Abstract

The rapid development of hardware and software for photoacoustic technologies is urging the establishment of dedicated tools for standardization and performance assessment. In particular, the fabrication of anatomical phantoms for photoacoustic imaging remains an open question, as current solutions have not yet gained unanimous support. Here, we propose that a hybrid material made of a water-in-oil emulsion of glycerol and polydimethylsiloxane may represent a versatile platform to host a broad taxonomy of hydrophobic and hydrophilic dyes and recapitulate the optical and acoustic features of bio tissue. For a full optical parameterization, we refer to Wróbel, et al. [ Biomed. Opt. Express 7, 2088 (2016)], where this material was first presented for optical imaging. Instead, here, we complete the picture and find that its speed of sound and acoustic attenuation resemble those of pure polydimethylsiloxane, i.e. respectively 1150 ± 30 m/s and 3.5 ± 0.4 dB/(MHz·cm). We demonstrate its use under a commercial B-mode scanner and a home-made A-mode stage for photoacoustic analysis to retrieve the ground-truth encoded in a multilayer architecture containing indocyanine green, plasmonic particles and red blood cells. Finally, we verify the stability of its acoustic, optical and geometric features over a time span of three months.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Semi-anthropomorphic photoacoustic breast phantom

Maura Dantuma, Rianne van Dommelen, and Srirang Manohar
Biomed. Opt. Express 10(11) 5921-5939 (2019)

Gel wax-based tissue-mimicking phantoms for multispectral photoacoustic imaging

Efthymios Maneas, Wenfeng Xia, Olumide Ogunlade, Martina Fonseca, Daniil I. Nikitichev, Anna L. David, Simeon J. West, Sebastien Ourselin, Jeremy C. Hebden, Tom Vercauteren, and Adrien E. Desjardins
Biomed. Opt. Express 9(3) 1151-1163 (2018)

Photoacoustic oximetry imaging performance evaluation using dynamic blood flow phantoms with tunable oxygen saturation

William C. Vogt, Xuewen Zhou, Rudy Andriani, Keith A. Wear, T. Joshua Pfefer, and Brian S. Garra
Biomed. Opt. Express 10(2) 449-464 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Medicine Biol. 42, 1971–1979 (1997).
    [Crossref]
  2. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
    [Crossref] [PubMed]
  3. M. O. Culjat, D. Goldenberg, P. Tewari, and R. S. Singh, “A review of tissue substitutes for ultrasound imaging,” Ultrasound Med Biol 36, 861–873 (2010).
    [Crossref] [PubMed]
  4. L. V. Wang and S. Hu, “Photoacoustic tomography: In vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
    [Crossref] [PubMed]
  5. W. Liu and H. F. Zhang, “Photoacoustic imaging of the eye: A mini review,” Photoacoustics 4, 112–123 (2016). Special Issue: Photoacoustic Microscopy.
    [Crossref] [PubMed]
  6. M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the twente photoacoustic mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26, 3874–3887 (2016).
    [Crossref] [PubMed]
  7. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
    [Crossref] [PubMed]
  8. X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).
    [Crossref] [PubMed]
  9. K. S. Valluru, K. E. Wilson, and J. K. Willmann, “Photoacoustic imaging in oncology: Translational preclinical and early clinical experience,” Radiology 280, 332–349 (2016).
    [Crossref] [PubMed]
  10. C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett. 35, 3195–3197 (2010).
    [Crossref] [PubMed]
  11. J. Yao and L. V. Wang, “Photoacoustic microscopy,” Laser & Photonics Rev. 7, 758–778 (2013).
    [Crossref]
  12. A. Oraevsky, R. Su, H. Nguyen, J. Moore, Y. Lou, S. Bhadra, L. Forte, M. Anastasio, and W. Yang, “Full-view 3d imaging system for functional and anatomical screening of the breast,” Proc.SPIE 10494, 104942Y (2018).
  13. M. W. Schellenberg and H. K. Hunt, “Hand-held optoacoustic imaging: A review,” Photoacoustics 11, 14–27 (2018).
    [Crossref] [PubMed]
  14. V. V. Tuchin, A. Tárnok, and V. P. Zharov, “In vivo flow cytometry: A horizon of opportunities,” Cytom. Part A 79A, 737–745 (2011).
    [Crossref]
  15. E. I. Galanzha and V. P. Zharov, “Photoacoustic flow cytometry,” Methods 57, 280–296 (2012).
    [Crossref] [PubMed]
  16. V. Gnyawali, E. M. Strohm, J.-Z. Wang, S. S. H. Tsai, and M. C. Kolios, “Simultaneous acoustic and photoacoustic microfluidic flow cytometry for label-free analysis,” Sci. Reports 9, 1585 (2019).
    [Crossref]
  17. J. Yao, H. Ke, S. Tai, Y. Zhou, and L. V. Wang, “Absolute photoacoustic thermometry in deep tissue,” Opt. Lett. 38, 5228–5231 (2013).
    [Crossref] [PubMed]
  18. B. Wang, E. Yantsen, T. Larson, A. B. Karpiouk, S. Sethuraman, J. L. Su, K. Sokolov, and S. Y. Emelianov, “Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques,” Nano Lett. 9, 2212–2217 (2009).
    [Crossref]
  19. K. Jansen, A. F. W. van der Steen, H. M. M. van Beusekom, J. W. Oosterhuis, and G. van Soest, “Intravascular photoacoustic imaging of human coronary atherosclerosis,” Opt. Lett. 36, 597–599 (2011).
    [Crossref] [PubMed]
  20. S. Mallidi, G. P. Luke, and S. Emelianov, “Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance,” Trends Biotechnol. 29, 213–221 (2011).
    [Crossref] [PubMed]
  21. M. Fonseca, B. Zeqiri, P. C. Beard, and B. T. Cox, “Characterisation of a phantom for multiwavelength quantitative photoacoustic imaging,” Phys. Medicine Biol. 61, 4950–4973 (2016).
    [Crossref]
  22. Y.-W. Wang, Y.-Y. Fu, Q. Peng, S.-S. Guo, G. Liu, J. Li, H.-H. Yang, and G.-N. Chen, “Dye-enhanced graphene oxide for photothermal therapy and photoacoustic imaging,” J. Mater. Chem. B 1, 5762–5767 (2013).
    [Crossref]
  23. L. Cavigli, M. de Angelis, F. Ratto, P. Matteini, F. Rossi, S. Centi, F. Fusi, and R. Pini, “Size affects the stability of the photoacoustic conversion of gold nanorods,” The J. Phys. Chem. C 118, 16140–16146 (2014).
    [Crossref]
  24. L. Cavigli, A. Cini, S. Centi, C. Borri, S. Lai, F. Ratto, M. de Angelis, and R. Pini, “Photostability of gold nanorods upon endosomal confinement in cultured cells,” The J. Phys. Chem. C 121, 6393–6400 (2017).
    [Crossref]
  25. A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Medicine Biol. 48, 357–370 (2003).
    [Crossref]
  26. W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16, 11 (2011).
    [Crossref]
  27. G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Medicine Biol. 50, N141–N153 (2005).
    [Crossref]
  28. S. E. Bohndiek, S. Bodapati, D. Van De Sompel, S.-R. Kothapalli, and S. S. Gambhir, “Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments,” PLOS ONE 8, 75533 (2013).
    [Crossref] [PubMed]
  29. W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. J. Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21, 101405 (2016).
    [Crossref]
  30. A. Oraevsky, B. Clingman, J. Zalev, A. Stavros, W. Yang, and J. Parikh, “Clinical optoacoustic imaging combined with ultrasound for coregistered functional and anatomical mapping of breast tumors,” Photoacoustics 12, 30–45 (2018).
    [Crossref] [PubMed]
  31. E. Maneas, W. Xia, O. Ogunlade, M. Fonseca, D. I. Nikitichev, A. L. David, S. J. West, S. Ourselin, J. C. Hebden, T. Vercauteren, and A. E. Desjardins, “Gel wax-based tissue-mimicking phantoms for multispectral photoacoustic imaging,” Biomed. Opt. Express 9, 1151–1163 (2018).
    [Crossref] [PubMed]
  32. C. J. M. Jones and P. R. T. Munro, “Stability of gel wax based optical scattering phantoms,” Biomed. Opt. Express 9, 3495–3502 (2018).
    [Crossref] [PubMed]
  33. C. Avigo, N. Di Lascio, P. Armanetti, C. Kusmic, L. Cavigli, F. Ratto, S. Meucci, C. Masciullo, M. Cecchini, R. Pini, F. Faita, and L. Menichetti, “Organosilicon phantom for photoacoustic imaging,” J. Biomed. Opt. 20, 46008 (2015).
    [Crossref] [PubMed]
  34. F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” Proc. SPIE 6870, 687007 (2008).
  35. A. Cafarelli, A. Verbeni, A. Poliziani, P. Dario, A. Menciassi, and L. Ricotti, “Tuning acoustic and mechanical properties of materials for ultrasound phantoms and smart substrates for cell cultures,” Acta Biomater. 49, 368–378 (2017).
    [Crossref]
  36. C. M. B. Ho, S. H. Ng, K. H. H. Li, and Y.-J. Yoon, “3d printed microfluidics for biological applications,” Lab Chip 15, 3627–3637 (2015).
    [Crossref] [PubMed]
  37. A. K. Au, W. Huynh, L. F. Horowitz, and A. Folch, “3d-printed microfluidics,” Angewandte Chemie Int. Ed. 55, 3862–3881 (2016).
    [Crossref]
  38. M. S. Wróbel, A. P. Popov, A. V. Bykov, V. V. Tuchin, and M. Jedrzejewska-Szczerska, “Nanoparticle-free tissue-mimicking phantoms with intrinsic scattering,” Biomed. Opt. Express 7, 2088–2094 (2016).
    [Crossref] [PubMed]
  39. G. Ku and L. V. Wang, “Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent,” Opt. Lett. 30, 507–509 (2005).
    [Crossref] [PubMed]
  40. A. Agarwal, S. W. Huang, M. O’Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102, 064701 (2007).
    [Crossref]
  41. F. Ratto, S. Centi, C. Avigo, C. Borri, F. Tatini, L. Cavigli, C. Kusmic, B. Lelli, S. Lai, S. Colagrande, F. Faita, L. Menichetti, and R. Pini, “A robust design for cellular vehicles of gold nanorods for multimodal imaging,” Adv. Funct. Mater. 26, 7178–7185 (2016).
    [Crossref]
  42. F. Ratto, P. Matteini, F. Rossi, and R. Pini, “Size and shape control in the overgrowth of gold nanorods,” J. Nanoparticle Res. 12, 2029–2036 (2010).
    [Crossref]
  43. F. Tatini, I. Landini, F. Scaletti, L. Massai, S. Centi, F. Ratto, S. Nobili, G. Romano, F. Fusi, L. Messori, E. Mini, and R. Pini, “Size dependent biological profiles of pegylated gold nanorods,” J. Mater. Chem. B 2, 6072–6080 (2014).
    [Crossref]
  44. D. M. Adcock, D. C. Kressin, and R. A. Marlar, “Effect of 3.2% vs 3.8% sodium citrate concentration on routine coagulation testing,” Am. J. Clin. Pathol. 107, 105–110 (1997).
    [Crossref] [PubMed]
  45. R. Martinez, L. Leija, and A. Vera, “Ultrasonic attenuation in pure water: Comparison between through-transmission and pulse-echo techniques,” in 2010 Pan American Health Care Exchanges, (2010), pp. 81–84.
    [Crossref]
  46. D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser & Photonics Rev. 7, 732–757 (2013).
    [Crossref]
  47. N. Bilaniuk and G. S. K. Wong, “Speed of sound in pure water as a function of temperature,” J. Acoust. Soc. Am. 93, 1609–1612 (1993).
    [Crossref]
  48. M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40, 575–583 (1976).
    [Crossref] [PubMed]
  49. S. Wang, G. M. Hüttmann, F. Rudnitzki, H. Diddens-Tschoeke, Z. Zhang, and R. Rahmanzadeh, “Indocyanine green as effective antibody conjugate for intracellular molecular targeted photodynamic therapy,” J. Biomed. Opt. 21, 78001 (2016).
    [Crossref]
  50. M. Mazzoni, F. Ratto, C. Fortunato, S. Centi, F. Tatini, and R. Pini, “Partial decoupling in aggregates of silanized gold nanorods,” The J. Phys. Chem. C 118, 20018–20025 (2014).
    [Crossref]
  51. M. Liu, W.-C. Law, A. Kopwitthaya, X. Liu, M. T. Swihart, and P. N. Prasad, “Exploring the amphiphilicity of pegylated gold nanorods: mechanical phase transfer and self-assembly,” Chem. Commun. 49, 9350–9352 (2013).
    [Crossref]
  52. A. Lamberti, S. L. Marasso, and M. Cocuzza, “Pdms membranes with tunable gas permeability for microfluidic applications,” RSC Adv. 4, 61415–61419 (2014).
    [Crossref]
  53. R. Mercatelli, F. Ratto, S. Centi, S. Soria, G. Romano, P. Matteini, F. Quercioli, R. Pini, and F. Fusi, “Quantitative readout of optically encoded gold nanorods using an ordinary dark-field microscope,” Nanoscale 5, 9645–9650 (2013).
    [Crossref] [PubMed]

2019 (1)

V. Gnyawali, E. M. Strohm, J.-Z. Wang, S. S. H. Tsai, and M. C. Kolios, “Simultaneous acoustic and photoacoustic microfluidic flow cytometry for label-free analysis,” Sci. Reports 9, 1585 (2019).
[Crossref]

2018 (5)

A. Oraevsky, R. Su, H. Nguyen, J. Moore, Y. Lou, S. Bhadra, L. Forte, M. Anastasio, and W. Yang, “Full-view 3d imaging system for functional and anatomical screening of the breast,” Proc.SPIE 10494, 104942Y (2018).

M. W. Schellenberg and H. K. Hunt, “Hand-held optoacoustic imaging: A review,” Photoacoustics 11, 14–27 (2018).
[Crossref] [PubMed]

A. Oraevsky, B. Clingman, J. Zalev, A. Stavros, W. Yang, and J. Parikh, “Clinical optoacoustic imaging combined with ultrasound for coregistered functional and anatomical mapping of breast tumors,” Photoacoustics 12, 30–45 (2018).
[Crossref] [PubMed]

E. Maneas, W. Xia, O. Ogunlade, M. Fonseca, D. I. Nikitichev, A. L. David, S. J. West, S. Ourselin, J. C. Hebden, T. Vercauteren, and A. E. Desjardins, “Gel wax-based tissue-mimicking phantoms for multispectral photoacoustic imaging,” Biomed. Opt. Express 9, 1151–1163 (2018).
[Crossref] [PubMed]

C. J. M. Jones and P. R. T. Munro, “Stability of gel wax based optical scattering phantoms,” Biomed. Opt. Express 9, 3495–3502 (2018).
[Crossref] [PubMed]

2017 (2)

A. Cafarelli, A. Verbeni, A. Poliziani, P. Dario, A. Menciassi, and L. Ricotti, “Tuning acoustic and mechanical properties of materials for ultrasound phantoms and smart substrates for cell cultures,” Acta Biomater. 49, 368–378 (2017).
[Crossref]

L. Cavigli, A. Cini, S. Centi, C. Borri, S. Lai, F. Ratto, M. de Angelis, and R. Pini, “Photostability of gold nanorods upon endosomal confinement in cultured cells,” The J. Phys. Chem. C 121, 6393–6400 (2017).
[Crossref]

2016 (9)

M. Fonseca, B. Zeqiri, P. C. Beard, and B. T. Cox, “Characterisation of a phantom for multiwavelength quantitative photoacoustic imaging,” Phys. Medicine Biol. 61, 4950–4973 (2016).
[Crossref]

W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. J. Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21, 101405 (2016).
[Crossref]

W. Liu and H. F. Zhang, “Photoacoustic imaging of the eye: A mini review,” Photoacoustics 4, 112–123 (2016). Special Issue: Photoacoustic Microscopy.
[Crossref] [PubMed]

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the twente photoacoustic mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26, 3874–3887 (2016).
[Crossref] [PubMed]

K. S. Valluru, K. E. Wilson, and J. K. Willmann, “Photoacoustic imaging in oncology: Translational preclinical and early clinical experience,” Radiology 280, 332–349 (2016).
[Crossref] [PubMed]

A. K. Au, W. Huynh, L. F. Horowitz, and A. Folch, “3d-printed microfluidics,” Angewandte Chemie Int. Ed. 55, 3862–3881 (2016).
[Crossref]

M. S. Wróbel, A. P. Popov, A. V. Bykov, V. V. Tuchin, and M. Jedrzejewska-Szczerska, “Nanoparticle-free tissue-mimicking phantoms with intrinsic scattering,” Biomed. Opt. Express 7, 2088–2094 (2016).
[Crossref] [PubMed]

F. Ratto, S. Centi, C. Avigo, C. Borri, F. Tatini, L. Cavigli, C. Kusmic, B. Lelli, S. Lai, S. Colagrande, F. Faita, L. Menichetti, and R. Pini, “A robust design for cellular vehicles of gold nanorods for multimodal imaging,” Adv. Funct. Mater. 26, 7178–7185 (2016).
[Crossref]

S. Wang, G. M. Hüttmann, F. Rudnitzki, H. Diddens-Tschoeke, Z. Zhang, and R. Rahmanzadeh, “Indocyanine green as effective antibody conjugate for intracellular molecular targeted photodynamic therapy,” J. Biomed. Opt. 21, 78001 (2016).
[Crossref]

2015 (2)

C. M. B. Ho, S. H. Ng, K. H. H. Li, and Y.-J. Yoon, “3d printed microfluidics for biological applications,” Lab Chip 15, 3627–3637 (2015).
[Crossref] [PubMed]

C. Avigo, N. Di Lascio, P. Armanetti, C. Kusmic, L. Cavigli, F. Ratto, S. Meucci, C. Masciullo, M. Cecchini, R. Pini, F. Faita, and L. Menichetti, “Organosilicon phantom for photoacoustic imaging,” J. Biomed. Opt. 20, 46008 (2015).
[Crossref] [PubMed]

2014 (4)

L. Cavigli, M. de Angelis, F. Ratto, P. Matteini, F. Rossi, S. Centi, F. Fusi, and R. Pini, “Size affects the stability of the photoacoustic conversion of gold nanorods,” The J. Phys. Chem. C 118, 16140–16146 (2014).
[Crossref]

M. Mazzoni, F. Ratto, C. Fortunato, S. Centi, F. Tatini, and R. Pini, “Partial decoupling in aggregates of silanized gold nanorods,” The J. Phys. Chem. C 118, 20018–20025 (2014).
[Crossref]

A. Lamberti, S. L. Marasso, and M. Cocuzza, “Pdms membranes with tunable gas permeability for microfluidic applications,” RSC Adv. 4, 61415–61419 (2014).
[Crossref]

F. Tatini, I. Landini, F. Scaletti, L. Massai, S. Centi, F. Ratto, S. Nobili, G. Romano, F. Fusi, L. Messori, E. Mini, and R. Pini, “Size dependent biological profiles of pegylated gold nanorods,” J. Mater. Chem. B 2, 6072–6080 (2014).
[Crossref]

2013 (7)

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser & Photonics Rev. 7, 732–757 (2013).
[Crossref]

R. Mercatelli, F. Ratto, S. Centi, S. Soria, G. Romano, P. Matteini, F. Quercioli, R. Pini, and F. Fusi, “Quantitative readout of optically encoded gold nanorods using an ordinary dark-field microscope,” Nanoscale 5, 9645–9650 (2013).
[Crossref] [PubMed]

M. Liu, W.-C. Law, A. Kopwitthaya, X. Liu, M. T. Swihart, and P. N. Prasad, “Exploring the amphiphilicity of pegylated gold nanorods: mechanical phase transfer and self-assembly,” Chem. Commun. 49, 9350–9352 (2013).
[Crossref]

Y.-W. Wang, Y.-Y. Fu, Q. Peng, S.-S. Guo, G. Liu, J. Li, H.-H. Yang, and G.-N. Chen, “Dye-enhanced graphene oxide for photothermal therapy and photoacoustic imaging,” J. Mater. Chem. B 1, 5762–5767 (2013).
[Crossref]

S. E. Bohndiek, S. Bodapati, D. Van De Sompel, S.-R. Kothapalli, and S. S. Gambhir, “Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments,” PLOS ONE 8, 75533 (2013).
[Crossref] [PubMed]

J. Yao and L. V. Wang, “Photoacoustic microscopy,” Laser & Photonics Rev. 7, 758–778 (2013).
[Crossref]

J. Yao, H. Ke, S. Tai, Y. Zhou, and L. V. Wang, “Absolute photoacoustic thermometry in deep tissue,” Opt. Lett. 38, 5228–5231 (2013).
[Crossref] [PubMed]

2012 (2)

L. V. Wang and S. Hu, “Photoacoustic tomography: In vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[Crossref] [PubMed]

E. I. Galanzha and V. P. Zharov, “Photoacoustic flow cytometry,” Methods 57, 280–296 (2012).
[Crossref] [PubMed]

2011 (4)

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16, 11 (2011).
[Crossref]

K. Jansen, A. F. W. van der Steen, H. M. M. van Beusekom, J. W. Oosterhuis, and G. van Soest, “Intravascular photoacoustic imaging of human coronary atherosclerosis,” Opt. Lett. 36, 597–599 (2011).
[Crossref] [PubMed]

S. Mallidi, G. P. Luke, and S. Emelianov, “Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance,” Trends Biotechnol. 29, 213–221 (2011).
[Crossref] [PubMed]

V. V. Tuchin, A. Tárnok, and V. P. Zharov, “In vivo flow cytometry: A horizon of opportunities,” Cytom. Part A 79A, 737–745 (2011).
[Crossref]

2010 (3)

M. O. Culjat, D. Goldenberg, P. Tewari, and R. S. Singh, “A review of tissue substitutes for ultrasound imaging,” Ultrasound Med Biol 36, 861–873 (2010).
[Crossref] [PubMed]

C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett. 35, 3195–3197 (2010).
[Crossref] [PubMed]

F. Ratto, P. Matteini, F. Rossi, and R. Pini, “Size and shape control in the overgrowth of gold nanorods,” J. Nanoparticle Res. 12, 2029–2036 (2010).
[Crossref]

2009 (1)

B. Wang, E. Yantsen, T. Larson, A. B. Karpiouk, S. Sethuraman, J. L. Su, K. Sokolov, and S. Y. Emelianov, “Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques,” Nano Lett. 9, 2212–2217 (2009).
[Crossref]

2008 (1)

F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” Proc. SPIE 6870, 687007 (2008).

2007 (1)

A. Agarwal, S. W. Huang, M. O’Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102, 064701 (2007).
[Crossref]

2006 (2)

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).
[Crossref] [PubMed]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
[Crossref] [PubMed]

2005 (2)

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Medicine Biol. 50, N141–N153 (2005).
[Crossref]

G. Ku and L. V. Wang, “Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent,” Opt. Lett. 30, 507–509 (2005).
[Crossref] [PubMed]

2003 (2)

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Medicine Biol. 48, 357–370 (2003).
[Crossref]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref] [PubMed]

1997 (2)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Medicine Biol. 42, 1971–1979 (1997).
[Crossref]

D. M. Adcock, D. C. Kressin, and R. A. Marlar, “Effect of 3.2% vs 3.8% sodium citrate concentration on routine coagulation testing,” Am. J. Clin. Pathol. 107, 105–110 (1997).
[Crossref] [PubMed]

1993 (1)

N. Bilaniuk and G. S. K. Wong, “Speed of sound in pure water as a function of temperature,” J. Acoust. Soc. Am. 93, 1609–1612 (1993).
[Crossref]

1976 (1)

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40, 575–583 (1976).
[Crossref] [PubMed]

Adcock, D. M.

D. M. Adcock, D. C. Kressin, and R. A. Marlar, “Effect of 3.2% vs 3.8% sodium citrate concentration on routine coagulation testing,” Am. J. Clin. Pathol. 107, 105–110 (1997).
[Crossref] [PubMed]

Agarwal, A.

A. Agarwal, S. W. Huang, M. O’Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102, 064701 (2007).
[Crossref]

Anastasio, M.

A. Oraevsky, R. Su, H. Nguyen, J. Moore, Y. Lou, S. Bhadra, L. Forte, M. Anastasio, and W. Yang, “Full-view 3d imaging system for functional and anatomical screening of the breast,” Proc.SPIE 10494, 104942Y (2018).

Armanetti, P.

C. Avigo, N. Di Lascio, P. Armanetti, C. Kusmic, L. Cavigli, F. Ratto, S. Meucci, C. Masciullo, M. Cecchini, R. Pini, F. Faita, and L. Menichetti, “Organosilicon phantom for photoacoustic imaging,” J. Biomed. Opt. 20, 46008 (2015).
[Crossref] [PubMed]

Ashkenazi, S.

A. Agarwal, S. W. Huang, M. O’Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102, 064701 (2007).
[Crossref]

Au, A. K.

A. K. Au, W. Huynh, L. F. Horowitz, and A. Folch, “3d-printed microfluidics,” Angewandte Chemie Int. Ed. 55, 3862–3881 (2016).
[Crossref]

Avigo, C.

F. Ratto, S. Centi, C. Avigo, C. Borri, F. Tatini, L. Cavigli, C. Kusmic, B. Lelli, S. Lai, S. Colagrande, F. Faita, L. Menichetti, and R. Pini, “A robust design for cellular vehicles of gold nanorods for multimodal imaging,” Adv. Funct. Mater. 26, 7178–7185 (2016).
[Crossref]

C. Avigo, N. Di Lascio, P. Armanetti, C. Kusmic, L. Cavigli, F. Ratto, S. Meucci, C. Masciullo, M. Cecchini, R. Pini, F. Faita, and L. Menichetti, “Organosilicon phantom for photoacoustic imaging,” J. Biomed. Opt. 20, 46008 (2015).
[Crossref] [PubMed]

Ayers, F.

F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” Proc. SPIE 6870, 687007 (2008).

Beard, P. C.

M. Fonseca, B. Zeqiri, P. C. Beard, and B. T. Cox, “Characterisation of a phantom for multiwavelength quantitative photoacoustic imaging,” Phys. Medicine Biol. 61, 4950–4973 (2016).
[Crossref]

Bhadra, S.

A. Oraevsky, R. Su, H. Nguyen, J. Moore, Y. Lou, S. Bhadra, L. Forte, M. Anastasio, and W. Yang, “Full-view 3d imaging system for functional and anatomical screening of the breast,” Proc.SPIE 10494, 104942Y (2018).

Bilaniuk, N.

N. Bilaniuk and G. S. K. Wong, “Speed of sound in pure water as a function of temperature,” J. Acoust. Soc. Am. 93, 1609–1612 (1993).
[Crossref]

Bodapati, S.

S. E. Bohndiek, S. Bodapati, D. Van De Sompel, S.-R. Kothapalli, and S. S. Gambhir, “Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments,” PLOS ONE 8, 75533 (2013).
[Crossref] [PubMed]

Bohndiek, S. E.

S. E. Bohndiek, S. Bodapati, D. Van De Sompel, S.-R. Kothapalli, and S. S. Gambhir, “Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments,” PLOS ONE 8, 75533 (2013).
[Crossref] [PubMed]

Bolt, R. A.

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Medicine Biol. 48, 357–370 (2003).
[Crossref]

Borri, C.

L. Cavigli, A. Cini, S. Centi, C. Borri, S. Lai, F. Ratto, M. de Angelis, and R. Pini, “Photostability of gold nanorods upon endosomal confinement in cultured cells,” The J. Phys. Chem. C 121, 6393–6400 (2017).
[Crossref]

F. Ratto, S. Centi, C. Avigo, C. Borri, F. Tatini, L. Cavigli, C. Kusmic, B. Lelli, S. Lai, S. Colagrande, F. Faita, L. Menichetti, and R. Pini, “A robust design for cellular vehicles of gold nanorods for multimodal imaging,” Adv. Funct. Mater. 26, 7178–7185 (2016).
[Crossref]

Bykov, A. V.

Cafarelli, A.

A. Cafarelli, A. Verbeni, A. Poliziani, P. Dario, A. Menciassi, and L. Ricotti, “Tuning acoustic and mechanical properties of materials for ultrasound phantoms and smart substrates for cell cultures,” Acta Biomater. 49, 368–378 (2017).
[Crossref]

Cavigli, L.

L. Cavigli, A. Cini, S. Centi, C. Borri, S. Lai, F. Ratto, M. de Angelis, and R. Pini, “Photostability of gold nanorods upon endosomal confinement in cultured cells,” The J. Phys. Chem. C 121, 6393–6400 (2017).
[Crossref]

F. Ratto, S. Centi, C. Avigo, C. Borri, F. Tatini, L. Cavigli, C. Kusmic, B. Lelli, S. Lai, S. Colagrande, F. Faita, L. Menichetti, and R. Pini, “A robust design for cellular vehicles of gold nanorods for multimodal imaging,” Adv. Funct. Mater. 26, 7178–7185 (2016).
[Crossref]

C. Avigo, N. Di Lascio, P. Armanetti, C. Kusmic, L. Cavigli, F. Ratto, S. Meucci, C. Masciullo, M. Cecchini, R. Pini, F. Faita, and L. Menichetti, “Organosilicon phantom for photoacoustic imaging,” J. Biomed. Opt. 20, 46008 (2015).
[Crossref] [PubMed]

L. Cavigli, M. de Angelis, F. Ratto, P. Matteini, F. Rossi, S. Centi, F. Fusi, and R. Pini, “Size affects the stability of the photoacoustic conversion of gold nanorods,” The J. Phys. Chem. C 118, 16140–16146 (2014).
[Crossref]

Cecchini, M.

C. Avigo, N. Di Lascio, P. Armanetti, C. Kusmic, L. Cavigli, F. Ratto, S. Meucci, C. Masciullo, M. Cecchini, R. Pini, F. Faita, and L. Menichetti, “Organosilicon phantom for photoacoustic imaging,” J. Biomed. Opt. 20, 46008 (2015).
[Crossref] [PubMed]

Centi, S.

L. Cavigli, A. Cini, S. Centi, C. Borri, S. Lai, F. Ratto, M. de Angelis, and R. Pini, “Photostability of gold nanorods upon endosomal confinement in cultured cells,” The J. Phys. Chem. C 121, 6393–6400 (2017).
[Crossref]

F. Ratto, S. Centi, C. Avigo, C. Borri, F. Tatini, L. Cavigli, C. Kusmic, B. Lelli, S. Lai, S. Colagrande, F. Faita, L. Menichetti, and R. Pini, “A robust design for cellular vehicles of gold nanorods for multimodal imaging,” Adv. Funct. Mater. 26, 7178–7185 (2016).
[Crossref]

F. Tatini, I. Landini, F. Scaletti, L. Massai, S. Centi, F. Ratto, S. Nobili, G. Romano, F. Fusi, L. Messori, E. Mini, and R. Pini, “Size dependent biological profiles of pegylated gold nanorods,” J. Mater. Chem. B 2, 6072–6080 (2014).
[Crossref]

M. Mazzoni, F. Ratto, C. Fortunato, S. Centi, F. Tatini, and R. Pini, “Partial decoupling in aggregates of silanized gold nanorods,” The J. Phys. Chem. C 118, 20018–20025 (2014).
[Crossref]

L. Cavigli, M. de Angelis, F. Ratto, P. Matteini, F. Rossi, S. Centi, F. Fusi, and R. Pini, “Size affects the stability of the photoacoustic conversion of gold nanorods,” The J. Phys. Chem. C 118, 16140–16146 (2014).
[Crossref]

R. Mercatelli, F. Ratto, S. Centi, S. Soria, G. Romano, P. Matteini, F. Quercioli, R. Pini, and F. Fusi, “Quantitative readout of optically encoded gold nanorods using an ordinary dark-field microscope,” Nanoscale 5, 9645–9650 (2013).
[Crossref] [PubMed]

Chen, G.-N.

Y.-W. Wang, Y.-Y. Fu, Q. Peng, S.-S. Guo, G. Liu, J. Li, H.-H. Yang, and G.-N. Chen, “Dye-enhanced graphene oxide for photothermal therapy and photoacoustic imaging,” J. Mater. Chem. B 1, 5762–5767 (2013).
[Crossref]

Cini, A.

L. Cavigli, A. Cini, S. Centi, C. Borri, S. Lai, F. Ratto, M. de Angelis, and R. Pini, “Photostability of gold nanorods upon endosomal confinement in cultured cells,” The J. Phys. Chem. C 121, 6393–6400 (2017).
[Crossref]

Clingman, B.

A. Oraevsky, B. Clingman, J. Zalev, A. Stavros, W. Yang, and J. Parikh, “Clinical optoacoustic imaging combined with ultrasound for coregistered functional and anatomical mapping of breast tumors,” Photoacoustics 12, 30–45 (2018).
[Crossref] [PubMed]

Cocuzza, M.

A. Lamberti, S. L. Marasso, and M. Cocuzza, “Pdms membranes with tunable gas permeability for microfluidic applications,” RSC Adv. 4, 61415–61419 (2014).
[Crossref]

Colagrande, S.

F. Ratto, S. Centi, C. Avigo, C. Borri, F. Tatini, L. Cavigli, C. Kusmic, B. Lelli, S. Lai, S. Colagrande, F. Faita, L. Menichetti, and R. Pini, “A robust design for cellular vehicles of gold nanorods for multimodal imaging,” Adv. Funct. Mater. 26, 7178–7185 (2016).
[Crossref]

Cox, B. T.

M. Fonseca, B. Zeqiri, P. C. Beard, and B. T. Cox, “Characterisation of a phantom for multiwavelength quantitative photoacoustic imaging,” Phys. Medicine Biol. 61, 4950–4973 (2016).
[Crossref]

Cubeddu, R.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Medicine Biol. 42, 1971–1979 (1997).
[Crossref]

Cuccia, D. J.

F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” Proc. SPIE 6870, 687007 (2008).

Culjat, M. O.

M. O. Culjat, D. Goldenberg, P. Tewari, and R. S. Singh, “A review of tissue substitutes for ultrasound imaging,” Ultrasound Med Biol 36, 861–873 (2010).
[Crossref] [PubMed]

Dario, P.

A. Cafarelli, A. Verbeni, A. Poliziani, P. Dario, A. Menciassi, and L. Ricotti, “Tuning acoustic and mechanical properties of materials for ultrasound phantoms and smart substrates for cell cultures,” Acta Biomater. 49, 368–378 (2017).
[Crossref]

David, A. L.

Day, K. C.

A. Agarwal, S. W. Huang, M. O’Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102, 064701 (2007).
[Crossref]

Day, M.

A. Agarwal, S. W. Huang, M. O’Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102, 064701 (2007).
[Crossref]

de Angelis, M.

L. Cavigli, A. Cini, S. Centi, C. Borri, S. Lai, F. Ratto, M. de Angelis, and R. Pini, “Photostability of gold nanorods upon endosomal confinement in cultured cells,” The J. Phys. Chem. C 121, 6393–6400 (2017).
[Crossref]

L. Cavigli, M. de Angelis, F. Ratto, P. Matteini, F. Rossi, S. Centi, F. Fusi, and R. Pini, “Size affects the stability of the photoacoustic conversion of gold nanorods,” The J. Phys. Chem. C 118, 16140–16146 (2014).
[Crossref]

de Mul, F. F. M.

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Medicine Biol. 48, 357–370 (2003).
[Crossref]

Desjardins, A. E.

Di Lascio, N.

C. Avigo, N. Di Lascio, P. Armanetti, C. Kusmic, L. Cavigli, F. Ratto, S. Meucci, C. Masciullo, M. Cecchini, R. Pini, F. Faita, and L. Menichetti, “Organosilicon phantom for photoacoustic imaging,” J. Biomed. Opt. 20, 46008 (2015).
[Crossref] [PubMed]

Diddens-Tschoeke, H.

S. Wang, G. M. Hüttmann, F. Rudnitzki, H. Diddens-Tschoeke, Z. Zhang, and R. Rahmanzadeh, “Indocyanine green as effective antibody conjugate for intracellular molecular targeted photodynamic therapy,” J. Biomed. Opt. 21, 78001 (2016).
[Crossref]

Durkin, A. J.

F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” Proc. SPIE 6870, 687007 (2008).

Emelianov, S.

S. Mallidi, G. P. Luke, and S. Emelianov, “Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance,” Trends Biotechnol. 29, 213–221 (2011).
[Crossref] [PubMed]

Emelianov, S. Y.

B. Wang, E. Yantsen, T. Larson, A. B. Karpiouk, S. Sethuraman, J. L. Su, K. Sokolov, and S. Y. Emelianov, “Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques,” Nano Lett. 9, 2212–2217 (2009).
[Crossref]

Faita, F.

F. Ratto, S. Centi, C. Avigo, C. Borri, F. Tatini, L. Cavigli, C. Kusmic, B. Lelli, S. Lai, S. Colagrande, F. Faita, L. Menichetti, and R. Pini, “A robust design for cellular vehicles of gold nanorods for multimodal imaging,” Adv. Funct. Mater. 26, 7178–7185 (2016).
[Crossref]

C. Avigo, N. Di Lascio, P. Armanetti, C. Kusmic, L. Cavigli, F. Ratto, S. Meucci, C. Masciullo, M. Cecchini, R. Pini, F. Faita, and L. Menichetti, “Organosilicon phantom for photoacoustic imaging,” J. Biomed. Opt. 20, 46008 (2015).
[Crossref] [PubMed]

Folch, A.

A. K. Au, W. Huynh, L. F. Horowitz, and A. Folch, “3d-printed microfluidics,” Angewandte Chemie Int. Ed. 55, 3862–3881 (2016).
[Crossref]

Fonseca, M.

Forte, L.

A. Oraevsky, R. Su, H. Nguyen, J. Moore, Y. Lou, S. Bhadra, L. Forte, M. Anastasio, and W. Yang, “Full-view 3d imaging system for functional and anatomical screening of the breast,” Proc.SPIE 10494, 104942Y (2018).

Fortunato, C.

M. Mazzoni, F. Ratto, C. Fortunato, S. Centi, F. Tatini, and R. Pini, “Partial decoupling in aggregates of silanized gold nanorods,” The J. Phys. Chem. C 118, 20018–20025 (2014).
[Crossref]

Fu, Y.-Y.

Y.-W. Wang, Y.-Y. Fu, Q. Peng, S.-S. Guo, G. Liu, J. Li, H.-H. Yang, and G.-N. Chen, “Dye-enhanced graphene oxide for photothermal therapy and photoacoustic imaging,” J. Mater. Chem. B 1, 5762–5767 (2013).
[Crossref]

Fusi, F.

L. Cavigli, M. de Angelis, F. Ratto, P. Matteini, F. Rossi, S. Centi, F. Fusi, and R. Pini, “Size affects the stability of the photoacoustic conversion of gold nanorods,” The J. Phys. Chem. C 118, 16140–16146 (2014).
[Crossref]

F. Tatini, I. Landini, F. Scaletti, L. Massai, S. Centi, F. Ratto, S. Nobili, G. Romano, F. Fusi, L. Messori, E. Mini, and R. Pini, “Size dependent biological profiles of pegylated gold nanorods,” J. Mater. Chem. B 2, 6072–6080 (2014).
[Crossref]

R. Mercatelli, F. Ratto, S. Centi, S. Soria, G. Romano, P. Matteini, F. Quercioli, R. Pini, and F. Fusi, “Quantitative readout of optically encoded gold nanorods using an ordinary dark-field microscope,” Nanoscale 5, 9645–9650 (2013).
[Crossref] [PubMed]

Galanzha, E. I.

E. I. Galanzha and V. P. Zharov, “Photoacoustic flow cytometry,” Methods 57, 280–296 (2012).
[Crossref] [PubMed]

Gambhir, S. S.

S. E. Bohndiek, S. Bodapati, D. Van De Sompel, S.-R. Kothapalli, and S. S. Gambhir, “Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments,” PLOS ONE 8, 75533 (2013).
[Crossref] [PubMed]

Garra, B. S.

W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. J. Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21, 101405 (2016).
[Crossref]

Gnyawali, V.

V. Gnyawali, E. M. Strohm, J.-Z. Wang, S. S. H. Tsai, and M. C. Kolios, “Simultaneous acoustic and photoacoustic microfluidic flow cytometry for label-free analysis,” Sci. Reports 9, 1585 (2019).
[Crossref]

Goldenberg, D.

M. O. Culjat, D. Goldenberg, P. Tewari, and R. S. Singh, “A review of tissue substitutes for ultrasound imaging,” Ultrasound Med Biol 36, 861–873 (2010).
[Crossref] [PubMed]

Grant, A.

F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” Proc. SPIE 6870, 687007 (2008).

Guo, S.-S.

Y.-W. Wang, Y.-Y. Fu, Q. Peng, S.-S. Guo, G. Liu, J. Li, H.-H. Yang, and G.-N. Chen, “Dye-enhanced graphene oxide for photothermal therapy and photoacoustic imaging,” J. Mater. Chem. B 1, 5762–5767 (2013).
[Crossref]

Hebden, J. C.

Heijblom, M.

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the twente photoacoustic mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26, 3874–3887 (2016).
[Crossref] [PubMed]

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16, 11 (2011).
[Crossref]

Ho, C. M. B.

C. M. B. Ho, S. H. Ng, K. H. H. Li, and Y.-J. Yoon, “3d printed microfluidics for biological applications,” Lab Chip 15, 3627–3637 (2015).
[Crossref] [PubMed]

Horowitz, L. F.

A. K. Au, W. Huynh, L. F. Horowitz, and A. Folch, “3d-printed microfluidics,” Angewandte Chemie Int. Ed. 55, 3862–3881 (2016).
[Crossref]

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic tomography: In vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[Crossref] [PubMed]

Huang, S. W.

A. Agarwal, S. W. Huang, M. O’Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102, 064701 (2007).
[Crossref]

Hunt, H. K.

M. W. Schellenberg and H. K. Hunt, “Hand-held optoacoustic imaging: A review,” Photoacoustics 11, 14–27 (2018).
[Crossref] [PubMed]

Hüttmann, G. M.

S. Wang, G. M. Hüttmann, F. Rudnitzki, H. Diddens-Tschoeke, Z. Zhang, and R. Rahmanzadeh, “Indocyanine green as effective antibody conjugate for intracellular molecular targeted photodynamic therapy,” J. Biomed. Opt. 21, 78001 (2016).
[Crossref]

Huynh, W.

A. K. Au, W. Huynh, L. F. Horowitz, and A. Folch, “3d-printed microfluidics,” Angewandte Chemie Int. Ed. 55, 3862–3881 (2016).
[Crossref]

Jansen, K.

Jedrzejewska-Szczerska, M.

Jia, C.

W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. J. Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21, 101405 (2016).
[Crossref]

Jones, C. J. M.

Karpiouk, A. B.

B. Wang, E. Yantsen, T. Larson, A. B. Karpiouk, S. Sethuraman, J. L. Su, K. Sokolov, and S. Y. Emelianov, “Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques,” Nano Lett. 9, 2212–2217 (2009).
[Crossref]

Ke, H.

Kharine, A.

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Medicine Biol. 48, 357–370 (2003).
[Crossref]

Klaase, J. M.

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the twente photoacoustic mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26, 3874–3887 (2016).
[Crossref] [PubMed]

Kolios, M. C.

V. Gnyawali, E. M. Strohm, J.-Z. Wang, S. S. H. Tsai, and M. C. Kolios, “Simultaneous acoustic and photoacoustic microfluidic flow cytometry for label-free analysis,” Sci. Reports 9, 1585 (2019).
[Crossref]

Kolkman, R. G. M.

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Medicine Biol. 48, 357–370 (2003).
[Crossref]

Kopwitthaya, A.

M. Liu, W.-C. Law, A. Kopwitthaya, X. Liu, M. T. Swihart, and P. N. Prasad, “Exploring the amphiphilicity of pegylated gold nanorods: mechanical phase transfer and self-assembly,” Chem. Commun. 49, 9350–9352 (2013).
[Crossref]

Kothapalli, S.-R.

S. E. Bohndiek, S. Bodapati, D. Van De Sompel, S.-R. Kothapalli, and S. S. Gambhir, “Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments,” PLOS ONE 8, 75533 (2013).
[Crossref] [PubMed]

Kotov, N.

A. Agarwal, S. W. Huang, M. O’Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102, 064701 (2007).
[Crossref]

Kressin, D. C.

D. M. Adcock, D. C. Kressin, and R. A. Marlar, “Effect of 3.2% vs 3.8% sodium citrate concentration on routine coagulation testing,” Am. J. Clin. Pathol. 107, 105–110 (1997).
[Crossref] [PubMed]

Ku, G.

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).
[Crossref] [PubMed]

G. Ku and L. V. Wang, “Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent,” Opt. Lett. 30, 507–509 (2005).
[Crossref] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref] [PubMed]

Kuo, D.

F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” Proc. SPIE 6870, 687007 (2008).

Kusmic, C.

F. Ratto, S. Centi, C. Avigo, C. Borri, F. Tatini, L. Cavigli, C. Kusmic, B. Lelli, S. Lai, S. Colagrande, F. Faita, L. Menichetti, and R. Pini, “A robust design for cellular vehicles of gold nanorods for multimodal imaging,” Adv. Funct. Mater. 26, 7178–7185 (2016).
[Crossref]

C. Avigo, N. Di Lascio, P. Armanetti, C. Kusmic, L. Cavigli, F. Ratto, S. Meucci, C. Masciullo, M. Cecchini, R. Pini, F. Faita, and L. Menichetti, “Organosilicon phantom for photoacoustic imaging,” J. Biomed. Opt. 20, 46008 (2015).
[Crossref] [PubMed]

Kwant, G.

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40, 575–583 (1976).
[Crossref] [PubMed]

Lai, S.

L. Cavigli, A. Cini, S. Centi, C. Borri, S. Lai, F. Ratto, M. de Angelis, and R. Pini, “Photostability of gold nanorods upon endosomal confinement in cultured cells,” The J. Phys. Chem. C 121, 6393–6400 (2017).
[Crossref]

F. Ratto, S. Centi, C. Avigo, C. Borri, F. Tatini, L. Cavigli, C. Kusmic, B. Lelli, S. Lai, S. Colagrande, F. Faita, L. Menichetti, and R. Pini, “A robust design for cellular vehicles of gold nanorods for multimodal imaging,” Adv. Funct. Mater. 26, 7178–7185 (2016).
[Crossref]

Lamberti, A.

A. Lamberti, S. L. Marasso, and M. Cocuzza, “Pdms membranes with tunable gas permeability for microfluidic applications,” RSC Adv. 4, 61415–61419 (2014).
[Crossref]

Landini, I.

F. Tatini, I. Landini, F. Scaletti, L. Massai, S. Centi, F. Ratto, S. Nobili, G. Romano, F. Fusi, L. Messori, E. Mini, and R. Pini, “Size dependent biological profiles of pegylated gold nanorods,” J. Mater. Chem. B 2, 6072–6080 (2014).
[Crossref]

Landsman, M. L.

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40, 575–583 (1976).
[Crossref] [PubMed]

Larin, K. V.

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser & Photonics Rev. 7, 732–757 (2013).
[Crossref]

Larson, T.

B. Wang, E. Yantsen, T. Larson, A. B. Karpiouk, S. Sethuraman, J. L. Su, K. Sokolov, and S. Y. Emelianov, “Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques,” Nano Lett. 9, 2212–2217 (2009).
[Crossref]

Law, W.-C.

M. Liu, W.-C. Law, A. Kopwitthaya, X. Liu, M. T. Swihart, and P. N. Prasad, “Exploring the amphiphilicity of pegylated gold nanorods: mechanical phase transfer and self-assembly,” Chem. Commun. 49, 9350–9352 (2013).
[Crossref]

Leija, L.

R. Martinez, L. Leija, and A. Vera, “Ultrasonic attenuation in pure water: Comparison between through-transmission and pulse-echo techniques,” in 2010 Pan American Health Care Exchanges, (2010), pp. 81–84.
[Crossref]

Lelli, B.

F. Ratto, S. Centi, C. Avigo, C. Borri, F. Tatini, L. Cavigli, C. Kusmic, B. Lelli, S. Lai, S. Colagrande, F. Faita, L. Menichetti, and R. Pini, “A robust design for cellular vehicles of gold nanorods for multimodal imaging,” Adv. Funct. Mater. 26, 7178–7185 (2016).
[Crossref]

Li, J.

Y.-W. Wang, Y.-Y. Fu, Q. Peng, S.-S. Guo, G. Liu, J. Li, H.-H. Yang, and G.-N. Chen, “Dye-enhanced graphene oxide for photothermal therapy and photoacoustic imaging,” J. Mater. Chem. B 1, 5762–5767 (2013).
[Crossref]

Li, K. H. H.

C. M. B. Ho, S. H. Ng, K. H. H. Li, and Y.-J. Yoon, “3d printed microfluidics for biological applications,” Lab Chip 15, 3627–3637 (2015).
[Crossref] [PubMed]

Liu, G.

Y.-W. Wang, Y.-Y. Fu, Q. Peng, S.-S. Guo, G. Liu, J. Li, H.-H. Yang, and G.-N. Chen, “Dye-enhanced graphene oxide for photothermal therapy and photoacoustic imaging,” J. Mater. Chem. B 1, 5762–5767 (2013).
[Crossref]

Liu, M.

M. Liu, W.-C. Law, A. Kopwitthaya, X. Liu, M. T. Swihart, and P. N. Prasad, “Exploring the amphiphilicity of pegylated gold nanorods: mechanical phase transfer and self-assembly,” Chem. Commun. 49, 9350–9352 (2013).
[Crossref]

Liu, W.

W. Liu and H. F. Zhang, “Photoacoustic imaging of the eye: A mini review,” Photoacoustics 4, 112–123 (2016). Special Issue: Photoacoustic Microscopy.
[Crossref] [PubMed]

Liu, X.

M. Liu, W.-C. Law, A. Kopwitthaya, X. Liu, M. T. Swihart, and P. N. Prasad, “Exploring the amphiphilicity of pegylated gold nanorods: mechanical phase transfer and self-assembly,” Chem. Commun. 49, 9350–9352 (2013).
[Crossref]

Lou, Y.

A. Oraevsky, R. Su, H. Nguyen, J. Moore, Y. Lou, S. Bhadra, L. Forte, M. Anastasio, and W. Yang, “Full-view 3d imaging system for functional and anatomical screening of the breast,” Proc.SPIE 10494, 104942Y (2018).

Luke, G. P.

S. Mallidi, G. P. Luke, and S. Emelianov, “Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance,” Trends Biotechnol. 29, 213–221 (2011).
[Crossref] [PubMed]

Luo, Q.

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser & Photonics Rev. 7, 732–757 (2013).
[Crossref]

Mallidi, S.

S. Mallidi, G. P. Luke, and S. Emelianov, “Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance,” Trends Biotechnol. 29, 213–221 (2011).
[Crossref] [PubMed]

Maneas, E.

Manohar, S.

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the twente photoacoustic mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26, 3874–3887 (2016).
[Crossref] [PubMed]

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16, 11 (2011).
[Crossref]

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Medicine Biol. 48, 357–370 (2003).
[Crossref]

Marasso, S. L.

A. Lamberti, S. L. Marasso, and M. Cocuzza, “Pdms membranes with tunable gas permeability for microfluidic applications,” RSC Adv. 4, 61415–61419 (2014).
[Crossref]

Marlar, R. A.

D. M. Adcock, D. C. Kressin, and R. A. Marlar, “Effect of 3.2% vs 3.8% sodium citrate concentration on routine coagulation testing,” Am. J. Clin. Pathol. 107, 105–110 (1997).
[Crossref] [PubMed]

Martinez, R.

R. Martinez, L. Leija, and A. Vera, “Ultrasonic attenuation in pure water: Comparison between through-transmission and pulse-echo techniques,” in 2010 Pan American Health Care Exchanges, (2010), pp. 81–84.
[Crossref]

Masciullo, C.

C. Avigo, N. Di Lascio, P. Armanetti, C. Kusmic, L. Cavigli, F. Ratto, S. Meucci, C. Masciullo, M. Cecchini, R. Pini, F. Faita, and L. Menichetti, “Organosilicon phantom for photoacoustic imaging,” J. Biomed. Opt. 20, 46008 (2015).
[Crossref] [PubMed]

Maslov, K.

Massai, L.

F. Tatini, I. Landini, F. Scaletti, L. Massai, S. Centi, F. Ratto, S. Nobili, G. Romano, F. Fusi, L. Messori, E. Mini, and R. Pini, “Size dependent biological profiles of pegylated gold nanorods,” J. Mater. Chem. B 2, 6072–6080 (2014).
[Crossref]

Matteini, P.

L. Cavigli, M. de Angelis, F. Ratto, P. Matteini, F. Rossi, S. Centi, F. Fusi, and R. Pini, “Size affects the stability of the photoacoustic conversion of gold nanorods,” The J. Phys. Chem. C 118, 16140–16146 (2014).
[Crossref]

R. Mercatelli, F. Ratto, S. Centi, S. Soria, G. Romano, P. Matteini, F. Quercioli, R. Pini, and F. Fusi, “Quantitative readout of optically encoded gold nanorods using an ordinary dark-field microscope,” Nanoscale 5, 9645–9650 (2013).
[Crossref] [PubMed]

F. Ratto, P. Matteini, F. Rossi, and R. Pini, “Size and shape control in the overgrowth of gold nanorods,” J. Nanoparticle Res. 12, 2029–2036 (2010).
[Crossref]

Mazzoni, M.

M. Mazzoni, F. Ratto, C. Fortunato, S. Centi, F. Tatini, and R. Pini, “Partial decoupling in aggregates of silanized gold nanorods,” The J. Phys. Chem. C 118, 20018–20025 (2014).
[Crossref]

Menciassi, A.

A. Cafarelli, A. Verbeni, A. Poliziani, P. Dario, A. Menciassi, and L. Ricotti, “Tuning acoustic and mechanical properties of materials for ultrasound phantoms and smart substrates for cell cultures,” Acta Biomater. 49, 368–378 (2017).
[Crossref]

Menichetti, L.

F. Ratto, S. Centi, C. Avigo, C. Borri, F. Tatini, L. Cavigli, C. Kusmic, B. Lelli, S. Lai, S. Colagrande, F. Faita, L. Menichetti, and R. Pini, “A robust design for cellular vehicles of gold nanorods for multimodal imaging,” Adv. Funct. Mater. 26, 7178–7185 (2016).
[Crossref]

C. Avigo, N. Di Lascio, P. Armanetti, C. Kusmic, L. Cavigli, F. Ratto, S. Meucci, C. Masciullo, M. Cecchini, R. Pini, F. Faita, and L. Menichetti, “Organosilicon phantom for photoacoustic imaging,” J. Biomed. Opt. 20, 46008 (2015).
[Crossref] [PubMed]

Mercatelli, R.

R. Mercatelli, F. Ratto, S. Centi, S. Soria, G. Romano, P. Matteini, F. Quercioli, R. Pini, and F. Fusi, “Quantitative readout of optically encoded gold nanorods using an ordinary dark-field microscope,” Nanoscale 5, 9645–9650 (2013).
[Crossref] [PubMed]

Messori, L.

F. Tatini, I. Landini, F. Scaletti, L. Massai, S. Centi, F. Ratto, S. Nobili, G. Romano, F. Fusi, L. Messori, E. Mini, and R. Pini, “Size dependent biological profiles of pegylated gold nanorods,” J. Mater. Chem. B 2, 6072–6080 (2014).
[Crossref]

Meucci, S.

C. Avigo, N. Di Lascio, P. Armanetti, C. Kusmic, L. Cavigli, F. Ratto, S. Meucci, C. Masciullo, M. Cecchini, R. Pini, F. Faita, and L. Menichetti, “Organosilicon phantom for photoacoustic imaging,” J. Biomed. Opt. 20, 46008 (2015).
[Crossref] [PubMed]

Mini, E.

F. Tatini, I. Landini, F. Scaletti, L. Massai, S. Centi, F. Ratto, S. Nobili, G. Romano, F. Fusi, L. Messori, E. Mini, and R. Pini, “Size dependent biological profiles of pegylated gold nanorods,” J. Mater. Chem. B 2, 6072–6080 (2014).
[Crossref]

Mook, G. A.

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40, 575–583 (1976).
[Crossref] [PubMed]

Moore, J.

A. Oraevsky, R. Su, H. Nguyen, J. Moore, Y. Lou, S. Bhadra, L. Forte, M. Anastasio, and W. Yang, “Full-view 3d imaging system for functional and anatomical screening of the breast,” Proc.SPIE 10494, 104942Y (2018).

Munro, P. R. T.

Ng, S. H.

C. M. B. Ho, S. H. Ng, K. H. H. Li, and Y.-J. Yoon, “3d printed microfluidics for biological applications,” Lab Chip 15, 3627–3637 (2015).
[Crossref] [PubMed]

Nguyen, H.

A. Oraevsky, R. Su, H. Nguyen, J. Moore, Y. Lou, S. Bhadra, L. Forte, M. Anastasio, and W. Yang, “Full-view 3d imaging system for functional and anatomical screening of the breast,” Proc.SPIE 10494, 104942Y (2018).

Nikitichev, D. I.

Nobili, S.

F. Tatini, I. Landini, F. Scaletti, L. Massai, S. Centi, F. Ratto, S. Nobili, G. Romano, F. Fusi, L. Messori, E. Mini, and R. Pini, “Size dependent biological profiles of pegylated gold nanorods,” J. Mater. Chem. B 2, 6072–6080 (2014).
[Crossref]

O’Donnell, M.

A. Agarwal, S. W. Huang, M. O’Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102, 064701 (2007).
[Crossref]

Ogunlade, O.

Oosterhuis, J. W.

Oraevsky, A.

A. Oraevsky, B. Clingman, J. Zalev, A. Stavros, W. Yang, and J. Parikh, “Clinical optoacoustic imaging combined with ultrasound for coregistered functional and anatomical mapping of breast tumors,” Photoacoustics 12, 30–45 (2018).
[Crossref] [PubMed]

A. Oraevsky, R. Su, H. Nguyen, J. Moore, Y. Lou, S. Bhadra, L. Forte, M. Anastasio, and W. Yang, “Full-view 3d imaging system for functional and anatomical screening of the breast,” Proc.SPIE 10494, 104942Y (2018).

Oraevsky, A. A.

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Medicine Biol. 50, N141–N153 (2005).
[Crossref]

Ourselin, S.

Pang, Y.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref] [PubMed]

Parikh, J.

A. Oraevsky, B. Clingman, J. Zalev, A. Stavros, W. Yang, and J. Parikh, “Clinical optoacoustic imaging combined with ultrasound for coregistered functional and anatomical mapping of breast tumors,” Photoacoustics 12, 30–45 (2018).
[Crossref] [PubMed]

Patterson, M. S.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
[Crossref] [PubMed]

Peng, Q.

Y.-W. Wang, Y.-Y. Fu, Q. Peng, S.-S. Guo, G. Liu, J. Li, H.-H. Yang, and G.-N. Chen, “Dye-enhanced graphene oxide for photothermal therapy and photoacoustic imaging,” J. Mater. Chem. B 1, 5762–5767 (2013).
[Crossref]

Pfefer, T. J.

W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. J. Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21, 101405 (2016).
[Crossref]

Pifferi, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Medicine Biol. 42, 1971–1979 (1997).
[Crossref]

Pini, R.

L. Cavigli, A. Cini, S. Centi, C. Borri, S. Lai, F. Ratto, M. de Angelis, and R. Pini, “Photostability of gold nanorods upon endosomal confinement in cultured cells,” The J. Phys. Chem. C 121, 6393–6400 (2017).
[Crossref]

F. Ratto, S. Centi, C. Avigo, C. Borri, F. Tatini, L. Cavigli, C. Kusmic, B. Lelli, S. Lai, S. Colagrande, F. Faita, L. Menichetti, and R. Pini, “A robust design for cellular vehicles of gold nanorods for multimodal imaging,” Adv. Funct. Mater. 26, 7178–7185 (2016).
[Crossref]

C. Avigo, N. Di Lascio, P. Armanetti, C. Kusmic, L. Cavigli, F. Ratto, S. Meucci, C. Masciullo, M. Cecchini, R. Pini, F. Faita, and L. Menichetti, “Organosilicon phantom for photoacoustic imaging,” J. Biomed. Opt. 20, 46008 (2015).
[Crossref] [PubMed]

F. Tatini, I. Landini, F. Scaletti, L. Massai, S. Centi, F. Ratto, S. Nobili, G. Romano, F. Fusi, L. Messori, E. Mini, and R. Pini, “Size dependent biological profiles of pegylated gold nanorods,” J. Mater. Chem. B 2, 6072–6080 (2014).
[Crossref]

M. Mazzoni, F. Ratto, C. Fortunato, S. Centi, F. Tatini, and R. Pini, “Partial decoupling in aggregates of silanized gold nanorods,” The J. Phys. Chem. C 118, 20018–20025 (2014).
[Crossref]

L. Cavigli, M. de Angelis, F. Ratto, P. Matteini, F. Rossi, S. Centi, F. Fusi, and R. Pini, “Size affects the stability of the photoacoustic conversion of gold nanorods,” The J. Phys. Chem. C 118, 16140–16146 (2014).
[Crossref]

R. Mercatelli, F. Ratto, S. Centi, S. Soria, G. Romano, P. Matteini, F. Quercioli, R. Pini, and F. Fusi, “Quantitative readout of optically encoded gold nanorods using an ordinary dark-field microscope,” Nanoscale 5, 9645–9650 (2013).
[Crossref] [PubMed]

F. Ratto, P. Matteini, F. Rossi, and R. Pini, “Size and shape control in the overgrowth of gold nanorods,” J. Nanoparticle Res. 12, 2029–2036 (2010).
[Crossref]

Piras, D.

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the twente photoacoustic mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26, 3874–3887 (2016).
[Crossref] [PubMed]

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16, 11 (2011).
[Crossref]

Pogue, B. W.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
[Crossref] [PubMed]

Poliziani, A.

A. Cafarelli, A. Verbeni, A. Poliziani, P. Dario, A. Menciassi, and L. Ricotti, “Tuning acoustic and mechanical properties of materials for ultrasound phantoms and smart substrates for cell cultures,” Acta Biomater. 49, 368–378 (2017).
[Crossref]

Popov, A. P.

Prasad, P. N.

M. Liu, W.-C. Law, A. Kopwitthaya, X. Liu, M. T. Swihart, and P. N. Prasad, “Exploring the amphiphilicity of pegylated gold nanorods: mechanical phase transfer and self-assembly,” Chem. Commun. 49, 9350–9352 (2013).
[Crossref]

Quercioli, F.

R. Mercatelli, F. Ratto, S. Centi, S. Soria, G. Romano, P. Matteini, F. Quercioli, R. Pini, and F. Fusi, “Quantitative readout of optically encoded gold nanorods using an ordinary dark-field microscope,” Nanoscale 5, 9645–9650 (2013).
[Crossref] [PubMed]

Rahmanzadeh, R.

S. Wang, G. M. Hüttmann, F. Rudnitzki, H. Diddens-Tschoeke, Z. Zhang, and R. Rahmanzadeh, “Indocyanine green as effective antibody conjugate for intracellular molecular targeted photodynamic therapy,” J. Biomed. Opt. 21, 78001 (2016).
[Crossref]

Ratto, F.

L. Cavigli, A. Cini, S. Centi, C. Borri, S. Lai, F. Ratto, M. de Angelis, and R. Pini, “Photostability of gold nanorods upon endosomal confinement in cultured cells,” The J. Phys. Chem. C 121, 6393–6400 (2017).
[Crossref]

F. Ratto, S. Centi, C. Avigo, C. Borri, F. Tatini, L. Cavigli, C. Kusmic, B. Lelli, S. Lai, S. Colagrande, F. Faita, L. Menichetti, and R. Pini, “A robust design for cellular vehicles of gold nanorods for multimodal imaging,” Adv. Funct. Mater. 26, 7178–7185 (2016).
[Crossref]

C. Avigo, N. Di Lascio, P. Armanetti, C. Kusmic, L. Cavigli, F. Ratto, S. Meucci, C. Masciullo, M. Cecchini, R. Pini, F. Faita, and L. Menichetti, “Organosilicon phantom for photoacoustic imaging,” J. Biomed. Opt. 20, 46008 (2015).
[Crossref] [PubMed]

F. Tatini, I. Landini, F. Scaletti, L. Massai, S. Centi, F. Ratto, S. Nobili, G. Romano, F. Fusi, L. Messori, E. Mini, and R. Pini, “Size dependent biological profiles of pegylated gold nanorods,” J. Mater. Chem. B 2, 6072–6080 (2014).
[Crossref]

M. Mazzoni, F. Ratto, C. Fortunato, S. Centi, F. Tatini, and R. Pini, “Partial decoupling in aggregates of silanized gold nanorods,” The J. Phys. Chem. C 118, 20018–20025 (2014).
[Crossref]

L. Cavigli, M. de Angelis, F. Ratto, P. Matteini, F. Rossi, S. Centi, F. Fusi, and R. Pini, “Size affects the stability of the photoacoustic conversion of gold nanorods,” The J. Phys. Chem. C 118, 16140–16146 (2014).
[Crossref]

R. Mercatelli, F. Ratto, S. Centi, S. Soria, G. Romano, P. Matteini, F. Quercioli, R. Pini, and F. Fusi, “Quantitative readout of optically encoded gold nanorods using an ordinary dark-field microscope,” Nanoscale 5, 9645–9650 (2013).
[Crossref] [PubMed]

F. Ratto, P. Matteini, F. Rossi, and R. Pini, “Size and shape control in the overgrowth of gold nanorods,” J. Nanoparticle Res. 12, 2029–2036 (2010).
[Crossref]

Ricotti, L.

A. Cafarelli, A. Verbeni, A. Poliziani, P. Dario, A. Menciassi, and L. Ricotti, “Tuning acoustic and mechanical properties of materials for ultrasound phantoms and smart substrates for cell cultures,” Acta Biomater. 49, 368–378 (2017).
[Crossref]

Romano, G.

F. Tatini, I. Landini, F. Scaletti, L. Massai, S. Centi, F. Ratto, S. Nobili, G. Romano, F. Fusi, L. Messori, E. Mini, and R. Pini, “Size dependent biological profiles of pegylated gold nanorods,” J. Mater. Chem. B 2, 6072–6080 (2014).
[Crossref]

R. Mercatelli, F. Ratto, S. Centi, S. Soria, G. Romano, P. Matteini, F. Quercioli, R. Pini, and F. Fusi, “Quantitative readout of optically encoded gold nanorods using an ordinary dark-field microscope,” Nanoscale 5, 9645–9650 (2013).
[Crossref] [PubMed]

Rossi, F.

L. Cavigli, M. de Angelis, F. Ratto, P. Matteini, F. Rossi, S. Centi, F. Fusi, and R. Pini, “Size affects the stability of the photoacoustic conversion of gold nanorods,” The J. Phys. Chem. C 118, 16140–16146 (2014).
[Crossref]

F. Ratto, P. Matteini, F. Rossi, and R. Pini, “Size and shape control in the overgrowth of gold nanorods,” J. Nanoparticle Res. 12, 2029–2036 (2010).
[Crossref]

Rudnitzki, F.

S. Wang, G. M. Hüttmann, F. Rudnitzki, H. Diddens-Tschoeke, Z. Zhang, and R. Rahmanzadeh, “Indocyanine green as effective antibody conjugate for intracellular molecular targeted photodynamic therapy,” J. Biomed. Opt. 21, 78001 (2016).
[Crossref]

Scaletti, F.

F. Tatini, I. Landini, F. Scaletti, L. Massai, S. Centi, F. Ratto, S. Nobili, G. Romano, F. Fusi, L. Messori, E. Mini, and R. Pini, “Size dependent biological profiles of pegylated gold nanorods,” J. Mater. Chem. B 2, 6072–6080 (2014).
[Crossref]

Schellenberg, M. W.

M. W. Schellenberg and H. K. Hunt, “Hand-held optoacoustic imaging: A review,” Photoacoustics 11, 14–27 (2018).
[Crossref] [PubMed]

Seeton, R.

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Medicine Biol. 48, 357–370 (2003).
[Crossref]

Sethuraman, S.

B. Wang, E. Yantsen, T. Larson, A. B. Karpiouk, S. Sethuraman, J. L. Su, K. Sokolov, and S. Y. Emelianov, “Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques,” Nano Lett. 9, 2212–2217 (2009).
[Crossref]

Singh, R. S.

M. O. Culjat, D. Goldenberg, P. Tewari, and R. S. Singh, “A review of tissue substitutes for ultrasound imaging,” Ultrasound Med Biol 36, 861–873 (2010).
[Crossref] [PubMed]

Sokolov, K.

B. Wang, E. Yantsen, T. Larson, A. B. Karpiouk, S. Sethuraman, J. L. Su, K. Sokolov, and S. Y. Emelianov, “Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques,” Nano Lett. 9, 2212–2217 (2009).
[Crossref]

Soria, S.

R. Mercatelli, F. Ratto, S. Centi, S. Soria, G. Romano, P. Matteini, F. Quercioli, R. Pini, and F. Fusi, “Quantitative readout of optically encoded gold nanorods using an ordinary dark-field microscope,” Nanoscale 5, 9645–9650 (2013).
[Crossref] [PubMed]

Spirou, G. M.

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Medicine Biol. 50, N141–N153 (2005).
[Crossref]

Stavros, A.

A. Oraevsky, B. Clingman, J. Zalev, A. Stavros, W. Yang, and J. Parikh, “Clinical optoacoustic imaging combined with ultrasound for coregistered functional and anatomical mapping of breast tumors,” Photoacoustics 12, 30–45 (2018).
[Crossref] [PubMed]

Steenbergen, W.

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the twente photoacoustic mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26, 3874–3887 (2016).
[Crossref] [PubMed]

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16, 11 (2011).
[Crossref]

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Medicine Biol. 48, 357–370 (2003).
[Crossref]

Stoica, G.

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).
[Crossref] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref] [PubMed]

Strohm, E. M.

V. Gnyawali, E. M. Strohm, J.-Z. Wang, S. S. H. Tsai, and M. C. Kolios, “Simultaneous acoustic and photoacoustic microfluidic flow cytometry for label-free analysis,” Sci. Reports 9, 1585 (2019).
[Crossref]

Su, J. L.

B. Wang, E. Yantsen, T. Larson, A. B. Karpiouk, S. Sethuraman, J. L. Su, K. Sokolov, and S. Y. Emelianov, “Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques,” Nano Lett. 9, 2212–2217 (2009).
[Crossref]

Su, R.

A. Oraevsky, R. Su, H. Nguyen, J. Moore, Y. Lou, S. Bhadra, L. Forte, M. Anastasio, and W. Yang, “Full-view 3d imaging system for functional and anatomical screening of the breast,” Proc.SPIE 10494, 104942Y (2018).

Swihart, M. T.

M. Liu, W.-C. Law, A. Kopwitthaya, X. Liu, M. T. Swihart, and P. N. Prasad, “Exploring the amphiphilicity of pegylated gold nanorods: mechanical phase transfer and self-assembly,” Chem. Commun. 49, 9350–9352 (2013).
[Crossref]

Tai, S.

Tárnok, A.

V. V. Tuchin, A. Tárnok, and V. P. Zharov, “In vivo flow cytometry: A horizon of opportunities,” Cytom. Part A 79A, 737–745 (2011).
[Crossref]

Taroni, P.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Medicine Biol. 42, 1971–1979 (1997).
[Crossref]

Tatini, F.

F. Ratto, S. Centi, C. Avigo, C. Borri, F. Tatini, L. Cavigli, C. Kusmic, B. Lelli, S. Lai, S. Colagrande, F. Faita, L. Menichetti, and R. Pini, “A robust design for cellular vehicles of gold nanorods for multimodal imaging,” Adv. Funct. Mater. 26, 7178–7185 (2016).
[Crossref]

M. Mazzoni, F. Ratto, C. Fortunato, S. Centi, F. Tatini, and R. Pini, “Partial decoupling in aggregates of silanized gold nanorods,” The J. Phys. Chem. C 118, 20018–20025 (2014).
[Crossref]

F. Tatini, I. Landini, F. Scaletti, L. Massai, S. Centi, F. Ratto, S. Nobili, G. Romano, F. Fusi, L. Messori, E. Mini, and R. Pini, “Size dependent biological profiles of pegylated gold nanorods,” J. Mater. Chem. B 2, 6072–6080 (2014).
[Crossref]

Tewari, P.

M. O. Culjat, D. Goldenberg, P. Tewari, and R. S. Singh, “A review of tissue substitutes for ultrasound imaging,” Ultrasound Med Biol 36, 861–873 (2010).
[Crossref] [PubMed]

Torricelli, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Medicine Biol. 42, 1971–1979 (1997).
[Crossref]

Tsai, S. S. H.

V. Gnyawali, E. M. Strohm, J.-Z. Wang, S. S. H. Tsai, and M. C. Kolios, “Simultaneous acoustic and photoacoustic microfluidic flow cytometry for label-free analysis,” Sci. Reports 9, 1585 (2019).
[Crossref]

Tuchin, V. V.

M. S. Wróbel, A. P. Popov, A. V. Bykov, V. V. Tuchin, and M. Jedrzejewska-Szczerska, “Nanoparticle-free tissue-mimicking phantoms with intrinsic scattering,” Biomed. Opt. Express 7, 2088–2094 (2016).
[Crossref] [PubMed]

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser & Photonics Rev. 7, 732–757 (2013).
[Crossref]

V. V. Tuchin, A. Tárnok, and V. P. Zharov, “In vivo flow cytometry: A horizon of opportunities,” Cytom. Part A 79A, 737–745 (2011).
[Crossref]

Valentini, G.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Medicine Biol. 42, 1971–1979 (1997).
[Crossref]

Valluru, K. S.

K. S. Valluru, K. E. Wilson, and J. K. Willmann, “Photoacoustic imaging in oncology: Translational preclinical and early clinical experience,” Radiology 280, 332–349 (2016).
[Crossref] [PubMed]

van Beusekom, H. M. M.

Van De Sompel, D.

S. E. Bohndiek, S. Bodapati, D. Van De Sompel, S.-R. Kothapalli, and S. S. Gambhir, “Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments,” PLOS ONE 8, 75533 (2013).
[Crossref] [PubMed]

van den Engh, F. M.

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the twente photoacoustic mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26, 3874–3887 (2016).
[Crossref] [PubMed]

van der Schaaf, M.

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the twente photoacoustic mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26, 3874–3887 (2016).
[Crossref] [PubMed]

van der Steen, A. F. W.

van Leeuwen, T. G.

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16, 11 (2011).
[Crossref]

van Soest, G.

Vera, A.

R. Martinez, L. Leija, and A. Vera, “Ultrasonic attenuation in pure water: Comparison between through-transmission and pulse-echo techniques,” in 2010 Pan American Health Care Exchanges, (2010), pp. 81–84.
[Crossref]

Verbeni, A.

A. Cafarelli, A. Verbeni, A. Poliziani, P. Dario, A. Menciassi, and L. Ricotti, “Tuning acoustic and mechanical properties of materials for ultrasound phantoms and smart substrates for cell cultures,” Acta Biomater. 49, 368–378 (2017).
[Crossref]

Vercauteren, T.

Vitkin, I. A.

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Medicine Biol. 50, N141–N153 (2005).
[Crossref]

Vogt, W. C.

W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. J. Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21, 101405 (2016).
[Crossref]

Wang, B.

B. Wang, E. Yantsen, T. Larson, A. B. Karpiouk, S. Sethuraman, J. L. Su, K. Sokolov, and S. Y. Emelianov, “Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques,” Nano Lett. 9, 2212–2217 (2009).
[Crossref]

Wang, J.-Z.

V. Gnyawali, E. M. Strohm, J.-Z. Wang, S. S. H. Tsai, and M. C. Kolios, “Simultaneous acoustic and photoacoustic microfluidic flow cytometry for label-free analysis,” Sci. Reports 9, 1585 (2019).
[Crossref]

Wang, L. V.

J. Yao, H. Ke, S. Tai, Y. Zhou, and L. V. Wang, “Absolute photoacoustic thermometry in deep tissue,” Opt. Lett. 38, 5228–5231 (2013).
[Crossref] [PubMed]

J. Yao and L. V. Wang, “Photoacoustic microscopy,” Laser & Photonics Rev. 7, 758–778 (2013).
[Crossref]

L. V. Wang and S. Hu, “Photoacoustic tomography: In vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[Crossref] [PubMed]

C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett. 35, 3195–3197 (2010).
[Crossref] [PubMed]

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).
[Crossref] [PubMed]

G. Ku and L. V. Wang, “Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent,” Opt. Lett. 30, 507–509 (2005).
[Crossref] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref] [PubMed]

Wang, S.

S. Wang, G. M. Hüttmann, F. Rudnitzki, H. Diddens-Tschoeke, Z. Zhang, and R. Rahmanzadeh, “Indocyanine green as effective antibody conjugate for intracellular molecular targeted photodynamic therapy,” J. Biomed. Opt. 21, 78001 (2016).
[Crossref]

Wang, X.

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).
[Crossref] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref] [PubMed]

Wang, Y.-W.

Y.-W. Wang, Y.-Y. Fu, Q. Peng, S.-S. Guo, G. Liu, J. Li, H.-H. Yang, and G.-N. Chen, “Dye-enhanced graphene oxide for photothermal therapy and photoacoustic imaging,” J. Mater. Chem. B 1, 5762–5767 (2013).
[Crossref]

Wear, K. A.

W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. J. Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21, 101405 (2016).
[Crossref]

West, S. J.

Whelan, W. M.

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Medicine Biol. 50, N141–N153 (2005).
[Crossref]

Willmann, J. K.

K. S. Valluru, K. E. Wilson, and J. K. Willmann, “Photoacoustic imaging in oncology: Translational preclinical and early clinical experience,” Radiology 280, 332–349 (2016).
[Crossref] [PubMed]

Wilson, K. E.

K. S. Valluru, K. E. Wilson, and J. K. Willmann, “Photoacoustic imaging in oncology: Translational preclinical and early clinical experience,” Radiology 280, 332–349 (2016).
[Crossref] [PubMed]

Wong, G. S. K.

N. Bilaniuk and G. S. K. Wong, “Speed of sound in pure water as a function of temperature,” J. Acoust. Soc. Am. 93, 1609–1612 (1993).
[Crossref]

Wróbel, M. S.

Xia, W.

Xie, X.

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).
[Crossref] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref] [PubMed]

Yang, H.-H.

Y.-W. Wang, Y.-Y. Fu, Q. Peng, S.-S. Guo, G. Liu, J. Li, H.-H. Yang, and G.-N. Chen, “Dye-enhanced graphene oxide for photothermal therapy and photoacoustic imaging,” J. Mater. Chem. B 1, 5762–5767 (2013).
[Crossref]

Yang, W.

A. Oraevsky, B. Clingman, J. Zalev, A. Stavros, W. Yang, and J. Parikh, “Clinical optoacoustic imaging combined with ultrasound for coregistered functional and anatomical mapping of breast tumors,” Photoacoustics 12, 30–45 (2018).
[Crossref] [PubMed]

A. Oraevsky, R. Su, H. Nguyen, J. Moore, Y. Lou, S. Bhadra, L. Forte, M. Anastasio, and W. Yang, “Full-view 3d imaging system for functional and anatomical screening of the breast,” Proc.SPIE 10494, 104942Y (2018).

Yantsen, E.

B. Wang, E. Yantsen, T. Larson, A. B. Karpiouk, S. Sethuraman, J. L. Su, K. Sokolov, and S. Y. Emelianov, “Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques,” Nano Lett. 9, 2212–2217 (2009).
[Crossref]

Yao, J.

Yoon, Y.-J.

C. M. B. Ho, S. H. Ng, K. H. H. Li, and Y.-J. Yoon, “3d printed microfluidics for biological applications,” Lab Chip 15, 3627–3637 (2015).
[Crossref] [PubMed]

Zalev, J.

A. Oraevsky, B. Clingman, J. Zalev, A. Stavros, W. Yang, and J. Parikh, “Clinical optoacoustic imaging combined with ultrasound for coregistered functional and anatomical mapping of breast tumors,” Photoacoustics 12, 30–45 (2018).
[Crossref] [PubMed]

Zeqiri, B.

M. Fonseca, B. Zeqiri, P. C. Beard, and B. T. Cox, “Characterisation of a phantom for multiwavelength quantitative photoacoustic imaging,” Phys. Medicine Biol. 61, 4950–4973 (2016).
[Crossref]

Zhang, C.

Zhang, H. F.

W. Liu and H. F. Zhang, “Photoacoustic imaging of the eye: A mini review,” Photoacoustics 4, 112–123 (2016). Special Issue: Photoacoustic Microscopy.
[Crossref] [PubMed]

Zhang, Z.

S. Wang, G. M. Hüttmann, F. Rudnitzki, H. Diddens-Tschoeke, Z. Zhang, and R. Rahmanzadeh, “Indocyanine green as effective antibody conjugate for intracellular molecular targeted photodynamic therapy,” J. Biomed. Opt. 21, 78001 (2016).
[Crossref]

Zharov, V. P.

E. I. Galanzha and V. P. Zharov, “Photoacoustic flow cytometry,” Methods 57, 280–296 (2012).
[Crossref] [PubMed]

V. V. Tuchin, A. Tárnok, and V. P. Zharov, “In vivo flow cytometry: A horizon of opportunities,” Cytom. Part A 79A, 737–745 (2011).
[Crossref]

Zhou, Y.

Zhu, D.

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser & Photonics Rev. 7, 732–757 (2013).
[Crossref]

Zijlstra, W. G.

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40, 575–583 (1976).
[Crossref] [PubMed]

Acta Biomater. (1)

A. Cafarelli, A. Verbeni, A. Poliziani, P. Dario, A. Menciassi, and L. Ricotti, “Tuning acoustic and mechanical properties of materials for ultrasound phantoms and smart substrates for cell cultures,” Acta Biomater. 49, 368–378 (2017).
[Crossref]

Adv. Funct. Mater. (1)

F. Ratto, S. Centi, C. Avigo, C. Borri, F. Tatini, L. Cavigli, C. Kusmic, B. Lelli, S. Lai, S. Colagrande, F. Faita, L. Menichetti, and R. Pini, “A robust design for cellular vehicles of gold nanorods for multimodal imaging,” Adv. Funct. Mater. 26, 7178–7185 (2016).
[Crossref]

Am. J. Clin. Pathol. (1)

D. M. Adcock, D. C. Kressin, and R. A. Marlar, “Effect of 3.2% vs 3.8% sodium citrate concentration on routine coagulation testing,” Am. J. Clin. Pathol. 107, 105–110 (1997).
[Crossref] [PubMed]

Angewandte Chemie Int. Ed. (1)

A. K. Au, W. Huynh, L. F. Horowitz, and A. Folch, “3d-printed microfluidics,” Angewandte Chemie Int. Ed. 55, 3862–3881 (2016).
[Crossref]

Biomed. Opt. Express (3)

Chem. Commun. (1)

M. Liu, W.-C. Law, A. Kopwitthaya, X. Liu, M. T. Swihart, and P. N. Prasad, “Exploring the amphiphilicity of pegylated gold nanorods: mechanical phase transfer and self-assembly,” Chem. Commun. 49, 9350–9352 (2013).
[Crossref]

Cytom. Part A (1)

V. V. Tuchin, A. Tárnok, and V. P. Zharov, “In vivo flow cytometry: A horizon of opportunities,” Cytom. Part A 79A, 737–745 (2011).
[Crossref]

Eur. Radiol. (1)

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the twente photoacoustic mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26, 3874–3887 (2016).
[Crossref] [PubMed]

J. Acoust. Soc. Am. (1)

N. Bilaniuk and G. S. K. Wong, “Speed of sound in pure water as a function of temperature,” J. Acoust. Soc. Am. 93, 1609–1612 (1993).
[Crossref]

J. Appl. Phys. (1)

A. Agarwal, S. W. Huang, M. O’Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102, 064701 (2007).
[Crossref]

J. Appl. Physiol. (1)

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40, 575–583 (1976).
[Crossref] [PubMed]

J. Biomed. Opt. (6)

S. Wang, G. M. Hüttmann, F. Rudnitzki, H. Diddens-Tschoeke, Z. Zhang, and R. Rahmanzadeh, “Indocyanine green as effective antibody conjugate for intracellular molecular targeted photodynamic therapy,” J. Biomed. Opt. 21, 78001 (2016).
[Crossref]

C. Avigo, N. Di Lascio, P. Armanetti, C. Kusmic, L. Cavigli, F. Ratto, S. Meucci, C. Masciullo, M. Cecchini, R. Pini, F. Faita, and L. Menichetti, “Organosilicon phantom for photoacoustic imaging,” J. Biomed. Opt. 20, 46008 (2015).
[Crossref] [PubMed]

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).
[Crossref] [PubMed]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
[Crossref] [PubMed]

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16, 11 (2011).
[Crossref]

W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. J. Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21, 101405 (2016).
[Crossref]

J. Mater. Chem. B (2)

Y.-W. Wang, Y.-Y. Fu, Q. Peng, S.-S. Guo, G. Liu, J. Li, H.-H. Yang, and G.-N. Chen, “Dye-enhanced graphene oxide for photothermal therapy and photoacoustic imaging,” J. Mater. Chem. B 1, 5762–5767 (2013).
[Crossref]

F. Tatini, I. Landini, F. Scaletti, L. Massai, S. Centi, F. Ratto, S. Nobili, G. Romano, F. Fusi, L. Messori, E. Mini, and R. Pini, “Size dependent biological profiles of pegylated gold nanorods,” J. Mater. Chem. B 2, 6072–6080 (2014).
[Crossref]

J. Nanoparticle Res. (1)

F. Ratto, P. Matteini, F. Rossi, and R. Pini, “Size and shape control in the overgrowth of gold nanorods,” J. Nanoparticle Res. 12, 2029–2036 (2010).
[Crossref]

Lab Chip (1)

C. M. B. Ho, S. H. Ng, K. H. H. Li, and Y.-J. Yoon, “3d printed microfluidics for biological applications,” Lab Chip 15, 3627–3637 (2015).
[Crossref] [PubMed]

Laser & Photonics Rev. (2)

J. Yao and L. V. Wang, “Photoacoustic microscopy,” Laser & Photonics Rev. 7, 758–778 (2013).
[Crossref]

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser & Photonics Rev. 7, 732–757 (2013).
[Crossref]

Methods (1)

E. I. Galanzha and V. P. Zharov, “Photoacoustic flow cytometry,” Methods 57, 280–296 (2012).
[Crossref] [PubMed]

Nano Lett. (1)

B. Wang, E. Yantsen, T. Larson, A. B. Karpiouk, S. Sethuraman, J. L. Su, K. Sokolov, and S. Y. Emelianov, “Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques,” Nano Lett. 9, 2212–2217 (2009).
[Crossref]

Nanoscale (1)

R. Mercatelli, F. Ratto, S. Centi, S. Soria, G. Romano, P. Matteini, F. Quercioli, R. Pini, and F. Fusi, “Quantitative readout of optically encoded gold nanorods using an ordinary dark-field microscope,” Nanoscale 5, 9645–9650 (2013).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[Crossref] [PubMed]

Opt. Lett. (4)

Photoacoustics (3)

W. Liu and H. F. Zhang, “Photoacoustic imaging of the eye: A mini review,” Photoacoustics 4, 112–123 (2016). Special Issue: Photoacoustic Microscopy.
[Crossref] [PubMed]

A. Oraevsky, B. Clingman, J. Zalev, A. Stavros, W. Yang, and J. Parikh, “Clinical optoacoustic imaging combined with ultrasound for coregistered functional and anatomical mapping of breast tumors,” Photoacoustics 12, 30–45 (2018).
[Crossref] [PubMed]

M. W. Schellenberg and H. K. Hunt, “Hand-held optoacoustic imaging: A review,” Photoacoustics 11, 14–27 (2018).
[Crossref] [PubMed]

Phys. Medicine Biol. (4)

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Medicine Biol. 48, 357–370 (2003).
[Crossref]

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Medicine Biol. 50, N141–N153 (2005).
[Crossref]

M. Fonseca, B. Zeqiri, P. C. Beard, and B. T. Cox, “Characterisation of a phantom for multiwavelength quantitative photoacoustic imaging,” Phys. Medicine Biol. 61, 4950–4973 (2016).
[Crossref]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Medicine Biol. 42, 1971–1979 (1997).
[Crossref]

PLOS ONE (1)

S. E. Bohndiek, S. Bodapati, D. Van De Sompel, S.-R. Kothapalli, and S. S. Gambhir, “Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments,” PLOS ONE 8, 75533 (2013).
[Crossref] [PubMed]

Proc. SPIE (1)

F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” Proc. SPIE 6870, 687007 (2008).

Proc.SPIE (1)

A. Oraevsky, R. Su, H. Nguyen, J. Moore, Y. Lou, S. Bhadra, L. Forte, M. Anastasio, and W. Yang, “Full-view 3d imaging system for functional and anatomical screening of the breast,” Proc.SPIE 10494, 104942Y (2018).

Radiology (1)

K. S. Valluru, K. E. Wilson, and J. K. Willmann, “Photoacoustic imaging in oncology: Translational preclinical and early clinical experience,” Radiology 280, 332–349 (2016).
[Crossref] [PubMed]

RSC Adv. (1)

A. Lamberti, S. L. Marasso, and M. Cocuzza, “Pdms membranes with tunable gas permeability for microfluidic applications,” RSC Adv. 4, 61415–61419 (2014).
[Crossref]

Sci. Reports (1)

V. Gnyawali, E. M. Strohm, J.-Z. Wang, S. S. H. Tsai, and M. C. Kolios, “Simultaneous acoustic and photoacoustic microfluidic flow cytometry for label-free analysis,” Sci. Reports 9, 1585 (2019).
[Crossref]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: In vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[Crossref] [PubMed]

The J. Phys. Chem. C (3)

L. Cavigli, M. de Angelis, F. Ratto, P. Matteini, F. Rossi, S. Centi, F. Fusi, and R. Pini, “Size affects the stability of the photoacoustic conversion of gold nanorods,” The J. Phys. Chem. C 118, 16140–16146 (2014).
[Crossref]

L. Cavigli, A. Cini, S. Centi, C. Borri, S. Lai, F. Ratto, M. de Angelis, and R. Pini, “Photostability of gold nanorods upon endosomal confinement in cultured cells,” The J. Phys. Chem. C 121, 6393–6400 (2017).
[Crossref]

M. Mazzoni, F. Ratto, C. Fortunato, S. Centi, F. Tatini, and R. Pini, “Partial decoupling in aggregates of silanized gold nanorods,” The J. Phys. Chem. C 118, 20018–20025 (2014).
[Crossref]

Trends Biotechnol. (1)

S. Mallidi, G. P. Luke, and S. Emelianov, “Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance,” Trends Biotechnol. 29, 213–221 (2011).
[Crossref] [PubMed]

Ultrasound Med Biol (1)

M. O. Culjat, D. Goldenberg, P. Tewari, and R. S. Singh, “A review of tissue substitutes for ultrasound imaging,” Ultrasound Med Biol 36, 861–873 (2010).
[Crossref] [PubMed]

Other (1)

R. Martinez, L. Leija, and A. Vera, “Ultrasonic attenuation in pure water: Comparison between through-transmission and pulse-echo techniques,” in 2010 Pan American Health Care Exchanges, (2010), pp. 81–84.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Sketch of the acoustic set-up, illustrating the use of an empty bowl (a) and a bowl containing a sample (b). Keys are explained in the main text.
Fig. 2
Fig. 2 (a): photograph of a multilayered phantom used for the photoacoustic tests, where the buried inclusions containing ICG, GNRs and RBCs are respectively visible as a green, faint carnation pink and red spot. The location of the GNRs is marked with a violet circle. The side of the squares measures 5 mm. (b) to (d): overlays of confocal fluorescence and bright-field transmission micrographs of smears of samples containing the designated dyes. Scale bars are 50 μm. The inset in (c) is magnified four times, in order to display the individual cells and their stacks. All images were acquired on day 3 post-synthesis.
Fig. 3
Fig. 3 Intensity of the reflection from the interface between water or the sample and the aluminum reflector vs thickness of the sample. Full symbols refer to a set of measurements performed on day 3 post-synthesis and were fitted to an exponential decay. Empty symbols were acquired on day 90 post-synthesis. Inset (a): reference echo from an empty bowl (red line, divided by hundred) and that from a bowl containing a sample and featuring two principal transients (black line), see Fig. 1. Inset (b): compilation of different values for the attenuation coefficient vs frequency of the acoustic signal. The data points until a frequency of 5 MHz are derived from [35] and refer to blank PDMS. The data point at 10 MHz originates from the exponential fit displayed in the main panel for an emulsion of PDMS and glycerol on day 3 post-synthesis. Our value is a good linear extrapolation of those from blank PDMS (R2 = 0.9994).
Fig. 4
Fig. 4 (a): spectra of optical extinction from different locations of a multilayered phantom. The solid lines refer to a set a measurements performed on day 3 post-synthesis. The broken lines were acquired on day 90 post-synthesis. (b) and (c): photographs of the same multilayered phantom taken at days 3 and 90 post-synthesis, respectively, and superimposed with fiducial circles of the same size and location. The side of the squares measures 5 mm. (d): multimodal photoacoustic / ultrasound sections acquired at day 7 post-synthesis with a Vevo LAZR-X over the locations corresponding to the buried inclusions containing ICG or RBCs at different wavelength, i.e 690, 750 or 900 nm. Each field of view measures about 10 mm × 8 mm. The photoacoustic signal is encoded in red and the ultrasound echo in white. For the photoacoustic channel, the gain was adjusted in order to optimize the contrast in each panel. Note that ICG is visible at 690 and 750 nm, but rather not at 900 nm, and the RBCs are discernible at 690 nm and already nearly disappear at 750 nm and beyond. The lower feature in the photoacoustic maps corresponding to the RBCs relates to the interface between the blank overlay with its crescent shape and the underlying gel film.
Fig. 5
Fig. 5 Representative excerpts of raw photoacoustic A-scans from the designated locations of a multilayered phantom acquired on day 9 post-synthesis.

Metrics