Abstract

In many clinical applications it is relevant to observe dynamic changes in oxygenation. Therefore the ability of dynamic imaging with time domain (TD) near-infrared optical tomography (NIROT) will be important. But fast imaging is a challenge. The data acquisition of our handheld TD NIROT system based on single photon avalanche diode (SPAD) camera and 11 light sources was consequently accelerated. We tested the system on a diffusive medium simulating tissue with a moving object embedded. With 3D image reconstruction, the moving object was correctly located using only 0.2 s exposure time per source.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Arri, S. Muehlemann, M. Biallas, H. Bucher, and M. Wolf, “Precision of cerebral oxygenation and hemoglobin concentration measurements in neonates measured by near-infrared spectroscopy,” J. Biomed. Opt. 16(4), 047005 (2011).
    [Crossref]
  2. A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
    [Crossref]
  3. M. Doulgerakis, A. T. Eggebrecht, and H. Dehghani, “High-density functional diffuse optical tomography based on frequency-domain measurements improves image quality and spatial resolution,” Neurophotonics 6(3), 035007 (2019).
    [Crossref]
  4. R. J. Cooper, E. Magee, N. Everdell, S. Magazov, M. Varela, D. Airantzis, A. P. Gibson, and J. C. Hebden, “Monstir ii: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging,” Rev. Sci. Instrum. 85(5), 053105 (2014).
    [Crossref]
  5. A. Kalyanov, J. Jiang, S. Lindner, L. Ahnen, A. Di Costanzo, J. Mata Pavia, S. Sanchez Majos, and M. Wolf, “Time domain near-infrared optical tomography with time-of-flight spad camera: The new generation,” Biophotonics Congress: Biomedical Optics Congress 2018 (2018).
  6. F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71(1), 256–265 (2000).
    [Crossref]
  7. A. Lyons, F. Tonolini, A. Boccolini, A. Repetti, R. Henderson, Y. Wiaux, and D. Faccio, “Computational time-of-flight diffuse optical tomography,” Nat. Photonics 13(8), 575–579 (2019).
    [Crossref]
  8. J. Jiang, A. di Costanzo, S. Lindner, M. Wolf, and A. Kalyanov, “Tracking objects in a diffusive medium with time domain near infrared optical tomography,” in Biophotonics Congress: Biomedical Optics 2020 (Translational, Microscopy, OCT, OTS, BRAIN), (Optical Society of America, 2020), p. JTu3A.18.
  9. J. Jiang, A. Di Costanzo Mata, S. Lindner, C. Zhang, E. Charbon, M. Wolf, and A. Kalyanov, “Image reconstruction for novel time domain near infrared optical tomography: towards clinical applications,” Biomed. Opt. Express 11(8), 4723–4734 (2020).
    [Crossref]
  10. S. Lindner, C. Zhang, I. M. Antolovic, A. Kalyanov, J. Jiang, L. Ahnen, A. di Costanzo, J. M. Pavia, S. S. Majos, E. Charbon, and M. Wolf, “A novel 32 × 32, 224 mevents/s time resolved spad image sensor for near-infrared optical tomography,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS), (Optical Society of America, 2018), p. JTh5A.6.
  11. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
    [Crossref]
  12. S. R. Arridge and M. Schweiger, “Photon-measurement density functions. part 2: Finite-element-method calculations,” Appl. Opt. 34(34), 8026–8037 (1995).
    [Crossref]
  13. “Nirfaster,” https://github.com/nirfaster/NIRFASTer .
  14. M. Doulgerakis-Kontoudis, A. Eggebrecht, S. Wojtkiewicz, J. Culver, and H. Dehghani, “Toward real-time diffuse optical tomography: accelerating light propagation modeling employing parallel computing on gpu and cpu,” J. Biomed. Opt. 22(12), 125001 (2017).
    [Crossref]
  15. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using nirfast: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Engng. 25(6), 711–732 (2009).
    [Crossref]
  16. J. Jiang, M. Wolf, and S. S. Majos, “Fast reconstruction of optical properties for complex segmentations in near infrared imaging,” J. Mod. Opt. 64(7), 732–742 (2017).
    [Crossref]
  17. P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34(6Part1), 2085–2098 (2007).
    [Crossref]
  18. A. D. Mora, D. Contini, S. Arridge, F. Martelli, A. Tosi, G. Boso, A. Farina, T. Durduran, E. Martinenghi, A. Torricelli, and A. Pifferi, “Towards next-generation time-domain diffuse optics for extreme depth penetration and sensitivity,” Biomed. Opt. Express 6(5), 1749–1760 (2015).
    [Crossref]
  19. J. Jiang, L. Ahnen, A. Kalyanov, S. Lindner, M. Wolf, and S. S. Majos, “A new method based on graphics processing units for fast near-infrared optical tomography,” Adv. Exp. Med. Biol. 977, 191–197 (2017).
    [Crossref]
  20. H. Ben Yedder, A. BenTaieb, M. Shokoufi, A. Zahiremami, F. Golnaraghi, and G. Hamarneh, “Deep learning based image reconstruction for diffuse optical tomography,” Mach. Learn. for Med. Image Reconstr. Mlmir 2018 11074, 112–119 (2018).

2020 (1)

2019 (2)

M. Doulgerakis, A. T. Eggebrecht, and H. Dehghani, “High-density functional diffuse optical tomography based on frequency-domain measurements improves image quality and spatial resolution,” Neurophotonics 6(3), 035007 (2019).
[Crossref]

A. Lyons, F. Tonolini, A. Boccolini, A. Repetti, R. Henderson, Y. Wiaux, and D. Faccio, “Computational time-of-flight diffuse optical tomography,” Nat. Photonics 13(8), 575–579 (2019).
[Crossref]

2018 (1)

H. Ben Yedder, A. BenTaieb, M. Shokoufi, A. Zahiremami, F. Golnaraghi, and G. Hamarneh, “Deep learning based image reconstruction for diffuse optical tomography,” Mach. Learn. for Med. Image Reconstr. Mlmir 2018 11074, 112–119 (2018).

2017 (3)

J. Jiang, L. Ahnen, A. Kalyanov, S. Lindner, M. Wolf, and S. S. Majos, “A new method based on graphics processing units for fast near-infrared optical tomography,” Adv. Exp. Med. Biol. 977, 191–197 (2017).
[Crossref]

J. Jiang, M. Wolf, and S. S. Majos, “Fast reconstruction of optical properties for complex segmentations in near infrared imaging,” J. Mod. Opt. 64(7), 732–742 (2017).
[Crossref]

M. Doulgerakis-Kontoudis, A. Eggebrecht, S. Wojtkiewicz, J. Culver, and H. Dehghani, “Toward real-time diffuse optical tomography: accelerating light propagation modeling employing parallel computing on gpu and cpu,” J. Biomed. Opt. 22(12), 125001 (2017).
[Crossref]

2015 (1)

2014 (2)

R. J. Cooper, E. Magee, N. Everdell, S. Magazov, M. Varela, D. Airantzis, A. P. Gibson, and J. C. Hebden, “Monstir ii: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging,” Rev. Sci. Instrum. 85(5), 053105 (2014).
[Crossref]

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]

2011 (1)

T. Arri, S. Muehlemann, M. Biallas, H. Bucher, and M. Wolf, “Precision of cerebral oxygenation and hemoglobin concentration measurements in neonates measured by near-infrared spectroscopy,” J. Biomed. Opt. 16(4), 047005 (2011).
[Crossref]

2009 (1)

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using nirfast: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Engng. 25(6), 711–732 (2009).
[Crossref]

2007 (1)

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34(6Part1), 2085–2098 (2007).
[Crossref]

2000 (1)

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71(1), 256–265 (2000).
[Crossref]

1999 (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[Crossref]

1995 (1)

Ahnen, L.

J. Jiang, L. Ahnen, A. Kalyanov, S. Lindner, M. Wolf, and S. S. Majos, “A new method based on graphics processing units for fast near-infrared optical tomography,” Adv. Exp. Med. Biol. 977, 191–197 (2017).
[Crossref]

A. Kalyanov, J. Jiang, S. Lindner, L. Ahnen, A. Di Costanzo, J. Mata Pavia, S. Sanchez Majos, and M. Wolf, “Time domain near-infrared optical tomography with time-of-flight spad camera: The new generation,” Biophotonics Congress: Biomedical Optics Congress 2018 (2018).

S. Lindner, C. Zhang, I. M. Antolovic, A. Kalyanov, J. Jiang, L. Ahnen, A. di Costanzo, J. M. Pavia, S. S. Majos, E. Charbon, and M. Wolf, “A novel 32 × 32, 224 mevents/s time resolved spad image sensor for near-infrared optical tomography,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS), (Optical Society of America, 2018), p. JTh5A.6.

Airantzis, D.

R. J. Cooper, E. Magee, N. Everdell, S. Magazov, M. Varela, D. Airantzis, A. P. Gibson, and J. C. Hebden, “Monstir ii: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging,” Rev. Sci. Instrum. 85(5), 053105 (2014).
[Crossref]

Antolovic, I. M.

S. Lindner, C. Zhang, I. M. Antolovic, A. Kalyanov, J. Jiang, L. Ahnen, A. di Costanzo, J. M. Pavia, S. S. Majos, E. Charbon, and M. Wolf, “A novel 32 × 32, 224 mevents/s time resolved spad image sensor for near-infrared optical tomography,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS), (Optical Society of America, 2018), p. JTh5A.6.

Arri, T.

T. Arri, S. Muehlemann, M. Biallas, H. Bucher, and M. Wolf, “Precision of cerebral oxygenation and hemoglobin concentration measurements in neonates measured by near-infrared spectroscopy,” J. Biomed. Opt. 16(4), 047005 (2011).
[Crossref]

Arridge, S.

Arridge, S. R.

Ben Yedder, H.

H. Ben Yedder, A. BenTaieb, M. Shokoufi, A. Zahiremami, F. Golnaraghi, and G. Hamarneh, “Deep learning based image reconstruction for diffuse optical tomography,” Mach. Learn. for Med. Image Reconstr. Mlmir 2018 11074, 112–119 (2018).

BenTaieb, A.

H. Ben Yedder, A. BenTaieb, M. Shokoufi, A. Zahiremami, F. Golnaraghi, and G. Hamarneh, “Deep learning based image reconstruction for diffuse optical tomography,” Mach. Learn. for Med. Image Reconstr. Mlmir 2018 11074, 112–119 (2018).

Biallas, M.

T. Arri, S. Muehlemann, M. Biallas, H. Bucher, and M. Wolf, “Precision of cerebral oxygenation and hemoglobin concentration measurements in neonates measured by near-infrared spectroscopy,” J. Biomed. Opt. 16(4), 047005 (2011).
[Crossref]

Boccolini, A.

A. Lyons, F. Tonolini, A. Boccolini, A. Repetti, R. Henderson, Y. Wiaux, and D. Faccio, “Computational time-of-flight diffuse optical tomography,” Nat. Photonics 13(8), 575–579 (2019).
[Crossref]

Boso, G.

Bucher, H.

T. Arri, S. Muehlemann, M. Biallas, H. Bucher, and M. Wolf, “Precision of cerebral oxygenation and hemoglobin concentration measurements in neonates measured by near-infrared spectroscopy,” J. Biomed. Opt. 16(4), 047005 (2011).
[Crossref]

Carpenter, C. M.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using nirfast: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Engng. 25(6), 711–732 (2009).
[Crossref]

Charbon, E.

J. Jiang, A. Di Costanzo Mata, S. Lindner, C. Zhang, E. Charbon, M. Wolf, and A. Kalyanov, “Image reconstruction for novel time domain near infrared optical tomography: towards clinical applications,” Biomed. Opt. Express 11(8), 4723–4734 (2020).
[Crossref]

S. Lindner, C. Zhang, I. M. Antolovic, A. Kalyanov, J. Jiang, L. Ahnen, A. di Costanzo, J. M. Pavia, S. S. Majos, E. Charbon, and M. Wolf, “A novel 32 × 32, 224 mevents/s time resolved spad image sensor for near-infrared optical tomography,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS), (Optical Society of America, 2018), p. JTh5A.6.

Contini, D.

Cooper, R. J.

R. J. Cooper, E. Magee, N. Everdell, S. Magazov, M. Varela, D. Airantzis, A. P. Gibson, and J. C. Hebden, “Monstir ii: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging,” Rev. Sci. Instrum. 85(5), 053105 (2014).
[Crossref]

Culver, J.

M. Doulgerakis-Kontoudis, A. Eggebrecht, S. Wojtkiewicz, J. Culver, and H. Dehghani, “Toward real-time diffuse optical tomography: accelerating light propagation modeling employing parallel computing on gpu and cpu,” J. Biomed. Opt. 22(12), 125001 (2017).
[Crossref]

Culver, J. P.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]

Davis, S. C.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using nirfast: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Engng. 25(6), 711–732 (2009).
[Crossref]

Dehghani, H.

M. Doulgerakis, A. T. Eggebrecht, and H. Dehghani, “High-density functional diffuse optical tomography based on frequency-domain measurements improves image quality and spatial resolution,” Neurophotonics 6(3), 035007 (2019).
[Crossref]

M. Doulgerakis-Kontoudis, A. Eggebrecht, S. Wojtkiewicz, J. Culver, and H. Dehghani, “Toward real-time diffuse optical tomography: accelerating light propagation modeling employing parallel computing on gpu and cpu,” J. Biomed. Opt. 22(12), 125001 (2017).
[Crossref]

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using nirfast: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Engng. 25(6), 711–732 (2009).
[Crossref]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34(6Part1), 2085–2098 (2007).
[Crossref]

Delpy, D. T.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71(1), 256–265 (2000).
[Crossref]

Di Costanzo, A.

A. Kalyanov, J. Jiang, S. Lindner, L. Ahnen, A. Di Costanzo, J. Mata Pavia, S. Sanchez Majos, and M. Wolf, “Time domain near-infrared optical tomography with time-of-flight spad camera: The new generation,” Biophotonics Congress: Biomedical Optics Congress 2018 (2018).

S. Lindner, C. Zhang, I. M. Antolovic, A. Kalyanov, J. Jiang, L. Ahnen, A. di Costanzo, J. M. Pavia, S. S. Majos, E. Charbon, and M. Wolf, “A novel 32 × 32, 224 mevents/s time resolved spad image sensor for near-infrared optical tomography,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS), (Optical Society of America, 2018), p. JTh5A.6.

J. Jiang, A. di Costanzo, S. Lindner, M. Wolf, and A. Kalyanov, “Tracking objects in a diffusive medium with time domain near infrared optical tomography,” in Biophotonics Congress: Biomedical Optics 2020 (Translational, Microscopy, OCT, OTS, BRAIN), (Optical Society of America, 2020), p. JTu3A.18.

Di Costanzo Mata, A.

Doulgerakis, M.

M. Doulgerakis, A. T. Eggebrecht, and H. Dehghani, “High-density functional diffuse optical tomography based on frequency-domain measurements improves image quality and spatial resolution,” Neurophotonics 6(3), 035007 (2019).
[Crossref]

Doulgerakis-Kontoudis, M.

M. Doulgerakis-Kontoudis, A. Eggebrecht, S. Wojtkiewicz, J. Culver, and H. Dehghani, “Toward real-time diffuse optical tomography: accelerating light propagation modeling employing parallel computing on gpu and cpu,” J. Biomed. Opt. 22(12), 125001 (2017).
[Crossref]

Durduran, T.

Eames, M. E.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using nirfast: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Engng. 25(6), 711–732 (2009).
[Crossref]

Eggebrecht, A.

M. Doulgerakis-Kontoudis, A. Eggebrecht, S. Wojtkiewicz, J. Culver, and H. Dehghani, “Toward real-time diffuse optical tomography: accelerating light propagation modeling employing parallel computing on gpu and cpu,” J. Biomed. Opt. 22(12), 125001 (2017).
[Crossref]

Eggebrecht, A. T.

M. Doulgerakis, A. T. Eggebrecht, and H. Dehghani, “High-density functional diffuse optical tomography based on frequency-domain measurements improves image quality and spatial resolution,” Neurophotonics 6(3), 035007 (2019).
[Crossref]

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]

Everdell, N.

R. J. Cooper, E. Magee, N. Everdell, S. Magazov, M. Varela, D. Airantzis, A. P. Gibson, and J. C. Hebden, “Monstir ii: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging,” Rev. Sci. Instrum. 85(5), 053105 (2014).
[Crossref]

Faccio, D.

A. Lyons, F. Tonolini, A. Boccolini, A. Repetti, R. Henderson, Y. Wiaux, and D. Faccio, “Computational time-of-flight diffuse optical tomography,” Nat. Photonics 13(8), 575–579 (2019).
[Crossref]

Farina, A.

Ferradal, S. L.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]

Fry, M. E.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71(1), 256–265 (2000).
[Crossref]

Gibson, A. P.

R. J. Cooper, E. Magee, N. Everdell, S. Magazov, M. Varela, D. Airantzis, A. P. Gibson, and J. C. Hebden, “Monstir ii: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging,” Rev. Sci. Instrum. 85(5), 053105 (2014).
[Crossref]

Golnaraghi, F.

H. Ben Yedder, A. BenTaieb, M. Shokoufi, A. Zahiremami, F. Golnaraghi, and G. Hamarneh, “Deep learning based image reconstruction for diffuse optical tomography,” Mach. Learn. for Med. Image Reconstr. Mlmir 2018 11074, 112–119 (2018).

Hamarneh, G.

H. Ben Yedder, A. BenTaieb, M. Shokoufi, A. Zahiremami, F. Golnaraghi, and G. Hamarneh, “Deep learning based image reconstruction for diffuse optical tomography,” Mach. Learn. for Med. Image Reconstr. Mlmir 2018 11074, 112–119 (2018).

Hassanpour, M. S.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]

Hebden, J. C.

R. J. Cooper, E. Magee, N. Everdell, S. Magazov, M. Varela, D. Airantzis, A. P. Gibson, and J. C. Hebden, “Monstir ii: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging,” Rev. Sci. Instrum. 85(5), 053105 (2014).
[Crossref]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71(1), 256–265 (2000).
[Crossref]

Henderson, R.

A. Lyons, F. Tonolini, A. Boccolini, A. Repetti, R. Henderson, Y. Wiaux, and D. Faccio, “Computational time-of-flight diffuse optical tomography,” Nat. Photonics 13(8), 575–579 (2019).
[Crossref]

Hershey, T.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]

Hillman, E. M. C.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71(1), 256–265 (2000).
[Crossref]

Jiang, J.

J. Jiang, A. Di Costanzo Mata, S. Lindner, C. Zhang, E. Charbon, M. Wolf, and A. Kalyanov, “Image reconstruction for novel time domain near infrared optical tomography: towards clinical applications,” Biomed. Opt. Express 11(8), 4723–4734 (2020).
[Crossref]

J. Jiang, L. Ahnen, A. Kalyanov, S. Lindner, M. Wolf, and S. S. Majos, “A new method based on graphics processing units for fast near-infrared optical tomography,” Adv. Exp. Med. Biol. 977, 191–197 (2017).
[Crossref]

J. Jiang, M. Wolf, and S. S. Majos, “Fast reconstruction of optical properties for complex segmentations in near infrared imaging,” J. Mod. Opt. 64(7), 732–742 (2017).
[Crossref]

S. Lindner, C. Zhang, I. M. Antolovic, A. Kalyanov, J. Jiang, L. Ahnen, A. di Costanzo, J. M. Pavia, S. S. Majos, E. Charbon, and M. Wolf, “A novel 32 × 32, 224 mevents/s time resolved spad image sensor for near-infrared optical tomography,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS), (Optical Society of America, 2018), p. JTh5A.6.

J. Jiang, A. di Costanzo, S. Lindner, M. Wolf, and A. Kalyanov, “Tracking objects in a diffusive medium with time domain near infrared optical tomography,” in Biophotonics Congress: Biomedical Optics 2020 (Translational, Microscopy, OCT, OTS, BRAIN), (Optical Society of America, 2020), p. JTu3A.18.

A. Kalyanov, J. Jiang, S. Lindner, L. Ahnen, A. Di Costanzo, J. Mata Pavia, S. Sanchez Majos, and M. Wolf, “Time domain near-infrared optical tomography with time-of-flight spad camera: The new generation,” Biophotonics Congress: Biomedical Optics Congress 2018 (2018).

Kalyanov, A.

J. Jiang, A. Di Costanzo Mata, S. Lindner, C. Zhang, E. Charbon, M. Wolf, and A. Kalyanov, “Image reconstruction for novel time domain near infrared optical tomography: towards clinical applications,” Biomed. Opt. Express 11(8), 4723–4734 (2020).
[Crossref]

J. Jiang, L. Ahnen, A. Kalyanov, S. Lindner, M. Wolf, and S. S. Majos, “A new method based on graphics processing units for fast near-infrared optical tomography,” Adv. Exp. Med. Biol. 977, 191–197 (2017).
[Crossref]

J. Jiang, A. di Costanzo, S. Lindner, M. Wolf, and A. Kalyanov, “Tracking objects in a diffusive medium with time domain near infrared optical tomography,” in Biophotonics Congress: Biomedical Optics 2020 (Translational, Microscopy, OCT, OTS, BRAIN), (Optical Society of America, 2020), p. JTu3A.18.

S. Lindner, C. Zhang, I. M. Antolovic, A. Kalyanov, J. Jiang, L. Ahnen, A. di Costanzo, J. M. Pavia, S. S. Majos, E. Charbon, and M. Wolf, “A novel 32 × 32, 224 mevents/s time resolved spad image sensor for near-infrared optical tomography,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS), (Optical Society of America, 2018), p. JTh5A.6.

A. Kalyanov, J. Jiang, S. Lindner, L. Ahnen, A. Di Costanzo, J. Mata Pavia, S. Sanchez Majos, and M. Wolf, “Time domain near-infrared optical tomography with time-of-flight spad camera: The new generation,” Biophotonics Congress: Biomedical Optics Congress 2018 (2018).

Lindner, S.

J. Jiang, A. Di Costanzo Mata, S. Lindner, C. Zhang, E. Charbon, M. Wolf, and A. Kalyanov, “Image reconstruction for novel time domain near infrared optical tomography: towards clinical applications,” Biomed. Opt. Express 11(8), 4723–4734 (2020).
[Crossref]

J. Jiang, L. Ahnen, A. Kalyanov, S. Lindner, M. Wolf, and S. S. Majos, “A new method based on graphics processing units for fast near-infrared optical tomography,” Adv. Exp. Med. Biol. 977, 191–197 (2017).
[Crossref]

S. Lindner, C. Zhang, I. M. Antolovic, A. Kalyanov, J. Jiang, L. Ahnen, A. di Costanzo, J. M. Pavia, S. S. Majos, E. Charbon, and M. Wolf, “A novel 32 × 32, 224 mevents/s time resolved spad image sensor for near-infrared optical tomography,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS), (Optical Society of America, 2018), p. JTh5A.6.

J. Jiang, A. di Costanzo, S. Lindner, M. Wolf, and A. Kalyanov, “Tracking objects in a diffusive medium with time domain near infrared optical tomography,” in Biophotonics Congress: Biomedical Optics 2020 (Translational, Microscopy, OCT, OTS, BRAIN), (Optical Society of America, 2020), p. JTu3A.18.

A. Kalyanov, J. Jiang, S. Lindner, L. Ahnen, A. Di Costanzo, J. Mata Pavia, S. Sanchez Majos, and M. Wolf, “Time domain near-infrared optical tomography with time-of-flight spad camera: The new generation,” Biophotonics Congress: Biomedical Optics Congress 2018 (2018).

Lyons, A.

A. Lyons, F. Tonolini, A. Boccolini, A. Repetti, R. Henderson, Y. Wiaux, and D. Faccio, “Computational time-of-flight diffuse optical tomography,” Nat. Photonics 13(8), 575–579 (2019).
[Crossref]

Magazov, S.

R. J. Cooper, E. Magee, N. Everdell, S. Magazov, M. Varela, D. Airantzis, A. P. Gibson, and J. C. Hebden, “Monstir ii: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging,” Rev. Sci. Instrum. 85(5), 053105 (2014).
[Crossref]

Magee, E.

R. J. Cooper, E. Magee, N. Everdell, S. Magazov, M. Varela, D. Airantzis, A. P. Gibson, and J. C. Hebden, “Monstir ii: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging,” Rev. Sci. Instrum. 85(5), 053105 (2014).
[Crossref]

Majos, S. S.

J. Jiang, L. Ahnen, A. Kalyanov, S. Lindner, M. Wolf, and S. S. Majos, “A new method based on graphics processing units for fast near-infrared optical tomography,” Adv. Exp. Med. Biol. 977, 191–197 (2017).
[Crossref]

J. Jiang, M. Wolf, and S. S. Majos, “Fast reconstruction of optical properties for complex segmentations in near infrared imaging,” J. Mod. Opt. 64(7), 732–742 (2017).
[Crossref]

S. Lindner, C. Zhang, I. M. Antolovic, A. Kalyanov, J. Jiang, L. Ahnen, A. di Costanzo, J. M. Pavia, S. S. Majos, E. Charbon, and M. Wolf, “A novel 32 × 32, 224 mevents/s time resolved spad image sensor for near-infrared optical tomography,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS), (Optical Society of America, 2018), p. JTh5A.6.

Martelli, F.

Martinenghi, E.

Mata Pavia, J.

A. Kalyanov, J. Jiang, S. Lindner, L. Ahnen, A. Di Costanzo, J. Mata Pavia, S. Sanchez Majos, and M. Wolf, “Time domain near-infrared optical tomography with time-of-flight spad camera: The new generation,” Biophotonics Congress: Biomedical Optics Congress 2018 (2018).

Mora, A. D.

Muehlemann, S.

T. Arri, S. Muehlemann, M. Biallas, H. Bucher, and M. Wolf, “Precision of cerebral oxygenation and hemoglobin concentration measurements in neonates measured by near-infrared spectroscopy,” J. Biomed. Opt. 16(4), 047005 (2011).
[Crossref]

Paulsen, K. D.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using nirfast: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Engng. 25(6), 711–732 (2009).
[Crossref]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34(6Part1), 2085–2098 (2007).
[Crossref]

Pavia, J. M.

S. Lindner, C. Zhang, I. M. Antolovic, A. Kalyanov, J. Jiang, L. Ahnen, A. di Costanzo, J. M. Pavia, S. S. Majos, E. Charbon, and M. Wolf, “A novel 32 × 32, 224 mevents/s time resolved spad image sensor for near-infrared optical tomography,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS), (Optical Society of America, 2018), p. JTh5A.6.

Pifferi, A.

Pogue, B. W.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using nirfast: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Engng. 25(6), 711–732 (2009).
[Crossref]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34(6Part1), 2085–2098 (2007).
[Crossref]

Repetti, A.

A. Lyons, F. Tonolini, A. Boccolini, A. Repetti, R. Henderson, Y. Wiaux, and D. Faccio, “Computational time-of-flight diffuse optical tomography,” Nat. Photonics 13(8), 575–579 (2019).
[Crossref]

Robichaux-Viehoever, A.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]

Sanchez Majos, S.

A. Kalyanov, J. Jiang, S. Lindner, L. Ahnen, A. Di Costanzo, J. Mata Pavia, S. Sanchez Majos, and M. Wolf, “Time domain near-infrared optical tomography with time-of-flight spad camera: The new generation,” Biophotonics Congress: Biomedical Optics Congress 2018 (2018).

Schmidt, F. E. W.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71(1), 256–265 (2000).
[Crossref]

Schweiger, M.

Shokoufi, M.

H. Ben Yedder, A. BenTaieb, M. Shokoufi, A. Zahiremami, F. Golnaraghi, and G. Hamarneh, “Deep learning based image reconstruction for diffuse optical tomography,” Mach. Learn. for Med. Image Reconstr. Mlmir 2018 11074, 112–119 (2018).

Snyder, A. Z.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]

Srinivasan, S.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using nirfast: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Engng. 25(6), 711–732 (2009).
[Crossref]

Tonolini, F.

A. Lyons, F. Tonolini, A. Boccolini, A. Repetti, R. Henderson, Y. Wiaux, and D. Faccio, “Computational time-of-flight diffuse optical tomography,” Nat. Photonics 13(8), 575–579 (2019).
[Crossref]

Torricelli, A.

Tosi, A.

Varela, M.

R. J. Cooper, E. Magee, N. Everdell, S. Magazov, M. Varela, D. Airantzis, A. P. Gibson, and J. C. Hebden, “Monstir ii: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging,” Rev. Sci. Instrum. 85(5), 053105 (2014).
[Crossref]

Wiaux, Y.

A. Lyons, F. Tonolini, A. Boccolini, A. Repetti, R. Henderson, Y. Wiaux, and D. Faccio, “Computational time-of-flight diffuse optical tomography,” Nat. Photonics 13(8), 575–579 (2019).
[Crossref]

Wojtkiewicz, S.

M. Doulgerakis-Kontoudis, A. Eggebrecht, S. Wojtkiewicz, J. Culver, and H. Dehghani, “Toward real-time diffuse optical tomography: accelerating light propagation modeling employing parallel computing on gpu and cpu,” J. Biomed. Opt. 22(12), 125001 (2017).
[Crossref]

Wolf, M.

J. Jiang, A. Di Costanzo Mata, S. Lindner, C. Zhang, E. Charbon, M. Wolf, and A. Kalyanov, “Image reconstruction for novel time domain near infrared optical tomography: towards clinical applications,” Biomed. Opt. Express 11(8), 4723–4734 (2020).
[Crossref]

J. Jiang, M. Wolf, and S. S. Majos, “Fast reconstruction of optical properties for complex segmentations in near infrared imaging,” J. Mod. Opt. 64(7), 732–742 (2017).
[Crossref]

J. Jiang, L. Ahnen, A. Kalyanov, S. Lindner, M. Wolf, and S. S. Majos, “A new method based on graphics processing units for fast near-infrared optical tomography,” Adv. Exp. Med. Biol. 977, 191–197 (2017).
[Crossref]

T. Arri, S. Muehlemann, M. Biallas, H. Bucher, and M. Wolf, “Precision of cerebral oxygenation and hemoglobin concentration measurements in neonates measured by near-infrared spectroscopy,” J. Biomed. Opt. 16(4), 047005 (2011).
[Crossref]

A. Kalyanov, J. Jiang, S. Lindner, L. Ahnen, A. Di Costanzo, J. Mata Pavia, S. Sanchez Majos, and M. Wolf, “Time domain near-infrared optical tomography with time-of-flight spad camera: The new generation,” Biophotonics Congress: Biomedical Optics Congress 2018 (2018).

J. Jiang, A. di Costanzo, S. Lindner, M. Wolf, and A. Kalyanov, “Tracking objects in a diffusive medium with time domain near infrared optical tomography,” in Biophotonics Congress: Biomedical Optics 2020 (Translational, Microscopy, OCT, OTS, BRAIN), (Optical Society of America, 2020), p. JTu3A.18.

S. Lindner, C. Zhang, I. M. Antolovic, A. Kalyanov, J. Jiang, L. Ahnen, A. di Costanzo, J. M. Pavia, S. S. Majos, E. Charbon, and M. Wolf, “A novel 32 × 32, 224 mevents/s time resolved spad image sensor for near-infrared optical tomography,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS), (Optical Society of America, 2018), p. JTh5A.6.

Yalavarthy, P. K.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using nirfast: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Engng. 25(6), 711–732 (2009).
[Crossref]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34(6Part1), 2085–2098 (2007).
[Crossref]

Zahiremami, A.

H. Ben Yedder, A. BenTaieb, M. Shokoufi, A. Zahiremami, F. Golnaraghi, and G. Hamarneh, “Deep learning based image reconstruction for diffuse optical tomography,” Mach. Learn. for Med. Image Reconstr. Mlmir 2018 11074, 112–119 (2018).

Zhang, C.

J. Jiang, A. Di Costanzo Mata, S. Lindner, C. Zhang, E. Charbon, M. Wolf, and A. Kalyanov, “Image reconstruction for novel time domain near infrared optical tomography: towards clinical applications,” Biomed. Opt. Express 11(8), 4723–4734 (2020).
[Crossref]

S. Lindner, C. Zhang, I. M. Antolovic, A. Kalyanov, J. Jiang, L. Ahnen, A. di Costanzo, J. M. Pavia, S. S. Majos, E. Charbon, and M. Wolf, “A novel 32 × 32, 224 mevents/s time resolved spad image sensor for near-infrared optical tomography,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS), (Optical Society of America, 2018), p. JTh5A.6.

Adv. Exp. Med. Biol. (1)

J. Jiang, L. Ahnen, A. Kalyanov, S. Lindner, M. Wolf, and S. S. Majos, “A new method based on graphics processing units for fast near-infrared optical tomography,” Adv. Exp. Med. Biol. 977, 191–197 (2017).
[Crossref]

Appl. Opt. (1)

Biomed. Opt. Express (2)

Commun. Numer. Meth. Engng. (1)

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using nirfast: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Engng. 25(6), 711–732 (2009).
[Crossref]

Inverse Probl. (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[Crossref]

J. Biomed. Opt. (2)

M. Doulgerakis-Kontoudis, A. Eggebrecht, S. Wojtkiewicz, J. Culver, and H. Dehghani, “Toward real-time diffuse optical tomography: accelerating light propagation modeling employing parallel computing on gpu and cpu,” J. Biomed. Opt. 22(12), 125001 (2017).
[Crossref]

T. Arri, S. Muehlemann, M. Biallas, H. Bucher, and M. Wolf, “Precision of cerebral oxygenation and hemoglobin concentration measurements in neonates measured by near-infrared spectroscopy,” J. Biomed. Opt. 16(4), 047005 (2011).
[Crossref]

J. Mod. Opt. (1)

J. Jiang, M. Wolf, and S. S. Majos, “Fast reconstruction of optical properties for complex segmentations in near infrared imaging,” J. Mod. Opt. 64(7), 732–742 (2017).
[Crossref]

Mach. Learn. for Med. Image Reconstr. Mlmir 2018 (1)

H. Ben Yedder, A. BenTaieb, M. Shokoufi, A. Zahiremami, F. Golnaraghi, and G. Hamarneh, “Deep learning based image reconstruction for diffuse optical tomography,” Mach. Learn. for Med. Image Reconstr. Mlmir 2018 11074, 112–119 (2018).

Med. Phys. (1)

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34(6Part1), 2085–2098 (2007).
[Crossref]

Nat. Photonics (2)

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]

A. Lyons, F. Tonolini, A. Boccolini, A. Repetti, R. Henderson, Y. Wiaux, and D. Faccio, “Computational time-of-flight diffuse optical tomography,” Nat. Photonics 13(8), 575–579 (2019).
[Crossref]

Neurophotonics (1)

M. Doulgerakis, A. T. Eggebrecht, and H. Dehghani, “High-density functional diffuse optical tomography based on frequency-domain measurements improves image quality and spatial resolution,” Neurophotonics 6(3), 035007 (2019).
[Crossref]

Rev. Sci. Instrum. (2)

R. J. Cooper, E. Magee, N. Everdell, S. Magazov, M. Varela, D. Airantzis, A. P. Gibson, and J. C. Hebden, “Monstir ii: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging,” Rev. Sci. Instrum. 85(5), 053105 (2014).
[Crossref]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71(1), 256–265 (2000).
[Crossref]

Other (4)

“Nirfaster,” https://github.com/nirfaster/NIRFASTer .

A. Kalyanov, J. Jiang, S. Lindner, L. Ahnen, A. Di Costanzo, J. Mata Pavia, S. Sanchez Majos, and M. Wolf, “Time domain near-infrared optical tomography with time-of-flight spad camera: The new generation,” Biophotonics Congress: Biomedical Optics Congress 2018 (2018).

J. Jiang, A. di Costanzo, S. Lindner, M. Wolf, and A. Kalyanov, “Tracking objects in a diffusive medium with time domain near infrared optical tomography,” in Biophotonics Congress: Biomedical Optics 2020 (Translational, Microscopy, OCT, OTS, BRAIN), (Optical Society of America, 2020), p. JTu3A.18.

S. Lindner, C. Zhang, I. M. Antolovic, A. Kalyanov, J. Jiang, L. Ahnen, A. di Costanzo, J. M. Pavia, S. S. Majos, E. Charbon, and M. Wolf, “A novel 32 × 32, 224 mevents/s time resolved spad image sensor for near-infrared optical tomography,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS), (Optical Society of America, 2018), p. JTh5A.6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Photo of Pioneer imager probe applied on a baby head model. (b) Flowchart of Pioneer control software. All the error controls were excluded in the flowchart for simplification purposes.
Fig. 2.
Fig. 2. (a) From the left to the right: an inclusion phantom for the phantom, a rod phantom with the inclusion embedded and a silicone mold to cast this rod phantom; (b) mold for the bulk phantom; (c) silicone phantom components used in the experiment: the rod phantom and the bulk phantom; (d) Pioneer probe placed on the phantom of a movable inclusion in a measurement.
Fig. 3.
Fig. 3. (a) SNR of pixels in the central column. The inset picture illustrates the positions of the source and detectors. (b) An example of ToF histograms captured with the same pixels.
Fig. 4.
Fig. 4. (a) Mesh used with 11 sources (in red) and $\sim$ 200 selected detectors (in blue) placed on the top surface. It took only $\sim$0.2 s to obtain enough photons for each source. Note that we used a mesh, which is smaller than the actual phantom, to speed up the reconstruction process (the cylindrical mesh of 90 mm diameter and 40 mm thickness). Reconstruction results are shown for the moving object at a distance of (b) -25 mm, (c) -20 mm, (d) -10 mm, (e) 0 mm, (f) 10 mm, (g) 20 mm, (h) 25 mm from the center of the phantom. The gray areas represent the ground truth and the blue points stand for the reconstructed regions.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

[ κ ( r ) + μ a ( r ) + 1 c 0 t ] ϕ ( r , t ) = q ( r , t ) ,