Abstract

Photoacoustic imaging relies on diffused photons for optical contrast and diffracted ultrasound for high resolution. As a tomographic imaging modality, often an inverse problem of acoustic diffraction needs to be solved to reconstruct a photoacoustic image. The inverse problem is complicated by the fact that the acoustic properties, including the speed of sound distribution, in the image field of view are unknown. During reconstruction, subtle changes of the speed of sound in the acoustic ray path may accumulate and give rise to noticeable blurring in the image. Thus, in addition to the ultrasound detection bandwidth, inaccurate acoustic modeling, especially the unawareness of the speed of sound, defines the image resolution and influences image quantification. Here, we proposed a method termed feature coupling to jointly reconstruct the speed of sound distribution and a photoacoustic image with improved sharpness, at no additional hardware cost. Simulations, phantom studies, and in vivo experiments demonstrated the effectiveness and reliability of our method.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Streak artifact suppression in photoacoustic computed tomography using adaptive back projection

Chuangjian Cai, Xuanhao Wang, Ke Si, Jun Qian, Jianwen Luo, and Cheng Ma
Biomed. Opt. Express 10(9) 4803-4814 (2019)

Passive element enriched photoacoustic computed tomography (PER PACT) for simultaneous imaging of acoustic propagation properties and light absorption

Jithin Jose, Rene G. H. Willemink, Steffen Resink, Daniele Piras, J. C. G van Hespen, Cornelis H. Slump, Wiendelt Steenbergen, Ton G. van Leeuwen, and Srirang Manohar
Opt. Express 19(3) 2093-2104 (2011)

Photoacoustics and speed-of-sound dual mode imaging with a long depth-of-field by using annular ultrasound array

Qiuning Ding, Chao Tao, and Xiaojun Liu
Opt. Express 25(6) 6141-6150 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
    [Crossref]
  2. J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt. 16(7), 076003 (2011).
    [Crossref] [PubMed]
  3. G. S. Filonov, A. Krumholz, J. Xia, J. Yao, L. V. Wang, and V. V. Verkhusha, “Deep-tissue photoacoustic tomography of a genetically encoded near-infrared fluorescent probe,” Angew. Chem. Int. Ed. Engl. 51(6), 1448–1451 (2012).
    [Crossref] [PubMed]
  4. C. Cai, K. Deng, C. Ma, and J. Luo, “End-to-end deep neural network for optical inversion in quantitative photoacoustic imaging,” Opt. Lett. 43(12), 2752–2755 (2018).
    [Crossref] [PubMed]
  5. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
    [Crossref] [PubMed]
  6. Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31(4), 724–733 (2004).
    [Crossref] [PubMed]
  7. X. L. Deán-Ben, V. Ntziachristos, and D. Razansky, “Artefact reduction in optoacoustic tomographic imaging by estimating the distribution of acoustic scatterers,” J. Biomed. Opt. 17(11), 110504 (2012).
    [Crossref] [PubMed]
  8. M. K. A. Singh and W. Steenbergen, “Photoacoustic-guided focused ultrasound (PAFUSion) for identifying reflection artifacts in photoacoustic imaging,” Photoacoustics 3(4), 123–131 (2015).
    [Crossref]
  9. T. F. Fehm, X. L. Deán-Ben, and D. Razansky, “Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe,” Appl. Phys. Lett. 105(17), 173505 (2014).
    [Crossref]
  10. J. C. Bamber, “Acoustical characteristics of biological media,” Encyclopedia of Acoustics 4, 1703–1726 (1997).
  11. R. G. Willemink, S. Manohar, Y. Purwar, C. H. Slump, F. van der Heijden, and T. G. van Leeuwen, “Imaging of acoustic attenuation and speed of sound maps using photoacoustic measurements,” Proc. SPIE 6920, 692013 (2008).
    [Crossref]
  12. S. Manohar, R. G. Willemink, F. van der Heijden, C. H. Slump, and T. G. van Leeuwen, “Concomitant speed-of-sound tomography in photoacoustic imaging,” Appl. Phys. Lett. 91(13), 131911 (2007).
    [Crossref]
  13. J. Xia, C. Huang, K. Maslov, M. A. Anastasio, and L. V. Wang, “Enhancement of photoacoustic tomography by ultrasonic computed tomography based on optical excitation of elements of a full-ring transducer array,” Opt. Lett. 38(16), 3140–3143 (2013).
    [Crossref] [PubMed]
  14. S. Resink, J. Jose, R. G. Willemink, C. H. Slump, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Multiple passive element enriched photoacoustic computed tomography,” Opt. Lett. 36(15), 2809–2811 (2011).
    [Crossref] [PubMed]
  15. J. Jose, R. G. Willemink, S. Resink, D. Piras, J. C. van Hespen, C. H. Slump, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Passive element enriched photoacoustic computed tomography (PER PACT) for simultaneous imaging of acoustic propagation properties and light absorption,” Opt. Express 19(3), 2093–2104 (2011).
    [Crossref] [PubMed]
  16. E. Merčep, J. L. Herraiz, X. L. Deán-Ben, and D. Razansky, “Transmission-reflection optoacoustic ultrasound (TROPUS) computed tomography of small animals,” Light Sci. Appl. 8(1), 18 (2019).
    [Crossref] [PubMed]
  17. H. Jiang, Z. Yuan, and X. Gu, “Spatially varying optical and acoustic property reconstruction using finite-element-based photoacoustic tomography,” J. Opt. Soc. Am. A 23(4), 878–888 (2006).
    [Crossref] [PubMed]
  18. Z. Yuan and H. Jiang, “Three-dimensional finite-element-based photoacoustic tomography: reconstruction algorithm and simulations,” Med. Phys. 34(2), 538–546 (2007).
    [Crossref] [PubMed]
  19. T. Ding, K. Ren, and S. Vallélian, “A one-step reconstruction algorithm for quantitative photoacoustic imaging,” Inverse Probl. 31(9), 095005 (2015).
    [Crossref]
  20. J. Zhang, K. Wang, Y. Yang, and M. A. Anastasio, “Simultaneous reconstruction of speed-of-sound and optical absorption properties in photoacoustic tomography via a time-domain iterative algorithm,” Proc. SPIE 6856, 68561F (2008).
    [Crossref]
  21. C. Huang, K. Wang, R. W. Schoonover, L. V. Wang, and M. A. Anastasio, “Joint reconstruction of absorbed optical energy density and sound speed distributions in photoacoustic computed tomography: a numerical investigation,” IEEE Trans. Comput. Imaging 2(2), 136–149 (2016).
    [Crossref] [PubMed]
  22. P. Stefanov and G. Uhlmann, “Instability of the linearized problem in multiwave tomography of recovery both the source and the speed,” arXiv:1211.6217 (2012).
  23. M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24(2), 199–210 (2005).
    [Crossref] [PubMed]
  24. M. A. Anastasio, J. Zhang, E. Y. Sidky, Y. Zou, D. Xia, and X. Pan, “Feasibility of half-data image reconstruction in 3-D reflectivity tomography with a spherical aperture,” IEEE Trans. Med. Imaging 24(9), 1100–1112 (2005).
    [Crossref] [PubMed]
  25. J. Poudel, T. P. Matthews, L. Li, M. A. Anastasio, and L. V. Wang, “Mitigation of artifacts due to isolated acoustic heterogeneities in photoacoustic computed tomography using a variable data truncation-based reconstruction method,” J. Biomed. Opt. 22(4), 041018 (2017).
    [Crossref] [PubMed]
  26. C. Zhang and Y. Wang, “A reconstruction algorithm for thermoacoustic tomography with compensation for acoustic speed heterogeneity,” Phys. Med. Biol. 53(18), 4971–4982 (2008).
    [Crossref] [PubMed]
  27. B. E. Treeby, T. K. Varslot, E. Z. Zhang, J. G. Laufer, and P. C. Beard, “Automatic sound speed selection in photoacoustic image reconstruction using an autofocus approach,” J. Biomed. Opt. 16(9), 090501 (2011).
    [Crossref] [PubMed]
  28. S. Mandal, E. Nasonova, X. L. Deán-Ben, and D. Razansky, “Optimal self-calibration of tomographic reconstruction parameters in whole-body small animal optoacoustic imaging,” Photoacoustics 2(3), 128–136 (2014).
    [Crossref] [PubMed]
  29. J. Zhang and M. A. Anastasio, “Reconstruction of speed-of-sound and electromagnetic absorption distributions in photoacoustic tomography,” Proc. SPIE 6086, 608619 (2006).
    [Crossref]
  30. L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1(5), 0071 (2017).
    [Crossref] [PubMed]
  31. L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. Zhang, and L. V. Wang, “Single-breath-hold photoacoustic computed tomography of the breast,” Nat. Commun. 9(1), 2352 (2018).
    [Crossref] [PubMed]
  32. M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 016706 (2005).
    [Crossref] [PubMed]
  33. M. Pramanik, “Improving tangential resolution with a modified delay-and-sum reconstruction algorithm in photoacoustic and thermoacoustic tomography,” J. Opt. Soc. Am. A 31(3), 621–627 (2014).
    [Crossref] [PubMed]
  34. M. S. Hassouna and A. A. Farag, “Multi-stencils fast marching methods: a highly accurate solution to the eikonal equation on cartesian domains,” IEEE Trans. Pattern Anal. Mach. Intell. 29(9), 1563–1574 (2007).
    [Crossref] [PubMed]
  35. J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
    [Crossref] [PubMed]
  36. W. Marczak, “Water as a standard in the measurements of speed of sound in liquids,” J. Acoust. Soc. Am. 102(5), 2776–2779 (1997).
    [Crossref]
  37. B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
    [Crossref] [PubMed]
  38. M. D. Gu, “Investigating a Relationship Between Speed of Sound and Hydrogel Water Content via Ultrasound for Future Articular Cartilage Applications,” thesis, Case Western Reserve University (2013).
  39. S. K. Venkatesh, M. Yin, J. F. Glockner, N. Takahashi, P. A. Araoz, J. A. Talwalkar, and R. L. Ehman, “MR elastography of liver tumors: preliminary results,” AJR Am. J. Roentgenol. 190(6), 1534–1540 (2008).
    [Crossref] [PubMed]
  40. R. Masuzaki, R. Tateishi, H. Yoshida, T. Sato, T. Ohki, T. Goto, H. Yoshida, S. Sato, Y. Sugioka, H. Ikeda, S. Shiina, T. Kawabe, and M. Omata, “Assessing liver tumor stiffness by transient elastography,” Hepatol. Int. 1(3), 394–397 (2007).
    [Crossref] [PubMed]
  41. P. O. Persson and G. Strang, “A simple mesh generator in MATLAB,” SIAM Rev. 46(2), 329–345 (2004).
    [Crossref]

2019 (1)

E. Merčep, J. L. Herraiz, X. L. Deán-Ben, and D. Razansky, “Transmission-reflection optoacoustic ultrasound (TROPUS) computed tomography of small animals,” Light Sci. Appl. 8(1), 18 (2019).
[Crossref] [PubMed]

2018 (2)

L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. Zhang, and L. V. Wang, “Single-breath-hold photoacoustic computed tomography of the breast,” Nat. Commun. 9(1), 2352 (2018).
[Crossref] [PubMed]

C. Cai, K. Deng, C. Ma, and J. Luo, “End-to-end deep neural network for optical inversion in quantitative photoacoustic imaging,” Opt. Lett. 43(12), 2752–2755 (2018).
[Crossref] [PubMed]

2017 (2)

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1(5), 0071 (2017).
[Crossref] [PubMed]

J. Poudel, T. P. Matthews, L. Li, M. A. Anastasio, and L. V. Wang, “Mitigation of artifacts due to isolated acoustic heterogeneities in photoacoustic computed tomography using a variable data truncation-based reconstruction method,” J. Biomed. Opt. 22(4), 041018 (2017).
[Crossref] [PubMed]

2016 (1)

C. Huang, K. Wang, R. W. Schoonover, L. V. Wang, and M. A. Anastasio, “Joint reconstruction of absorbed optical energy density and sound speed distributions in photoacoustic computed tomography: a numerical investigation,” IEEE Trans. Comput. Imaging 2(2), 136–149 (2016).
[Crossref] [PubMed]

2015 (2)

T. Ding, K. Ren, and S. Vallélian, “A one-step reconstruction algorithm for quantitative photoacoustic imaging,” Inverse Probl. 31(9), 095005 (2015).
[Crossref]

M. K. A. Singh and W. Steenbergen, “Photoacoustic-guided focused ultrasound (PAFUSion) for identifying reflection artifacts in photoacoustic imaging,” Photoacoustics 3(4), 123–131 (2015).
[Crossref]

2014 (3)

T. F. Fehm, X. L. Deán-Ben, and D. Razansky, “Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe,” Appl. Phys. Lett. 105(17), 173505 (2014).
[Crossref]

S. Mandal, E. Nasonova, X. L. Deán-Ben, and D. Razansky, “Optimal self-calibration of tomographic reconstruction parameters in whole-body small animal optoacoustic imaging,” Photoacoustics 2(3), 128–136 (2014).
[Crossref] [PubMed]

M. Pramanik, “Improving tangential resolution with a modified delay-and-sum reconstruction algorithm in photoacoustic and thermoacoustic tomography,” J. Opt. Soc. Am. A 31(3), 621–627 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (4)

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

X. L. Deán-Ben, V. Ntziachristos, and D. Razansky, “Artefact reduction in optoacoustic tomographic imaging by estimating the distribution of acoustic scatterers,” J. Biomed. Opt. 17(11), 110504 (2012).
[Crossref] [PubMed]

G. S. Filonov, A. Krumholz, J. Xia, J. Yao, L. V. Wang, and V. V. Verkhusha, “Deep-tissue photoacoustic tomography of a genetically encoded near-infrared fluorescent probe,” Angew. Chem. Int. Ed. Engl. 51(6), 1448–1451 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (1)

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref] [PubMed]

2009 (1)

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[Crossref]

2008 (4)

R. G. Willemink, S. Manohar, Y. Purwar, C. H. Slump, F. van der Heijden, and T. G. van Leeuwen, “Imaging of acoustic attenuation and speed of sound maps using photoacoustic measurements,” Proc. SPIE 6920, 692013 (2008).
[Crossref]

J. Zhang, K. Wang, Y. Yang, and M. A. Anastasio, “Simultaneous reconstruction of speed-of-sound and optical absorption properties in photoacoustic tomography via a time-domain iterative algorithm,” Proc. SPIE 6856, 68561F (2008).
[Crossref]

S. K. Venkatesh, M. Yin, J. F. Glockner, N. Takahashi, P. A. Araoz, J. A. Talwalkar, and R. L. Ehman, “MR elastography of liver tumors: preliminary results,” AJR Am. J. Roentgenol. 190(6), 1534–1540 (2008).
[Crossref] [PubMed]

C. Zhang and Y. Wang, “A reconstruction algorithm for thermoacoustic tomography with compensation for acoustic speed heterogeneity,” Phys. Med. Biol. 53(18), 4971–4982 (2008).
[Crossref] [PubMed]

2007 (4)

R. Masuzaki, R. Tateishi, H. Yoshida, T. Sato, T. Ohki, T. Goto, H. Yoshida, S. Sato, Y. Sugioka, H. Ikeda, S. Shiina, T. Kawabe, and M. Omata, “Assessing liver tumor stiffness by transient elastography,” Hepatol. Int. 1(3), 394–397 (2007).
[Crossref] [PubMed]

M. S. Hassouna and A. A. Farag, “Multi-stencils fast marching methods: a highly accurate solution to the eikonal equation on cartesian domains,” IEEE Trans. Pattern Anal. Mach. Intell. 29(9), 1563–1574 (2007).
[Crossref] [PubMed]

Z. Yuan and H. Jiang, “Three-dimensional finite-element-based photoacoustic tomography: reconstruction algorithm and simulations,” Med. Phys. 34(2), 538–546 (2007).
[Crossref] [PubMed]

S. Manohar, R. G. Willemink, F. van der Heijden, C. H. Slump, and T. G. van Leeuwen, “Concomitant speed-of-sound tomography in photoacoustic imaging,” Appl. Phys. Lett. 91(13), 131911 (2007).
[Crossref]

2006 (2)

H. Jiang, Z. Yuan, and X. Gu, “Spatially varying optical and acoustic property reconstruction using finite-element-based photoacoustic tomography,” J. Opt. Soc. Am. A 23(4), 878–888 (2006).
[Crossref] [PubMed]

J. Zhang and M. A. Anastasio, “Reconstruction of speed-of-sound and electromagnetic absorption distributions in photoacoustic tomography,” Proc. SPIE 6086, 608619 (2006).
[Crossref]

2005 (3)

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 016706 (2005).
[Crossref] [PubMed]

M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24(2), 199–210 (2005).
[Crossref] [PubMed]

M. A. Anastasio, J. Zhang, E. Y. Sidky, Y. Zou, D. Xia, and X. Pan, “Feasibility of half-data image reconstruction in 3-D reflectivity tomography with a spherical aperture,” IEEE Trans. Med. Imaging 24(9), 1100–1112 (2005).
[Crossref] [PubMed]

2004 (2)

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31(4), 724–733 (2004).
[Crossref] [PubMed]

P. O. Persson and G. Strang, “A simple mesh generator in MATLAB,” SIAM Rev. 46(2), 329–345 (2004).
[Crossref]

1997 (1)

W. Marczak, “Water as a standard in the measurements of speed of sound in liquids,” J. Acoust. Soc. Am. 102(5), 2776–2779 (1997).
[Crossref]

Ambartsoumian, G.

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31(4), 724–733 (2004).
[Crossref] [PubMed]

Anastasio, M. A.

J. Poudel, T. P. Matthews, L. Li, M. A. Anastasio, and L. V. Wang, “Mitigation of artifacts due to isolated acoustic heterogeneities in photoacoustic computed tomography using a variable data truncation-based reconstruction method,” J. Biomed. Opt. 22(4), 041018 (2017).
[Crossref] [PubMed]

C. Huang, K. Wang, R. W. Schoonover, L. V. Wang, and M. A. Anastasio, “Joint reconstruction of absorbed optical energy density and sound speed distributions in photoacoustic computed tomography: a numerical investigation,” IEEE Trans. Comput. Imaging 2(2), 136–149 (2016).
[Crossref] [PubMed]

J. Xia, C. Huang, K. Maslov, M. A. Anastasio, and L. V. Wang, “Enhancement of photoacoustic tomography by ultrasonic computed tomography based on optical excitation of elements of a full-ring transducer array,” Opt. Lett. 38(16), 3140–3143 (2013).
[Crossref] [PubMed]

J. Zhang, K. Wang, Y. Yang, and M. A. Anastasio, “Simultaneous reconstruction of speed-of-sound and optical absorption properties in photoacoustic tomography via a time-domain iterative algorithm,” Proc. SPIE 6856, 68561F (2008).
[Crossref]

J. Zhang and M. A. Anastasio, “Reconstruction of speed-of-sound and electromagnetic absorption distributions in photoacoustic tomography,” Proc. SPIE 6086, 608619 (2006).
[Crossref]

M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24(2), 199–210 (2005).
[Crossref] [PubMed]

M. A. Anastasio, J. Zhang, E. Y. Sidky, Y. Zou, D. Xia, and X. Pan, “Feasibility of half-data image reconstruction in 3-D reflectivity tomography with a spherical aperture,” IEEE Trans. Med. Imaging 24(9), 1100–1112 (2005).
[Crossref] [PubMed]

Appleton, C. M.

L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. Zhang, and L. V. Wang, “Single-breath-hold photoacoustic computed tomography of the breast,” Nat. Commun. 9(1), 2352 (2018).
[Crossref] [PubMed]

Araoz, P. A.

S. K. Venkatesh, M. Yin, J. F. Glockner, N. Takahashi, P. A. Araoz, J. A. Talwalkar, and R. L. Ehman, “MR elastography of liver tumors: preliminary results,” AJR Am. J. Roentgenol. 190(6), 1534–1540 (2008).
[Crossref] [PubMed]

Beard, P. C.

B. E. Treeby, T. K. Varslot, E. Z. Zhang, J. G. Laufer, and P. C. Beard, “Automatic sound speed selection in photoacoustic image reconstruction using an autofocus approach,” J. Biomed. Opt. 16(9), 090501 (2011).
[Crossref] [PubMed]

Cai, C.

Chen, W.

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1(5), 0071 (2017).
[Crossref] [PubMed]

Cox, B. T.

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref] [PubMed]

Deán-Ben, X. L.

E. Merčep, J. L. Herraiz, X. L. Deán-Ben, and D. Razansky, “Transmission-reflection optoacoustic ultrasound (TROPUS) computed tomography of small animals,” Light Sci. Appl. 8(1), 18 (2019).
[Crossref] [PubMed]

T. F. Fehm, X. L. Deán-Ben, and D. Razansky, “Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe,” Appl. Phys. Lett. 105(17), 173505 (2014).
[Crossref]

S. Mandal, E. Nasonova, X. L. Deán-Ben, and D. Razansky, “Optimal self-calibration of tomographic reconstruction parameters in whole-body small animal optoacoustic imaging,” Photoacoustics 2(3), 128–136 (2014).
[Crossref] [PubMed]

X. L. Deán-Ben, V. Ntziachristos, and D. Razansky, “Artefact reduction in optoacoustic tomographic imaging by estimating the distribution of acoustic scatterers,” J. Biomed. Opt. 17(11), 110504 (2012).
[Crossref] [PubMed]

Deng, K.

Ding, T.

T. Ding, K. Ren, and S. Vallélian, “A one-step reconstruction algorithm for quantitative photoacoustic imaging,” Inverse Probl. 31(9), 095005 (2015).
[Crossref]

Distel, M.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[Crossref]

Ehman, R. L.

S. K. Venkatesh, M. Yin, J. F. Glockner, N. Takahashi, P. A. Araoz, J. A. Talwalkar, and R. L. Ehman, “MR elastography of liver tumors: preliminary results,” AJR Am. J. Roentgenol. 190(6), 1534–1540 (2008).
[Crossref] [PubMed]

Farag, A. A.

M. S. Hassouna and A. A. Farag, “Multi-stencils fast marching methods: a highly accurate solution to the eikonal equation on cartesian domains,” IEEE Trans. Pattern Anal. Mach. Intell. 29(9), 1563–1574 (2007).
[Crossref] [PubMed]

Fehm, T. F.

T. F. Fehm, X. L. Deán-Ben, and D. Razansky, “Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe,” Appl. Phys. Lett. 105(17), 173505 (2014).
[Crossref]

Filonov, G. S.

G. S. Filonov, A. Krumholz, J. Xia, J. Yao, L. V. Wang, and V. V. Verkhusha, “Deep-tissue photoacoustic tomography of a genetically encoded near-infrared fluorescent probe,” Angew. Chem. Int. Ed. Engl. 51(6), 1448–1451 (2012).
[Crossref] [PubMed]

Glockner, J. F.

S. K. Venkatesh, M. Yin, J. F. Glockner, N. Takahashi, P. A. Araoz, J. A. Talwalkar, and R. L. Ehman, “MR elastography of liver tumors: preliminary results,” AJR Am. J. Roentgenol. 190(6), 1534–1540 (2008).
[Crossref] [PubMed]

Goto, T.

R. Masuzaki, R. Tateishi, H. Yoshida, T. Sato, T. Ohki, T. Goto, H. Yoshida, S. Sato, Y. Sugioka, H. Ikeda, S. Shiina, T. Kawabe, and M. Omata, “Assessing liver tumor stiffness by transient elastography,” Hepatol. Int. 1(3), 394–397 (2007).
[Crossref] [PubMed]

Gu, X.

Hassouna, M. S.

M. S. Hassouna and A. A. Farag, “Multi-stencils fast marching methods: a highly accurate solution to the eikonal equation on cartesian domains,” IEEE Trans. Pattern Anal. Mach. Intell. 29(9), 1563–1574 (2007).
[Crossref] [PubMed]

Herraiz, J. L.

E. Merčep, J. L. Herraiz, X. L. Deán-Ben, and D. Razansky, “Transmission-reflection optoacoustic ultrasound (TROPUS) computed tomography of small animals,” Light Sci. Appl. 8(1), 18 (2019).
[Crossref] [PubMed]

Hu, P.

L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. Zhang, and L. V. Wang, “Single-breath-hold photoacoustic computed tomography of the breast,” Nat. Commun. 9(1), 2352 (2018).
[Crossref] [PubMed]

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Huang, C.

C. Huang, K. Wang, R. W. Schoonover, L. V. Wang, and M. A. Anastasio, “Joint reconstruction of absorbed optical energy density and sound speed distributions in photoacoustic computed tomography: a numerical investigation,” IEEE Trans. Comput. Imaging 2(2), 136–149 (2016).
[Crossref] [PubMed]

J. Xia, C. Huang, K. Maslov, M. A. Anastasio, and L. V. Wang, “Enhancement of photoacoustic tomography by ultrasonic computed tomography based on optical excitation of elements of a full-ring transducer array,” Opt. Lett. 38(16), 3140–3143 (2013).
[Crossref] [PubMed]

Ikeda, H.

R. Masuzaki, R. Tateishi, H. Yoshida, T. Sato, T. Ohki, T. Goto, H. Yoshida, S. Sato, Y. Sugioka, H. Ikeda, S. Shiina, T. Kawabe, and M. Omata, “Assessing liver tumor stiffness by transient elastography,” Hepatol. Int. 1(3), 394–397 (2007).
[Crossref] [PubMed]

Jiang, H.

Z. Yuan and H. Jiang, “Three-dimensional finite-element-based photoacoustic tomography: reconstruction algorithm and simulations,” Med. Phys. 34(2), 538–546 (2007).
[Crossref] [PubMed]

H. Jiang, Z. Yuan, and X. Gu, “Spatially varying optical and acoustic property reconstruction using finite-element-based photoacoustic tomography,” J. Opt. Soc. Am. A 23(4), 878–888 (2006).
[Crossref] [PubMed]

Jose, J.

Kawabe, T.

R. Masuzaki, R. Tateishi, H. Yoshida, T. Sato, T. Ohki, T. Goto, H. Yoshida, S. Sato, Y. Sugioka, H. Ikeda, S. Shiina, T. Kawabe, and M. Omata, “Assessing liver tumor stiffness by transient elastography,” Hepatol. Int. 1(3), 394–397 (2007).
[Crossref] [PubMed]

Köster, R. W.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[Crossref]

Krumholz, A.

G. S. Filonov, A. Krumholz, J. Xia, J. Yao, L. V. Wang, and V. V. Verkhusha, “Deep-tissue photoacoustic tomography of a genetically encoded near-infrared fluorescent probe,” Angew. Chem. Int. Ed. Engl. 51(6), 1448–1451 (2012).
[Crossref] [PubMed]

Ku, G.

M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24(2), 199–210 (2005).
[Crossref] [PubMed]

Kuchment, P.

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31(4), 724–733 (2004).
[Crossref] [PubMed]

Laufer, J. G.

B. E. Treeby, T. K. Varslot, E. Z. Zhang, J. G. Laufer, and P. C. Beard, “Automatic sound speed selection in photoacoustic image reconstruction using an autofocus approach,” J. Biomed. Opt. 16(9), 090501 (2011).
[Crossref] [PubMed]

Li, L.

L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. Zhang, and L. V. Wang, “Single-breath-hold photoacoustic computed tomography of the breast,” Nat. Commun. 9(1), 2352 (2018).
[Crossref] [PubMed]

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1(5), 0071 (2017).
[Crossref] [PubMed]

J. Poudel, T. P. Matthews, L. Li, M. A. Anastasio, and L. V. Wang, “Mitigation of artifacts due to isolated acoustic heterogeneities in photoacoustic computed tomography using a variable data truncation-based reconstruction method,” J. Biomed. Opt. 22(4), 041018 (2017).
[Crossref] [PubMed]

Lin, L.

L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. Zhang, and L. V. Wang, “Single-breath-hold photoacoustic computed tomography of the breast,” Nat. Commun. 9(1), 2352 (2018).
[Crossref] [PubMed]

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1(5), 0071 (2017).
[Crossref] [PubMed]

Luo, J.

Ma, C.

C. Cai, K. Deng, C. Ma, and J. Luo, “End-to-end deep neural network for optical inversion in quantitative photoacoustic imaging,” Opt. Lett. 43(12), 2752–2755 (2018).
[Crossref] [PubMed]

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1(5), 0071 (2017).
[Crossref] [PubMed]

Ma, R.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[Crossref]

Mandal, S.

S. Mandal, E. Nasonova, X. L. Deán-Ben, and D. Razansky, “Optimal self-calibration of tomographic reconstruction parameters in whole-body small animal optoacoustic imaging,” Photoacoustics 2(3), 128–136 (2014).
[Crossref] [PubMed]

Manohar, S.

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref] [PubMed]

S. Resink, J. Jose, R. G. Willemink, C. H. Slump, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Multiple passive element enriched photoacoustic computed tomography,” Opt. Lett. 36(15), 2809–2811 (2011).
[Crossref] [PubMed]

J. Jose, R. G. Willemink, S. Resink, D. Piras, J. C. van Hespen, C. H. Slump, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Passive element enriched photoacoustic computed tomography (PER PACT) for simultaneous imaging of acoustic propagation properties and light absorption,” Opt. Express 19(3), 2093–2104 (2011).
[Crossref] [PubMed]

R. G. Willemink, S. Manohar, Y. Purwar, C. H. Slump, F. van der Heijden, and T. G. van Leeuwen, “Imaging of acoustic attenuation and speed of sound maps using photoacoustic measurements,” Proc. SPIE 6920, 692013 (2008).
[Crossref]

S. Manohar, R. G. Willemink, F. van der Heijden, C. H. Slump, and T. G. van Leeuwen, “Concomitant speed-of-sound tomography in photoacoustic imaging,” Appl. Phys. Lett. 91(13), 131911 (2007).
[Crossref]

Marczak, W.

W. Marczak, “Water as a standard in the measurements of speed of sound in liquids,” J. Acoust. Soc. Am. 102(5), 2776–2779 (1997).
[Crossref]

Maslov, K.

L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. Zhang, and L. V. Wang, “Single-breath-hold photoacoustic computed tomography of the breast,” Nat. Commun. 9(1), 2352 (2018).
[Crossref] [PubMed]

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1(5), 0071 (2017).
[Crossref] [PubMed]

J. Xia, C. Huang, K. Maslov, M. A. Anastasio, and L. V. Wang, “Enhancement of photoacoustic tomography by ultrasonic computed tomography based on optical excitation of elements of a full-ring transducer array,” Opt. Lett. 38(16), 3140–3143 (2013).
[Crossref] [PubMed]

Maslov, K. I.

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt. 16(7), 076003 (2011).
[Crossref] [PubMed]

Masuzaki, R.

R. Masuzaki, R. Tateishi, H. Yoshida, T. Sato, T. Ohki, T. Goto, H. Yoshida, S. Sato, Y. Sugioka, H. Ikeda, S. Shiina, T. Kawabe, and M. Omata, “Assessing liver tumor stiffness by transient elastography,” Hepatol. Int. 1(3), 394–397 (2007).
[Crossref] [PubMed]

Matthews, T. P.

J. Poudel, T. P. Matthews, L. Li, M. A. Anastasio, and L. V. Wang, “Mitigation of artifacts due to isolated acoustic heterogeneities in photoacoustic computed tomography using a variable data truncation-based reconstruction method,” J. Biomed. Opt. 22(4), 041018 (2017).
[Crossref] [PubMed]

Mercep, E.

E. Merčep, J. L. Herraiz, X. L. Deán-Ben, and D. Razansky, “Transmission-reflection optoacoustic ultrasound (TROPUS) computed tomography of small animals,” Light Sci. Appl. 8(1), 18 (2019).
[Crossref] [PubMed]

Nasonova, E.

S. Mandal, E. Nasonova, X. L. Deán-Ben, and D. Razansky, “Optimal self-calibration of tomographic reconstruction parameters in whole-body small animal optoacoustic imaging,” Photoacoustics 2(3), 128–136 (2014).
[Crossref] [PubMed]

Ntziachristos, V.

X. L. Deán-Ben, V. Ntziachristos, and D. Razansky, “Artefact reduction in optoacoustic tomographic imaging by estimating the distribution of acoustic scatterers,” J. Biomed. Opt. 17(11), 110504 (2012).
[Crossref] [PubMed]

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[Crossref]

Ohki, T.

R. Masuzaki, R. Tateishi, H. Yoshida, T. Sato, T. Ohki, T. Goto, H. Yoshida, S. Sato, Y. Sugioka, H. Ikeda, S. Shiina, T. Kawabe, and M. Omata, “Assessing liver tumor stiffness by transient elastography,” Hepatol. Int. 1(3), 394–397 (2007).
[Crossref] [PubMed]

Omata, M.

R. Masuzaki, R. Tateishi, H. Yoshida, T. Sato, T. Ohki, T. Goto, H. Yoshida, S. Sato, Y. Sugioka, H. Ikeda, S. Shiina, T. Kawabe, and M. Omata, “Assessing liver tumor stiffness by transient elastography,” Hepatol. Int. 1(3), 394–397 (2007).
[Crossref] [PubMed]

Pan, X.

M. A. Anastasio, J. Zhang, E. Y. Sidky, Y. Zou, D. Xia, and X. Pan, “Feasibility of half-data image reconstruction in 3-D reflectivity tomography with a spherical aperture,” IEEE Trans. Med. Imaging 24(9), 1100–1112 (2005).
[Crossref] [PubMed]

M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24(2), 199–210 (2005).
[Crossref] [PubMed]

Perrimon, N.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[Crossref]

Persson, P. O.

P. O. Persson and G. Strang, “A simple mesh generator in MATLAB,” SIAM Rev. 46(2), 329–345 (2004).
[Crossref]

Piras, D.

Poudel, J.

J. Poudel, T. P. Matthews, L. Li, M. A. Anastasio, and L. V. Wang, “Mitigation of artifacts due to isolated acoustic heterogeneities in photoacoustic computed tomography using a variable data truncation-based reconstruction method,” J. Biomed. Opt. 22(4), 041018 (2017).
[Crossref] [PubMed]

Pramanik, M.

Purwar, Y.

R. G. Willemink, S. Manohar, Y. Purwar, C. H. Slump, F. van der Heijden, and T. G. van Leeuwen, “Imaging of acoustic attenuation and speed of sound maps using photoacoustic measurements,” Proc. SPIE 6920, 692013 (2008).
[Crossref]

Razansky, D.

E. Merčep, J. L. Herraiz, X. L. Deán-Ben, and D. Razansky, “Transmission-reflection optoacoustic ultrasound (TROPUS) computed tomography of small animals,” Light Sci. Appl. 8(1), 18 (2019).
[Crossref] [PubMed]

T. F. Fehm, X. L. Deán-Ben, and D. Razansky, “Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe,” Appl. Phys. Lett. 105(17), 173505 (2014).
[Crossref]

S. Mandal, E. Nasonova, X. L. Deán-Ben, and D. Razansky, “Optimal self-calibration of tomographic reconstruction parameters in whole-body small animal optoacoustic imaging,” Photoacoustics 2(3), 128–136 (2014).
[Crossref] [PubMed]

X. L. Deán-Ben, V. Ntziachristos, and D. Razansky, “Artefact reduction in optoacoustic tomographic imaging by estimating the distribution of acoustic scatterers,” J. Biomed. Opt. 17(11), 110504 (2012).
[Crossref] [PubMed]

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[Crossref]

Ren, K.

T. Ding, K. Ren, and S. Vallélian, “A one-step reconstruction algorithm for quantitative photoacoustic imaging,” Inverse Probl. 31(9), 095005 (2015).
[Crossref]

Resink, S.

Sato, S.

R. Masuzaki, R. Tateishi, H. Yoshida, T. Sato, T. Ohki, T. Goto, H. Yoshida, S. Sato, Y. Sugioka, H. Ikeda, S. Shiina, T. Kawabe, and M. Omata, “Assessing liver tumor stiffness by transient elastography,” Hepatol. Int. 1(3), 394–397 (2007).
[Crossref] [PubMed]

Sato, T.

R. Masuzaki, R. Tateishi, H. Yoshida, T. Sato, T. Ohki, T. Goto, H. Yoshida, S. Sato, Y. Sugioka, H. Ikeda, S. Shiina, T. Kawabe, and M. Omata, “Assessing liver tumor stiffness by transient elastography,” Hepatol. Int. 1(3), 394–397 (2007).
[Crossref] [PubMed]

Schoonover, R. W.

C. Huang, K. Wang, R. W. Schoonover, L. V. Wang, and M. A. Anastasio, “Joint reconstruction of absorbed optical energy density and sound speed distributions in photoacoustic computed tomography: a numerical investigation,” IEEE Trans. Comput. Imaging 2(2), 136–149 (2016).
[Crossref] [PubMed]

Shi, J.

L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. Zhang, and L. V. Wang, “Single-breath-hold photoacoustic computed tomography of the breast,” Nat. Commun. 9(1), 2352 (2018).
[Crossref] [PubMed]

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1(5), 0071 (2017).
[Crossref] [PubMed]

Shiina, S.

R. Masuzaki, R. Tateishi, H. Yoshida, T. Sato, T. Ohki, T. Goto, H. Yoshida, S. Sato, Y. Sugioka, H. Ikeda, S. Shiina, T. Kawabe, and M. Omata, “Assessing liver tumor stiffness by transient elastography,” Hepatol. Int. 1(3), 394–397 (2007).
[Crossref] [PubMed]

Sidky, E. Y.

M. A. Anastasio, J. Zhang, E. Y. Sidky, Y. Zou, D. Xia, and X. Pan, “Feasibility of half-data image reconstruction in 3-D reflectivity tomography with a spherical aperture,” IEEE Trans. Med. Imaging 24(9), 1100–1112 (2005).
[Crossref] [PubMed]

Singh, M. K. A.

M. K. A. Singh and W. Steenbergen, “Photoacoustic-guided focused ultrasound (PAFUSion) for identifying reflection artifacts in photoacoustic imaging,” Photoacoustics 3(4), 123–131 (2015).
[Crossref]

Slump, C. H.

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref] [PubMed]

J. Jose, R. G. Willemink, S. Resink, D. Piras, J. C. van Hespen, C. H. Slump, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Passive element enriched photoacoustic computed tomography (PER PACT) for simultaneous imaging of acoustic propagation properties and light absorption,” Opt. Express 19(3), 2093–2104 (2011).
[Crossref] [PubMed]

S. Resink, J. Jose, R. G. Willemink, C. H. Slump, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Multiple passive element enriched photoacoustic computed tomography,” Opt. Lett. 36(15), 2809–2811 (2011).
[Crossref] [PubMed]

R. G. Willemink, S. Manohar, Y. Purwar, C. H. Slump, F. van der Heijden, and T. G. van Leeuwen, “Imaging of acoustic attenuation and speed of sound maps using photoacoustic measurements,” Proc. SPIE 6920, 692013 (2008).
[Crossref]

S. Manohar, R. G. Willemink, F. van der Heijden, C. H. Slump, and T. G. van Leeuwen, “Concomitant speed-of-sound tomography in photoacoustic imaging,” Appl. Phys. Lett. 91(13), 131911 (2007).
[Crossref]

Steenbergen, W.

Strang, G.

P. O. Persson and G. Strang, “A simple mesh generator in MATLAB,” SIAM Rev. 46(2), 329–345 (2004).
[Crossref]

Sugioka, Y.

R. Masuzaki, R. Tateishi, H. Yoshida, T. Sato, T. Ohki, T. Goto, H. Yoshida, S. Sato, Y. Sugioka, H. Ikeda, S. Shiina, T. Kawabe, and M. Omata, “Assessing liver tumor stiffness by transient elastography,” Hepatol. Int. 1(3), 394–397 (2007).
[Crossref] [PubMed]

Takahashi, N.

S. K. Venkatesh, M. Yin, J. F. Glockner, N. Takahashi, P. A. Araoz, J. A. Talwalkar, and R. L. Ehman, “MR elastography of liver tumors: preliminary results,” AJR Am. J. Roentgenol. 190(6), 1534–1540 (2008).
[Crossref] [PubMed]

Talwalkar, J. A.

S. K. Venkatesh, M. Yin, J. F. Glockner, N. Takahashi, P. A. Araoz, J. A. Talwalkar, and R. L. Ehman, “MR elastography of liver tumors: preliminary results,” AJR Am. J. Roentgenol. 190(6), 1534–1540 (2008).
[Crossref] [PubMed]

Tateishi, R.

R. Masuzaki, R. Tateishi, H. Yoshida, T. Sato, T. Ohki, T. Goto, H. Yoshida, S. Sato, Y. Sugioka, H. Ikeda, S. Shiina, T. Kawabe, and M. Omata, “Assessing liver tumor stiffness by transient elastography,” Hepatol. Int. 1(3), 394–397 (2007).
[Crossref] [PubMed]

Treeby, B. E.

B. E. Treeby, T. K. Varslot, E. Z. Zhang, J. G. Laufer, and P. C. Beard, “Automatic sound speed selection in photoacoustic image reconstruction using an autofocus approach,” J. Biomed. Opt. 16(9), 090501 (2011).
[Crossref] [PubMed]

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref] [PubMed]

Vallélian, S.

T. Ding, K. Ren, and S. Vallélian, “A one-step reconstruction algorithm for quantitative photoacoustic imaging,” Inverse Probl. 31(9), 095005 (2015).
[Crossref]

van der Heijden, F.

R. G. Willemink, S. Manohar, Y. Purwar, C. H. Slump, F. van der Heijden, and T. G. van Leeuwen, “Imaging of acoustic attenuation and speed of sound maps using photoacoustic measurements,” Proc. SPIE 6920, 692013 (2008).
[Crossref]

S. Manohar, R. G. Willemink, F. van der Heijden, C. H. Slump, and T. G. van Leeuwen, “Concomitant speed-of-sound tomography in photoacoustic imaging,” Appl. Phys. Lett. 91(13), 131911 (2007).
[Crossref]

van Hespen, J. C.

van Leeuwen, T. G.

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref] [PubMed]

J. Jose, R. G. Willemink, S. Resink, D. Piras, J. C. van Hespen, C. H. Slump, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Passive element enriched photoacoustic computed tomography (PER PACT) for simultaneous imaging of acoustic propagation properties and light absorption,” Opt. Express 19(3), 2093–2104 (2011).
[Crossref] [PubMed]

S. Resink, J. Jose, R. G. Willemink, C. H. Slump, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Multiple passive element enriched photoacoustic computed tomography,” Opt. Lett. 36(15), 2809–2811 (2011).
[Crossref] [PubMed]

R. G. Willemink, S. Manohar, Y. Purwar, C. H. Slump, F. van der Heijden, and T. G. van Leeuwen, “Imaging of acoustic attenuation and speed of sound maps using photoacoustic measurements,” Proc. SPIE 6920, 692013 (2008).
[Crossref]

S. Manohar, R. G. Willemink, F. van der Heijden, C. H. Slump, and T. G. van Leeuwen, “Concomitant speed-of-sound tomography in photoacoustic imaging,” Appl. Phys. Lett. 91(13), 131911 (2007).
[Crossref]

Varslot, T. K.

B. E. Treeby, T. K. Varslot, E. Z. Zhang, J. G. Laufer, and P. C. Beard, “Automatic sound speed selection in photoacoustic image reconstruction using an autofocus approach,” J. Biomed. Opt. 16(9), 090501 (2011).
[Crossref] [PubMed]

Venkatesh, S. K.

S. K. Venkatesh, M. Yin, J. F. Glockner, N. Takahashi, P. A. Araoz, J. A. Talwalkar, and R. L. Ehman, “MR elastography of liver tumors: preliminary results,” AJR Am. J. Roentgenol. 190(6), 1534–1540 (2008).
[Crossref] [PubMed]

Verkhusha, V. V.

G. S. Filonov, A. Krumholz, J. Xia, J. Yao, L. V. Wang, and V. V. Verkhusha, “Deep-tissue photoacoustic tomography of a genetically encoded near-infrared fluorescent probe,” Angew. Chem. Int. Ed. Engl. 51(6), 1448–1451 (2012).
[Crossref] [PubMed]

Vinegoni, C.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[Crossref]

Wang, K.

C. Huang, K. Wang, R. W. Schoonover, L. V. Wang, and M. A. Anastasio, “Joint reconstruction of absorbed optical energy density and sound speed distributions in photoacoustic computed tomography: a numerical investigation,” IEEE Trans. Comput. Imaging 2(2), 136–149 (2016).
[Crossref] [PubMed]

J. Zhang, K. Wang, Y. Yang, and M. A. Anastasio, “Simultaneous reconstruction of speed-of-sound and optical absorption properties in photoacoustic tomography via a time-domain iterative algorithm,” Proc. SPIE 6856, 68561F (2008).
[Crossref]

Wang, L.

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1(5), 0071 (2017).
[Crossref] [PubMed]

Wang, L. V.

L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. Zhang, and L. V. Wang, “Single-breath-hold photoacoustic computed tomography of the breast,” Nat. Commun. 9(1), 2352 (2018).
[Crossref] [PubMed]

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1(5), 0071 (2017).
[Crossref] [PubMed]

J. Poudel, T. P. Matthews, L. Li, M. A. Anastasio, and L. V. Wang, “Mitigation of artifacts due to isolated acoustic heterogeneities in photoacoustic computed tomography using a variable data truncation-based reconstruction method,” J. Biomed. Opt. 22(4), 041018 (2017).
[Crossref] [PubMed]

C. Huang, K. Wang, R. W. Schoonover, L. V. Wang, and M. A. Anastasio, “Joint reconstruction of absorbed optical energy density and sound speed distributions in photoacoustic computed tomography: a numerical investigation,” IEEE Trans. Comput. Imaging 2(2), 136–149 (2016).
[Crossref] [PubMed]

J. Xia, C. Huang, K. Maslov, M. A. Anastasio, and L. V. Wang, “Enhancement of photoacoustic tomography by ultrasonic computed tomography based on optical excitation of elements of a full-ring transducer array,” Opt. Lett. 38(16), 3140–3143 (2013).
[Crossref] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

G. S. Filonov, A. Krumholz, J. Xia, J. Yao, L. V. Wang, and V. V. Verkhusha, “Deep-tissue photoacoustic tomography of a genetically encoded near-infrared fluorescent probe,” Angew. Chem. Int. Ed. Engl. 51(6), 1448–1451 (2012).
[Crossref] [PubMed]

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt. 16(7), 076003 (2011).
[Crossref] [PubMed]

M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24(2), 199–210 (2005).
[Crossref] [PubMed]

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 016706 (2005).
[Crossref] [PubMed]

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31(4), 724–733 (2004).
[Crossref] [PubMed]

Wang, Y.

C. Zhang and Y. Wang, “A reconstruction algorithm for thermoacoustic tomography with compensation for acoustic speed heterogeneity,” Phys. Med. Biol. 53(18), 4971–4982 (2008).
[Crossref] [PubMed]

Willemink, R. G.

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref] [PubMed]

S. Resink, J. Jose, R. G. Willemink, C. H. Slump, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Multiple passive element enriched photoacoustic computed tomography,” Opt. Lett. 36(15), 2809–2811 (2011).
[Crossref] [PubMed]

J. Jose, R. G. Willemink, S. Resink, D. Piras, J. C. van Hespen, C. H. Slump, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Passive element enriched photoacoustic computed tomography (PER PACT) for simultaneous imaging of acoustic propagation properties and light absorption,” Opt. Express 19(3), 2093–2104 (2011).
[Crossref] [PubMed]

R. G. Willemink, S. Manohar, Y. Purwar, C. H. Slump, F. van der Heijden, and T. G. van Leeuwen, “Imaging of acoustic attenuation and speed of sound maps using photoacoustic measurements,” Proc. SPIE 6920, 692013 (2008).
[Crossref]

S. Manohar, R. G. Willemink, F. van der Heijden, C. H. Slump, and T. G. van Leeuwen, “Concomitant speed-of-sound tomography in photoacoustic imaging,” Appl. Phys. Lett. 91(13), 131911 (2007).
[Crossref]

Xia, D.

M. A. Anastasio, J. Zhang, E. Y. Sidky, Y. Zou, D. Xia, and X. Pan, “Feasibility of half-data image reconstruction in 3-D reflectivity tomography with a spherical aperture,” IEEE Trans. Med. Imaging 24(9), 1100–1112 (2005).
[Crossref] [PubMed]

Xia, J.

J. Xia, C. Huang, K. Maslov, M. A. Anastasio, and L. V. Wang, “Enhancement of photoacoustic tomography by ultrasonic computed tomography based on optical excitation of elements of a full-ring transducer array,” Opt. Lett. 38(16), 3140–3143 (2013).
[Crossref] [PubMed]

G. S. Filonov, A. Krumholz, J. Xia, J. Yao, L. V. Wang, and V. V. Verkhusha, “Deep-tissue photoacoustic tomography of a genetically encoded near-infrared fluorescent probe,” Angew. Chem. Int. Ed. Engl. 51(6), 1448–1451 (2012).
[Crossref] [PubMed]

Xia, Y.

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt. 16(7), 076003 (2011).
[Crossref] [PubMed]

Xu, M.

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 016706 (2005).
[Crossref] [PubMed]

Xu, Y.

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31(4), 724–733 (2004).
[Crossref] [PubMed]

Yang, Y.

J. Zhang, K. Wang, Y. Yang, and M. A. Anastasio, “Simultaneous reconstruction of speed-of-sound and optical absorption properties in photoacoustic tomography via a time-domain iterative algorithm,” Proc. SPIE 6856, 68561F (2008).
[Crossref]

Yao, J.

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1(5), 0071 (2017).
[Crossref] [PubMed]

G. S. Filonov, A. Krumholz, J. Xia, J. Yao, L. V. Wang, and V. V. Verkhusha, “Deep-tissue photoacoustic tomography of a genetically encoded near-infrared fluorescent probe,” Angew. Chem. Int. Ed. Engl. 51(6), 1448–1451 (2012).
[Crossref] [PubMed]

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt. 16(7), 076003 (2011).
[Crossref] [PubMed]

Yin, M.

S. K. Venkatesh, M. Yin, J. F. Glockner, N. Takahashi, P. A. Araoz, J. A. Talwalkar, and R. L. Ehman, “MR elastography of liver tumors: preliminary results,” AJR Am. J. Roentgenol. 190(6), 1534–1540 (2008).
[Crossref] [PubMed]

Yoshida, H.

R. Masuzaki, R. Tateishi, H. Yoshida, T. Sato, T. Ohki, T. Goto, H. Yoshida, S. Sato, Y. Sugioka, H. Ikeda, S. Shiina, T. Kawabe, and M. Omata, “Assessing liver tumor stiffness by transient elastography,” Hepatol. Int. 1(3), 394–397 (2007).
[Crossref] [PubMed]

R. Masuzaki, R. Tateishi, H. Yoshida, T. Sato, T. Ohki, T. Goto, H. Yoshida, S. Sato, Y. Sugioka, H. Ikeda, S. Shiina, T. Kawabe, and M. Omata, “Assessing liver tumor stiffness by transient elastography,” Hepatol. Int. 1(3), 394–397 (2007).
[Crossref] [PubMed]

Yuan, Z.

Z. Yuan and H. Jiang, “Three-dimensional finite-element-based photoacoustic tomography: reconstruction algorithm and simulations,” Med. Phys. 34(2), 538–546 (2007).
[Crossref] [PubMed]

H. Jiang, Z. Yuan, and X. Gu, “Spatially varying optical and acoustic property reconstruction using finite-element-based photoacoustic tomography,” J. Opt. Soc. Am. A 23(4), 878–888 (2006).
[Crossref] [PubMed]

Zhang, C.

C. Zhang and Y. Wang, “A reconstruction algorithm for thermoacoustic tomography with compensation for acoustic speed heterogeneity,” Phys. Med. Biol. 53(18), 4971–4982 (2008).
[Crossref] [PubMed]

Zhang, E. Z.

B. E. Treeby, T. K. Varslot, E. Z. Zhang, J. G. Laufer, and P. C. Beard, “Automatic sound speed selection in photoacoustic image reconstruction using an autofocus approach,” J. Biomed. Opt. 16(9), 090501 (2011).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, K. Wang, Y. Yang, and M. A. Anastasio, “Simultaneous reconstruction of speed-of-sound and optical absorption properties in photoacoustic tomography via a time-domain iterative algorithm,” Proc. SPIE 6856, 68561F (2008).
[Crossref]

J. Zhang and M. A. Anastasio, “Reconstruction of speed-of-sound and electromagnetic absorption distributions in photoacoustic tomography,” Proc. SPIE 6086, 608619 (2006).
[Crossref]

M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24(2), 199–210 (2005).
[Crossref] [PubMed]

M. A. Anastasio, J. Zhang, E. Y. Sidky, Y. Zou, D. Xia, and X. Pan, “Feasibility of half-data image reconstruction in 3-D reflectivity tomography with a spherical aperture,” IEEE Trans. Med. Imaging 24(9), 1100–1112 (2005).
[Crossref] [PubMed]

Zhang, R.

L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. Zhang, and L. V. Wang, “Single-breath-hold photoacoustic computed tomography of the breast,” Nat. Commun. 9(1), 2352 (2018).
[Crossref] [PubMed]

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1(5), 0071 (2017).
[Crossref] [PubMed]

Zhang, Y.

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt. 16(7), 076003 (2011).
[Crossref] [PubMed]

Zhu, L.

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1(5), 0071 (2017).
[Crossref] [PubMed]

Zou, Y.

M. A. Anastasio, J. Zhang, E. Y. Sidky, Y. Zou, D. Xia, and X. Pan, “Feasibility of half-data image reconstruction in 3-D reflectivity tomography with a spherical aperture,” IEEE Trans. Med. Imaging 24(9), 1100–1112 (2005).
[Crossref] [PubMed]

M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24(2), 199–210 (2005).
[Crossref] [PubMed]

AJR Am. J. Roentgenol. (1)

S. K. Venkatesh, M. Yin, J. F. Glockner, N. Takahashi, P. A. Araoz, J. A. Talwalkar, and R. L. Ehman, “MR elastography of liver tumors: preliminary results,” AJR Am. J. Roentgenol. 190(6), 1534–1540 (2008).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

G. S. Filonov, A. Krumholz, J. Xia, J. Yao, L. V. Wang, and V. V. Verkhusha, “Deep-tissue photoacoustic tomography of a genetically encoded near-infrared fluorescent probe,” Angew. Chem. Int. Ed. Engl. 51(6), 1448–1451 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

T. F. Fehm, X. L. Deán-Ben, and D. Razansky, “Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe,” Appl. Phys. Lett. 105(17), 173505 (2014).
[Crossref]

S. Manohar, R. G. Willemink, F. van der Heijden, C. H. Slump, and T. G. van Leeuwen, “Concomitant speed-of-sound tomography in photoacoustic imaging,” Appl. Phys. Lett. 91(13), 131911 (2007).
[Crossref]

Hepatol. Int. (1)

R. Masuzaki, R. Tateishi, H. Yoshida, T. Sato, T. Ohki, T. Goto, H. Yoshida, S. Sato, Y. Sugioka, H. Ikeda, S. Shiina, T. Kawabe, and M. Omata, “Assessing liver tumor stiffness by transient elastography,” Hepatol. Int. 1(3), 394–397 (2007).
[Crossref] [PubMed]

IEEE Trans. Comput. Imaging (1)

C. Huang, K. Wang, R. W. Schoonover, L. V. Wang, and M. A. Anastasio, “Joint reconstruction of absorbed optical energy density and sound speed distributions in photoacoustic computed tomography: a numerical investigation,” IEEE Trans. Comput. Imaging 2(2), 136–149 (2016).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (2)

M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24(2), 199–210 (2005).
[Crossref] [PubMed]

M. A. Anastasio, J. Zhang, E. Y. Sidky, Y. Zou, D. Xia, and X. Pan, “Feasibility of half-data image reconstruction in 3-D reflectivity tomography with a spherical aperture,” IEEE Trans. Med. Imaging 24(9), 1100–1112 (2005).
[Crossref] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

M. S. Hassouna and A. A. Farag, “Multi-stencils fast marching methods: a highly accurate solution to the eikonal equation on cartesian domains,” IEEE Trans. Pattern Anal. Mach. Intell. 29(9), 1563–1574 (2007).
[Crossref] [PubMed]

Inverse Probl. (1)

T. Ding, K. Ren, and S. Vallélian, “A one-step reconstruction algorithm for quantitative photoacoustic imaging,” Inverse Probl. 31(9), 095005 (2015).
[Crossref]

J. Acoust. Soc. Am. (1)

W. Marczak, “Water as a standard in the measurements of speed of sound in liquids,” J. Acoust. Soc. Am. 102(5), 2776–2779 (1997).
[Crossref]

J. Biomed. Opt. (5)

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref] [PubMed]

B. E. Treeby, T. K. Varslot, E. Z. Zhang, J. G. Laufer, and P. C. Beard, “Automatic sound speed selection in photoacoustic image reconstruction using an autofocus approach,” J. Biomed. Opt. 16(9), 090501 (2011).
[Crossref] [PubMed]

J. Poudel, T. P. Matthews, L. Li, M. A. Anastasio, and L. V. Wang, “Mitigation of artifacts due to isolated acoustic heterogeneities in photoacoustic computed tomography using a variable data truncation-based reconstruction method,” J. Biomed. Opt. 22(4), 041018 (2017).
[Crossref] [PubMed]

X. L. Deán-Ben, V. Ntziachristos, and D. Razansky, “Artefact reduction in optoacoustic tomographic imaging by estimating the distribution of acoustic scatterers,” J. Biomed. Opt. 17(11), 110504 (2012).
[Crossref] [PubMed]

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt. 16(7), 076003 (2011).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (2)

Light Sci. Appl. (1)

E. Merčep, J. L. Herraiz, X. L. Deán-Ben, and D. Razansky, “Transmission-reflection optoacoustic ultrasound (TROPUS) computed tomography of small animals,” Light Sci. Appl. 8(1), 18 (2019).
[Crossref] [PubMed]

Med. Phys. (3)

Z. Yuan and H. Jiang, “Three-dimensional finite-element-based photoacoustic tomography: reconstruction algorithm and simulations,” Med. Phys. 34(2), 538–546 (2007).
[Crossref] [PubMed]

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31(4), 724–733 (2004).
[Crossref] [PubMed]

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref] [PubMed]

Nat. Biomed. Eng. (1)

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1(5), 0071 (2017).
[Crossref] [PubMed]

Nat. Commun. (1)

L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. Zhang, and L. V. Wang, “Single-breath-hold photoacoustic computed tomography of the breast,” Nat. Commun. 9(1), 2352 (2018).
[Crossref] [PubMed]

Nat. Photonics (1)

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Photoacoustics (2)

M. K. A. Singh and W. Steenbergen, “Photoacoustic-guided focused ultrasound (PAFUSion) for identifying reflection artifacts in photoacoustic imaging,” Photoacoustics 3(4), 123–131 (2015).
[Crossref]

S. Mandal, E. Nasonova, X. L. Deán-Ben, and D. Razansky, “Optimal self-calibration of tomographic reconstruction parameters in whole-body small animal optoacoustic imaging,” Photoacoustics 2(3), 128–136 (2014).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

C. Zhang and Y. Wang, “A reconstruction algorithm for thermoacoustic tomography with compensation for acoustic speed heterogeneity,” Phys. Med. Biol. 53(18), 4971–4982 (2008).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 016706 (2005).
[Crossref] [PubMed]

Proc. SPIE (3)

J. Zhang and M. A. Anastasio, “Reconstruction of speed-of-sound and electromagnetic absorption distributions in photoacoustic tomography,” Proc. SPIE 6086, 608619 (2006).
[Crossref]

J. Zhang, K. Wang, Y. Yang, and M. A. Anastasio, “Simultaneous reconstruction of speed-of-sound and optical absorption properties in photoacoustic tomography via a time-domain iterative algorithm,” Proc. SPIE 6856, 68561F (2008).
[Crossref]

R. G. Willemink, S. Manohar, Y. Purwar, C. H. Slump, F. van der Heijden, and T. G. van Leeuwen, “Imaging of acoustic attenuation and speed of sound maps using photoacoustic measurements,” Proc. SPIE 6920, 692013 (2008).
[Crossref]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

SIAM Rev. (1)

P. O. Persson and G. Strang, “A simple mesh generator in MATLAB,” SIAM Rev. 46(2), 329–345 (2004).
[Crossref]

Other (3)

J. C. Bamber, “Acoustical characteristics of biological media,” Encyclopedia of Acoustics 4, 1703–1726 (1997).

P. Stefanov and G. Uhlmann, “Instability of the linearized problem in multiwave tomography of recovery both the source and the speed,” arXiv:1211.6217 (2012).

M. D. Gu, “Investigating a Relationship Between Speed of Sound and Hydrogel Water Content via Ultrasound for Future Articular Cartilage Applications,” thesis, Case Western Reserve University (2013).

Supplementary Material (3)

NameDescription
» Visualization 1       Reconstructed IP images corresponding to SOS distributions of different iteration steps in numerical experiment Expt. 2. Scale bars: 5 mm.
» Visualization 2       Reconstructed IP images of different layers. Corrected results correspond to the reconstructed SOS distribution. Initial results correspond to the initial SOS distribution for reconstruction. Half-ring results are IP results with reconstructed SOS di
» Visualization 3       Reconstructed IP images corresponding to SOS distributions of different iteration steps for mouse liver (layer 8 in Expt. 4). Scale bars: 5 mm.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 System setup.
Fig. 2
Fig. 2 Simulation results. (a) Different colors represent regions with different SOS. (b) The real IP distribution (gold standard). (c) SOS evolutions in Expt. 1. (d) The IP image corresponding to the reconstructed SOS distribution in Expt. 1. (e) SOS evolutions in Expt. 2. (f) The IP image corresponding to the reconstructed SOS distribution of Expt. 2. Scale bars: 5 mm.
Fig. 3
Fig. 3 The results of the phantom experiment. (a) and (b) are the IP images corresponding to the initial and final SOS distributions, respectively. (c) A photograph of the phantom. Scale bars: 5 mm.
Fig. 4
Fig. 4 In vivo images of a nude mouse trunk (Expt. 4). (a) and (b) are IP images corresponding to the initial SOS distributions, (c) and (d) are IP images corresponding to the final SOS distributions. (a) and (c) correspond to one of the liver sections, while (b) and (d) correspond to one of the kidney sections. (e) presents the segmentation scheme in getting (d) (I: intermediate tissue, II: kidney, III: bowel). (f) shows zoomed-in views of the subdomains in (a)-(d), labeled by the colors and types of the borderlines. Scale bars: 5 mm. AA, abdominal aorta; BM, backbone muscles; IN, intestines; IVC, inferior vena cava; KD, kidneys; LV, lobes of liver; PV, portal vein; SC: spinal cord; SP, spleen; SV, superficial vessels.
Fig. 5
Fig. 5 Experimental demonstration of FC’s robustness against wavelength-dependent feature variations (Expt. 5). (a-c) In vivo images reconstructed using FC at a fixed axial position in the liver region, acquired at different excitation wavelengths. (a), (b) and (c) correspond to 680, 800 and 920 nm, respectively. Scale bars: 5 mm. (d) The estimated SOS values as a function of excitation wavelengths.
Fig. 6
Fig. 6 In vivo PA imaging of an orthotopic mouse model of HepG2. (a) The dissected liver with the tumor. The red arrow points to the tumor. (b) H&E of histological section of (a) showing the tumor boundary. Black and red arrows point to the normal and tumor regions, respectively. (c) Cross-sectional image taken at the liver region of a living mouse carrying the tumor. The IP image was reconstructed after applying an SOS map generated by FC optimization. Red arrow points to a ‘feeding’ vessel of the tumor. (d) The reconstructed SOS distribution corresponding to (c). Scale bars: (a)(c)(d) 5 mm; (b) 40 μm.
Fig. 7
Fig. 7 In vivo PA imaging of hepatic injury. The reconstructed images of normal liver (a) and liver with hepatic injury (b) of BALB/cAnNCrl mice. The SOS maps used in these reconstructions were generated by FC optimization. (c) Photography showing the dissected liver with hepatic injury. (d) H&E stained specimen of a healthy liver. (e) H&E stained specimen of a liver with hepatic injury. V: vacuole. Scale bars: (a)(b)(c) 5 mm. (d)(e) 20 μm.
Fig. 8
Fig. 8 The comparison of results of FC and half-time back projection, using the liver data of Expt. 4. (a) The final IP result of FC. (b) The IP result using half-time back projection. Red box highlights the part that has splitting artefacts. Scale bar: 5 mm.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

p 0 (b) (r)= Ω 0 b( r 0 ,t=TOF(r, r 0 ))d Ω 0 / Ω 0 ,
b( r 0 ,t)=2p( r 0 ,t)2t p( r 0 ,t) t .
b( r 0 ,t)=S( r 0 ,t).
| T(r) |= 1 v(r) ,
T( r i,j )= T H + T V 2 + 1 2 2 h 2 v 2 ( r i,j ) ( T H T V ) 2 .
T( r i,j )=min( T H , T V )+ h v( r i,j ) .
Λ * = argmax Λ [c(Λ)],
c(Λ)=corr[ P 1 (b) ( Θ c ), P 2 (b) ( Θ c )],
c Λ i (Λ)= c[(..., v i +Δv,...)]c[(..., v i ,...)] Δv ,

Metrics