Abstract

Microperimetry is a subjective ophthalmologic test used to assess retinal function at various specific and focal locations of the visual field. Historically, visible light has been described as ranging from 400 to 720 nm. However, we previously demonstrated that infra-red light can initiate visual transduction in rod photoreceptors by a mechanism of two-photon absorption by visual pigments. Here we introduce a newly designed and constructed two-photon microperimeter. We provide for the first time evidence of the presence of a nonlinear process occurring in the human retina based on psychophysical tests using newly developed instrumentation. Since infra-red light penetrates the aged front of the eye better than visible light, it has the potential for improved functional diagnostics in patients with age-related visual disorders.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Safety assessment in macaques of light exposures for functional two-photon ophthalmoscopy in humans

Christina Schwarz, Robin Sharma, William S. Fischer, Mina Chung, Grazyna Palczewska, Krzysztof Palczewski, David R. Williams, and Jennifer J. Hunter
Biomed. Opt. Express 7(12) 5148-5169 (2016)

Ultra-high contrast retinal display system for single photoreceptor psychophysics

Niklas Domdei, Lennart Domdei, Jenny L. Reiniger, Michael Linden, Frank G. Holz, Austin Roorda, and Wolf M. Harmening
Biomed. Opt. Express 9(1) 157-172 (2018)

Reduced-illuminance autofluorescence imaging in ABCA4-associated retinal degenerations

Artur V. Cideciyan, Malgorzata Swider, Tomas S. Aleman, Marisa I. Roman, Alexander Sumaroka, Sharon B. Schwartz, Edwin M. Stone, and Samuel G. Jacobson
J. Opt. Soc. Am. A 24(5) 1457-1467 (2007)

References

  • View by:
  • |
  • |
  • |

  1. M. Crossland, M.-L. Jackson, and W. H. Seiple, “Microperimetry: a review of fundus related perimetry,” Optometry Rep. 2(1), 2 (2012).
    [Crossref]
  2. C. Owsley, G. McGwin, M. E. Clark, G. R. Jackson, M. A. Callahan, L. B. Kline, C. D. Witherspoon, and C. A. Curcio, “Delayed Rod-Mediated Dark Adaptation Is a Functional Biomarker for Incident Early Age-Related Macular Degeneration,” Ophthalmology 123(2), 344–351 (2016).
    [Crossref]
  3. G. Landa, E. Su, P. M. Garcia, W. H. Seiple, and R. B. Rosen, “Inner segment–outer segment junctional layer integrity and corresponding retinal sensitivity in dry and wet forms of age-related macular degeneration,” Retina 31(2), 364–370 (2011).
    [Crossref]
  4. J. H. Acton, N. S. Bartlett, and V. C. Greenstein, “Comparing the Nidek MP-1 and Humphrey field analyzer in normal subjects,” Optom. Vis. Sci. 88(11), 1288–1297 (2011).
    [Crossref]
  5. F. K. Chen, P. J. Patel, W. Xing, C. Bunce, C. Egan, A. T. Tufail, P. J. Coffey, G. S. Rubin, and L. Da Cruz, “Test–Retest Variability of Microperimetry Using the Nidek MP1 in Patients with Macular Disease,” Invest. Ophthalmol. Visual Sci. 50(7), 3464–3472 (2009).
    [Crossref]
  6. K. Rohrschneider, M. Becker, H. Krastel, F. Kruse, H. Völcker, and T. Fendrich, “Static fundus perimetry using the scanning laser ophthalmoscope with an automated threshold strategy,” Graefe’s Arch. Clin. Exp. Ophthalmol. 233(12), 743–749 (1995).
    [Crossref]
  7. S. N. Markowitz and S. V. Reyes, “Microperimetry and clinical practice: an evidence-based review,” Can. J. Ophthalmol. 48(5), 350–357 (2013).
    [Crossref]
  8. W. S. Tuten, P. Tiruveedhula, and A. Roorda, “Adaptive optics scanning laser ophthalmoscope-based microperimetry,” Optom. Vis. Sci. 89(5), 563–574 (2012).
    [Crossref]
  9. L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
    [Crossref]
  10. E. A. Rossi and A. Roorda, “The relationship between visual resolution and cone spacing in the human fovea,” Nat. Neurosci. 13(2), 156–157 (2010).
    [Crossref]
  11. N. K. Cassels, J. M. Wild, T. H. Margrain, V. Chong, and J. H. Acton, “The use of microperimetry in assessing visual function in age-related macular degeneration,” Surv. Ophthalmol. 63(1), 40–55 (2018).
    [Crossref]
  12. G. Palczewska, F. Vinberg, P. Stremplewski, M. P. Bircher, D. Salom, K. Komar, J. Zhang, M. Cascella, M. Wojtkowski, V. J. Kefalov, and K. Palczewski, “Human infrared vision is triggered by two-photon chromophore isomerization,” Proc. Natl. Acad. Sci. U. S. A. 111(50), E5445–E5454 (2014).
    [Crossref]
  13. D. Mustafi, A. H. Engel, and K. Palczewski, “Structure of cone photoreceptors,” Prog. Retinal Eye Res. 28(4), 289–302 (2009).
    [Crossref]
  14. C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, and R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236(4801), 579–582 (1987).
    [Crossref]
  15. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
    [Crossref]
  16. R. H. Masland, “The neuronal organization of the retina,” Neuron 76(2), 266–280 (2012).
    [Crossref]
  17. J. Ambati and B. J. Fowler, “Mechanisms of age-related macular degeneration,” Neuron 75(1), 26–39 (2012).
    [Crossref]
  18. C. Rivolta, D. Sharon, M. M. DeAngelis, and T. P. Dryja, “Retinitis pigmentosa and allied diseases: numerous diseases, genes, and inheritance patterns,” Hum. Mol. Genet. 11(10), 1219–1227 (2002).
    [Crossref]
  19. F. LaRocca, A. H. Dhalla, M. P. Kelly, S. Farsiu, and J. A. Izatt, “Optimization of confocal scanning laser ophthalmoscope design,” J. Biomed. Opt. 18(7), 076015 (2013).
    [Crossref]
  20. M. M. Thomas and T. D. Lamb, “Light adaptation and dark adaptation of human rod photoreceptors measured from the a-wave of the electroretinogram,” J. Physiol. 518(2), 479–496 (1999).
    [Crossref]
  21. C. H. Graham, Vision and visual perception (Wiley, New York, 1965), pp. vii, 637 p.
  22. B. Treutwein and H. Strasburger, “Fitting the psychometric function,” Perception and Psychophysics 61(1), 87–106 (1999).
    [Crossref]
  23. B. Treutwein, “Adaptive psychophysical procedures,” Vision Res. 35(17), 2503–2522 (1995).
    [Crossref]
  24. J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327(8476), 307–310 (1986).
    [Crossref]
  25. A. Anastasakis, J. J. McAnany, G. A. Fishman, and W. H. Seiple, “Clinical value, normative retinal sensitivity values, and intrasession repeatability using a combined spectral domain optical coherence tomography/scanning laser ophthalmoscope microperimeter,” Eye (London, U. K.) 25(2), 245–251 (2011).
    [Crossref]
  26. J. D. Hunter, “Matplotlib: A 2D graphics environment,” Comput. Sci. Eng. 9(3), 90–95 (2007).
    [Crossref]
  27. A. World Medical, “World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects,” JAMA 310(20), 2191–2194 (2013).
    [Crossref]
  28. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref]
  29. A. B. Watson, “QUEST plus : A general multidimensional Bayesian adaptive psychometric method,” Journal of Vision 17(3), 10 (2017).
    [Crossref]
  30. T. D. Lamb and E. N. Pugh, “Dark adaptation and the retinoid cycle of vision,” Prog. Retinal Eye Res. 23(3), 307–380 (2004).
    [Crossref]
  31. E. A. Boettner and J. R. Wolter, “Transmission of the Ocular Media,” Invest. Ophthalmol. Visual Sci. 1, 776–783 (1962).
  32. M. Hammer, A. Roggan, D. Schweitzer, and G. Muller, “Optical-Properties of Ocular Fundus Tissues - an in-Vitro Study Using the Double-Integrating-Sphere Technique and Inverse Monte-Carlo Simulation,” Phys. Med. Biol. 40(6), 963–978 (1995).
    [Crossref]
  33. N. Domdei, L. Domdei, J. L. Reiniger, M. Linden, F. G. Holz, A. Roorda, and W. M. Harmening, “Ultra-high contrast retinal display system for single photoreceptor psychophysics,” Biomed. Opt. Express 9(1), 157–172 (2018).
    [Crossref]
  34. J. Szczepanek, T. M. Kardas, M. Michalska, C. Radzewicz, and Y. Stepanenko, “Simple all-PM-fiber laser mode-locked with a nonlinear loop mirror,” Opt. Lett. 40(15), 3500–3503 (2015).
    [Crossref]
  35. R. Omar and P. Herse, “Quantification of dark adaptation dynamics in retinitis pigmentosa using non-linear regression analysis,” Clinical & Experimental Optometry 87(6), 386–389 (2004).
    [Crossref]
  36. A. J. Gaffney, A. M. Binns, and T. H. Margrain, “Aging and cone dark adaptation,” Optom. Vis. Sci. 89(8), 1219–1224 (2012).
    [Crossref]
  37. D. C. Coile and H. D. Baker, “Foveal dark adaptation, photopigment regeneration, and aging,” Vis. Neurosci. 8(1), 27–39 (1992).
    [Crossref]

2018 (2)

N. K. Cassels, J. M. Wild, T. H. Margrain, V. Chong, and J. H. Acton, “The use of microperimetry in assessing visual function in age-related macular degeneration,” Surv. Ophthalmol. 63(1), 40–55 (2018).
[Crossref]

N. Domdei, L. Domdei, J. L. Reiniger, M. Linden, F. G. Holz, A. Roorda, and W. M. Harmening, “Ultra-high contrast retinal display system for single photoreceptor psychophysics,” Biomed. Opt. Express 9(1), 157–172 (2018).
[Crossref]

2017 (1)

A. B. Watson, “QUEST plus : A general multidimensional Bayesian adaptive psychometric method,” Journal of Vision 17(3), 10 (2017).
[Crossref]

2016 (1)

C. Owsley, G. McGwin, M. E. Clark, G. R. Jackson, M. A. Callahan, L. B. Kline, C. D. Witherspoon, and C. A. Curcio, “Delayed Rod-Mediated Dark Adaptation Is a Functional Biomarker for Incident Early Age-Related Macular Degeneration,” Ophthalmology 123(2), 344–351 (2016).
[Crossref]

2015 (1)

2014 (1)

G. Palczewska, F. Vinberg, P. Stremplewski, M. P. Bircher, D. Salom, K. Komar, J. Zhang, M. Cascella, M. Wojtkowski, V. J. Kefalov, and K. Palczewski, “Human infrared vision is triggered by two-photon chromophore isomerization,” Proc. Natl. Acad. Sci. U. S. A. 111(50), E5445–E5454 (2014).
[Crossref]

2013 (3)

F. LaRocca, A. H. Dhalla, M. P. Kelly, S. Farsiu, and J. A. Izatt, “Optimization of confocal scanning laser ophthalmoscope design,” J. Biomed. Opt. 18(7), 076015 (2013).
[Crossref]

S. N. Markowitz and S. V. Reyes, “Microperimetry and clinical practice: an evidence-based review,” Can. J. Ophthalmol. 48(5), 350–357 (2013).
[Crossref]

A. World Medical, “World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects,” JAMA 310(20), 2191–2194 (2013).
[Crossref]

2012 (5)

R. H. Masland, “The neuronal organization of the retina,” Neuron 76(2), 266–280 (2012).
[Crossref]

J. Ambati and B. J. Fowler, “Mechanisms of age-related macular degeneration,” Neuron 75(1), 26–39 (2012).
[Crossref]

A. J. Gaffney, A. M. Binns, and T. H. Margrain, “Aging and cone dark adaptation,” Optom. Vis. Sci. 89(8), 1219–1224 (2012).
[Crossref]

W. S. Tuten, P. Tiruveedhula, and A. Roorda, “Adaptive optics scanning laser ophthalmoscope-based microperimetry,” Optom. Vis. Sci. 89(5), 563–574 (2012).
[Crossref]

M. Crossland, M.-L. Jackson, and W. H. Seiple, “Microperimetry: a review of fundus related perimetry,” Optometry Rep. 2(1), 2 (2012).
[Crossref]

2011 (3)

G. Landa, E. Su, P. M. Garcia, W. H. Seiple, and R. B. Rosen, “Inner segment–outer segment junctional layer integrity and corresponding retinal sensitivity in dry and wet forms of age-related macular degeneration,” Retina 31(2), 364–370 (2011).
[Crossref]

J. H. Acton, N. S. Bartlett, and V. C. Greenstein, “Comparing the Nidek MP-1 and Humphrey field analyzer in normal subjects,” Optom. Vis. Sci. 88(11), 1288–1297 (2011).
[Crossref]

A. Anastasakis, J. J. McAnany, G. A. Fishman, and W. H. Seiple, “Clinical value, normative retinal sensitivity values, and intrasession repeatability using a combined spectral domain optical coherence tomography/scanning laser ophthalmoscope microperimeter,” Eye (London, U. K.) 25(2), 245–251 (2011).
[Crossref]

2010 (1)

E. A. Rossi and A. Roorda, “The relationship between visual resolution and cone spacing in the human fovea,” Nat. Neurosci. 13(2), 156–157 (2010).
[Crossref]

2009 (3)

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[Crossref]

F. K. Chen, P. J. Patel, W. Xing, C. Bunce, C. Egan, A. T. Tufail, P. J. Coffey, G. S. Rubin, and L. Da Cruz, “Test–Retest Variability of Microperimetry Using the Nidek MP1 in Patients with Macular Disease,” Invest. Ophthalmol. Visual Sci. 50(7), 3464–3472 (2009).
[Crossref]

D. Mustafi, A. H. Engel, and K. Palczewski, “Structure of cone photoreceptors,” Prog. Retinal Eye Res. 28(4), 289–302 (2009).
[Crossref]

2007 (1)

J. D. Hunter, “Matplotlib: A 2D graphics environment,” Comput. Sci. Eng. 9(3), 90–95 (2007).
[Crossref]

2004 (2)

T. D. Lamb and E. N. Pugh, “Dark adaptation and the retinoid cycle of vision,” Prog. Retinal Eye Res. 23(3), 307–380 (2004).
[Crossref]

R. Omar and P. Herse, “Quantification of dark adaptation dynamics in retinitis pigmentosa using non-linear regression analysis,” Clinical & Experimental Optometry 87(6), 386–389 (2004).
[Crossref]

2002 (1)

C. Rivolta, D. Sharon, M. M. DeAngelis, and T. P. Dryja, “Retinitis pigmentosa and allied diseases: numerous diseases, genes, and inheritance patterns,” Hum. Mol. Genet. 11(10), 1219–1227 (2002).
[Crossref]

1999 (2)

M. M. Thomas and T. D. Lamb, “Light adaptation and dark adaptation of human rod photoreceptors measured from the a-wave of the electroretinogram,” J. Physiol. 518(2), 479–496 (1999).
[Crossref]

B. Treutwein and H. Strasburger, “Fitting the psychometric function,” Perception and Psychophysics 61(1), 87–106 (1999).
[Crossref]

1995 (3)

B. Treutwein, “Adaptive psychophysical procedures,” Vision Res. 35(17), 2503–2522 (1995).
[Crossref]

K. Rohrschneider, M. Becker, H. Krastel, F. Kruse, H. Völcker, and T. Fendrich, “Static fundus perimetry using the scanning laser ophthalmoscope with an automated threshold strategy,” Graefe’s Arch. Clin. Exp. Ophthalmol. 233(12), 743–749 (1995).
[Crossref]

M. Hammer, A. Roggan, D. Schweitzer, and G. Muller, “Optical-Properties of Ocular Fundus Tissues - an in-Vitro Study Using the Double-Integrating-Sphere Technique and Inverse Monte-Carlo Simulation,” Phys. Med. Biol. 40(6), 963–978 (1995).
[Crossref]

1992 (1)

D. C. Coile and H. D. Baker, “Foveal dark adaptation, photopigment regeneration, and aging,” Vis. Neurosci. 8(1), 27–39 (1992).
[Crossref]

1990 (2)

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref]

1987 (1)

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, and R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236(4801), 579–582 (1987).
[Crossref]

1986 (1)

J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327(8476), 307–310 (1986).
[Crossref]

1962 (1)

E. A. Boettner and J. R. Wolter, “Transmission of the Ocular Media,” Invest. Ophthalmol. Visual Sci. 1, 776–783 (1962).

Acton, J. H.

N. K. Cassels, J. M. Wild, T. H. Margrain, V. Chong, and J. H. Acton, “The use of microperimetry in assessing visual function in age-related macular degeneration,” Surv. Ophthalmol. 63(1), 40–55 (2018).
[Crossref]

J. H. Acton, N. S. Bartlett, and V. C. Greenstein, “Comparing the Nidek MP-1 and Humphrey field analyzer in normal subjects,” Optom. Vis. Sci. 88(11), 1288–1297 (2011).
[Crossref]

Altman, D. G.

J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327(8476), 307–310 (1986).
[Crossref]

Ambati, J.

J. Ambati and B. J. Fowler, “Mechanisms of age-related macular degeneration,” Neuron 75(1), 26–39 (2012).
[Crossref]

Anastasakis, A.

A. Anastasakis, J. J. McAnany, G. A. Fishman, and W. H. Seiple, “Clinical value, normative retinal sensitivity values, and intrasession repeatability using a combined spectral domain optical coherence tomography/scanning laser ophthalmoscope microperimeter,” Eye (London, U. K.) 25(2), 245–251 (2011).
[Crossref]

Baker, H. D.

D. C. Coile and H. D. Baker, “Foveal dark adaptation, photopigment regeneration, and aging,” Vis. Neurosci. 8(1), 27–39 (1992).
[Crossref]

Bartlett, N. S.

J. H. Acton, N. S. Bartlett, and V. C. Greenstein, “Comparing the Nidek MP-1 and Humphrey field analyzer in normal subjects,” Optom. Vis. Sci. 88(11), 1288–1297 (2011).
[Crossref]

Becker, M.

K. Rohrschneider, M. Becker, H. Krastel, F. Kruse, H. Völcker, and T. Fendrich, “Static fundus perimetry using the scanning laser ophthalmoscope with an automated threshold strategy,” Graefe’s Arch. Clin. Exp. Ophthalmol. 233(12), 743–749 (1995).
[Crossref]

Binns, A. M.

A. J. Gaffney, A. M. Binns, and T. H. Margrain, “Aging and cone dark adaptation,” Optom. Vis. Sci. 89(8), 1219–1224 (2012).
[Crossref]

Bircher, M. P.

G. Palczewska, F. Vinberg, P. Stremplewski, M. P. Bircher, D. Salom, K. Komar, J. Zhang, M. Cascella, M. Wojtkowski, V. J. Kefalov, and K. Palczewski, “Human infrared vision is triggered by two-photon chromophore isomerization,” Proc. Natl. Acad. Sci. U. S. A. 111(50), E5445–E5454 (2014).
[Crossref]

Bland, J. M.

J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327(8476), 307–310 (1986).
[Crossref]

Boettner, E. A.

E. A. Boettner and J. R. Wolter, “Transmission of the Ocular Media,” Invest. Ophthalmol. Visual Sci. 1, 776–783 (1962).

Bunce, C.

F. K. Chen, P. J. Patel, W. Xing, C. Bunce, C. Egan, A. T. Tufail, P. J. Coffey, G. S. Rubin, and L. Da Cruz, “Test–Retest Variability of Microperimetry Using the Nidek MP1 in Patients with Macular Disease,” Invest. Ophthalmol. Visual Sci. 50(7), 3464–3472 (2009).
[Crossref]

Callahan, M. A.

C. Owsley, G. McGwin, M. E. Clark, G. R. Jackson, M. A. Callahan, L. B. Kline, C. D. Witherspoon, and C. A. Curcio, “Delayed Rod-Mediated Dark Adaptation Is a Functional Biomarker for Incident Early Age-Related Macular Degeneration,” Ophthalmology 123(2), 344–351 (2016).
[Crossref]

Cascella, M.

G. Palczewska, F. Vinberg, P. Stremplewski, M. P. Bircher, D. Salom, K. Komar, J. Zhang, M. Cascella, M. Wojtkowski, V. J. Kefalov, and K. Palczewski, “Human infrared vision is triggered by two-photon chromophore isomerization,” Proc. Natl. Acad. Sci. U. S. A. 111(50), E5445–E5454 (2014).
[Crossref]

Cassels, N. K.

N. K. Cassels, J. M. Wild, T. H. Margrain, V. Chong, and J. H. Acton, “The use of microperimetry in assessing visual function in age-related macular degeneration,” Surv. Ophthalmol. 63(1), 40–55 (2018).
[Crossref]

Chen, F. K.

F. K. Chen, P. J. Patel, W. Xing, C. Bunce, C. Egan, A. T. Tufail, P. J. Coffey, G. S. Rubin, and L. Da Cruz, “Test–Retest Variability of Microperimetry Using the Nidek MP1 in Patients with Macular Disease,” Invest. Ophthalmol. Visual Sci. 50(7), 3464–3472 (2009).
[Crossref]

Chong, V.

N. K. Cassels, J. M. Wild, T. H. Margrain, V. Chong, and J. H. Acton, “The use of microperimetry in assessing visual function in age-related macular degeneration,” Surv. Ophthalmol. 63(1), 40–55 (2018).
[Crossref]

Clark, M. E.

C. Owsley, G. McGwin, M. E. Clark, G. R. Jackson, M. A. Callahan, L. B. Kline, C. D. Witherspoon, and C. A. Curcio, “Delayed Rod-Mediated Dark Adaptation Is a Functional Biomarker for Incident Early Age-Related Macular Degeneration,” Ophthalmology 123(2), 344–351 (2016).
[Crossref]

Coffey, P. J.

F. K. Chen, P. J. Patel, W. Xing, C. Bunce, C. Egan, A. T. Tufail, P. J. Coffey, G. S. Rubin, and L. Da Cruz, “Test–Retest Variability of Microperimetry Using the Nidek MP1 in Patients with Macular Disease,” Invest. Ophthalmol. Visual Sci. 50(7), 3464–3472 (2009).
[Crossref]

Coile, D. C.

D. C. Coile and H. D. Baker, “Foveal dark adaptation, photopigment regeneration, and aging,” Vis. Neurosci. 8(1), 27–39 (1992).
[Crossref]

Crossland, M.

M. Crossland, M.-L. Jackson, and W. H. Seiple, “Microperimetry: a review of fundus related perimetry,” Optometry Rep. 2(1), 2 (2012).
[Crossref]

Curcio, C. A.

C. Owsley, G. McGwin, M. E. Clark, G. R. Jackson, M. A. Callahan, L. B. Kline, C. D. Witherspoon, and C. A. Curcio, “Delayed Rod-Mediated Dark Adaptation Is a Functional Biomarker for Incident Early Age-Related Macular Degeneration,” Ophthalmology 123(2), 344–351 (2016).
[Crossref]

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref]

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, and R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236(4801), 579–582 (1987).
[Crossref]

Da Cruz, L.

F. K. Chen, P. J. Patel, W. Xing, C. Bunce, C. Egan, A. T. Tufail, P. J. Coffey, G. S. Rubin, and L. Da Cruz, “Test–Retest Variability of Microperimetry Using the Nidek MP1 in Patients with Macular Disease,” Invest. Ophthalmol. Visual Sci. 50(7), 3464–3472 (2009).
[Crossref]

DeAngelis, M. M.

C. Rivolta, D. Sharon, M. M. DeAngelis, and T. P. Dryja, “Retinitis pigmentosa and allied diseases: numerous diseases, genes, and inheritance patterns,” Hum. Mol. Genet. 11(10), 1219–1227 (2002).
[Crossref]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref]

Dhalla, A. H.

F. LaRocca, A. H. Dhalla, M. P. Kelly, S. Farsiu, and J. A. Izatt, “Optimization of confocal scanning laser ophthalmoscope design,” J. Biomed. Opt. 18(7), 076015 (2013).
[Crossref]

Domdei, L.

Domdei, N.

Dryja, T. P.

C. Rivolta, D. Sharon, M. M. DeAngelis, and T. P. Dryja, “Retinitis pigmentosa and allied diseases: numerous diseases, genes, and inheritance patterns,” Hum. Mol. Genet. 11(10), 1219–1227 (2002).
[Crossref]

Egan, C.

F. K. Chen, P. J. Patel, W. Xing, C. Bunce, C. Egan, A. T. Tufail, P. J. Coffey, G. S. Rubin, and L. Da Cruz, “Test–Retest Variability of Microperimetry Using the Nidek MP1 in Patients with Macular Disease,” Invest. Ophthalmol. Visual Sci. 50(7), 3464–3472 (2009).
[Crossref]

Engel, A. H.

D. Mustafi, A. H. Engel, and K. Palczewski, “Structure of cone photoreceptors,” Prog. Retinal Eye Res. 28(4), 289–302 (2009).
[Crossref]

Farsiu, S.

F. LaRocca, A. H. Dhalla, M. P. Kelly, S. Farsiu, and J. A. Izatt, “Optimization of confocal scanning laser ophthalmoscope design,” J. Biomed. Opt. 18(7), 076015 (2013).
[Crossref]

Fendrich, T.

K. Rohrschneider, M. Becker, H. Krastel, F. Kruse, H. Völcker, and T. Fendrich, “Static fundus perimetry using the scanning laser ophthalmoscope with an automated threshold strategy,” Graefe’s Arch. Clin. Exp. Ophthalmol. 233(12), 743–749 (1995).
[Crossref]

Fishman, G. A.

A. Anastasakis, J. J. McAnany, G. A. Fishman, and W. H. Seiple, “Clinical value, normative retinal sensitivity values, and intrasession repeatability using a combined spectral domain optical coherence tomography/scanning laser ophthalmoscope microperimeter,” Eye (London, U. K.) 25(2), 245–251 (2011).
[Crossref]

Fowler, B. J.

J. Ambati and B. J. Fowler, “Mechanisms of age-related macular degeneration,” Neuron 75(1), 26–39 (2012).
[Crossref]

Gaffney, A. J.

A. J. Gaffney, A. M. Binns, and T. H. Margrain, “Aging and cone dark adaptation,” Optom. Vis. Sci. 89(8), 1219–1224 (2012).
[Crossref]

Garcia, P. M.

G. Landa, E. Su, P. M. Garcia, W. H. Seiple, and R. B. Rosen, “Inner segment–outer segment junctional layer integrity and corresponding retinal sensitivity in dry and wet forms of age-related macular degeneration,” Retina 31(2), 364–370 (2011).
[Crossref]

Graham, C. H.

C. H. Graham, Vision and visual perception (Wiley, New York, 1965), pp. vii, 637 p.

Greenstein, V. C.

J. H. Acton, N. S. Bartlett, and V. C. Greenstein, “Comparing the Nidek MP-1 and Humphrey field analyzer in normal subjects,” Optom. Vis. Sci. 88(11), 1288–1297 (2011).
[Crossref]

Hammer, M.

M. Hammer, A. Roggan, D. Schweitzer, and G. Muller, “Optical-Properties of Ocular Fundus Tissues - an in-Vitro Study Using the Double-Integrating-Sphere Technique and Inverse Monte-Carlo Simulation,” Phys. Med. Biol. 40(6), 963–978 (1995).
[Crossref]

Harmening, W. M.

Hendrickson, A. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref]

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, and R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236(4801), 579–582 (1987).
[Crossref]

Herse, P.

R. Omar and P. Herse, “Quantification of dark adaptation dynamics in retinitis pigmentosa using non-linear regression analysis,” Clinical & Experimental Optometry 87(6), 386–389 (2004).
[Crossref]

Holz, F. G.

Horton, J. C.

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[Crossref]

Hunter, J. D.

J. D. Hunter, “Matplotlib: A 2D graphics environment,” Comput. Sci. Eng. 9(3), 90–95 (2007).
[Crossref]

Izatt, J. A.

F. LaRocca, A. H. Dhalla, M. P. Kelly, S. Farsiu, and J. A. Izatt, “Optimization of confocal scanning laser ophthalmoscope design,” J. Biomed. Opt. 18(7), 076015 (2013).
[Crossref]

Jackson, G. R.

C. Owsley, G. McGwin, M. E. Clark, G. R. Jackson, M. A. Callahan, L. B. Kline, C. D. Witherspoon, and C. A. Curcio, “Delayed Rod-Mediated Dark Adaptation Is a Functional Biomarker for Incident Early Age-Related Macular Degeneration,” Ophthalmology 123(2), 344–351 (2016).
[Crossref]

Jackson, M.-L.

M. Crossland, M.-L. Jackson, and W. H. Seiple, “Microperimetry: a review of fundus related perimetry,” Optometry Rep. 2(1), 2 (2012).
[Crossref]

Kalina, R. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref]

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, and R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236(4801), 579–582 (1987).
[Crossref]

Kardas, T. M.

Kefalov, V. J.

G. Palczewska, F. Vinberg, P. Stremplewski, M. P. Bircher, D. Salom, K. Komar, J. Zhang, M. Cascella, M. Wojtkowski, V. J. Kefalov, and K. Palczewski, “Human infrared vision is triggered by two-photon chromophore isomerization,” Proc. Natl. Acad. Sci. U. S. A. 111(50), E5445–E5454 (2014).
[Crossref]

Kelly, M. P.

F. LaRocca, A. H. Dhalla, M. P. Kelly, S. Farsiu, and J. A. Izatt, “Optimization of confocal scanning laser ophthalmoscope design,” J. Biomed. Opt. 18(7), 076015 (2013).
[Crossref]

Kline, L. B.

C. Owsley, G. McGwin, M. E. Clark, G. R. Jackson, M. A. Callahan, L. B. Kline, C. D. Witherspoon, and C. A. Curcio, “Delayed Rod-Mediated Dark Adaptation Is a Functional Biomarker for Incident Early Age-Related Macular Degeneration,” Ophthalmology 123(2), 344–351 (2016).
[Crossref]

Komar, K.

G. Palczewska, F. Vinberg, P. Stremplewski, M. P. Bircher, D. Salom, K. Komar, J. Zhang, M. Cascella, M. Wojtkowski, V. J. Kefalov, and K. Palczewski, “Human infrared vision is triggered by two-photon chromophore isomerization,” Proc. Natl. Acad. Sci. U. S. A. 111(50), E5445–E5454 (2014).
[Crossref]

Krastel, H.

K. Rohrschneider, M. Becker, H. Krastel, F. Kruse, H. Völcker, and T. Fendrich, “Static fundus perimetry using the scanning laser ophthalmoscope with an automated threshold strategy,” Graefe’s Arch. Clin. Exp. Ophthalmol. 233(12), 743–749 (1995).
[Crossref]

Kruse, F.

K. Rohrschneider, M. Becker, H. Krastel, F. Kruse, H. Völcker, and T. Fendrich, “Static fundus perimetry using the scanning laser ophthalmoscope with an automated threshold strategy,” Graefe’s Arch. Clin. Exp. Ophthalmol. 233(12), 743–749 (1995).
[Crossref]

Lamb, T. D.

T. D. Lamb and E. N. Pugh, “Dark adaptation and the retinoid cycle of vision,” Prog. Retinal Eye Res. 23(3), 307–380 (2004).
[Crossref]

M. M. Thomas and T. D. Lamb, “Light adaptation and dark adaptation of human rod photoreceptors measured from the a-wave of the electroretinogram,” J. Physiol. 518(2), 479–496 (1999).
[Crossref]

Landa, G.

G. Landa, E. Su, P. M. Garcia, W. H. Seiple, and R. B. Rosen, “Inner segment–outer segment junctional layer integrity and corresponding retinal sensitivity in dry and wet forms of age-related macular degeneration,” Retina 31(2), 364–370 (2011).
[Crossref]

LaRocca, F.

F. LaRocca, A. H. Dhalla, M. P. Kelly, S. Farsiu, and J. A. Izatt, “Optimization of confocal scanning laser ophthalmoscope design,” J. Biomed. Opt. 18(7), 076015 (2013).
[Crossref]

Linden, M.

Margrain, T. H.

N. K. Cassels, J. M. Wild, T. H. Margrain, V. Chong, and J. H. Acton, “The use of microperimetry in assessing visual function in age-related macular degeneration,” Surv. Ophthalmol. 63(1), 40–55 (2018).
[Crossref]

A. J. Gaffney, A. M. Binns, and T. H. Margrain, “Aging and cone dark adaptation,” Optom. Vis. Sci. 89(8), 1219–1224 (2012).
[Crossref]

Markowitz, S. N.

S. N. Markowitz and S. V. Reyes, “Microperimetry and clinical practice: an evidence-based review,” Can. J. Ophthalmol. 48(5), 350–357 (2013).
[Crossref]

Masland, R. H.

R. H. Masland, “The neuronal organization of the retina,” Neuron 76(2), 266–280 (2012).
[Crossref]

McAnany, J. J.

A. Anastasakis, J. J. McAnany, G. A. Fishman, and W. H. Seiple, “Clinical value, normative retinal sensitivity values, and intrasession repeatability using a combined spectral domain optical coherence tomography/scanning laser ophthalmoscope microperimeter,” Eye (London, U. K.) 25(2), 245–251 (2011).
[Crossref]

McGwin, G.

C. Owsley, G. McGwin, M. E. Clark, G. R. Jackson, M. A. Callahan, L. B. Kline, C. D. Witherspoon, and C. A. Curcio, “Delayed Rod-Mediated Dark Adaptation Is a Functional Biomarker for Incident Early Age-Related Macular Degeneration,” Ophthalmology 123(2), 344–351 (2016).
[Crossref]

Michalska, M.

Muller, G.

M. Hammer, A. Roggan, D. Schweitzer, and G. Muller, “Optical-Properties of Ocular Fundus Tissues - an in-Vitro Study Using the Double-Integrating-Sphere Technique and Inverse Monte-Carlo Simulation,” Phys. Med. Biol. 40(6), 963–978 (1995).
[Crossref]

Mustafi, D.

D. Mustafi, A. H. Engel, and K. Palczewski, “Structure of cone photoreceptors,” Prog. Retinal Eye Res. 28(4), 289–302 (2009).
[Crossref]

Omar, R.

R. Omar and P. Herse, “Quantification of dark adaptation dynamics in retinitis pigmentosa using non-linear regression analysis,” Clinical & Experimental Optometry 87(6), 386–389 (2004).
[Crossref]

Owsley, C.

C. Owsley, G. McGwin, M. E. Clark, G. R. Jackson, M. A. Callahan, L. B. Kline, C. D. Witherspoon, and C. A. Curcio, “Delayed Rod-Mediated Dark Adaptation Is a Functional Biomarker for Incident Early Age-Related Macular Degeneration,” Ophthalmology 123(2), 344–351 (2016).
[Crossref]

Packer, O.

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, and R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236(4801), 579–582 (1987).
[Crossref]

Palczewska, G.

G. Palczewska, F. Vinberg, P. Stremplewski, M. P. Bircher, D. Salom, K. Komar, J. Zhang, M. Cascella, M. Wojtkowski, V. J. Kefalov, and K. Palczewski, “Human infrared vision is triggered by two-photon chromophore isomerization,” Proc. Natl. Acad. Sci. U. S. A. 111(50), E5445–E5454 (2014).
[Crossref]

Palczewski, K.

G. Palczewska, F. Vinberg, P. Stremplewski, M. P. Bircher, D. Salom, K. Komar, J. Zhang, M. Cascella, M. Wojtkowski, V. J. Kefalov, and K. Palczewski, “Human infrared vision is triggered by two-photon chromophore isomerization,” Proc. Natl. Acad. Sci. U. S. A. 111(50), E5445–E5454 (2014).
[Crossref]

D. Mustafi, A. H. Engel, and K. Palczewski, “Structure of cone photoreceptors,” Prog. Retinal Eye Res. 28(4), 289–302 (2009).
[Crossref]

Patel, P. J.

F. K. Chen, P. J. Patel, W. Xing, C. Bunce, C. Egan, A. T. Tufail, P. J. Coffey, G. S. Rubin, and L. Da Cruz, “Test–Retest Variability of Microperimetry Using the Nidek MP1 in Patients with Macular Disease,” Invest. Ophthalmol. Visual Sci. 50(7), 3464–3472 (2009).
[Crossref]

Pugh, E. N.

T. D. Lamb and E. N. Pugh, “Dark adaptation and the retinoid cycle of vision,” Prog. Retinal Eye Res. 23(3), 307–380 (2004).
[Crossref]

Radzewicz, C.

Reiniger, J. L.

Reyes, S. V.

S. N. Markowitz and S. V. Reyes, “Microperimetry and clinical practice: an evidence-based review,” Can. J. Ophthalmol. 48(5), 350–357 (2013).
[Crossref]

Rivolta, C.

C. Rivolta, D. Sharon, M. M. DeAngelis, and T. P. Dryja, “Retinitis pigmentosa and allied diseases: numerous diseases, genes, and inheritance patterns,” Hum. Mol. Genet. 11(10), 1219–1227 (2002).
[Crossref]

Roggan, A.

M. Hammer, A. Roggan, D. Schweitzer, and G. Muller, “Optical-Properties of Ocular Fundus Tissues - an in-Vitro Study Using the Double-Integrating-Sphere Technique and Inverse Monte-Carlo Simulation,” Phys. Med. Biol. 40(6), 963–978 (1995).
[Crossref]

Rohrschneider, K.

K. Rohrschneider, M. Becker, H. Krastel, F. Kruse, H. Völcker, and T. Fendrich, “Static fundus perimetry using the scanning laser ophthalmoscope with an automated threshold strategy,” Graefe’s Arch. Clin. Exp. Ophthalmol. 233(12), 743–749 (1995).
[Crossref]

Roorda, A.

N. Domdei, L. Domdei, J. L. Reiniger, M. Linden, F. G. Holz, A. Roorda, and W. M. Harmening, “Ultra-high contrast retinal display system for single photoreceptor psychophysics,” Biomed. Opt. Express 9(1), 157–172 (2018).
[Crossref]

W. S. Tuten, P. Tiruveedhula, and A. Roorda, “Adaptive optics scanning laser ophthalmoscope-based microperimetry,” Optom. Vis. Sci. 89(5), 563–574 (2012).
[Crossref]

E. A. Rossi and A. Roorda, “The relationship between visual resolution and cone spacing in the human fovea,” Nat. Neurosci. 13(2), 156–157 (2010).
[Crossref]

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[Crossref]

Rosen, R. B.

G. Landa, E. Su, P. M. Garcia, W. H. Seiple, and R. B. Rosen, “Inner segment–outer segment junctional layer integrity and corresponding retinal sensitivity in dry and wet forms of age-related macular degeneration,” Retina 31(2), 364–370 (2011).
[Crossref]

Rossi, E. A.

E. A. Rossi and A. Roorda, “The relationship between visual resolution and cone spacing in the human fovea,” Nat. Neurosci. 13(2), 156–157 (2010).
[Crossref]

Rubin, G. S.

F. K. Chen, P. J. Patel, W. Xing, C. Bunce, C. Egan, A. T. Tufail, P. J. Coffey, G. S. Rubin, and L. Da Cruz, “Test–Retest Variability of Microperimetry Using the Nidek MP1 in Patients with Macular Disease,” Invest. Ophthalmol. Visual Sci. 50(7), 3464–3472 (2009).
[Crossref]

Salom, D.

G. Palczewska, F. Vinberg, P. Stremplewski, M. P. Bircher, D. Salom, K. Komar, J. Zhang, M. Cascella, M. Wojtkowski, V. J. Kefalov, and K. Palczewski, “Human infrared vision is triggered by two-photon chromophore isomerization,” Proc. Natl. Acad. Sci. U. S. A. 111(50), E5445–E5454 (2014).
[Crossref]

Schweitzer, D.

M. Hammer, A. Roggan, D. Schweitzer, and G. Muller, “Optical-Properties of Ocular Fundus Tissues - an in-Vitro Study Using the Double-Integrating-Sphere Technique and Inverse Monte-Carlo Simulation,” Phys. Med. Biol. 40(6), 963–978 (1995).
[Crossref]

Seiple, W. H.

M. Crossland, M.-L. Jackson, and W. H. Seiple, “Microperimetry: a review of fundus related perimetry,” Optometry Rep. 2(1), 2 (2012).
[Crossref]

G. Landa, E. Su, P. M. Garcia, W. H. Seiple, and R. B. Rosen, “Inner segment–outer segment junctional layer integrity and corresponding retinal sensitivity in dry and wet forms of age-related macular degeneration,” Retina 31(2), 364–370 (2011).
[Crossref]

A. Anastasakis, J. J. McAnany, G. A. Fishman, and W. H. Seiple, “Clinical value, normative retinal sensitivity values, and intrasession repeatability using a combined spectral domain optical coherence tomography/scanning laser ophthalmoscope microperimeter,” Eye (London, U. K.) 25(2), 245–251 (2011).
[Crossref]

Sharon, D.

C. Rivolta, D. Sharon, M. M. DeAngelis, and T. P. Dryja, “Retinitis pigmentosa and allied diseases: numerous diseases, genes, and inheritance patterns,” Hum. Mol. Genet. 11(10), 1219–1227 (2002).
[Crossref]

Sincich, L. C.

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[Crossref]

Sloan, K. R.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref]

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, and R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236(4801), 579–582 (1987).
[Crossref]

Stepanenko, Y.

Strasburger, H.

B. Treutwein and H. Strasburger, “Fitting the psychometric function,” Perception and Psychophysics 61(1), 87–106 (1999).
[Crossref]

Stremplewski, P.

G. Palczewska, F. Vinberg, P. Stremplewski, M. P. Bircher, D. Salom, K. Komar, J. Zhang, M. Cascella, M. Wojtkowski, V. J. Kefalov, and K. Palczewski, “Human infrared vision is triggered by two-photon chromophore isomerization,” Proc. Natl. Acad. Sci. U. S. A. 111(50), E5445–E5454 (2014).
[Crossref]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref]

Su, E.

G. Landa, E. Su, P. M. Garcia, W. H. Seiple, and R. B. Rosen, “Inner segment–outer segment junctional layer integrity and corresponding retinal sensitivity in dry and wet forms of age-related macular degeneration,” Retina 31(2), 364–370 (2011).
[Crossref]

Szczepanek, J.

Thomas, M. M.

M. M. Thomas and T. D. Lamb, “Light adaptation and dark adaptation of human rod photoreceptors measured from the a-wave of the electroretinogram,” J. Physiol. 518(2), 479–496 (1999).
[Crossref]

Tiruveedhula, P.

W. S. Tuten, P. Tiruveedhula, and A. Roorda, “Adaptive optics scanning laser ophthalmoscope-based microperimetry,” Optom. Vis. Sci. 89(5), 563–574 (2012).
[Crossref]

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[Crossref]

Treutwein, B.

B. Treutwein and H. Strasburger, “Fitting the psychometric function,” Perception and Psychophysics 61(1), 87–106 (1999).
[Crossref]

B. Treutwein, “Adaptive psychophysical procedures,” Vision Res. 35(17), 2503–2522 (1995).
[Crossref]

Tufail, A. T.

F. K. Chen, P. J. Patel, W. Xing, C. Bunce, C. Egan, A. T. Tufail, P. J. Coffey, G. S. Rubin, and L. Da Cruz, “Test–Retest Variability of Microperimetry Using the Nidek MP1 in Patients with Macular Disease,” Invest. Ophthalmol. Visual Sci. 50(7), 3464–3472 (2009).
[Crossref]

Tuten, W. S.

W. S. Tuten, P. Tiruveedhula, and A. Roorda, “Adaptive optics scanning laser ophthalmoscope-based microperimetry,” Optom. Vis. Sci. 89(5), 563–574 (2012).
[Crossref]

Vinberg, F.

G. Palczewska, F. Vinberg, P. Stremplewski, M. P. Bircher, D. Salom, K. Komar, J. Zhang, M. Cascella, M. Wojtkowski, V. J. Kefalov, and K. Palczewski, “Human infrared vision is triggered by two-photon chromophore isomerization,” Proc. Natl. Acad. Sci. U. S. A. 111(50), E5445–E5454 (2014).
[Crossref]

Völcker, H.

K. Rohrschneider, M. Becker, H. Krastel, F. Kruse, H. Völcker, and T. Fendrich, “Static fundus perimetry using the scanning laser ophthalmoscope with an automated threshold strategy,” Graefe’s Arch. Clin. Exp. Ophthalmol. 233(12), 743–749 (1995).
[Crossref]

Watson, A. B.

A. B. Watson, “QUEST plus : A general multidimensional Bayesian adaptive psychometric method,” Journal of Vision 17(3), 10 (2017).
[Crossref]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref]

Wild, J. M.

N. K. Cassels, J. M. Wild, T. H. Margrain, V. Chong, and J. H. Acton, “The use of microperimetry in assessing visual function in age-related macular degeneration,” Surv. Ophthalmol. 63(1), 40–55 (2018).
[Crossref]

Witherspoon, C. D.

C. Owsley, G. McGwin, M. E. Clark, G. R. Jackson, M. A. Callahan, L. B. Kline, C. D. Witherspoon, and C. A. Curcio, “Delayed Rod-Mediated Dark Adaptation Is a Functional Biomarker for Incident Early Age-Related Macular Degeneration,” Ophthalmology 123(2), 344–351 (2016).
[Crossref]

Wojtkowski, M.

G. Palczewska, F. Vinberg, P. Stremplewski, M. P. Bircher, D. Salom, K. Komar, J. Zhang, M. Cascella, M. Wojtkowski, V. J. Kefalov, and K. Palczewski, “Human infrared vision is triggered by two-photon chromophore isomerization,” Proc. Natl. Acad. Sci. U. S. A. 111(50), E5445–E5454 (2014).
[Crossref]

Wolter, J. R.

E. A. Boettner and J. R. Wolter, “Transmission of the Ocular Media,” Invest. Ophthalmol. Visual Sci. 1, 776–783 (1962).

World Medical, A.

A. World Medical, “World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects,” JAMA 310(20), 2191–2194 (2013).
[Crossref]

Xing, W.

F. K. Chen, P. J. Patel, W. Xing, C. Bunce, C. Egan, A. T. Tufail, P. J. Coffey, G. S. Rubin, and L. Da Cruz, “Test–Retest Variability of Microperimetry Using the Nidek MP1 in Patients with Macular Disease,” Invest. Ophthalmol. Visual Sci. 50(7), 3464–3472 (2009).
[Crossref]

Zhang, J.

G. Palczewska, F. Vinberg, P. Stremplewski, M. P. Bircher, D. Salom, K. Komar, J. Zhang, M. Cascella, M. Wojtkowski, V. J. Kefalov, and K. Palczewski, “Human infrared vision is triggered by two-photon chromophore isomerization,” Proc. Natl. Acad. Sci. U. S. A. 111(50), E5445–E5454 (2014).
[Crossref]

Zhang, Y.

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[Crossref]

Biomed. Opt. Express (1)

Can. J. Ophthalmol. (1)

S. N. Markowitz and S. V. Reyes, “Microperimetry and clinical practice: an evidence-based review,” Can. J. Ophthalmol. 48(5), 350–357 (2013).
[Crossref]

Clinical & Experimental Optometry (1)

R. Omar and P. Herse, “Quantification of dark adaptation dynamics in retinitis pigmentosa using non-linear regression analysis,” Clinical & Experimental Optometry 87(6), 386–389 (2004).
[Crossref]

Comput. Sci. Eng. (1)

J. D. Hunter, “Matplotlib: A 2D graphics environment,” Comput. Sci. Eng. 9(3), 90–95 (2007).
[Crossref]

Eye (London, U. K.) (1)

A. Anastasakis, J. J. McAnany, G. A. Fishman, and W. H. Seiple, “Clinical value, normative retinal sensitivity values, and intrasession repeatability using a combined spectral domain optical coherence tomography/scanning laser ophthalmoscope microperimeter,” Eye (London, U. K.) 25(2), 245–251 (2011).
[Crossref]

Graefe’s Arch. Clin. Exp. Ophthalmol. (1)

K. Rohrschneider, M. Becker, H. Krastel, F. Kruse, H. Völcker, and T. Fendrich, “Static fundus perimetry using the scanning laser ophthalmoscope with an automated threshold strategy,” Graefe’s Arch. Clin. Exp. Ophthalmol. 233(12), 743–749 (1995).
[Crossref]

Hum. Mol. Genet. (1)

C. Rivolta, D. Sharon, M. M. DeAngelis, and T. P. Dryja, “Retinitis pigmentosa and allied diseases: numerous diseases, genes, and inheritance patterns,” Hum. Mol. Genet. 11(10), 1219–1227 (2002).
[Crossref]

Invest. Ophthalmol. Visual Sci. (2)

F. K. Chen, P. J. Patel, W. Xing, C. Bunce, C. Egan, A. T. Tufail, P. J. Coffey, G. S. Rubin, and L. Da Cruz, “Test–Retest Variability of Microperimetry Using the Nidek MP1 in Patients with Macular Disease,” Invest. Ophthalmol. Visual Sci. 50(7), 3464–3472 (2009).
[Crossref]

E. A. Boettner and J. R. Wolter, “Transmission of the Ocular Media,” Invest. Ophthalmol. Visual Sci. 1, 776–783 (1962).

J. Biomed. Opt. (1)

F. LaRocca, A. H. Dhalla, M. P. Kelly, S. Farsiu, and J. A. Izatt, “Optimization of confocal scanning laser ophthalmoscope design,” J. Biomed. Opt. 18(7), 076015 (2013).
[Crossref]

J. Comp. Neurol. (1)

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref]

J. Physiol. (1)

M. M. Thomas and T. D. Lamb, “Light adaptation and dark adaptation of human rod photoreceptors measured from the a-wave of the electroretinogram,” J. Physiol. 518(2), 479–496 (1999).
[Crossref]

JAMA (1)

A. World Medical, “World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects,” JAMA 310(20), 2191–2194 (2013).
[Crossref]

Journal of Vision (1)

A. B. Watson, “QUEST plus : A general multidimensional Bayesian adaptive psychometric method,” Journal of Vision 17(3), 10 (2017).
[Crossref]

Lancet (1)

J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327(8476), 307–310 (1986).
[Crossref]

Nat. Neurosci. (2)

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[Crossref]

E. A. Rossi and A. Roorda, “The relationship between visual resolution and cone spacing in the human fovea,” Nat. Neurosci. 13(2), 156–157 (2010).
[Crossref]

Neuron (2)

R. H. Masland, “The neuronal organization of the retina,” Neuron 76(2), 266–280 (2012).
[Crossref]

J. Ambati and B. J. Fowler, “Mechanisms of age-related macular degeneration,” Neuron 75(1), 26–39 (2012).
[Crossref]

Ophthalmology (1)

C. Owsley, G. McGwin, M. E. Clark, G. R. Jackson, M. A. Callahan, L. B. Kline, C. D. Witherspoon, and C. A. Curcio, “Delayed Rod-Mediated Dark Adaptation Is a Functional Biomarker for Incident Early Age-Related Macular Degeneration,” Ophthalmology 123(2), 344–351 (2016).
[Crossref]

Opt. Lett. (1)

Optom. Vis. Sci. (3)

A. J. Gaffney, A. M. Binns, and T. H. Margrain, “Aging and cone dark adaptation,” Optom. Vis. Sci. 89(8), 1219–1224 (2012).
[Crossref]

J. H. Acton, N. S. Bartlett, and V. C. Greenstein, “Comparing the Nidek MP-1 and Humphrey field analyzer in normal subjects,” Optom. Vis. Sci. 88(11), 1288–1297 (2011).
[Crossref]

W. S. Tuten, P. Tiruveedhula, and A. Roorda, “Adaptive optics scanning laser ophthalmoscope-based microperimetry,” Optom. Vis. Sci. 89(5), 563–574 (2012).
[Crossref]

Optometry Rep. (1)

M. Crossland, M.-L. Jackson, and W. H. Seiple, “Microperimetry: a review of fundus related perimetry,” Optometry Rep. 2(1), 2 (2012).
[Crossref]

Perception and Psychophysics (1)

B. Treutwein and H. Strasburger, “Fitting the psychometric function,” Perception and Psychophysics 61(1), 87–106 (1999).
[Crossref]

Phys. Med. Biol. (1)

M. Hammer, A. Roggan, D. Schweitzer, and G. Muller, “Optical-Properties of Ocular Fundus Tissues - an in-Vitro Study Using the Double-Integrating-Sphere Technique and Inverse Monte-Carlo Simulation,” Phys. Med. Biol. 40(6), 963–978 (1995).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

G. Palczewska, F. Vinberg, P. Stremplewski, M. P. Bircher, D. Salom, K. Komar, J. Zhang, M. Cascella, M. Wojtkowski, V. J. Kefalov, and K. Palczewski, “Human infrared vision is triggered by two-photon chromophore isomerization,” Proc. Natl. Acad. Sci. U. S. A. 111(50), E5445–E5454 (2014).
[Crossref]

Prog. Retinal Eye Res. (2)

D. Mustafi, A. H. Engel, and K. Palczewski, “Structure of cone photoreceptors,” Prog. Retinal Eye Res. 28(4), 289–302 (2009).
[Crossref]

T. D. Lamb and E. N. Pugh, “Dark adaptation and the retinoid cycle of vision,” Prog. Retinal Eye Res. 23(3), 307–380 (2004).
[Crossref]

Retina (1)

G. Landa, E. Su, P. M. Garcia, W. H. Seiple, and R. B. Rosen, “Inner segment–outer segment junctional layer integrity and corresponding retinal sensitivity in dry and wet forms of age-related macular degeneration,” Retina 31(2), 364–370 (2011).
[Crossref]

Science (2)

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, and R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial asymmetry,” Science 236(4801), 579–582 (1987).
[Crossref]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref]

Surv. Ophthalmol. (1)

N. K. Cassels, J. M. Wild, T. H. Margrain, V. Chong, and J. H. Acton, “The use of microperimetry in assessing visual function in age-related macular degeneration,” Surv. Ophthalmol. 63(1), 40–55 (2018).
[Crossref]

Vis. Neurosci. (1)

D. C. Coile and H. D. Baker, “Foveal dark adaptation, photopigment regeneration, and aging,” Vis. Neurosci. 8(1), 27–39 (1992).
[Crossref]

Vision Res. (1)

B. Treutwein, “Adaptive psychophysical procedures,” Vision Res. 35(17), 2503–2522 (1995).
[Crossref]

Other (1)

C. H. Graham, Vision and visual perception (Wiley, New York, 1965), pp. vii, 637 p.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. System for measuring visual sensitivity to infrared and visible light (2PO-VIS). Photograph of the 2PO-VIS is shown in the upper left corner, the system control screen is shown in the upper right corner and the diagram of the system is shown in the central portion of the figure. In the photograph, the red arrowhead indicates the forehead rest and the green arrowhead indicates the computer mouse used to adjust the stimulus power. SLO preview and pupil image are displayed on the system control screen. The light delivery module (right portion of the system diagram) provides both stimulating wavelengths: 1045 nm (IR) and 522.5 nm (VIS) and is composed of a pulsing laser delivering 1045 nm light at 63 MHz; BS1 – a beam splitter uncoupling 15% of the beam; M1, M2 – flat mirrors; SHG – nonlinear crystal generating second harmonic light at 522.5 nm; DM1 – a long pass dichroic mirror; SPF – a short pass filter; B1, B2 – electronically controlled beam blockers; and two SF – optical fibers providing spatial filtering. The 2P microperimetry module enables functional studies with IR and VIS light anywhere within the field of view of the SLO image. The 2P microperimetry components consist of CL – collimating lenses; P1 and P2 – polarizers; DM2 – a long pass dichroic mirror; A – an adjustable aperture; motorized NDF – a gradient neutral density filter; BS2, BS4, BS5 –beam splitters; PM – a power meter; L1 – movable lens correcting for refraction error; movable lens L3; 2GS –2D galvanometer scanners; L2 and L3 – telescopic system conjugating the pupil plane with scanners 2GS; DM3 – a dichroic mirror coupling the SLO beam with stimulating beams; HM – a hot mirror; PH1 - pinhole. The SLO imaging components include BS3 – beam splitter; SLO scanners – a resonant scanner and a galvanometer scanner; lenses L4 and L3 – telescopic system conjugating the pupil plane with scanning stage and enabling SLO field of view in a range of 30° × 24° at the retinal plane; PH2 – a pinhole; APD – an avalanche photodiode. Solid black lines outline extreme scanning beam paths for IR, VIS, and SLO beams.
Fig. 2.
Fig. 2. System for simultaneously monitoring dark adaption, pupil diameter and pupil position. (a) Scheme of the part of the optical system in NCU Torun for psychophysical measurements dedicated to monitoring the pupil and bleaching light delivery. Pupil monitoring optical path consisted of two telescopes, first, lenses L1 and L2 and the second, lenses of L3 and L4, USB CMOS camera, dichroic mirror DM for coupling stimulus light with pupil illumination and beamsplitter BS for coupling bleaching and fixation. The 860 nm light from LED diodes was used for pupil illumination. Stimulus delivery module is not shown. The bleaching source was a white LED and the two telescopes (L1 and L2; L5 and L6) formed the image of the LED at the pupil providing uniform illumination at the retinal plane. Hot mirror HM coupled 630 nm light for fixation with the optical path of bleaching. The 100 µm pinhole PH placed in the plane conjugated to the retina, formed a point-like source for fixation. (b) Changes of pupil size over time during the first few seconds of dark adaptation measurements after bleaching. The gray stripe corresponds to a bleaching event lasting 150 ms. Changes in pupil displacement, gray line, and diameter, blue line, during dark adaptation measurements: (c) trial with VIS stimulus: black dots - transient visibility threshold for 520 nm; (d) trial with IR stimulus: red dots - transient visibility threshold for 1040 nm.
Fig. 3.
Fig. 3. Measurements of visual sensitivity to IR and VIS light. (a) The IR (red circles) but not VIS (black circles) visual sensitivity threshold is impacted by increased dispersion introduced by variable lengths of the optical fiber. Measurements were performed in the fovea. Line drawn through IR data points is described by equation VIS threshold = 44 × (IR threshold)0.44. Error bars represent standard deviations, n = 5. (b) Log-log plot of the VIS light sensitivity thresholds as a function of IR light sensitivity thresholds obtained in three volunteer subjects S1 (48-year-old), S2 (61-year-old), and S3 (32-year-old). Points on a 2D plot represent pairs of VIS and IR thresholds collected with the same retinal luminance background, which ranged from 0 to 1.8 × 103 photopic trolands. Lines through the data points were obtained with the linear regression fit, and their slopes are indicated. (c) Psychometric function. The X axis values are normalized to the threshold power at which the stimulating pattern, VIS or IR, was seen in 50% of trials. The 99.7% of the change in psychometric function value occurred within ± 1.1 dB range for IR, indicated as solid red background, and within ± 2.2 dB for VIS [23], indicated as solid gray background. Black and red circles indicate experimental data points corresponding to VIS and IR data, respectively; solid black and red lines represent logistic distribution obtained for VIS and IR accordingly [23]. (d) Bland-Altman analysis of sensitivity measurements repeatability. Each of 17 subjects is indicated as a point on a 2D plot, with the abscissa representing the average sensitivity value and ordinate representing the sensitivity difference between two tests. Data obtained with VIS stimuli are shown as black dots and data obtained with IR are shown as red dots. Dashed lines correspond to the overall mean sensitivity difference between the two tests. Solid lines were calculated as described previously [24,25] and outline the limits within which 95% of the intra-session sensitivity differences are expected to fall. (e) IR and VIS dark adaptation. The data were obtained with the laboratory apparatus at Nicolaus Copernicus University in Torun (NCU), using a white light emitting diode for bleaching, 630 nm fixation light, and pupil camera with 860 nm central wavelength. Shown are visual sensitivity thresholds measured after bleaching with 7.3 × 106 Td·s (scotopic units). Visual sensitivity thresholds were measured in the right eye of a 40-year-old subject, at the location 6°30’ temporal from the fovea using an empty circle stimulus with the diameter 3°20’. Black and red circles represent data points obtained with VIS and IR respectively. Blue circles represent IR data squared. Plots are normalized to pre-bleached sensitivity threshold values.
Fig. 4.
Fig. 4. Stimulation with infrared (IR) light is impacted less than stimulation with visible light (VIS) by human eye light opacities. (a) VIS (black) and IR (red) light visual sensitivity thresholds measured in a 33-year old subject with and without diffusers are shown. Diffuser consisted of a human donor lens submerged in PBS in a quartz cuvette as shown in the inset. Filled symbols represent data obtained with the lens from a 64-year-old human donor, and unfilled symbols correspond to the lens from a 45-year old human donor. Plots were normalized by dividing the visual sensitivity threshold value, by the average sensitivity value measured without a diffuser for VIS and for IR. Error bars represent standard deviations, n = 4. (b) Shown are transmittance spectra from the 64-year old human donor lens (filled black circles), 45-year-old human donor lens (unfilled circles) and the RTV diffuser (blue line). (c-d) VIS (c) and IR (d) light intensity profiles were measured with a beam profiling camera system without and with RTV diffuser. Both: VIS and IR stimuli consisted of six vertical lines separated by 0.32 mm. VIS light stimuli were at 70 nW and IR stimuli 20 nW. Upper row insets show color scale images of beam profiles obtained without a diffuser, and images obtained with a diffuser are shown in the lower row.
Fig. 5.
Fig. 5. Retinal maps of visual sensitivity thresholds to VIS and IR light. In all panels, data obtained with VIS are presented in the upper row and with IR in the lower row. (a) SLO retinal preview with an overlay of the 45 macular positions probed with the VIS and the IR light. (b) Contour maps of visual sensitivity. Sensitivity isolines overlaid on the maps are drawn with the 3-dB step for VIS and 1 dB for IR. (c) Three-dimensional representation of visual sensitivity centered on subject’s fovea. Black points represent the measurement results and overlaid surfaces represent results of the interpolation. Macular sensitivity mapping was performed on a 32-year old subject.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

p ( x ) = 1 / ( 1 + exp [ ( T x ) / σ ] ) ,
M P E = ( 1.8 4.9 3600 0.75 10 3 ) J c m 2 = 4.1 J c m 2
P max = M P E [ m J c m 2 ] t 1 [ s 1 ] 0.385 c m 2 = 0.438 m W .
p [ log ( x 2 ) ] = ( 1 + exp [ ( log ( T 2 ) log ( x 2 ) ) / σ ] ) 1 = ( 1 + exp [ log ( T / x ) / ( 0.5 σ ) ] ) 1 .