Abstract

Imaging the retina of cataractous patients is useful to detect pathologies before the cataract surgery is performed. However, for conventional ophthalmoscopes, opacifications convert the lens into a scattering medium that may greatly deteriorate the retinal image. In this paper we show, as a proof of concept, that it is possible to surpass the limitations imposed by scattering applying to both, a model and a healthy eye, a newly developed ophthalmoscope based on single-pixel imaging. To this end, an instrument was built that incorporates two imaging modalities: conventional flood illumination and single-pixel based. Images of the retina were acquired firstly in an artificial eye and later in healthy living eyes with different elements which replicate the scattering produced by cataractous lenses. Comparison between both types of imaging modalities shows that, under high levels of scattering, the single-pixel ophthalmoscope outperforms standard imaging methods.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Image transmission through dynamic scattering media by single-pixel photodetection

Enrique Tajahuerce, Vicente Durán, Pere Clemente, Esther Irles, Fernando Soldevila, Pedro Andrés, and Jesús Lancis
Opt. Express 22(14) 16945-16955 (2014)

Volumetric macro- and micro-scale assessment of crystalline lens opacities in cataract patients using long-depth-range swept source optical coherence tomography

Ireneusz Grulkowski, Silvestre Manzanera, Lukasz Cwiklinski, Juan Mompeán, Alberto de Castro, Jose Maria Marin, and Pablo Artal
Biomed. Opt. Express 9(8) 3821-3833 (2018)

Single pixel camera ophthalmoscope

Benjamin Lochocki, Adrian Gambín, Silvestre Manzanera, Esther Irles, Enrique Tajahuerce, Jesus Lancis, and Pablo Artal
Optica 3(10) 1056-1059 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D Computational Imaging with Single-Pixel Detectors - Supplementary Materials,” Science 340(6134), 844–847 (2013).
    [Crossref]
  2. V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. 109(26), E1679–E1687 (2012).
    [Crossref]
  3. M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
    [Crossref]
  4. H. Peng, Z. Yang, D. Li, and L. Wu, “The application of ghost imaging in infrared imaging detection technology,” in Selected Papers of the Photoelectronic Technology Committee Conferences, S. Liu, S. Zhuang, M. I. Petelin, and L. Xiang, eds. (International Society for Optics and Photonics, 2015), Vol. 9795, p. 97952O.
  5. Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A: At., Mol., Opt. Phys. 79(5), 053840 (2009).
    [Crossref]
  6. P. Clemente, V. Durán, E. Tajahuerce, V. Torres-Company, and J. Lancis, “Single-pixel digital ghost holography,” Phys. Rev. A: At., Mol., Opt. Phys. 86(4), 041803 (2012).
    [Crossref]
  7. S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(1), 81 (2010).
    [Crossref]
  8. J. Bertolotti, E. G. Van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
    [Crossref]
  9. J. A. Newman and K. J. Webb, “Imaging optical fields through heavily scattering media,” Phys. Rev. Lett. 113(26), 263903 (2014).
    [Crossref]
  10. O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
    [Crossref]
  11. S. Sudarsanam, J. Mathew, S. Panigrahi, J. Fade, M. Alouini, and H. Ramachandran, “Real-time imaging through strongly scattering media: Seeing through turbid media, instantly,” Sci. Rep. 6(1), 25033–9 (2016).
    [Crossref]
  12. E. Tajahuerce, V. Dur, P. Clemente, E. Irles, F. Soldevila, and P. Andr, “Image transmission through dynamic scattering media by single-pixel photodetection,” Opt. Express 22(14), 16945–16955 (2014).
    [Crossref]
  13. V. Durán, F. Soldevila, E. Irles, P. Clemente, E. Tajahuerce, P. Andrés, and J. Lancis, “Compressive imaging in scattering media,” Opt. Express 23(11), 14424 (2015).
    [Crossref]
  14. B. Lochocki, A. Gambín, S. Manzanera, E. Irles, E. Tajahuerce, J. Lancis, and P. Artal, “Single pixel camera ophthalmoscope,” Optica 3(10), 1056–1059 (2016).
    [Crossref]
  15. B. Thylefors, “The World Health Organization’s programme for the prevention of blindness,” Int. Ophthalmol. 14(3), 211–219 (1990).
    [Crossref]
  16. J. S. Minkowski, M. Palese, and D. L. Guyton, “Potential Acuity Meter Using a Minute Aerial Pinhole Aperture,” Ophthalmology 90(11), 1360–1368 (1983).
    [Crossref]
  17. D. G. Green, “Testing the Vision of Cataract Patients by Means of Laser-Generated Interference Fringes,” Science 168(3936), 1240–1242 (1970).
    [Crossref]
  18. A. de Castro, A. Benito, S. Manzanera, J. Mompeán, B. Cañizares, D. Martínez, J. M. Marín, I. Grulkowski, and P. Artal, “Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 59(2), 897–903 (2018).
    [Crossref]
  19. I. Grulkowski, S. Manzanera, L. Cwiklinski, J. Mompeán, A. DeCastro, J. M. Marin, and P. Artal, “Volumetric macro- and micro-scale assessment of crystalline lens opacities in cataract patients using long-depth-range swept source optical coherence tomography,” Biomed. Opt. Express 9(8), 3821–3833 (2018).
    [Crossref]

2018 (2)

A. de Castro, A. Benito, S. Manzanera, J. Mompeán, B. Cañizares, D. Martínez, J. M. Marín, I. Grulkowski, and P. Artal, “Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 59(2), 897–903 (2018).
[Crossref]

I. Grulkowski, S. Manzanera, L. Cwiklinski, J. Mompeán, A. DeCastro, J. M. Marin, and P. Artal, “Volumetric macro- and micro-scale assessment of crystalline lens opacities in cataract patients using long-depth-range swept source optical coherence tomography,” Biomed. Opt. Express 9(8), 3821–3833 (2018).
[Crossref]

2016 (2)

B. Lochocki, A. Gambín, S. Manzanera, E. Irles, E. Tajahuerce, J. Lancis, and P. Artal, “Single pixel camera ophthalmoscope,” Optica 3(10), 1056–1059 (2016).
[Crossref]

S. Sudarsanam, J. Mathew, S. Panigrahi, J. Fade, M. Alouini, and H. Ramachandran, “Real-time imaging through strongly scattering media: Seeing through turbid media, instantly,” Sci. Rep. 6(1), 25033–9 (2016).
[Crossref]

2015 (2)

V. Durán, F. Soldevila, E. Irles, P. Clemente, E. Tajahuerce, P. Andrés, and J. Lancis, “Compressive imaging in scattering media,” Opt. Express 23(11), 14424 (2015).
[Crossref]

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref]

2014 (3)

J. A. Newman and K. J. Webb, “Imaging optical fields through heavily scattering media,” Phys. Rev. Lett. 113(26), 263903 (2014).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

E. Tajahuerce, V. Dur, P. Clemente, E. Irles, F. Soldevila, and P. Andr, “Image transmission through dynamic scattering media by single-pixel photodetection,” Opt. Express 22(14), 16945–16955 (2014).
[Crossref]

2013 (1)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D Computational Imaging with Single-Pixel Detectors - Supplementary Materials,” Science 340(6134), 844–847 (2013).
[Crossref]

2012 (3)

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. 109(26), E1679–E1687 (2012).
[Crossref]

P. Clemente, V. Durán, E. Tajahuerce, V. Torres-Company, and J. Lancis, “Single-pixel digital ghost holography,” Phys. Rev. A: At., Mol., Opt. Phys. 86(4), 041803 (2012).
[Crossref]

J. Bertolotti, E. G. Van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

2010 (1)

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(1), 81 (2010).
[Crossref]

2009 (1)

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A: At., Mol., Opt. Phys. 79(5), 053840 (2009).
[Crossref]

1990 (1)

B. Thylefors, “The World Health Organization’s programme for the prevention of blindness,” Int. Ophthalmol. 14(3), 211–219 (1990).
[Crossref]

1983 (1)

J. S. Minkowski, M. Palese, and D. L. Guyton, “Potential Acuity Meter Using a Minute Aerial Pinhole Aperture,” Ophthalmology 90(11), 1360–1368 (1983).
[Crossref]

1970 (1)

D. G. Green, “Testing the Vision of Cataract Patients by Means of Laser-Generated Interference Fringes,” Science 168(3936), 1240–1242 (1970).
[Crossref]

Alouini, M.

S. Sudarsanam, J. Mathew, S. Panigrahi, J. Fade, M. Alouini, and H. Ramachandran, “Real-time imaging through strongly scattering media: Seeing through turbid media, instantly,” Sci. Rep. 6(1), 25033–9 (2016).
[Crossref]

Andr, P.

Andrés, P.

Artal, P.

Benito, A.

A. de Castro, A. Benito, S. Manzanera, J. Mompeán, B. Cañizares, D. Martínez, J. M. Marín, I. Grulkowski, and P. Artal, “Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 59(2), 897–903 (2018).
[Crossref]

Bertolotti, J.

J. Bertolotti, E. G. Van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

Blum, C.

J. Bertolotti, E. G. Van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

Bobin, J.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. 109(26), E1679–E1687 (2012).
[Crossref]

Boccara, A. C.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(1), 81 (2010).
[Crossref]

Bowman, A.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D Computational Imaging with Single-Pixel Detectors - Supplementary Materials,” Science 340(6134), 844–847 (2013).
[Crossref]

Bowman, R.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D Computational Imaging with Single-Pixel Detectors - Supplementary Materials,” Science 340(6134), 844–847 (2013).
[Crossref]

Bowman, R. W.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref]

Bromberg, Y.

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A: At., Mol., Opt. Phys. 79(5), 053840 (2009).
[Crossref]

Candes, E.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. 109(26), E1679–E1687 (2012).
[Crossref]

Cañizares, B.

A. de Castro, A. Benito, S. Manzanera, J. Mompeán, B. Cañizares, D. Martínez, J. M. Marín, I. Grulkowski, and P. Artal, “Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 59(2), 897–903 (2018).
[Crossref]

Chahid, M.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. 109(26), E1679–E1687 (2012).
[Crossref]

Clemente, P.

Cwiklinski, L.

Dahan, M.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. 109(26), E1679–E1687 (2012).
[Crossref]

de Castro, A.

A. de Castro, A. Benito, S. Manzanera, J. Mompeán, B. Cañizares, D. Martínez, J. M. Marín, I. Grulkowski, and P. Artal, “Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 59(2), 897–903 (2018).
[Crossref]

DeCastro, A.

Dur, V.

Durán, V.

V. Durán, F. Soldevila, E. Irles, P. Clemente, E. Tajahuerce, P. Andrés, and J. Lancis, “Compressive imaging in scattering media,” Opt. Express 23(11), 14424 (2015).
[Crossref]

P. Clemente, V. Durán, E. Tajahuerce, V. Torres-Company, and J. Lancis, “Single-pixel digital ghost holography,” Phys. Rev. A: At., Mol., Opt. Phys. 86(4), 041803 (2012).
[Crossref]

Edgar, M. P.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D Computational Imaging with Single-Pixel Detectors - Supplementary Materials,” Science 340(6134), 844–847 (2013).
[Crossref]

Fade, J.

S. Sudarsanam, J. Mathew, S. Panigrahi, J. Fade, M. Alouini, and H. Ramachandran, “Real-time imaging through strongly scattering media: Seeing through turbid media, instantly,” Sci. Rep. 6(1), 25033–9 (2016).
[Crossref]

Fink, M.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(1), 81 (2010).
[Crossref]

Gambín, A.

Gibson, G. M.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref]

Gigan, S.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(1), 81 (2010).
[Crossref]

Green, D. G.

D. G. Green, “Testing the Vision of Cataract Patients by Means of Laser-Generated Interference Fringes,” Science 168(3936), 1240–1242 (1970).
[Crossref]

Grulkowski, I.

A. de Castro, A. Benito, S. Manzanera, J. Mompeán, B. Cañizares, D. Martínez, J. M. Marín, I. Grulkowski, and P. Artal, “Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 59(2), 897–903 (2018).
[Crossref]

I. Grulkowski, S. Manzanera, L. Cwiklinski, J. Mompeán, A. DeCastro, J. M. Marin, and P. Artal, “Volumetric macro- and micro-scale assessment of crystalline lens opacities in cataract patients using long-depth-range swept source optical coherence tomography,” Biomed. Opt. Express 9(8), 3821–3833 (2018).
[Crossref]

Guyton, D. L.

J. S. Minkowski, M. Palese, and D. L. Guyton, “Potential Acuity Meter Using a Minute Aerial Pinhole Aperture,” Ophthalmology 90(11), 1360–1368 (1983).
[Crossref]

Heidmann, P.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Irles, E.

Katz, O.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A: At., Mol., Opt. Phys. 79(5), 053840 (2009).
[Crossref]

Lagendijk, A.

J. Bertolotti, E. G. Van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

Lancis, J.

Lerosey, G.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(1), 81 (2010).
[Crossref]

Li, D.

H. Peng, Z. Yang, D. Li, and L. Wu, “The application of ghost imaging in infrared imaging detection technology,” in Selected Papers of the Photoelectronic Technology Committee Conferences, S. Liu, S. Zhuang, M. I. Petelin, and L. Xiang, eds. (International Society for Optics and Photonics, 2015), Vol. 9795, p. 97952O.

Lochocki, B.

Manzanera, S.

Marin, J. M.

Marín, J. M.

A. de Castro, A. Benito, S. Manzanera, J. Mompeán, B. Cañizares, D. Martínez, J. M. Marín, I. Grulkowski, and P. Artal, “Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 59(2), 897–903 (2018).
[Crossref]

Martínez, D.

A. de Castro, A. Benito, S. Manzanera, J. Mompeán, B. Cañizares, D. Martínez, J. M. Marín, I. Grulkowski, and P. Artal, “Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 59(2), 897–903 (2018).
[Crossref]

Mathew, J.

S. Sudarsanam, J. Mathew, S. Panigrahi, J. Fade, M. Alouini, and H. Ramachandran, “Real-time imaging through strongly scattering media: Seeing through turbid media, instantly,” Sci. Rep. 6(1), 25033–9 (2016).
[Crossref]

Minkowski, J. S.

J. S. Minkowski, M. Palese, and D. L. Guyton, “Potential Acuity Meter Using a Minute Aerial Pinhole Aperture,” Ophthalmology 90(11), 1360–1368 (1983).
[Crossref]

Mitchell, K. J.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref]

Mompeán, J.

A. de Castro, A. Benito, S. Manzanera, J. Mompeán, B. Cañizares, D. Martínez, J. M. Marín, I. Grulkowski, and P. Artal, “Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 59(2), 897–903 (2018).
[Crossref]

I. Grulkowski, S. Manzanera, L. Cwiklinski, J. Mompeán, A. DeCastro, J. M. Marin, and P. Artal, “Volumetric macro- and micro-scale assessment of crystalline lens opacities in cataract patients using long-depth-range swept source optical coherence tomography,” Biomed. Opt. Express 9(8), 3821–3833 (2018).
[Crossref]

Mosk, A. P.

J. Bertolotti, E. G. Van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

Mousavi, H. S.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. 109(26), E1679–E1687 (2012).
[Crossref]

Newman, J. A.

J. A. Newman and K. J. Webb, “Imaging optical fields through heavily scattering media,” Phys. Rev. Lett. 113(26), 263903 (2014).
[Crossref]

Padgett, M. J.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D Computational Imaging with Single-Pixel Detectors - Supplementary Materials,” Science 340(6134), 844–847 (2013).
[Crossref]

Palese, M.

J. S. Minkowski, M. Palese, and D. L. Guyton, “Potential Acuity Meter Using a Minute Aerial Pinhole Aperture,” Ophthalmology 90(11), 1360–1368 (1983).
[Crossref]

Panigrahi, S.

S. Sudarsanam, J. Mathew, S. Panigrahi, J. Fade, M. Alouini, and H. Ramachandran, “Real-time imaging through strongly scattering media: Seeing through turbid media, instantly,” Sci. Rep. 6(1), 25033–9 (2016).
[Crossref]

Peng, H.

H. Peng, Z. Yang, D. Li, and L. Wu, “The application of ghost imaging in infrared imaging detection technology,” in Selected Papers of the Photoelectronic Technology Committee Conferences, S. Liu, S. Zhuang, M. I. Petelin, and L. Xiang, eds. (International Society for Optics and Photonics, 2015), Vol. 9795, p. 97952O.

Popoff, S.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(1), 81 (2010).
[Crossref]

Radwell, N.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref]

Ramachandran, H.

S. Sudarsanam, J. Mathew, S. Panigrahi, J. Fade, M. Alouini, and H. Ramachandran, “Real-time imaging through strongly scattering media: Seeing through turbid media, instantly,” Sci. Rep. 6(1), 25033–9 (2016).
[Crossref]

Silberberg, Y.

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A: At., Mol., Opt. Phys. 79(5), 053840 (2009).
[Crossref]

Soldevila, F.

Studer, V.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. 109(26), E1679–E1687 (2012).
[Crossref]

Sudarsanam, S.

S. Sudarsanam, J. Mathew, S. Panigrahi, J. Fade, M. Alouini, and H. Ramachandran, “Real-time imaging through strongly scattering media: Seeing through turbid media, instantly,” Sci. Rep. 6(1), 25033–9 (2016).
[Crossref]

Sun, B.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D Computational Imaging with Single-Pixel Detectors - Supplementary Materials,” Science 340(6134), 844–847 (2013).
[Crossref]

Tajahuerce, E.

Thylefors, B.

B. Thylefors, “The World Health Organization’s programme for the prevention of blindness,” Int. Ophthalmol. 14(3), 211–219 (1990).
[Crossref]

Torres-Company, V.

P. Clemente, V. Durán, E. Tajahuerce, V. Torres-Company, and J. Lancis, “Single-pixel digital ghost holography,” Phys. Rev. A: At., Mol., Opt. Phys. 86(4), 041803 (2012).
[Crossref]

Van Putten, E. G.

J. Bertolotti, E. G. Van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

Vittert, L. E.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D Computational Imaging with Single-Pixel Detectors - Supplementary Materials,” Science 340(6134), 844–847 (2013).
[Crossref]

Vos, W. L.

J. Bertolotti, E. G. Van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

Webb, K. J.

J. A. Newman and K. J. Webb, “Imaging optical fields through heavily scattering media,” Phys. Rev. Lett. 113(26), 263903 (2014).
[Crossref]

Welsh, S.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D Computational Imaging with Single-Pixel Detectors - Supplementary Materials,” Science 340(6134), 844–847 (2013).
[Crossref]

Welsh, S. S.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref]

Wu, L.

H. Peng, Z. Yang, D. Li, and L. Wu, “The application of ghost imaging in infrared imaging detection technology,” in Selected Papers of the Photoelectronic Technology Committee Conferences, S. Liu, S. Zhuang, M. I. Petelin, and L. Xiang, eds. (International Society for Optics and Photonics, 2015), Vol. 9795, p. 97952O.

Yang, Z.

H. Peng, Z. Yang, D. Li, and L. Wu, “The application of ghost imaging in infrared imaging detection technology,” in Selected Papers of the Photoelectronic Technology Committee Conferences, S. Liu, S. Zhuang, M. I. Petelin, and L. Xiang, eds. (International Society for Optics and Photonics, 2015), Vol. 9795, p. 97952O.

Biomed. Opt. Express (1)

Int. Ophthalmol. (1)

B. Thylefors, “The World Health Organization’s programme for the prevention of blindness,” Int. Ophthalmol. 14(3), 211–219 (1990).
[Crossref]

Invest. Ophthalmol. Visual Sci. (1)

A. de Castro, A. Benito, S. Manzanera, J. Mompeán, B. Cañizares, D. Martínez, J. M. Marín, I. Grulkowski, and P. Artal, “Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 59(2), 897–903 (2018).
[Crossref]

Nat. Commun. (1)

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(1), 81 (2010).
[Crossref]

Nat. Photonics (1)

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Nature (1)

J. Bertolotti, E. G. Van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

Ophthalmology (1)

J. S. Minkowski, M. Palese, and D. L. Guyton, “Potential Acuity Meter Using a Minute Aerial Pinhole Aperture,” Ophthalmology 90(11), 1360–1368 (1983).
[Crossref]

Opt. Express (2)

Optica (1)

Phys. Rev. A: At., Mol., Opt. Phys. (2)

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A: At., Mol., Opt. Phys. 79(5), 053840 (2009).
[Crossref]

P. Clemente, V. Durán, E. Tajahuerce, V. Torres-Company, and J. Lancis, “Single-pixel digital ghost holography,” Phys. Rev. A: At., Mol., Opt. Phys. 86(4), 041803 (2012).
[Crossref]

Phys. Rev. Lett. (1)

J. A. Newman and K. J. Webb, “Imaging optical fields through heavily scattering media,” Phys. Rev. Lett. 113(26), 263903 (2014).
[Crossref]

Proc. Natl. Acad. Sci. (1)

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. 109(26), E1679–E1687 (2012).
[Crossref]

Sci. Rep. (2)

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015).
[Crossref]

S. Sudarsanam, J. Mathew, S. Panigrahi, J. Fade, M. Alouini, and H. Ramachandran, “Real-time imaging through strongly scattering media: Seeing through turbid media, instantly,” Sci. Rep. 6(1), 25033–9 (2016).
[Crossref]

Science (2)

D. G. Green, “Testing the Vision of Cataract Patients by Means of Laser-Generated Interference Fringes,” Science 168(3936), 1240–1242 (1970).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D Computational Imaging with Single-Pixel Detectors - Supplementary Materials,” Science 340(6134), 844–847 (2013).
[Crossref]

Other (1)

H. Peng, Z. Yang, D. Li, and L. Wu, “The application of ghost imaging in infrared imaging detection technology,” in Selected Papers of the Photoelectronic Technology Committee Conferences, S. Liu, S. Zhuang, M. I. Petelin, and L. Xiang, eds. (International Society for Optics and Photonics, 2015), Vol. 9795, p. 97952O.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic diagram of the optical setup (the light source and the light beam illuminating the DMD have been omitted). The Hadamard patterns generated on the DMD are imaged onto the retina as shown by the solid red line. The reflected light beam from the retina is depicted by a dotted blue line reaching either the CCD camera or the photodetector (PD) by means of the flip mirror FM1. The apertures (Ap1 and Ap2) are conjugated with the pupil plane of the eye (green dashed line). L1 to L6 denote lenses, M1 to M2 mirrors and FT stands for fixation target.
Fig. 2.
Fig. 2. OCT projection images of crystalline lenses in cataract patients. Both images correspond to 2 females, 53(left) and 63(right) years old. Scale bars: 1 mm.
Fig. 3.
Fig. 3. Crude approaches to simulate the cataract effects with a model eye. Some random patterns drawn on a plastic thin film using glue (left) and a piece of paper with a 2 mm aperture (right). The scale bar on the left represents 5 mm.
Fig. 4.
Fig. 4. Diffuser used to simulate cataracts in a healthy eye. It is a 2-mm thick plate of silicone. In the picture, the plate is 2 mm above the drawing of the 2 parallel lines.
Fig. 5.
Fig. 5. Images of the retina in the model eye in the absence of any scattering medium recorded by the CCD (left) and by the single-pixel camera (right). Field size of the illuminated area is 18 × 18 degrees.
Fig. 6.
Fig. 6. Retinal images of the artificial eye after simulating the cataract effect using a plastic film with glue. Along each column are shown the corresponding CCD (upper row) and single pixel images (lower row) captured for different locations of the plastic film. Field size is 18 × 18 degrees.
Fig. 7.
Fig. 7. Images of the retina in the model eye in the presence of a strong scattering medium. CCD (left), single-pixel camera (right). The medium is a piece of paper with a 2-mm aperture allowing the incoming beam to pass unobstructed but limiting the outcoming one. Field size is 18 × 18 degrees.
Fig. 8.
Fig. 8. Fundus images of a healthy eye captured by the CCD (left) and the single-pixel camera (right) showing the surroundings of the optic disk. Imaged area is a 18 × 18 degrees patch. Single-pixel image resolution is 64 × 64 pixels and is rescaled in size.
Fig. 9.
Fig. 9. Retinal images aiming at the optic disk obtained after simulating the cataract effect placing a strong diffuser in the path of both detectors, CCD camera (left image) and photodetector (right image) for the single-pixel camera. Imaged area is a 18 × 18 degrees patch. Single-pixel image resolution is 64 × 64 pixels and is rescaled in size.

Metrics