamonds,” Nat. Nanotechnol. 7(1), 11–23 (2012).
[Crossref]

X.-Q. Zhang, R. Lam, X. Xu, E. K. Chow, H.-J. Kim, and D. Ho, “Multimodal nanodiamond drug delivery carriers for selective targeting, imaging, and enhanced chemotherapeutic efficacy,” Adv. Mater. 23(41), 4770–4775 (2011).
[Crossref]

L. M. Manus, D. J. Mastarone, E. A. Waters, X.-Q. Zhang, E. A. Schultz-Sikma, K. W. MacRenaris, D. Ho, and T. J. Meade, “Gd(III)-nanodiamond conjugates for MRI contrast enhancement,” Nano Lett. 10(2), 484–489 (2010).
[Crossref]

Horowitz, V. R.

V. R. Horowitz, B. J. Aleman, D. J. Christle, A. N. Cleland, and D. D. Awschalom, “Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds,” Proc. Natl. Acad. Sci. 109(34), 13493–13497 (2012).
[Crossref]

Hruby, M.

J. Slegerova, M. Hajek, I. Rehor, F. Sedlak, J. Stursa, M. Hruby, and P. Cigler, “Designing the nanobiointerface of fluorescent nanodiamonds: highly selective targeting of glioma cancer cells,” Nanoscale 7(2), 415–420 (2015).
[Crossref]

Hsu, J.-H.

Y.-K. Tzeng, O. Faklaris, B.-M. Chang, Y. Kuo, J.-H. Hsu, and H.-C. Chang, “Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion,” Angew. Chem., Int. Ed. 50(10), 2262–2265 (2011).
[Crossref]

Hsu, T.-C.

T.-C. Hsu, K.-K. Liu, H.-C. Chang, E. Hwang, and J.-I. Chao, “Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds,” Sci. Rep. 4(1), 5004 (2015).
[Crossref]

Hwang, E.

T.-C. Hsu, K.-K. Liu, H.-C. Chang, E. Hwang, and J.-I. Chao, “Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds,” Sci. Rep. 4(1), 5004 (2015).
[Crossref]

Igarashi, R.

R. Igarashi, Y. Yoshinari, H. Yokota, T. Sugi, F. Sugihara, K. Ikeda, H. Sumiya, S. Tsuji, I. Mori, H. Tochio, Y. Harada, and M. Shirakawa, “Real-time background-free selective imaging of fluorescent nanodiamonds in vivo,” Nano Lett. 12(11), 5726–5732 (2012).
[Crossref]

Ikeda, K.

R. Igarashi, Y. Yoshinari, H. Yokota, T. Sugi, F. Sugihara, K. Ikeda, H. Sumiya, S. Tsuji, I. Mori, H. Tochio, Y. Harada, and M. Shirakawa, “Real-time background-free selective imaging of fluorescent nanodiamonds in vivo,” Nano Lett. 12(11), 5726–5732 (2012).
[Crossref]

Jacques, V.

J.-P. Tetienne, L. Rondin, P. Spinicelli, M. Chipaux, T. Debuisschert, J.-F. Roch, and V. Jacques, “Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging,” New J. Phys. 14(10), 103033 (2012).
[Crossref]

Jani, M.

E. Perevedentseva, Y.-C. Lin, M. Jani, and C.-L. Cheng, “Biomedical applications of nanodiamonds in imaging and therapy,” Nanomedicine 8(12), 2041–2060 (2013).
[Crossref]

Jarmola, A.

V. M. Acosta, A. Jarmola, E. Bauch, and D. Budker, “Optical properties of the nitrogen-vacancy singlet levels in diamond,” Phys. Rev. B 82(20), 201202 (2010).
[Crossref]

Jeske, J.

M. Capelli, P. Reineck, D. W. M. Lau, A. Orth, J. Jeske, M. W. Doherty, T. Ohshima, A. D. Greentree, and B. C. Gibson, “Magnetic field-induced enhancement of the nitrogen-vacancy fluorescence quantum yield,” Nanoscale 9(27), 9299–9304 (2017).
[Crossref]

Jiang, L.

M. H. Alkahtani, F. Alghannam, L. Jiang, A. Almethen, A. A. Rampersaud, R. Brick, C. L. Gomes, M. O. Scully, and P. R. Hemmer, “Fluorescent nanodiamonds: past, present, and future,” Nanophotonics 7(8), 1423–1453 (2018).
[Crossref]

Kellman, P.

Kim, H.-J.

X.-Q. Zhang, R. Lam, X. Xu, E. K. Chow, H.-J. Kim, and D. Ho, “Multimodal nanodiamond drug delivery carriers for selective targeting, imaging, and enhanced chemotherapeutic efficacy,” Adv. Mater. 23(41), 4770–4775 (2011).
[Crossref]

Kuchment, P.

P. Kuchment, The Radon Transform and Medical Imaging (SIAM - Society for Industrial and Applied Mathematics, 2013).

Kuo, Y.

Y.-K. Tzeng, O. Faklaris, B.-M. Chang, Y. Kuo, J.-H. Hsu, and H.-C. Chang, “Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion,” Angew. Chem., Int. Ed. 50(10), 2262–2265 (2011).
[Crossref]

Lam, R.

X.-Q. Zhang, R. Lam, X. Xu, E. K. Chow, H.-J. Kim, and D. Ho, “Multimodal nanodiamond drug delivery carriers for selective targeting, imaging, and enhanced chemotherapeutic efficacy,” Adv. Mater. 23(41), 4770–4775 (2011).
[Crossref]

Lau, D. W. M.

M. Capelli, P. Reineck, D. W. M. Lau, A. Orth, J. Jeske, M. W. Doherty, T. Ohshima, A. D. Greentree, and B. C. Gibson, “Magnetic field-induced enhancement of the nitrogen-vacancy fluorescence quantum yield,” Nanoscale 9(27), 9299–9304 (2017).
[Crossref]

Lavrik, N. L.

S. V. Anishchik, V. G. Vins, A. P. Yelisseyev, N. N. Lukzen, N. L. Lavrik, and V. A. Bagryansky, “Low-field feature in the magnetic spectra of NV-centers in diamond,” New J. Phys. 17(2), 023040 (2015).
[Crossref]

Lazariev, A.

G. Balasubramanian, A. Lazariev, S. R. Arumugam, and D. wen Duan, “Nitrogen-vacancy color center in diamond-emerging nanoscale applications in bioimaging and biosensing,” Curr. Opin. Chem. Biol. 20, 69–77 (2014).
[Crossref]

Lee, H.-Y.

C.-C. Fu, H.-Y. Lee, K. Chen, T.-S. Lim, H.-Y. Wu, P.-K. Lin, P.-K. Wei, P.-H. Tsao, H.-C. Chang, and W. Fann, “Characterization and application of single fluorescent nanodiamonds as cellular biomarkers,” Proc. Natl. Acad. Sci. 104(3), 727–732 (2007).
[Crossref]

Li, L.

Z. Wang, Z. Tian, Y. Dong, L. Li, L. Tian, Y. Li, and B. Yang, “Nanodiamond-conjugated transferrin as chemotherapeutic drug delivery,” Diamond Relat. Mater. 58, 84–93 (2015).
[Crossref]

Li, Y.

Z. Wang, Z. Tian, Y. Dong, L. Li, L. Tian, Y. Li, and B. Yang, “Nanodiamond-conjugated transferrin as chemotherapeutic drug delivery,” Diamond Relat. Mater. 58, 84–93 (2015).
[Crossref]

Lim, T.-S.

C.-C. Fu, H.-Y. Lee, K. Chen, T.-S. Lim, H.-Y. Wu, P.-K. Lin, P.-K. Wei, P.-H. Tsao, H.-C. Chang, and W. Fann, “Characterization and application of single fluorescent nanodiamonds as cellular biomarkers,” Proc. Natl. Acad. Sci. 104(3), 727–732 (2007).
[Crossref]

Lin, P.-K.

C.-C. Fu, H.-Y. Lee, K. Chen, T.-S. Lim, H.-Y. Wu, P.-K. Lin, P.-K. Wei, P.-H. Tsao, H.-C. Chang, and W. Fann, “Characterization and application of single fluorescent nanodiamonds as cellular biomarkers,” Proc. Natl. Acad. Sci. 104(3), 727–732 (2007).
[Crossref]

Lin, Y.-C.

E. Perevedentseva, Y.-C. Lin, M. Jani, and C.-L. Cheng, “Biomedical applications of nanodiamonds in imaging and therapy,” Nanomedicine 8(12), 2041–2060 (2013).
[Crossref]

Liu, K.-K.

T.-C. Hsu, K.-K. Liu, H.-C. Chang, E. Hwang, and J.-I. Chao, “Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds,” Sci. Rep. 4(1), 5004 (2015).
[Crossref]

Lukzen, N. N.

S. V. Anishchik, V. G. Vins, A. P. Yelisseyev, N. N. Lukzen, N. L. Lavrik, and V. A. Bagryansky, “Low-field feature in the magnetic spectra of NV-centers in diamond,” New J. Phys. 17(2), 023040 (2015).
[Crossref]

MacRenaris, K. W.

L. M. Manus, D. J. Mastarone, E. A. Waters, X.-Q. Zhang, E. A. Schultz-Sikma, K. W. MacRenaris, D. Ho, and T. J. Meade, “Gd(III)-nanodiamond conjugates for MRI contrast enhancement,” Nano Lett. 10(2), 484–489 (2010).
[Crossref]

Manson, N. B.

N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B 74(10), 104303 (2006).
[Crossref]

Manus, L. M.

L. M. Manus, D. J. Mastarone, E. A. Waters, X.-Q. Zhang, E. A. Schultz-Sikma, K. W. MacRenaris, D. Ho, and T. J. Meade, “Gd(III)-nanodiamond conjugates for MRI contrast enhancement,” Nano Lett. 10(2), 484–489 (2010).
[Crossref]

Mastarone, D. J.

L. M. Manus, D. J. Mastarone, E. A. Waters, X.-Q. Zhang, E. A. Schultz-Sikma, K. W. MacRenaris, D. Ho, and T. J. Meade, “Gd(III)-nanodiamond conjugates for MRI contrast enhancement,” Nano Lett. 10(2), 484–489 (2010).
[Crossref]

Meade, T. J.

L. M. Manus, D. J. Mastarone, E. A. Waters, X.-Q. Zhang, E. A. Schultz-Sikma, K. W. MacRenaris, D. Ho, and T. J. Meade, “Gd(III)-nanodiamond conjugates for MRI contrast enhancement,” Nano Lett. 10(2), 484–489 (2010).
[Crossref]

Mochalin, V. N.

K. Turcheniuk and V. N. Mochalin, “Biomedical applications of nanodiamond (review),” Nanotechnology 28(25), 252001 (2017).
[Crossref]

V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, “The properties and applications of nanodiamonds,” Nat. Nanotechnol. 7(1), 11–23 (2012).
[Crossref]

Monaco, A.

S. K. R. Singam, J. Motylewski, A. Monaco, E. Gjorgievska, E. Bourgeois, M. Nesladek, M. Giugliano, and E. Goovaerts, “Contrast induced by a static magnetic field for improved detection in nanodiamond fluorescence microscopy,” Phys. Rev. Appl. 6(6), 064013 (2016).
[Crossref]

Mori, I.

R. Igarashi, Y. Yoshinari, H. Yokota, T. Sugi, F. Sugihara, K. Ikeda, H. Sumiya, S. Tsuji, I. Mori, H. Tochio, Y. Harada, and M. Shirakawa, “Real-time background-free selective imaging of fluorescent nanodiamonds in vivo,” Nano Lett. 12(11), 5726–5732 (2012).
[Crossref]

Motylewski, J.

S. K. R. Singam, J. Motylewski, A. Monaco, E. Gjorgievska, E. Bourgeois, M. Nesladek, M. Giugliano, and E. Goovaerts, “Contrast induced by a static magnetic field for improved detection in nanodiamond fluorescence microscopy,” Phys. Rev. Appl. 6(6), 064013 (2016).
[Crossref]

Nesladek, M.

S. K. R. Singam, J. Motylewski, A. Monaco, E. Gjorgievska, E. Bourgeois, M. Nesladek, M. Giugliano, and E. Goovaerts, “Contrast induced by a static magnetic field for improved detection in nanodiamond fluorescence microscopy,” Phys. Rev. Appl. 6(6), 064013 (2016).
[Crossref]

Neuman, K. C.

Ohshima, T.

M. Capelli, P. Reineck, D. W. M. Lau, A. Orth, J. Jeske, M. W. Doherty, T. Ohshima, A. D. Greentree, and B. C. Gibson, “Magnetic field-induced enhancement of the nitrogen-vacancy fluorescence quantum yield,” Nanoscale 9(27), 9299–9304 (2017).
[Crossref]

Olbert, S.

N. Derby and S. Olbert, “Cylindrical magnets and ideal solenoids,” Am. J. Phys. 78(3), 229–235 (2010).
[Crossref]

Orth, A.

M. Capelli, P. Reineck, D. W. M. Lau, A. Orth, J. Jeske, M. W. Doherty, T. Ohshima, A. D. Greentree, and B. C. Gibson, “Magnetic field-induced enhancement of the nitrogen-vacancy fluorescence quantum yield,” Nanoscale 9(27), 9299–9304 (2017).
[Crossref]

Perevedentseva, E.

E. Perevedentseva, Y.-C. Lin, M. Jani, and C.-L. Cheng, “Biomedical applications of nanodiamonds in imaging and therapy,” Nanomedicine 8(12), 2041–2060 (2013).
[Crossref]

Rampersaud, A. A.

M. H. Alkahtani, F. Alghannam, L. Jiang, A. Almethen, A. A. Rampersaud, R. Brick, C. L. Gomes, M. O. Scully, and P. R. Hemmer, “Fluorescent nanodiamonds: past, present, and future,” Nanophotonics 7(8), 1423–1453 (2018).
[Crossref]

Rehor, I.

J. Slegerova, M. Hajek, I. Rehor, F. Sedlak, J. Stursa, M. Hruby, and P. Cigler, “Designing the nanobiointerface of fluorescent nanodiamonds: highly selective targeting of glioma cancer cells,” Nanoscale 7(2), 415–420 (2015).
[Crossref]

Reineck, P.

M. Capelli, P. Reineck, D. W. M. Lau, A. Orth, J. Jeske, M. W. Doherty, T. Ohshima, A. D. Greentree, and B. C. Gibson, “Magnetic field-induced enhancement of the nitrogen-vacancy fluorescence quantum yield,” Nanoscale 9(27), 9299–9304 (2017).
[Crossref]

Roch, J.-F.

J.-P. Tetienne, L. Rondin, P. Spinicelli, M. Chipaux, T. Debuisschert, J.-F. Roch, and V. Jacques, “Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging,” New J. Phys. 14(10), 103033 (2012).
[Crossref]

Rondin, L.

J.-P. Tetienne, L. Rondin, P. Spinicelli, M. Chipaux, T. Debuisschert, J.-F. Roch, and V. Jacques, “Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging,” New J. Phys. 14(10), 103033 (2012).
[Crossref]

Sarkar, S. K.

Schirhagl, R.

K. J. van der Laan, M. Hasani, T. Zheng, and R. Schirhagl, “Nanodiamonds for in vivo applications,” Small 14(19), 1703838 (2018).
[Crossref]

Schultz-Sikma, E. A.

L. M. Manus, D. J. Mastarone, E. A. Waters, X.-Q. Zhang, E. A. Schultz-Sikma, K. W. MacRenaris, D. Ho, and T. J. Meade, “Gd(III)-nanodiamond conjugates for MRI contrast enhancement,” Nano Lett. 10(2), 484–489 (2010).
[Crossref]

Scully, M. O.

M. H. Alkahtani, F. Alghannam, L. Jiang, A. Almethen, A. A. Rampersaud, R. Brick, C. L. Gomes, M. O. Scully, and P. R. Hemmer, “Fluorescent nanodiamonds: past, present, and future,” Nanophotonics 7(8), 1423–1453 (2018).
[Crossref]

Sedlak, F.

J. Slegerova, M. Hajek, I. Rehor, F. Sedlak, J. Stursa, M. Hruby, and P. Cigler, “Designing the nanobiointerface of fluorescent nanodiamonds: highly selective targeting of glioma cancer cells,” Nanoscale 7(2), 415–420 (2015).
[Crossref]

Sellars, M. J.

N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B 74(10), 104303 (2006).
[Crossref]

Shenderova, O.

V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, “The properties and applications of nanodiamonds,” Nat. Nanotechnol. 7(1), 11–23 (2012).
[Crossref]

Shirakawa, M.

R. Igarashi, Y. Yoshinari, H. Yokota, T. Sugi, F. Sugihara, K. Ikeda, H. Sumiya, S. Tsuji, I. Mori, H. Tochio, Y. Harada, and M. Shirakawa, “Real-time background-free selective imaging of fluorescent nanodiamonds in vivo,” Nano Lett. 12(11), 5726–5732 (2012).
[Crossref]

Singam, S. K. R.

S. K. R. Singam, J. Motylewski, A. Monaco, E. Gjorgievska, E. Bourgeois, M. Nesladek, M. Giugliano, and E. Goovaerts, “Contrast induced by a static magnetic field for improved detection in nanodiamond fluorescence microscopy,” Phys. Rev. Appl. 6(6), 064013 (2016).
[Crossref]

Slegerova, J.

J. Slegerova, M. Hajek, I. Rehor, F. Sedlak, J. Stursa, M. Hruby, and P. Cigler, “Designing the nanobiointerface of fluorescent nanodiamonds: highly selective targeting of glioma cancer cells,” Nanoscale 7(2), 415–420 (2015).
[Crossref]

Sochacki, K. A.

Sosa, V.

J. M. Camacho and V. Sosa, “Alternative method to calculate the magnetic field of permanent magnets with azimuthal symmetry,” Rev. Mex. Fis. 59, 8–17 (2013).

Spinicelli, P.

J.-P. Tetienne, L. Rondin, P. Spinicelli, M. Chipaux, T. Debuisschert, J.-F. Roch, and V. Jacques, “Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging,” New J. Phys. 14(10), 103033 (2012).
[Crossref]

Stursa, J.

J. Slegerova, M. Hajek, I. Rehor, F. Sedlak, J. Stursa, M. Hruby, and P. Cigler, “Designing the nanobiointerface of fluorescent nanodiamonds: highly selective targeting of glioma cancer cells,” Nanoscale 7(2), 415–420 (2015).
[Crossref]

Sugi, T.

R. Igarashi, Y. Yoshinari, H. Yokota, T. Sugi, F. Sugihara, K. Ikeda, H. Sumiya, S. Tsuji, I. Mori, H. Tochio, Y. Harada, and M. Shirakawa, “Real-time background-free selective imaging of fluorescent nanodiamonds in vivo,” Nano Lett. 12(11), 5726–5732 (2012).
[Crossref]

Sugihara, F.

R. Igarashi, Y. Yoshinari, H. Yokota, T. Sugi, F. Sugihara, K. Ikeda, H. Sumiya, S. Tsuji, I. Mori, H. Tochio, Y. Harada, and M. Shirakawa, “Real-time background-free selective imaging of fluorescent nanodiamonds in vivo,” Nano Lett. 12(11), 5726–5732 (2012).
[Crossref]

Sumiya, H.

R. Igarashi, Y. Yoshinari, H. Yokota, T. Sugi, F. Sugihara, K. Ikeda, H. Sumiya, S. Tsuji, I. Mori, H. Tochio, Y. Harada, and M. Shirakawa, “Real-time background-free selective imaging of fluorescent nanodiamonds in vivo,” Nano Lett. 12(11), 5726–5732 (2012).
[Crossref]

Tetienne, J.-P.

J.-P. Tetienne, L. Rondin, P. Spinicelli, M. Chipaux, T. Debuisschert, J.-F. Roch, and V. Jacques, “Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging,” New J. Phys. 14(10), 103033 (2012).
[Crossref]

Tian, L.

Z. Wang, Z. Tian, Y. Dong, L. Li, L. Tian, Y. Li, and B. Yang, “Nanodiamond-conjugated transferrin as chemotherapeutic drug delivery,” Diamond Relat. Mater. 58, 84–93 (2015).
[Crossref]

Tian, Z.

Z. Wang, Z. Tian, Y. Dong, L. Li, L. Tian, Y. Li, and B. Yang, “Nanodiamond-conjugated transferrin as chemotherapeutic drug delivery,” Diamond Relat. Mater. 58, 84–93 (2015).
[Crossref]

Tochio, H.

R. Igarashi, Y. Yoshinari, H. Yokota, T. Sugi, F. Sugihara, K. Ikeda, H. Sumiya, S. Tsuji, I. Mori, H. Tochio, Y. Harada, and M. Shirakawa, “Real-time background-free selective imaging of fluorescent nanodiamonds in vivo,” Nano Lett. 12(11), 5726–5732 (2012).
[Crossref]

Tsao, P.-H.

C.-C. Fu, H.-Y. Lee, K. Chen, T.-S. Lim, H.-Y. Wu, P.-K. Lin, P.-K. Wei, P.-H. Tsao, H.-C. Chang, and W. Fann, “Characterization and application of single fluorescent nanodiamonds as cellular biomarkers,” Proc. Natl. Acad. Sci. 104(3), 727–732 (2007).
[Crossref]

Tsuji, S.

R. Igarashi, Y. Yoshinari, H. Yokota, T. Sugi, F. Sugihara, K. Ikeda, H. Sumiya, S. Tsuji, I. Mori, H. Tochio, Y. Harada, and M. Shirakawa, “Real-time background-free selective imaging of fluorescent nanodiamonds in vivo,” Nano Lett. 12(11), 5726–5732 (2012).
[Crossref]

Turcheniuk, K.

K. Turcheniuk and V. N. Mochalin, “Biomedical applications of nanodiamond (review),” Nanotechnology 28(25), 252001 (2017).
[Crossref]

Tzeng, Y.-K.

Y.-K. Tzeng, O. Faklaris, B.-M. Chang, Y. Kuo, J.-H. Hsu, and H.-C. Chang, “Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion,” Angew. Chem., Int. Ed. 50(10), 2262–2265 (2011).
[Crossref]

van der Laan, K. J.

K. J. van der Laan, M. Hasani, T. Zheng, and R. Schirhagl, “Nanodiamonds for in vivo applications,” Small 14(19), 1703838 (2018).
[Crossref]

Vins, V. G.

S. V. Anishchik, V. G. Vins, A. P. Yelisseyev, N. N. Lukzen, N. L. Lavrik, and V. A. Bagryansky, “Low-field feature in the magnetic spectra of NV-centers in diamond,” New J. Phys. 17(2), 023040 (2015).
[Crossref]

Wang, Z.

Z. Wang, Z. Tian, Y. Dong, L. Li, L. Tian, Y. Li, and B. Yang, “Nanodiamond-conjugated transferrin as chemotherapeutic drug delivery,” Diamond Relat. Mater. 58, 84–93 (2015).
[Crossref]

Waters, E. A.

L. M. Manus, D. J. Mastarone, E. A. Waters, X.-Q. Zhang, E. A. Schultz-Sikma, K. W. MacRenaris, D. Ho, and T. J. Meade, “Gd(III)-nanodiamond conjugates for MRI contrast enhancement,” Nano Lett. 10(2), 484–489 (2010).
[Crossref]

Wei, P.-K.

C.-C. Fu, H.-Y. Lee, K. Chen, T.-S. Lim, H.-Y. Wu, P.-K. Lin, P.-K. Wei, P.-H. Tsao, H.-C. Chang, and W. Fann, “Characterization and application of single fluorescent nanodiamonds as cellular biomarkers,” Proc. Natl. Acad. Sci. 104(3), 727–732 (2007).
[Crossref]

wen Duan, D.

G. Balasubramanian, A. Lazariev, S. R. Arumugam, and D. wen Duan, “Nitrogen-vacancy color center in diamond-emerging nanoscale applications in bioimaging and biosensing,” Curr. Opin. Chem. Biol. 20, 69–77 (2014).
[Crossref]

Wu, H.-Y.

C.-C. Fu, H.-Y. Lee, K. Chen, T.-S. Lim, H.-Y. Wu, P.-K. Lin, P.-K. Wei, P.-H. Tsao, H.-C. Chang, and W. Fann, “Characterization and application of single fluorescent nanodiamonds as cellular biomarkers,” Proc. Natl. Acad. Sci. 104(3), 727–732 (2007).
[Crossref]

Wu, X.

Xu, X.

X.-Q. Zhang, R. Lam, X. Xu, E. K. Chow, H.-J. Kim, and D. Ho, “Multimodal nanodiamond drug delivery carriers for selective targeting, imaging, and enhanced chemotherapeutic efficacy,” Adv. Mater. 23(41), 4770–4775 (2011).
[Crossref]

Yablonovitch, E.

A. Hegyi and E. Yablonovitch, “Molecular imaging by optically detected electron spin resonance of nitrogen-vacancies in nanodiamonds,” Nano Lett. 13(3), 1173–1178 (2013).
[Crossref]

A. Hegyi and E. Yablonovitch, “Nanodiamond molecular imaging with enhanced contrast and expanded field of view,” J. Biomed. Opt. 19(1), 011015 (2013).
[Crossref]

Yang, B.

Z. Wang, Z. Tian, Y. Dong, L. Li, L. Tian, Y. Li, and B. Yang, “Nanodiamond-conjugated transferrin as chemotherapeutic drug delivery,” Diamond Relat. Mater. 58, 84–93 (2015).
[Crossref]

Yang, N.

Yelisseyev, A. P.

S. V. Anishchik, V. G. Vins, A. P. Yelisseyev, N. N. Lukzen, N. L. Lavrik, and V. A. Bagryansky, “Low-field feature in the magnetic spectra of NV-centers in diamond,” New J. Phys. 17(2), 023040 (2015).
[Crossref]

Yokota, H.

R. Igarashi, Y. Yoshinari, H. Yokota, T. Sugi, F. Sugihara, K. Ikeda, H. Sumiya, S. Tsuji, I. Mori, H. Tochio, Y. Harada, and M. Shirakawa, “Real-time background-free selective imaging of fluorescent nanodiamonds in vivo,” Nano Lett. 12(11), 5726–5732 (2012).
[Crossref]

Yoshinari, Y.

R. Igarashi, Y. Yoshinari, H. Yokota, T. Sugi, F. Sugihara, K. Ikeda, H. Sumiya, S. Tsuji, I. Mori, H. Tochio, Y. Harada, and M. Shirakawa, “Real-time background-free selective imaging of fluorescent nanodiamonds in vivo,” Nano Lett. 12(11), 5726–5732 (2012).
[Crossref]

Zhang, X.-Q.

X.-Q. Zhang, R. Lam, X. Xu, E. K. Chow, H.-J. Kim, and D. Ho, “Multimodal nanodiamond drug delivery carriers for selective targeting, imaging, and enhanced chemotherapeutic efficacy,” Adv. Mater. 23(41), 4770–4775 (2011).
[Crossref]

L. M. Manus, D. J. Mastarone, E. A. Waters, X.-Q. Zhang, E. A. Schultz-Sikma, K. W. MacRenaris, D. Ho, and T. J. Meade, “Gd(III)-nanodiamond conjugates for MRI contrast enhancement,” Nano Lett. 10(2), 484–489 (2010).
[Crossref]

Zheng, T.

K. J. van der Laan, M. Hasani, T. Zheng, and R. Schirhagl, “Nanodiamonds for in vivo applications,” Small 14(19), 1703838 (2018).
[Crossref]

Adv. Mater. (1)

X.-Q. Zhang, R. Lam, X. Xu, E. K. Chow, H.-J. Kim, and D. Ho, “Multimodal nanodiamond drug delivery carriers for selective targeting, imaging, and enhanced chemotherapeutic efficacy,” Adv. Mater. 23(41), 4770–4775 (2011).
[Crossref]

Am. J. Phys. (1)

N. Derby and S. Olbert, “Cylindrical magnets and ideal solenoids,” Am. J. Phys. 78(3), 229–235 (2010).
[Crossref]

Angew. Chem., Int. Ed. (1)

Y.-K. Tzeng, O. Faklaris, B.-M. Chang, Y. Kuo, J.-H. Hsu, and H.-C. Chang, “Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion,” Angew. Chem., Int. Ed. 50(10), 2262–2265 (2011).
[Crossref]

Biomed. Opt. Express (1)

Curr. Opin. Chem. Biol. (1)

G. Balasubramanian, A. Lazariev, S. R. Arumugam, and D. wen Duan, “Nitrogen-vacancy color center in diamond-emerging nanoscale applications in bioimaging and biosensing,” Curr. Opin. Chem. Biol. 20, 69–77 (2014).
[Crossref]

Diamond Relat. Mater. (1)

Z. Wang, Z. Tian, Y. Dong, L. Li, L. Tian, Y. Li, and B. Yang, “Nanodiamond-conjugated transferrin as chemotherapeutic drug delivery,” Diamond Relat. Mater. 58, 84–93 (2015).
[Crossref]

J. Biomed. Opt. (1)

A. Hegyi and E. Yablonovitch, “Nanodiamond molecular imaging with enhanced contrast and expanded field of view,” J. Biomed. Opt. 19(1), 011015 (2013).
[Crossref]

Nano Lett. (3)

A. Hegyi and E. Yablonovitch, “Molecular imaging by optically detected electron spin resonance of nitrogen-vacancies in nanodiamonds,” Nano Lett. 13(3), 1173–1178 (2013).
[Crossref]

R. Igarashi, Y. Yoshinari, H. Yokota, T. Sugi, F. Sugihara, K. Ikeda, H. Sumiya, S. Tsuji, I. Mori, H. Tochio, Y. Harada, and M. Shirakawa, “Real-time background-free selective imaging of fluorescent nanodiamonds in vivo,” Nano Lett. 12(11), 5726–5732 (2012).
[Crossref]

L. M. Manus, D. J. Mastarone, E. A. Waters, X.-Q. Zhang, E. A. Schultz-Sikma, K. W. MacRenaris, D. Ho, and T. J. Meade, “Gd(III)-nanodiamond conjugates for MRI contrast enhancement,” Nano Lett. 10(2), 484–489 (2010).
[Crossref]

Nanomedicine (1)

E. Perevedentseva, Y.-C. Lin, M. Jani, and C.-L. Cheng, “Biomedical applications of nanodiamonds in imaging and therapy,” Nanomedicine 8(12), 2041–2060 (2013).
[Crossref]

Nanophotonics (1)

M. H. Alkahtani, F. Alghannam, L. Jiang, A. Almethen, A. A. Rampersaud, R. Brick, C. L. Gomes, M. O. Scully, and P. R. Hemmer, “Fluorescent nanodiamonds: past, present, and future,” Nanophotonics 7(8), 1423–1453 (2018).
[Crossref]

Nanoscale (2)

J. Slegerova, M. Hajek, I. Rehor, F. Sedlak, J. Stursa, M. Hruby, and P. Cigler, “Designing the nanobiointerface of fluorescent nanodiamonds: highly selective targeting of glioma cancer cells,” Nanoscale 7(2), 415–420 (2015).
[Crossref]

M. Capelli, P. Reineck, D. W. M. Lau, A. Orth, J. Jeske, M. W. Doherty, T. Ohshima, A. D. Greentree, and B. C. Gibson, “Magnetic field-induced enhancement of the nitrogen-vacancy fluorescence quantum yield,” Nanoscale 9(27), 9299–9304 (2017).
[Crossref]

Nanotechnology (1)

K. Turcheniuk and V. N. Mochalin, “Biomedical applications of nanodiamond (review),” Nanotechnology 28(25), 252001 (2017).
[Crossref]

Nat. Nanotechnol. (1)

V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, “The properties and applications of nanodiamonds,” Nat. Nanotechnol. 7(1), 11–23 (2012).
[Crossref]

New J. Phys. (2)

J.-P. Tetienne, L. Rondin, P. Spinicelli, M. Chipaux, T. Debuisschert, J.-F. Roch, and V. Jacques, “Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging,” New J. Phys. 14(10), 103033 (2012).
[Crossref]

S. V. Anishchik, V. G. Vins, A. P. Yelisseyev, N. N. Lukzen, N. L. Lavrik, and V. A. Bagryansky, “Low-field feature in the magnetic spectra of NV-centers in diamond,” New J. Phys. 17(2), 023040 (2015).
[Crossref]

Opt. Express (1)

Phys. Rev. Appl. (1)

S. K. R. Singam, J. Motylewski, A. Monaco, E. Gjorgievska, E. Bourgeois, M. Nesladek, M. Giugliano, and E. Goovaerts, “Contrast induced by a static magnetic field for improved detection in nanodiamond fluorescence microscopy,” Phys. Rev. Appl. 6(6), 064013 (2016).
[Crossref]

Phys. Rev. B (2)

N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B 74(10), 104303 (2006).
[Crossref]

V. M. Acosta, A. Jarmola, E. Bauch, and D. Budker, “Optical properties of the nitrogen-vacancy singlet levels in diamond,” Phys. Rev. B 82(20), 201202 (2010).
[Crossref]

Proc. Natl. Acad. Sci. (2)

C.-C. Fu, H.-Y. Lee, K. Chen, T.-S. Lim, H.-Y. Wu, P.-K. Lin, P.-K. Wei, P.-H. Tsao, H.-C. Chang, and W. Fann, “Characterization and application of single fluorescent nanodiamonds as cellular biomarkers,” Proc. Natl. Acad. Sci. 104(3), 727–732 (2007).
[Crossref]

V. R. Horowitz, B. J. Aleman, D. J. Christle, A. N. Cleland, and D. D. Awschalom, “Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds,” Proc. Natl. Acad. Sci. 109(34), 13493–13497 (2012).
[Crossref]

Rev. Mex. Fis. (1)

J. M. Camacho and V. Sosa, “Alternative method to calculate the magnetic field of permanent magnets with azimuthal symmetry,” Rev. Mex. Fis. 59, 8–17 (2013).

Sci. Rep. (1)

T.-C. Hsu, K.-K. Liu, H.-C. Chang, E. Hwang, and J.-I. Chao, “Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds,” Sci. Rep. 4(1), 5004 (2015).
[Crossref]

Small (1)

K. J. van der Laan, M. Hasani, T. Zheng, and R. Schirhagl, “Nanodiamonds for in vivo applications,” Small 14(19), 1703838 (2018).
[Crossref]

Other (5)

S. R. Deans, The Radon Transform and Some of Its Applications (Wiley, 1983).

S. Helgason, Groups and Geometric Analysis : Integral Geometry, Invariant Differential Operators, and Spherical Functions (Academic Press, 1984).

S. Helgason, Integral Geometry and Radon Transforms (Springer, 2010).

P. Kuchment, The Radon Transform and Medical Imaging (SIAM - Society for Industrial and Applied Mathematics, 2013).

WolframMathematica, “InverseRadon,” (2014). Retrieved March 17, 2019.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1. Variation of fluorescence efficiency of FNDs in solution, as a function of magnetic flux strength $|B|$.
Fig. 2.
Fig. 2. Principle of 3D imaging based on projections. For clarity, lateral modulation of the field-free line is not shown. The object is located in the coordinate system $(x,\,y,\,z)$. (a) A 3D measurement is performed by imaging one slice at a time. A slice is a region centered on a plane $z_{j}$ and having a small effective thickness. (b) A slice is imaged by performing projection measurements. Each projection is along a direction $\vec {\xi }$ perpendicular to a chosen angle $\theta _{i}$. (c) The set of projections from $0^{\circ }$ to $180^{\circ }-\Delta \theta$, with the signals-coded. (d) The reconstructed slice (2D image), obtained by backprojection. (e) Projection measurements are repeated for several slices. Reconstructed slices are stacked to form a 3D image.
Fig. 3.
Fig. 3. Modulation of the field-free line position by a sinusoidal coil current. The blue bands show the extreme positions of the line during a modulation period. (a) Modulation along the $z$ direction. The fluorescence modulation signal is particularly large if the line moves in and out of the object. (b) $s$-modulation follows the same principle as $z$-modulation. A large signal is obtained when the field-free line moves across an edge of the object in the $x$-$y$ plane.
Fig. 4.
Fig. 4. Functions used for 2D projection simulation.
Fig. 5.
Fig. 5. Simulation of imaging without modulation. (a) Projections $S_{\textrm {sim}}^{(0)}$. (b) Backprojection. Solid line circles: the original objects. Projection parameters: 14 projection angles ($0^{\circ }-162^{\circ }$), $k_{\textrm {max}}=33$ field-free line positions spaced by $\Delta s=0.5\, \textrm{mm}$.
Fig. 6.
Fig. 6. Simulation of imaging with $s$-modulation. (a) Projections $S_{s,\textrm {sim}}^{(0)}(\theta ;s_{k})$. (b) Backprojection. (c) $s$-integrated projection $P_{s,\textrm {sim}}^{(0)}(\theta ;s_{k})$. (d) Backprojection obtained from (c). Framed areas: the original objects. Projection parameters: 14 projection angles, $k_{\textrm {max}}=33$ field-free line positions per angle, step size $\Delta s=0.5\, \textrm{mm}$.
Fig. 7.
Fig. 7. Schematic of the experimental setup. (a) View from the top. The top part of the quadrupole magnet is removed in order to make the sample visible. (b) Side view cross section.
Fig. 8.
Fig. 8. Measured and calculated magnetic flux density $B_{s}(s)$ and $B_{s,\, \textrm{theo}}(s)$ vs. the position along the horizontal $s$ axis. The $s$ axis joins the centers of two opposing magnets. The field-free line is at $s=0\, \textrm{mm}.$
Fig. 9.
Fig. 9. Two samples. Left: Sample A: Consists of two $4\, \textrm{mm}$ inner diameter tubes. Tube I contains $20 \, {\mu \textrm{l}}$ FND solution (fill height $\sim 1.5\, \textrm{mm}$), tube II $15\, {\mu \textrm{l}}$ (fill height $\sim 1\, \textrm{mm}$). Right: Sample B: Inner diameter of tube I and II is $4\, \textrm{mm}$ and $1\, \textrm{mm}$, respectively. Both tubes are filled $\sim 2\,\textrm {mm}$ high.
Fig. 10.
Fig. 10. 1D imaging of sample A. (a) Projections $S_{z}(\theta =\theta _{1};s_{k},z_{j})$ at fixed angle, for different planes $z_{j}$. The values $z_{j}$ are given in the legend. The positive signals of planes $z_{j}=0.5\, \textrm{mm-}3\, \textrm{mm}$ represent the sample’s upper surfaces, the negative signals of $z_{j}=4\, \textrm{mm-}6\, \textrm{mm}$ the lower surfaces. Acquisition parameters: $z$-modulation, $k_{\textrm {max}}=33$ field-free line positions, step size $\Delta s=0.5\, \textrm{mm}$ (b, c) $z$-integrated projections $P_{z}(\theta =\theta _{1};s_{k},z_{j})$. (b) Individual projections. (c) Density plot of $P_{z}$.
Fig. 11.
Fig. 11. 2D image of two tubes filled with solution having different FND concentration (sample C). (a) Projections $S_{z}$ and (b) reconstructed derivative slice image. The black frames are guides to the eye and represent the approximate size of the tubes. Acquisition parameters: $z$-modulation, 12 projection angles, $k_{max}=33$ field-free line positions per angle, step size $\Delta s=0.5\, \textrm{mm}$, integration time $\tau =3\, \textrm{s}$, measurement time $t_{meas}=6\, \textrm{s}$ per data point.
Fig. 12.
Fig. 12. 2D image of sample B, two tubes of different diameter and equal FND concentration, $4\, \textrm{mm}$ (I) and $1\, \textrm{mm}$ (II). (a) Projection data $S_{z}$ and (b) reconstructed derivative slice image. The black frames are guides to the eye and represent the approximate size of the tubes. Acquisition parameters: $z$-modulation, 20 projection angles, $k_{\textrm {max}}=33$ field-free line positions per angle, step size $\Delta s=0.5\, \textrm{mm}$.
Fig. 13.
Fig. 13. $s$-modulation mode imaging of sample B. (a) Projections $S_{s}(\theta =\theta _{1};s_{k},z_{j})$ taken in different planes $z_j$, spaced by $\Delta z=0.5\, \textrm{mm}$. (b) $s$-integrated projections $P_{s}(\theta =\theta _{1};s_{k},z_{j})$. (c) $P_{s}$ after correction for sloping baselines. Acquisition parameters: $k_{\textrm {max}}=33$ field-free line positions with step size $\Delta s=0.5\, \textrm{mm}$.
Fig. 14.
Fig. 14. 2D image of sample B, using the $s$-modulation mode. (a) Projections $S_{s}$ of a particular plane $z_{j}=3\, \textrm{mm}$. (b) $s$-integrated projections $P_{s}$. (c) $P_{s}$ after correction for sloping baselines. (d) Reconstructed integrated slice image of panel (c). The black frames are guides to the eye and represent the approximate size of the tubes. Acquisition parameters: 14 projection angles, $k_{\textrm {max}}=33$ field-free line positions per angle, step size $\Delta s=0.5\, \textrm{mm}$.
Fig. 15.
Fig. 15. Projections $S_{z}$ of sample A taken in different planes $z_{j}$. Acquisition parameters: $z$-modulation, 14 projection angles, $k_{\textrm {max}}=33$ field-free line positions per angle, step size $\Delta s=0.5\, \textrm{mm}$, 8 planes $z_{j}$ spaced by $\Delta z=1\, \textrm{mm}$.
Fig. 16.
Fig. 16. 3D image of sample A obtained by stacking the 2D backprojections obtained for several planes. (a) Stacked set of the backprojections of $S_{z}$. (b) Stacked set of the backprojections of $P_{z}$.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

n ~ ( x , y , z j ) = n ( x , y , z ) f ( x , y , z j ; x , y , z ) d x d y d z
T ( x , y , z ) = ζ t 0 ( x , y , z ) n ( x , y , z ) M F E ( | B ( x , y , z ) | ) .
S ( 0 ) = T ( x , y , z ) d x d y d z .
| B ( x , y , z ) | = g ( s s k ) 2 + ( z z j ) 2 =: | B ( s ; s k , z ; z j ) | .
x = s cos θ + ξ sin θ ,
y = s sin θ + ξ cos θ ,
T ( θ ; s , ξ , z ) = ζ t 0 ( θ ; s , ξ , z ) n ( θ ; s , ξ , z ) M F E ( | B ( s ; s k , z ; z j ) | ) .
S ( 0 ) ( θ ; s k , z j ) = T ( θ ; s , ξ , z ) d s d ξ d z .
S ( 0 ) ( θ ; s k , z j ) = N ( θ ; s k , ξ , z j ) d ξ
N ( θ ; s k , ξ , z j ) = ζ t 0 ( θ ; s , ξ , z ) n ( θ ; s , ξ , z ) M F E ( | B ( s ; s k , z ; z j ) | ) d s d z .
S ( 0 , hom ) ( θ ; s k , z j ) = ζ t 0 n ( s k cos θ + ξ sin θ , s k sin θ + ξ cos θ , z j ) d ξ .
S η ( 0 ) ( θ ; s k , z j ) := η S ( 0 ) ( θ ; s k , z j ) = N η ( θ ; s k , ξ , z j ) d ξ ,
N η ( θ ; s k , ξ , z j ) = ζ t 0 ( θ ; s , ξ , z ) n ( θ ; s , ξ , z ) M F E η ( | B ( s ; s k , z ; z j ) | ) d s d z .
N η ( θ ; s k , ξ , z j ) = ζ η ( t 0 ( θ ; s , ξ , z ) n ( θ ; s , ξ , z ) ) M F E ( g ( s s k ) 2 + ( z z j ) 2 ) d s d z .
P z ( 0 ) ( θ , s k , z j ) = m = 1 j 1 S z ( 0 ) ( θ ; s k , z m ) + S z ( 0 ) ( θ ; s k , z m + 1 ) 2 Δ z ,
M F E sim ( s s k ) = Λ ( ( s s k ) / b ) = Λ ( ( x cos θ y sin θ s k ) / b ) =: M F E sim ( θ ; s k , x , y ) .
n l ( x , y ) = n 0 , l circle ( x x 0 , l , y y 0 , l , r l ) .
S sim ( 0 ) ( θ ; s k ) = ζ t 0 ( l n l ( x , y ) ) M F E sim ( θ ; s k , x , y ) d x d y .
M F E sim mod ( s s k ) = Λ ( ( s s k δ s mod ) / b ) Λ ( ( s s k + δ s mod ) / b ) .

Metrics