Abstract

Accurate diagnoses of superficial and deep dermal burns are difficult to make even by experienced investigators due to slight differences in dermis damage. Many imaging technologies have been developed to improve the burn depth assessment. But these imaging tools have limitations in deep imaging or resolving ability. Photoacoustic imaging is a hybrid modality combining optical and ultrasound imaging that remains high resolution in deep imaging depth. In this work, we used dual-scale photoacoustic imaging to noninvasively diagnose burn injury and monitor the burn healing. Real-time PACT provided cross-sectional and volumetric images of the burn region. High-resolution PAM allowed for imaging of angiogenesis on the hyperemic ring. A long-term surveillance was also performed to assess the difference between the two damage degrees of burn injuries. Our proposed method suggests an effective tool to diagnose and monitor burn injury.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Combined reflectance confocal microscopy/optical coherence tomography imaging for skin burn assessment

Nicusor Iftimia, R. Daniel Ferguson, Mircea Mujat, Ankit H. Patel, Ellen Ziyi Zhang, William Fox, and Milind Rajadhyaksha
Biomed. Opt. Express 4(5) 680-695 (2013)

Quantitative assessment of graded burn wounds in a porcine model using spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI)

Adrien Ponticorvo, David M. Burmeister, Bruce Yang, Bernard Choi, Robert J. Christy, and Anthony J. Durkin
Biomed. Opt. Express 5(10) 3467-3481 (2014)

Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging

Edward Z. Zhang, Boris Povazay, Jan Laufer, Aneesh Alex, Bernd Hofer, Barbara Pedley, Carl Glittenberg, Bradley Treeby, Ben Cox, Paul Beard, and Wolfgang Drexler
Biomed. Opt. Express 2(8) 2202-2215 (2011)

References

  • View by:
  • |
  • |
  • |

  1. American Burn Association, “Burn Incidence and Treatment in the United States: 2016” http://ameriburn.org/who-we-are/media/burn-incidence-fact-sheet/ .
  2. K. Mattox, Trauma (McGraw-Hill Education, 2017).
  3. B. S. Atiyeh, S. W. Gunn, and S. N. Hayek, “State of the art in burn treatment,” World J. Surg. 29(2), 131–148 (2005).
    [Crossref] [PubMed]
  4. D. H. Park, J. W. Hwang, K. S. Jang, D. G. Han, K. Y. Ahn, and B. S. Baik, “Use of laser Doppler flowmetry for estimation of the depth of burns,” Plast. Reconstr. Surg. 101(6), 1516–1523 (1998).
    [Crossref] [PubMed]
  5. S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. L. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
    [Crossref] [PubMed]
  6. M. Todorović, S. Jiao, J. Ai, D. Pereda-Cubián, G. Stoica, and L. V. Wang, “In vivo burn imaging using Mueller optical coherence tomography,” Opt. Express 16(14), 10279–10284 (2008).
    [Crossref] [PubMed]
  7. L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. Zhang, and L. V. Wang, “Single-breath-hold photoacoustic computed tomography of the breast,” Nat. Commun. 9(1), 2352 (2018).
    [Crossref] [PubMed]
  8. W. Li, R. Chen, J. Lv, H. Wang, Y. Liu, Y. Peng, Z. Qian, G. Fu, and L. Nie, “In Vivo Photoacoustic Imaging of Brain Injury and Rehabilitation by High-Efficient Near-Infrared Dye Labeled Mesenchymal Stem Cells with Enhanced Brain Barrier Permeability,” Adv. Sci. (Weinh.) 5(2), 1700277 (2018).
    [Crossref] [PubMed]
  9. J. Lv, Y. Peng, S. Li, Z. Guo, Q. Zhao, X. Zhang, and L. Nie, “Hemispherical photoacoustic imaging of myocardial infarction: in vivo detection and monitoring,” Eur. Radiol. 28(5), 2176–2183 (2018).
    [Crossref] [PubMed]
  10. D. K. Yao, K. Maslov, K. K. Shung, Q. Zhou, and L. V. Wang, “In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA,” Opt. Lett. 35(24), 4139–4141 (2010).
    [Crossref] [PubMed]
  11. W. Li, X. Sun, Y. Wang, G. Niu, X. Chen, Z. Qian, and L. Nie, “In vivo quantitative photoacoustic microscopy of gold nanostar kinetics in mouse organs,” Biomed. Opt. Express 5(8), 2679–2685 (2014).
    [Crossref] [PubMed]
  12. L. Nie, P. Huang, W. Li, X. Yan, A. Jin, Z. Wang, Y. Tang, S. Wang, X. Zhang, G. Niu, and X. Chen, “Early-stage imaging of nanocarrier-enhanced chemotherapy response in living subjects by scalable photoacoustic microscopy,” ACS Nano 8(12), 12141–12150 (2014).
    [Crossref] [PubMed]
  13. T. Ida, Y. Kawaguchi, S. Kawauchi, K. Iwaya, H. Tsuda, D. Saitoh, S. Sato, and T. Iwai, “Real-time photoacoustic imaging system for burn diagnosis,” J. Biomed. Opt. 19(8), 086013 (2014).
    [Crossref] [PubMed]
  14. M. Yamazaki, S. Sato, H. Ashida, D. Saito, Y. Okada, and M. Obara, “Measurement of burn depths in rats using multiwavelength photoacoustic depth profiling,” J. Biomed. Opt. 10(6), 064011 (2005).
    [Crossref] [PubMed]
  15. Y. Tsunoi, S. Sato, S. Kawauchi, H. Ashida, D. Saitoh, and M. Terakawa, “In vivo photoacoustic molecular imaging of the distribution of serum albumin in rat burned skin,” Burns 39(7), 1403–1408 (2013).
    [Crossref] [PubMed]
  16. S. Y. Nam, E. Chung, L. J. Suggs, and S. Y. Emelianov, “Combined ultrasound and photoacoustic imaging to noninvasively assess burn injury and selectively monitor a regenerative tissue-engineered construct,” Tissue Eng. Part C Methods 21(6), 557–566 (2015).
    [Crossref] [PubMed]
  17. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt. 11(5), 054033 (2006).
    [Crossref] [PubMed]
  18. C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19), R59–R97 (2009).
    [Crossref] [PubMed]
  19. American National Standards Institute, “American National Standard for Safe Use of Lasers,” (ANSI, 2014).
  20. K. M. Meiburger, S. Y. Nam, E. Chung, L. J. Suggs, S. Y. Emelianov, and F. Molinari, “Skeletonization algorithm-based blood vessel quantification using in vivo 3D photoacoustic imaging,” Phys. Med. Biol. 61(22), 7994–8009 (2016).
    [Crossref] [PubMed]

2018 (3)

L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. Zhang, and L. V. Wang, “Single-breath-hold photoacoustic computed tomography of the breast,” Nat. Commun. 9(1), 2352 (2018).
[Crossref] [PubMed]

W. Li, R. Chen, J. Lv, H. Wang, Y. Liu, Y. Peng, Z. Qian, G. Fu, and L. Nie, “In Vivo Photoacoustic Imaging of Brain Injury and Rehabilitation by High-Efficient Near-Infrared Dye Labeled Mesenchymal Stem Cells with Enhanced Brain Barrier Permeability,” Adv. Sci. (Weinh.) 5(2), 1700277 (2018).
[Crossref] [PubMed]

J. Lv, Y. Peng, S. Li, Z. Guo, Q. Zhao, X. Zhang, and L. Nie, “Hemispherical photoacoustic imaging of myocardial infarction: in vivo detection and monitoring,” Eur. Radiol. 28(5), 2176–2183 (2018).
[Crossref] [PubMed]

2016 (1)

K. M. Meiburger, S. Y. Nam, E. Chung, L. J. Suggs, S. Y. Emelianov, and F. Molinari, “Skeletonization algorithm-based blood vessel quantification using in vivo 3D photoacoustic imaging,” Phys. Med. Biol. 61(22), 7994–8009 (2016).
[Crossref] [PubMed]

2015 (1)

S. Y. Nam, E. Chung, L. J. Suggs, and S. Y. Emelianov, “Combined ultrasound and photoacoustic imaging to noninvasively assess burn injury and selectively monitor a regenerative tissue-engineered construct,” Tissue Eng. Part C Methods 21(6), 557–566 (2015).
[Crossref] [PubMed]

2014 (3)

W. Li, X. Sun, Y. Wang, G. Niu, X. Chen, Z. Qian, and L. Nie, “In vivo quantitative photoacoustic microscopy of gold nanostar kinetics in mouse organs,” Biomed. Opt. Express 5(8), 2679–2685 (2014).
[Crossref] [PubMed]

L. Nie, P. Huang, W. Li, X. Yan, A. Jin, Z. Wang, Y. Tang, S. Wang, X. Zhang, G. Niu, and X. Chen, “Early-stage imaging of nanocarrier-enhanced chemotherapy response in living subjects by scalable photoacoustic microscopy,” ACS Nano 8(12), 12141–12150 (2014).
[Crossref] [PubMed]

T. Ida, Y. Kawaguchi, S. Kawauchi, K. Iwaya, H. Tsuda, D. Saitoh, S. Sato, and T. Iwai, “Real-time photoacoustic imaging system for burn diagnosis,” J. Biomed. Opt. 19(8), 086013 (2014).
[Crossref] [PubMed]

2013 (1)

Y. Tsunoi, S. Sato, S. Kawauchi, H. Ashida, D. Saitoh, and M. Terakawa, “In vivo photoacoustic molecular imaging of the distribution of serum albumin in rat burned skin,” Burns 39(7), 1403–1408 (2013).
[Crossref] [PubMed]

2010 (1)

2009 (1)

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19), R59–R97 (2009).
[Crossref] [PubMed]

2008 (1)

2006 (1)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt. 11(5), 054033 (2006).
[Crossref] [PubMed]

2005 (2)

M. Yamazaki, S. Sato, H. Ashida, D. Saito, Y. Okada, and M. Obara, “Measurement of burn depths in rats using multiwavelength photoacoustic depth profiling,” J. Biomed. Opt. 10(6), 064011 (2005).
[Crossref] [PubMed]

B. S. Atiyeh, S. W. Gunn, and S. N. Hayek, “State of the art in burn treatment,” World J. Surg. 29(2), 131–148 (2005).
[Crossref] [PubMed]

2004 (1)

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. L. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

1998 (1)

D. H. Park, J. W. Hwang, K. S. Jang, D. G. Han, K. Y. Ahn, and B. S. Baik, “Use of laser Doppler flowmetry for estimation of the depth of burns,” Plast. Reconstr. Surg. 101(6), 1516–1523 (1998).
[Crossref] [PubMed]

Ahn, K. Y.

D. H. Park, J. W. Hwang, K. S. Jang, D. G. Han, K. Y. Ahn, and B. S. Baik, “Use of laser Doppler flowmetry for estimation of the depth of burns,” Plast. Reconstr. Surg. 101(6), 1516–1523 (1998).
[Crossref] [PubMed]

Ai, J.

Appleton, C. M.

L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. Zhang, and L. V. Wang, “Single-breath-hold photoacoustic computed tomography of the breast,” Nat. Commun. 9(1), 2352 (2018).
[Crossref] [PubMed]

Ashida, H.

Y. Tsunoi, S. Sato, S. Kawauchi, H. Ashida, D. Saitoh, and M. Terakawa, “In vivo photoacoustic molecular imaging of the distribution of serum albumin in rat burned skin,” Burns 39(7), 1403–1408 (2013).
[Crossref] [PubMed]

M. Yamazaki, S. Sato, H. Ashida, D. Saito, Y. Okada, and M. Obara, “Measurement of burn depths in rats using multiwavelength photoacoustic depth profiling,” J. Biomed. Opt. 10(6), 064011 (2005).
[Crossref] [PubMed]

Atiyeh, B. S.

B. S. Atiyeh, S. W. Gunn, and S. N. Hayek, “State of the art in burn treatment,” World J. Surg. 29(2), 131–148 (2005).
[Crossref] [PubMed]

Baik, B. S.

D. H. Park, J. W. Hwang, K. S. Jang, D. G. Han, K. Y. Ahn, and B. S. Baik, “Use of laser Doppler flowmetry for estimation of the depth of burns,” Plast. Reconstr. Surg. 101(6), 1516–1523 (1998).
[Crossref] [PubMed]

Chen, R.

W. Li, R. Chen, J. Lv, H. Wang, Y. Liu, Y. Peng, Z. Qian, G. Fu, and L. Nie, “In Vivo Photoacoustic Imaging of Brain Injury and Rehabilitation by High-Efficient Near-Infrared Dye Labeled Mesenchymal Stem Cells with Enhanced Brain Barrier Permeability,” Adv. Sci. (Weinh.) 5(2), 1700277 (2018).
[Crossref] [PubMed]

Chen, X.

L. Nie, P. Huang, W. Li, X. Yan, A. Jin, Z. Wang, Y. Tang, S. Wang, X. Zhang, G. Niu, and X. Chen, “Early-stage imaging of nanocarrier-enhanced chemotherapy response in living subjects by scalable photoacoustic microscopy,” ACS Nano 8(12), 12141–12150 (2014).
[Crossref] [PubMed]

W. Li, X. Sun, Y. Wang, G. Niu, X. Chen, Z. Qian, and L. Nie, “In vivo quantitative photoacoustic microscopy of gold nanostar kinetics in mouse organs,” Biomed. Opt. Express 5(8), 2679–2685 (2014).
[Crossref] [PubMed]

Chen, Z.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. L. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

Chung, E.

K. M. Meiburger, S. Y. Nam, E. Chung, L. J. Suggs, S. Y. Emelianov, and F. Molinari, “Skeletonization algorithm-based blood vessel quantification using in vivo 3D photoacoustic imaging,” Phys. Med. Biol. 61(22), 7994–8009 (2016).
[Crossref] [PubMed]

S. Y. Nam, E. Chung, L. J. Suggs, and S. Y. Emelianov, “Combined ultrasound and photoacoustic imaging to noninvasively assess burn injury and selectively monitor a regenerative tissue-engineered construct,” Tissue Eng. Part C Methods 21(6), 557–566 (2015).
[Crossref] [PubMed]

de Boer, J. F.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. L. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

Emelianov, S. Y.

K. M. Meiburger, S. Y. Nam, E. Chung, L. J. Suggs, S. Y. Emelianov, and F. Molinari, “Skeletonization algorithm-based blood vessel quantification using in vivo 3D photoacoustic imaging,” Phys. Med. Biol. 61(22), 7994–8009 (2016).
[Crossref] [PubMed]

S. Y. Nam, E. Chung, L. J. Suggs, and S. Y. Emelianov, “Combined ultrasound and photoacoustic imaging to noninvasively assess burn injury and selectively monitor a regenerative tissue-engineered construct,” Tissue Eng. Part C Methods 21(6), 557–566 (2015).
[Crossref] [PubMed]

Fu, G.

W. Li, R. Chen, J. Lv, H. Wang, Y. Liu, Y. Peng, Z. Qian, G. Fu, and L. Nie, “In Vivo Photoacoustic Imaging of Brain Injury and Rehabilitation by High-Efficient Near-Infrared Dye Labeled Mesenchymal Stem Cells with Enhanced Brain Barrier Permeability,” Adv. Sci. (Weinh.) 5(2), 1700277 (2018).
[Crossref] [PubMed]

Gunn, S. W.

B. S. Atiyeh, S. W. Gunn, and S. N. Hayek, “State of the art in burn treatment,” World J. Surg. 29(2), 131–148 (2005).
[Crossref] [PubMed]

Guo, Z.

J. Lv, Y. Peng, S. Li, Z. Guo, Q. Zhao, X. Zhang, and L. Nie, “Hemispherical photoacoustic imaging of myocardial infarction: in vivo detection and monitoring,” Eur. Radiol. 28(5), 2176–2183 (2018).
[Crossref] [PubMed]

Han, D. G.

D. H. Park, J. W. Hwang, K. S. Jang, D. G. Han, K. Y. Ahn, and B. S. Baik, “Use of laser Doppler flowmetry for estimation of the depth of burns,” Plast. Reconstr. Surg. 101(6), 1516–1523 (1998).
[Crossref] [PubMed]

Hayek, S. N.

B. S. Atiyeh, S. W. Gunn, and S. N. Hayek, “State of the art in burn treatment,” World J. Surg. 29(2), 131–148 (2005).
[Crossref] [PubMed]

Hu, P.

L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. Zhang, and L. V. Wang, “Single-breath-hold photoacoustic computed tomography of the breast,” Nat. Commun. 9(1), 2352 (2018).
[Crossref] [PubMed]

Huang, H. E. L.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. L. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

Huang, P.

L. Nie, P. Huang, W. Li, X. Yan, A. Jin, Z. Wang, Y. Tang, S. Wang, X. Zhang, G. Niu, and X. Chen, “Early-stage imaging of nanocarrier-enhanced chemotherapy response in living subjects by scalable photoacoustic microscopy,” ACS Nano 8(12), 12141–12150 (2014).
[Crossref] [PubMed]

Hwang, J. W.

D. H. Park, J. W. Hwang, K. S. Jang, D. G. Han, K. Y. Ahn, and B. S. Baik, “Use of laser Doppler flowmetry for estimation of the depth of burns,” Plast. Reconstr. Surg. 101(6), 1516–1523 (1998).
[Crossref] [PubMed]

Ida, T.

T. Ida, Y. Kawaguchi, S. Kawauchi, K. Iwaya, H. Tsuda, D. Saitoh, S. Sato, and T. Iwai, “Real-time photoacoustic imaging system for burn diagnosis,” J. Biomed. Opt. 19(8), 086013 (2014).
[Crossref] [PubMed]

Iwai, T.

T. Ida, Y. Kawaguchi, S. Kawauchi, K. Iwaya, H. Tsuda, D. Saitoh, S. Sato, and T. Iwai, “Real-time photoacoustic imaging system for burn diagnosis,” J. Biomed. Opt. 19(8), 086013 (2014).
[Crossref] [PubMed]

Iwaya, K.

T. Ida, Y. Kawaguchi, S. Kawauchi, K. Iwaya, H. Tsuda, D. Saitoh, S. Sato, and T. Iwai, “Real-time photoacoustic imaging system for burn diagnosis,” J. Biomed. Opt. 19(8), 086013 (2014).
[Crossref] [PubMed]

Jang, K. S.

D. H. Park, J. W. Hwang, K. S. Jang, D. G. Han, K. Y. Ahn, and B. S. Baik, “Use of laser Doppler flowmetry for estimation of the depth of burns,” Plast. Reconstr. Surg. 101(6), 1516–1523 (1998).
[Crossref] [PubMed]

Jiao, S.

Jin, A.

L. Nie, P. Huang, W. Li, X. Yan, A. Jin, Z. Wang, Y. Tang, S. Wang, X. Zhang, G. Niu, and X. Chen, “Early-stage imaging of nanocarrier-enhanced chemotherapy response in living subjects by scalable photoacoustic microscopy,” ACS Nano 8(12), 12141–12150 (2014).
[Crossref] [PubMed]

Jung, W. Q.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. L. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

Kawaguchi, Y.

T. Ida, Y. Kawaguchi, S. Kawauchi, K. Iwaya, H. Tsuda, D. Saitoh, S. Sato, and T. Iwai, “Real-time photoacoustic imaging system for burn diagnosis,” J. Biomed. Opt. 19(8), 086013 (2014).
[Crossref] [PubMed]

Kawauchi, S.

T. Ida, Y. Kawaguchi, S. Kawauchi, K. Iwaya, H. Tsuda, D. Saitoh, S. Sato, and T. Iwai, “Real-time photoacoustic imaging system for burn diagnosis,” J. Biomed. Opt. 19(8), 086013 (2014).
[Crossref] [PubMed]

Y. Tsunoi, S. Sato, S. Kawauchi, H. Ashida, D. Saitoh, and M. Terakawa, “In vivo photoacoustic molecular imaging of the distribution of serum albumin in rat burned skin,” Burns 39(7), 1403–1408 (2013).
[Crossref] [PubMed]

Keikhanzadeh, K.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. L. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

Li, C.

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19), R59–R97 (2009).
[Crossref] [PubMed]

Li, L.

L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. Zhang, and L. V. Wang, “Single-breath-hold photoacoustic computed tomography of the breast,” Nat. Commun. 9(1), 2352 (2018).
[Crossref] [PubMed]

Li, S.

J. Lv, Y. Peng, S. Li, Z. Guo, Q. Zhao, X. Zhang, and L. Nie, “Hemispherical photoacoustic imaging of myocardial infarction: in vivo detection and monitoring,” Eur. Radiol. 28(5), 2176–2183 (2018).
[Crossref] [PubMed]

Li, W.

W. Li, R. Chen, J. Lv, H. Wang, Y. Liu, Y. Peng, Z. Qian, G. Fu, and L. Nie, “In Vivo Photoacoustic Imaging of Brain Injury and Rehabilitation by High-Efficient Near-Infrared Dye Labeled Mesenchymal Stem Cells with Enhanced Brain Barrier Permeability,” Adv. Sci. (Weinh.) 5(2), 1700277 (2018).
[Crossref] [PubMed]

L. Nie, P. Huang, W. Li, X. Yan, A. Jin, Z. Wang, Y. Tang, S. Wang, X. Zhang, G. Niu, and X. Chen, “Early-stage imaging of nanocarrier-enhanced chemotherapy response in living subjects by scalable photoacoustic microscopy,” ACS Nano 8(12), 12141–12150 (2014).
[Crossref] [PubMed]

W. Li, X. Sun, Y. Wang, G. Niu, X. Chen, Z. Qian, and L. Nie, “In vivo quantitative photoacoustic microscopy of gold nanostar kinetics in mouse organs,” Biomed. Opt. Express 5(8), 2679–2685 (2014).
[Crossref] [PubMed]

Lin, L.

L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. Zhang, and L. V. Wang, “Single-breath-hold photoacoustic computed tomography of the breast,” Nat. Commun. 9(1), 2352 (2018).
[Crossref] [PubMed]

Liu, Y.

W. Li, R. Chen, J. Lv, H. Wang, Y. Liu, Y. Peng, Z. Qian, G. Fu, and L. Nie, “In Vivo Photoacoustic Imaging of Brain Injury and Rehabilitation by High-Efficient Near-Infrared Dye Labeled Mesenchymal Stem Cells with Enhanced Brain Barrier Permeability,” Adv. Sci. (Weinh.) 5(2), 1700277 (2018).
[Crossref] [PubMed]

Lv, J.

W. Li, R. Chen, J. Lv, H. Wang, Y. Liu, Y. Peng, Z. Qian, G. Fu, and L. Nie, “In Vivo Photoacoustic Imaging of Brain Injury and Rehabilitation by High-Efficient Near-Infrared Dye Labeled Mesenchymal Stem Cells with Enhanced Brain Barrier Permeability,” Adv. Sci. (Weinh.) 5(2), 1700277 (2018).
[Crossref] [PubMed]

J. Lv, Y. Peng, S. Li, Z. Guo, Q. Zhao, X. Zhang, and L. Nie, “Hemispherical photoacoustic imaging of myocardial infarction: in vivo detection and monitoring,” Eur. Radiol. 28(5), 2176–2183 (2018).
[Crossref] [PubMed]

Maslov, K.

L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. Zhang, and L. V. Wang, “Single-breath-hold photoacoustic computed tomography of the breast,” Nat. Commun. 9(1), 2352 (2018).
[Crossref] [PubMed]

D. K. Yao, K. Maslov, K. K. Shung, Q. Zhou, and L. V. Wang, “In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA,” Opt. Lett. 35(24), 4139–4141 (2010).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt. 11(5), 054033 (2006).
[Crossref] [PubMed]

Meiburger, K. M.

K. M. Meiburger, S. Y. Nam, E. Chung, L. J. Suggs, S. Y. Emelianov, and F. Molinari, “Skeletonization algorithm-based blood vessel quantification using in vivo 3D photoacoustic imaging,” Phys. Med. Biol. 61(22), 7994–8009 (2016).
[Crossref] [PubMed]

Molinari, F.

K. M. Meiburger, S. Y. Nam, E. Chung, L. J. Suggs, S. Y. Emelianov, and F. Molinari, “Skeletonization algorithm-based blood vessel quantification using in vivo 3D photoacoustic imaging,” Phys. Med. Biol. 61(22), 7994–8009 (2016).
[Crossref] [PubMed]

Nam, S. Y.

K. M. Meiburger, S. Y. Nam, E. Chung, L. J. Suggs, S. Y. Emelianov, and F. Molinari, “Skeletonization algorithm-based blood vessel quantification using in vivo 3D photoacoustic imaging,” Phys. Med. Biol. 61(22), 7994–8009 (2016).
[Crossref] [PubMed]

S. Y. Nam, E. Chung, L. J. Suggs, and S. Y. Emelianov, “Combined ultrasound and photoacoustic imaging to noninvasively assess burn injury and selectively monitor a regenerative tissue-engineered construct,” Tissue Eng. Part C Methods 21(6), 557–566 (2015).
[Crossref] [PubMed]

Nelson, J. S.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. L. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

Nie, L.

W. Li, R. Chen, J. Lv, H. Wang, Y. Liu, Y. Peng, Z. Qian, G. Fu, and L. Nie, “In Vivo Photoacoustic Imaging of Brain Injury and Rehabilitation by High-Efficient Near-Infrared Dye Labeled Mesenchymal Stem Cells with Enhanced Brain Barrier Permeability,” Adv. Sci. (Weinh.) 5(2), 1700277 (2018).
[Crossref] [PubMed]

J. Lv, Y. Peng, S. Li, Z. Guo, Q. Zhao, X. Zhang, and L. Nie, “Hemispherical photoacoustic imaging of myocardial infarction: in vivo detection and monitoring,” Eur. Radiol. 28(5), 2176–2183 (2018).
[Crossref] [PubMed]

L. Nie, P. Huang, W. Li, X. Yan, A. Jin, Z. Wang, Y. Tang, S. Wang, X. Zhang, G. Niu, and X. Chen, “Early-stage imaging of nanocarrier-enhanced chemotherapy response in living subjects by scalable photoacoustic microscopy,” ACS Nano 8(12), 12141–12150 (2014).
[Crossref] [PubMed]

W. Li, X. Sun, Y. Wang, G. Niu, X. Chen, Z. Qian, and L. Nie, “In vivo quantitative photoacoustic microscopy of gold nanostar kinetics in mouse organs,” Biomed. Opt. Express 5(8), 2679–2685 (2014).
[Crossref] [PubMed]

Niu, G.

W. Li, X. Sun, Y. Wang, G. Niu, X. Chen, Z. Qian, and L. Nie, “In vivo quantitative photoacoustic microscopy of gold nanostar kinetics in mouse organs,” Biomed. Opt. Express 5(8), 2679–2685 (2014).
[Crossref] [PubMed]

L. Nie, P. Huang, W. Li, X. Yan, A. Jin, Z. Wang, Y. Tang, S. Wang, X. Zhang, G. Niu, and X. Chen, “Early-stage imaging of nanocarrier-enhanced chemotherapy response in living subjects by scalable photoacoustic microscopy,” ACS Nano 8(12), 12141–12150 (2014).
[Crossref] [PubMed]

Obara, M.

M. Yamazaki, S. Sato, H. Ashida, D. Saito, Y. Okada, and M. Obara, “Measurement of burn depths in rats using multiwavelength photoacoustic depth profiling,” J. Biomed. Opt. 10(6), 064011 (2005).
[Crossref] [PubMed]

Okada, Y.

M. Yamazaki, S. Sato, H. Ashida, D. Saito, Y. Okada, and M. Obara, “Measurement of burn depths in rats using multiwavelength photoacoustic depth profiling,” J. Biomed. Opt. 10(6), 064011 (2005).
[Crossref] [PubMed]

Park, D. H.

D. H. Park, J. W. Hwang, K. S. Jang, D. G. Han, K. Y. Ahn, and B. S. Baik, “Use of laser Doppler flowmetry for estimation of the depth of burns,” Plast. Reconstr. Surg. 101(6), 1516–1523 (1998).
[Crossref] [PubMed]

Park, H.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. L. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

Peng, Y.

J. Lv, Y. Peng, S. Li, Z. Guo, Q. Zhao, X. Zhang, and L. Nie, “Hemispherical photoacoustic imaging of myocardial infarction: in vivo detection and monitoring,” Eur. Radiol. 28(5), 2176–2183 (2018).
[Crossref] [PubMed]

W. Li, R. Chen, J. Lv, H. Wang, Y. Liu, Y. Peng, Z. Qian, G. Fu, and L. Nie, “In Vivo Photoacoustic Imaging of Brain Injury and Rehabilitation by High-Efficient Near-Infrared Dye Labeled Mesenchymal Stem Cells with Enhanced Brain Barrier Permeability,” Adv. Sci. (Weinh.) 5(2), 1700277 (2018).
[Crossref] [PubMed]

Pereda-Cubián, D.

Qian, Z.

W. Li, R. Chen, J. Lv, H. Wang, Y. Liu, Y. Peng, Z. Qian, G. Fu, and L. Nie, “In Vivo Photoacoustic Imaging of Brain Injury and Rehabilitation by High-Efficient Near-Infrared Dye Labeled Mesenchymal Stem Cells with Enhanced Brain Barrier Permeability,” Adv. Sci. (Weinh.) 5(2), 1700277 (2018).
[Crossref] [PubMed]

W. Li, X. Sun, Y. Wang, G. Niu, X. Chen, Z. Qian, and L. Nie, “In vivo quantitative photoacoustic microscopy of gold nanostar kinetics in mouse organs,” Biomed. Opt. Express 5(8), 2679–2685 (2014).
[Crossref] [PubMed]

Saito, D.

M. Yamazaki, S. Sato, H. Ashida, D. Saito, Y. Okada, and M. Obara, “Measurement of burn depths in rats using multiwavelength photoacoustic depth profiling,” J. Biomed. Opt. 10(6), 064011 (2005).
[Crossref] [PubMed]

Saitoh, D.

T. Ida, Y. Kawaguchi, S. Kawauchi, K. Iwaya, H. Tsuda, D. Saitoh, S. Sato, and T. Iwai, “Real-time photoacoustic imaging system for burn diagnosis,” J. Biomed. Opt. 19(8), 086013 (2014).
[Crossref] [PubMed]

Y. Tsunoi, S. Sato, S. Kawauchi, H. Ashida, D. Saitoh, and M. Terakawa, “In vivo photoacoustic molecular imaging of the distribution of serum albumin in rat burned skin,” Burns 39(7), 1403–1408 (2013).
[Crossref] [PubMed]

Sato, S.

T. Ida, Y. Kawaguchi, S. Kawauchi, K. Iwaya, H. Tsuda, D. Saitoh, S. Sato, and T. Iwai, “Real-time photoacoustic imaging system for burn diagnosis,” J. Biomed. Opt. 19(8), 086013 (2014).
[Crossref] [PubMed]

Y. Tsunoi, S. Sato, S. Kawauchi, H. Ashida, D. Saitoh, and M. Terakawa, “In vivo photoacoustic molecular imaging of the distribution of serum albumin in rat burned skin,” Burns 39(7), 1403–1408 (2013).
[Crossref] [PubMed]

M. Yamazaki, S. Sato, H. Ashida, D. Saito, Y. Okada, and M. Obara, “Measurement of burn depths in rats using multiwavelength photoacoustic depth profiling,” J. Biomed. Opt. 10(6), 064011 (2005).
[Crossref] [PubMed]

Shi, J.

L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. Zhang, and L. V. Wang, “Single-breath-hold photoacoustic computed tomography of the breast,” Nat. Commun. 9(1), 2352 (2018).
[Crossref] [PubMed]

Shung, K. K.

Srinivas, S. M.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. L. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

Stoica, G.

M. Todorović, S. Jiao, J. Ai, D. Pereda-Cubián, G. Stoica, and L. V. Wang, “In vivo burn imaging using Mueller optical coherence tomography,” Opt. Express 16(14), 10279–10284 (2008).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt. 11(5), 054033 (2006).
[Crossref] [PubMed]

Suggs, L. J.

K. M. Meiburger, S. Y. Nam, E. Chung, L. J. Suggs, S. Y. Emelianov, and F. Molinari, “Skeletonization algorithm-based blood vessel quantification using in vivo 3D photoacoustic imaging,” Phys. Med. Biol. 61(22), 7994–8009 (2016).
[Crossref] [PubMed]

S. Y. Nam, E. Chung, L. J. Suggs, and S. Y. Emelianov, “Combined ultrasound and photoacoustic imaging to noninvasively assess burn injury and selectively monitor a regenerative tissue-engineered construct,” Tissue Eng. Part C Methods 21(6), 557–566 (2015).
[Crossref] [PubMed]

Sun, X.

Tang, Y.

L. Nie, P. Huang, W. Li, X. Yan, A. Jin, Z. Wang, Y. Tang, S. Wang, X. Zhang, G. Niu, and X. Chen, “Early-stage imaging of nanocarrier-enhanced chemotherapy response in living subjects by scalable photoacoustic microscopy,” ACS Nano 8(12), 12141–12150 (2014).
[Crossref] [PubMed]

Terakawa, M.

Y. Tsunoi, S. Sato, S. Kawauchi, H. Ashida, D. Saitoh, and M. Terakawa, “In vivo photoacoustic molecular imaging of the distribution of serum albumin in rat burned skin,” Burns 39(7), 1403–1408 (2013).
[Crossref] [PubMed]

Todorovic, M.

Tsuda, H.

T. Ida, Y. Kawaguchi, S. Kawauchi, K. Iwaya, H. Tsuda, D. Saitoh, S. Sato, and T. Iwai, “Real-time photoacoustic imaging system for burn diagnosis,” J. Biomed. Opt. 19(8), 086013 (2014).
[Crossref] [PubMed]

Tsunoi, Y.

Y. Tsunoi, S. Sato, S. Kawauchi, H. Ashida, D. Saitoh, and M. Terakawa, “In vivo photoacoustic molecular imaging of the distribution of serum albumin in rat burned skin,” Burns 39(7), 1403–1408 (2013).
[Crossref] [PubMed]

Wang, H.

W. Li, R. Chen, J. Lv, H. Wang, Y. Liu, Y. Peng, Z. Qian, G. Fu, and L. Nie, “In Vivo Photoacoustic Imaging of Brain Injury and Rehabilitation by High-Efficient Near-Infrared Dye Labeled Mesenchymal Stem Cells with Enhanced Brain Barrier Permeability,” Adv. Sci. (Weinh.) 5(2), 1700277 (2018).
[Crossref] [PubMed]

Wang, L. V.

L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. Zhang, and L. V. Wang, “Single-breath-hold photoacoustic computed tomography of the breast,” Nat. Commun. 9(1), 2352 (2018).
[Crossref] [PubMed]

D. K. Yao, K. Maslov, K. K. Shung, Q. Zhou, and L. V. Wang, “In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA,” Opt. Lett. 35(24), 4139–4141 (2010).
[Crossref] [PubMed]

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19), R59–R97 (2009).
[Crossref] [PubMed]

M. Todorović, S. Jiao, J. Ai, D. Pereda-Cubián, G. Stoica, and L. V. Wang, “In vivo burn imaging using Mueller optical coherence tomography,” Opt. Express 16(14), 10279–10284 (2008).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt. 11(5), 054033 (2006).
[Crossref] [PubMed]

Wang, S.

L. Nie, P. Huang, W. Li, X. Yan, A. Jin, Z. Wang, Y. Tang, S. Wang, X. Zhang, G. Niu, and X. Chen, “Early-stage imaging of nanocarrier-enhanced chemotherapy response in living subjects by scalable photoacoustic microscopy,” ACS Nano 8(12), 12141–12150 (2014).
[Crossref] [PubMed]

Wang, Y.

Wang, Z.

L. Nie, P. Huang, W. Li, X. Yan, A. Jin, Z. Wang, Y. Tang, S. Wang, X. Zhang, G. Niu, and X. Chen, “Early-stage imaging of nanocarrier-enhanced chemotherapy response in living subjects by scalable photoacoustic microscopy,” ACS Nano 8(12), 12141–12150 (2014).
[Crossref] [PubMed]

Yamazaki, M.

M. Yamazaki, S. Sato, H. Ashida, D. Saito, Y. Okada, and M. Obara, “Measurement of burn depths in rats using multiwavelength photoacoustic depth profiling,” J. Biomed. Opt. 10(6), 064011 (2005).
[Crossref] [PubMed]

Yan, X.

L. Nie, P. Huang, W. Li, X. Yan, A. Jin, Z. Wang, Y. Tang, S. Wang, X. Zhang, G. Niu, and X. Chen, “Early-stage imaging of nanocarrier-enhanced chemotherapy response in living subjects by scalable photoacoustic microscopy,” ACS Nano 8(12), 12141–12150 (2014).
[Crossref] [PubMed]

Yao, D. K.

Zhang, H. F.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt. 11(5), 054033 (2006).
[Crossref] [PubMed]

Zhang, J.

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. L. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

Zhang, R.

L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. Zhang, and L. V. Wang, “Single-breath-hold photoacoustic computed tomography of the breast,” Nat. Commun. 9(1), 2352 (2018).
[Crossref] [PubMed]

Zhang, X.

J. Lv, Y. Peng, S. Li, Z. Guo, Q. Zhao, X. Zhang, and L. Nie, “Hemispherical photoacoustic imaging of myocardial infarction: in vivo detection and monitoring,” Eur. Radiol. 28(5), 2176–2183 (2018).
[Crossref] [PubMed]

L. Nie, P. Huang, W. Li, X. Yan, A. Jin, Z. Wang, Y. Tang, S. Wang, X. Zhang, G. Niu, and X. Chen, “Early-stage imaging of nanocarrier-enhanced chemotherapy response in living subjects by scalable photoacoustic microscopy,” ACS Nano 8(12), 12141–12150 (2014).
[Crossref] [PubMed]

Zhao, Q.

J. Lv, Y. Peng, S. Li, Z. Guo, Q. Zhao, X. Zhang, and L. Nie, “Hemispherical photoacoustic imaging of myocardial infarction: in vivo detection and monitoring,” Eur. Radiol. 28(5), 2176–2183 (2018).
[Crossref] [PubMed]

Zhou, Q.

ACS Nano (1)

L. Nie, P. Huang, W. Li, X. Yan, A. Jin, Z. Wang, Y. Tang, S. Wang, X. Zhang, G. Niu, and X. Chen, “Early-stage imaging of nanocarrier-enhanced chemotherapy response in living subjects by scalable photoacoustic microscopy,” ACS Nano 8(12), 12141–12150 (2014).
[Crossref] [PubMed]

Adv. Sci. (Weinh.) (1)

W. Li, R. Chen, J. Lv, H. Wang, Y. Liu, Y. Peng, Z. Qian, G. Fu, and L. Nie, “In Vivo Photoacoustic Imaging of Brain Injury and Rehabilitation by High-Efficient Near-Infrared Dye Labeled Mesenchymal Stem Cells with Enhanced Brain Barrier Permeability,” Adv. Sci. (Weinh.) 5(2), 1700277 (2018).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Burns (1)

Y. Tsunoi, S. Sato, S. Kawauchi, H. Ashida, D. Saitoh, and M. Terakawa, “In vivo photoacoustic molecular imaging of the distribution of serum albumin in rat burned skin,” Burns 39(7), 1403–1408 (2013).
[Crossref] [PubMed]

Eur. Radiol. (1)

J. Lv, Y. Peng, S. Li, Z. Guo, Q. Zhao, X. Zhang, and L. Nie, “Hemispherical photoacoustic imaging of myocardial infarction: in vivo detection and monitoring,” Eur. Radiol. 28(5), 2176–2183 (2018).
[Crossref] [PubMed]

J. Biomed. Opt. (4)

S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. L. Huang, J. Zhang, W. Q. Jung, Z. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 207–212 (2004).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt. 11(5), 054033 (2006).
[Crossref] [PubMed]

T. Ida, Y. Kawaguchi, S. Kawauchi, K. Iwaya, H. Tsuda, D. Saitoh, S. Sato, and T. Iwai, “Real-time photoacoustic imaging system for burn diagnosis,” J. Biomed. Opt. 19(8), 086013 (2014).
[Crossref] [PubMed]

M. Yamazaki, S. Sato, H. Ashida, D. Saito, Y. Okada, and M. Obara, “Measurement of burn depths in rats using multiwavelength photoacoustic depth profiling,” J. Biomed. Opt. 10(6), 064011 (2005).
[Crossref] [PubMed]

Nat. Commun. (1)

L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. Zhang, and L. V. Wang, “Single-breath-hold photoacoustic computed tomography of the breast,” Nat. Commun. 9(1), 2352 (2018).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Med. Biol. (2)

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19), R59–R97 (2009).
[Crossref] [PubMed]

K. M. Meiburger, S. Y. Nam, E. Chung, L. J. Suggs, S. Y. Emelianov, and F. Molinari, “Skeletonization algorithm-based blood vessel quantification using in vivo 3D photoacoustic imaging,” Phys. Med. Biol. 61(22), 7994–8009 (2016).
[Crossref] [PubMed]

Plast. Reconstr. Surg. (1)

D. H. Park, J. W. Hwang, K. S. Jang, D. G. Han, K. Y. Ahn, and B. S. Baik, “Use of laser Doppler flowmetry for estimation of the depth of burns,” Plast. Reconstr. Surg. 101(6), 1516–1523 (1998).
[Crossref] [PubMed]

Tissue Eng. Part C Methods (1)

S. Y. Nam, E. Chung, L. J. Suggs, and S. Y. Emelianov, “Combined ultrasound and photoacoustic imaging to noninvasively assess burn injury and selectively monitor a regenerative tissue-engineered construct,” Tissue Eng. Part C Methods 21(6), 557–566 (2015).
[Crossref] [PubMed]

World J. Surg. (1)

B. S. Atiyeh, S. W. Gunn, and S. N. Hayek, “State of the art in burn treatment,” World J. Surg. 29(2), 131–148 (2005).
[Crossref] [PubMed]

Other (3)

American Burn Association, “Burn Incidence and Treatment in the United States: 2016” http://ameriburn.org/who-we-are/media/burn-incidence-fact-sheet/ .

K. Mattox, Trauma (McGraw-Hill Education, 2017).

American National Standards Institute, “American National Standard for Safe Use of Lasers,” (ANSI, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of dual-scale photoacoustic imaging on skin burn injury. On the left is the PACT imaging model in dashed box and a representative PACT image of burn. On the right is the PAM imaging model and a PAM image of burn. UT, ultrasound transducer; OL, objective lens.
Fig. 2
Fig. 2 Cross-sectional PACT images of burn injury. Cross-sectional PA structural images of (a) SDB and (c) DDB injuries are presented at selected time points. The yellow arrows indicate the eschar at skin surface after thermal damage. The white double arrows mark the burn depth of burn wound. Cross-sectional sO2 images of (b) SDB and (d) DDB injuries are presented at selected time points. (e) Quantitative burn depth changes of two burn models in pre-burn and post-burn 21 days. DDB has deeper thermal damage than SDB. (f) H&E staining of skin tissues right after making SDB and DDB. Scale bar is 1 mm.
Fig. 3
Fig. 3 3D PACT imaging of burn injury at different days. Top-view PA images of (a) SDB and (b) DDB injuries. The burn region, indicated by yellow dashed circle, show strong PA signal due to optical absorption of eschar and stasis in early stage. (c) (d) Relative sO2 images of (a) and (b). DDB has lower sO2 in burn center because of suffering more severe thermal damage. Quantitative analysis of (e) volume photoacoustic signal amplitudes and (f) sO2 averages of burn zone. Scale bar is 3 mm.
Fig. 4
Fig. 4 Volume changes of burn injuries via time increases. Approximate 3D maps of reconstructed burn region of (a) SDB and (b) DDB. The elliptical shapes are well consistent with burn models. (c) Quantitative analysis of volume changes of SDB and DDB, where DDB has a larger volume due to more severe thermal damage. Scale bar is 2.5 mm.
Fig. 5
Fig. 5 PAM imaging of skin surface in burn injuries. (a) High-resolution PAM images of DDB at different time points. The blood vessel signals peak on day 4 and fade after 10 days. White arrows point to the hyperemic ring. (b) Representative vessel structure extracted through skeletonization algorithm at day 4. (c) Relative blood vessel density of (a). (d) Normalized inner diameter of hyperemic ring. Scale bar is 1 mm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

sO2= [HbO2] [HbR]+[HbO2] .

Metrics