Abstract

We report on the enhanced optical transmittance in the NIR wavelength range (900 to 2400 nm) offered by a transparent Yttria-stabilized zirconia (YSZ) implant coupled with optical clearing agents (OCAs). The enhancement in optical access to the brain is evaluated upon comparing ex-vivo transmittance measurements of mice native skull and the YSZ cranial implant with scalp and OCAs. An increase in transmittance of up to 50% and attenuation lengths of up to 2.4 mm (i.e., a five-fold increase in light penetration) are obtained with the YSZ implant and the OCAs. The use of this ceramic implant and the biocompatible optical clearing agents offer attractive features for NIR optical techniques for brain theranostics.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Evaluation of a transparent cranial implant as a permanent window for cerebral blood flow imaging

Nami Davoodzadeh, Mildred S. Cano-Velázquez, David L. Halaney, Carrie R. Jonak, Devin K. Binder, and Guillermo Aguilar
Biomed. Opt. Express 9(10) 4879-4892 (2018)

Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent

Xueding Wang, Geng Ku, Malgorzata A. Wegiel, Darryl J. Bornhop, George Stoica, and Lihong V. Wang
Opt. Lett. 29(7) 730-732 (2004)

Longitudinal vascular dynamics following cranial window and electrode implantation measured with speckle variance optical coherence angiography

Daniel X. Hammer, Andrea Lozzi, Erkinay Abliz, Noah Greenbaum, Anant Agrawal, Victor Krauthamer, and Cristin G. Welle
Biomed. Opt. Express 5(8) 2823-2836 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58, R37 (2013).
    [Crossref] [PubMed]
  2. L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and R. R. Alfano, “Deep optical imaging of tissue using the second and third near-infrared spectral windows,” J. Biomed. Opt. 19, 056004 (2014).
    [Crossref] [PubMed]
  3. G. Hong, A. L. Antaris, and H. Dai, “Near-infrared fluorophores for biomedical imaging,” Nat. Biomed. Eng. 1, 0010 (2017).
    [Crossref]
  4. A. N. Bashkatov, K. V. Berezin, K. N. Dvoretskiy, M. L. Chernavina, E. A. Genina, V. D. Genin, V. I. Kochubey, E. N. Lazareva, A. B. Pravdin, M. E. Shvachkina, and P. A. Timoshina, “Measurement of tissue optical properties in the context of tissue optical clearing,” J. biomedical optics 23,091416 (2018).
    [Crossref]
  5. S. Golovynskyi, I. Golovynska, L. I. Stepanova, O. I. Datsenko, L. Liu, J. Qu, and T. Y. Ohulchanskyy, “Optical windows for head tissues in near-infrared and short-wave infrared regions: Approaching transcranial light applications,” J. biophotonics 11, e201800141 (2018).
    [Crossref] [PubMed]
  6. S. J. Madsen, Optical Methods and Instrumentation in Brain Imaging and Therapy(Springer Science & Business Media, 2012).
  7. G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8, 723–730 (2014).
    [Crossref] [PubMed]
  8. L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophotonics 9, 38–43 (2016).
    [Crossref]
  9. J. A. Curcio and C. C. Petty, “The near infrared absorption spectrum of liquid water,” J. Opt. Soc. Am., JOSA 41, 302–304 (1951).
    [Crossref]
  10. C.-L. Tsai, J.-C. Chen, and W.-J. Wang, and Others, “Near-infrared absorption property of biological soft tissue constituents,” J. Med. Biol. Eng. 21, 7–14 (2001).
  11. Y. Tsukasaki, M. Morimatsu, G. Nishimura, T. Sakata, H. Yasuda, A. Komatsuzaki, T. M. Watanabe, and T. Jin, “Synthesis and optical properties of emission-tunable PbS/CdS core–shell quantum dots for in vivo fluorescence imaging in the second near-infrared window,” RSC Adv. 4, 41164–41171 (2014).
    [Crossref]
  12. R. H. Wilson, K. P. Nadeau, F. B. Jaworski, B. J. Tromberg, and A. J. Durkin, “Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization,” J. Biomed. Opt. 20, 030901 (2015).
    [Crossref] [PubMed]
  13. N. S. James, T. Y. Ohulchanskyy, Y. Chen, P. Joshi, X. Zheng, L. N. Goswami, and R. K. Pandey, “Comparative tumor imaging and PDT efficacy of HPPH conjugated in the mono- and di-forms to various polymethine cyanine dyes: part - 2,” Theranostics 3, 703–718 (2013).
    [Crossref] [PubMed]
  14. H.-T. Xu, F. Pan, G. Yang, and W.-B. Gan, “Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex,” Nat. Neurosci. 10, 549–551 (2007).
    [Crossref] [PubMed]
  15. A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4, 1128–1144 (2009).
    [Crossref] [PubMed]
  16. J. Grutzendler, N. Kasthuri, and W.-B. Gan, “Long-term dendritic spine stability in the adult cortex,” Nature 420, 812–816 (2002).
    [Crossref] [PubMed]
  17. A. B. Parthasarathy, S. M. S. Kazmi, and A. K. Dunn, “Quantitative imaging of ischemic stroke through thinned skull in mice with multi exposure speckle imaging,” Biomed. Opt. Express 1, 246–259 (2010).
    [Crossref]
  18. W.-C. A. Lee, J. L. Chen, H. Huang, J. H. Leslie, Y. Amitai, P. T. So, and E. Nedivi, “A dynamic zone defines interneuron remodeling in the adult neocortex,” Proc. Natl. Acad. Sci. U. S. A. 105, 19968–19973 (2008).
    [Crossref] [PubMed]
  19. P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7, 981–984 (2010).
    [Crossref] [PubMed]
  20. J. Wang, Y. Zhang, T. H. Xu, Q. M. Luo, and D. Zhu, “An innovative transparent cranial window based on skull optical clearing,” Laser Phys. Lett. 9, 469 (2012).
    [Crossref]
  21. E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, “Optical clearing of cranial bone,” Adv. Opt. Technol. 2008, 267867 (2008).
    [Crossref]
  22. Y.-J. Zhao, T.-T. Yu, C. Zhang, Z. Li, Q.-M. Luo, T.-H. Xu, and D. Zhu, “Skull optical clearing window for in vivo imaging of the mouse cortex at synaptic resolution,” Light. Sci. Appl. 7, 17153 (2018).
    [Crossref]
  23. C. J. Roome and B. Kuhn, “Chronic cranial window with access port for repeated cellular manipulations, drug application, and electrophysiology,” Front. Cell. Neurosci. 8, 379 (2014).
    [Crossref] [PubMed]
  24. V. Zuluaga-Ramirez, S. Rom, and Y. Persidsky, “Craniula: A cranial window technique for prolonged imaging of brain surface vasculature with simultaneous adjacent intracerebral injection,” Fluids Barriers CNS 12, 24 (2015).
    [Crossref] [PubMed]
  25. C. Heo, H. Park, Y.-T. Kim, E. Baeg, Y. H. Kim, S.-G. Kim, and M. Suh, “A soft, transparent, freely accessible cranial window for chronic imaging and electrophysiology,” Sci. Rep. 6, 27818 (2016).
    [Crossref] [PubMed]
  26. S. S. Smith, P. Magnusen, and B. J. Pletka, “Fracture toughness of glass using the indentation fracture technique,” in Fracture Mechanics for Ceramics, Rocks, and Concrete, (ASTM International, 1981), pp. 33.
  27. S. F. Hulbert, “The use of alumina and zirconia in surgical implants,” in An Introduction to Bioceramics, (2013), pp. 27–47.
    [Crossref]
  28. A. Sharova, Y. S. Maklygina, G. Yusubalieva, I. Shikunova, V. Kurlov, and V. Loschenov, “Sapphire implant based neuro-complex for deep-lying brain tumors phototheranostics,” in Journal of Physics: Conference Series, vol. 945 (IOP Publishing, 2018), p. 012009.
  29. Y. Damestani, C. L. Reynolds, J. Szu, M. S. Hsu, Y. Kodera, D. K. Binder, B. H. Park, J. E. Garay, M. P. Rao, and G. Aguilar, “Transparent nanocrystalline yttria-stabilized-zirconia calvarium prosthesis,” Nanomedicine 9, 1135–1138 (2013).
    [Crossref] [PubMed]
  30. Y. Damestani, D. E. Galan-Hoffman, D. Ortiz, P. Cabrales, and G. Aguilar, “Inflammatory response to implantation of transparent nanocrystalline yttria-stabilized zirconia using a dorsal window chamber model,” Nanomedicine 12, 1757–1763 (2016).
    [Crossref] [PubMed]
  31. J. E. Alaniz, F. G. Perez-Gutierrez, G. Aguilar, and J. E. Garay, “Optical properties of transparent nanocrystalline yttria stabilized zirconia,” Opt. Mater. 32, 62–68 (2009).
    [Crossref]
  32. S. R. Casolco, J. Xu, and J. E. Garay, “Transparent/translucent polycrystalline nanostructured yttria stabilized zirconia with varying colors,” Scr. Mater. 58, 516–519 (2008).
    [Crossref]
  33. P. Christel, A. Meunier, M. Heller, J. P. Torre, and C. N. Peille, “Mechanical properties and short-term in-vivo evaluation of yttrium-oxide-partially-stabilized zirconia,” J. Biomed. Mater. Res. 23, 45–61 (1989).
    [Crossref] [PubMed]
  34. K. Nakamura, T. Kanno, P. Milleding, and U. Ortengren, “Zirconia as a dental implant abutment material: a systematic review,” Int. J. Prosthodont. 23, 299–309 (2010).
    [PubMed]
  35. P. Christel, A. Meunier, J. M. Dorlot, J. M. Crolet, J. Witvoet, L. Sedel, and P. Boutin, “Biomechanical compatibility and design of ceramic implants for orthopedic surgery,” Ann. N. Y. Acad. Sci. 523, 234–256 (1988).
    [Crossref] [PubMed]
  36. M. I. Gutierrez, E. H. Penilla, L. Leija, A. Vera, J. E. Garay, and G. Aguilar, “Novel cranial implants of Yttria-Stabilized zirconia as acoustic windows for ultrasonic brain therapy,” Adv. Healthc. Mater. 6, 1700214 (2017).
    [Crossref] [PubMed]
  37. N. Davoodzadeh, M. S. Cano-Velázquez, D. L. Halaney, C. R. Jonak, D. K. Binder, and G. Aguilar, “Evaluation of a transparent cranial implant for multi-wavelength intrinsic optical signal imaging,” in Neural Imaging and Sensing 2019, vol. 10865 (International Society for Optics and Photonics, 2019), p. 108650B.
  38. N. Davoodzadeh, D. Halaney, C. R. Jonak, N. Cuando, A. Aminfar, D. K. Binder, and G. Aguilar, “Laser speckle imaging of brain blood flow through a transparent nanocrystalline yttria-stabilized-zirconia cranial implant,” in Dynamics and Fluctuations in Biomedical Photonics XV, vol. 10493 (International Society for Optics and Photonics, 2018), p. 1049303.
  39. N. Davoodzadeh, M. S. Cano-Velázquez, D. L. Halaney, C. R. Jonak, D. K. Binder, and G. Aguilar, “Evaluation of a transparent cranial implant as a permanent window for cerebral blood flow imaging,” Biomed. Opt. Express 9, 4879–4892 (2018).
    [Crossref] [PubMed]
  40. V. Tuchin, Tissue Optics Light Scattering Methods and Instruments for Medical Diagnosis (SPIE,2000).
  41. V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlyutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomedical Optics 2, 401–418 (1997).
    [Crossref]
  42. E. A. Genina, A. N. Bashkatov, Y. P. Sinichkin, I. Y. Yanina, and V. V. Tuchin, “Optical clearing of tissues: Benefits for biology, medical diagnostics, and phototherapy,” in Handbook of Optical Biomedical Diagnostics, Second Edition, Volume 2: Methods, V. V. Tuchin, ed. (SPIE Press, 2016).
    [Crossref]
  43. F. Salehpour, F. Farajdokht, P. Cassano, S. Sadigh-Eteghad, M. Erfani, M. R. Hamblin, M. M. Salimi, P. Karimi, S. H. Rasta, and J. Mahmoudi, “Near-infrared photobiomodulation combined with coenzyme Q for depression in a mouse model of restraint stress: reduction in oxidative stress, neuroinflammation, and apoptosis,” Brain Res. Bull. 144, 213–222 (2019).
    [Crossref]
  44. M. A. Caldieraro and P. Cassano, “Transcranial and systemic photobiomodulation for major depressive disorder: A systematic review of efficacy, tolerability and biological mechanisms,” J. Affect. Disord. 243, 262–273 (2019).
    [Crossref]
  45. M. R. Hamblin, “Photobiomodulation for traumatic brain injury and stroke,” J. Neurosci. Res. 96, 731–743 (2018).
    [Crossref]
  46. E. Hemmer, A. Benayas, F. Légaré, and F. Vetrone, “Exploiting the biological windows: current perspectives on fluorescent bioprobes emitting above 1000 nm,” Nanoscale Horizons 1, 168–184 (2016).
    [Crossref]
  47. Z. Xue, S. Zeng, and J. Hao, “Non-invasive through-skull brain vascular imaging and small tumor diagnosis based on NIR-II emissive lanthanide nanoprobes beyond 1500 nm,” Biomaterials 171, 153–163 (2018).
    [Crossref] [PubMed]
  48. D. C. Sordillo, L. A. Sordillo, P. P. Sordillo, L. Shi, and R. R. Alfano, “Short wavelength infrared optical windows for evaluation of benign and malignant tissues,” J. Biomed. Opt. 22, 45002 (2017).
    [Crossref] [PubMed]
  49. J. R. Thiagarajah, M. C. Papadopoulos, and A. S. Verkman, “Noninvasive early detection of brain edema in mice by near-infrared light scattering,” J. Neurosci. Res. 80, 293–299 (2005).
    [Crossref] [PubMed]
  50. J. E. Garay, “Current-Activated, Pressure-Assisted densification of materials,” Annu. Rev. Mater. Res. 40, 445–468 (2010).
    [Crossref]
  51. N. Davoodzadeh, G. Uahengo, D. Halaney, J. E. Garay, and G. Aguilar, “Influence of low temperature ageing on optical and mechanical properties of transparent yittria stabilized-zirconia cranial prosthesis,” in Design and Quality for Biomedical Technologies XI, vol. 10486 (International Society for Optics and Photonics, 2018), p. 104860A.
  52. R. Shi, L. Guo, C. Zhang, W. Feng, P. Li, Z. Ding, and D. Zhu, “A useful way to develop effective in vivo skin optical clearing agents,” J. Biophotonics 10, 887–895 (2017).
    [Crossref]
  53. D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photon. Rev. 7, 732–757 (2013).
    [Crossref] [PubMed]
  54. S. A. Filatova, I. A. Shcherbakov, and V. B. Tsvetkov, “Optical properties of animal tissues in the wavelength range from 350 to 2600 nm,” J. Biomed. Opt. 22, 35009 (2017).
    [Crossref]
  55. N. Davoodzadeh, N. Cuando, A. H. Aminfar, M. Cano, and G. Aguilar, “Assessment of bacteria growth under transparent nanocrystalline yttriastabilized-zirconia cranial implant using laser speckle imaging,” in Lasers in Surgery and Medicine, vol. 50 (Wiley, 2018), pp. S5–S6.

2019 (2)

F. Salehpour, F. Farajdokht, P. Cassano, S. Sadigh-Eteghad, M. Erfani, M. R. Hamblin, M. M. Salimi, P. Karimi, S. H. Rasta, and J. Mahmoudi, “Near-infrared photobiomodulation combined with coenzyme Q for depression in a mouse model of restraint stress: reduction in oxidative stress, neuroinflammation, and apoptosis,” Brain Res. Bull. 144, 213–222 (2019).
[Crossref]

M. A. Caldieraro and P. Cassano, “Transcranial and systemic photobiomodulation for major depressive disorder: A systematic review of efficacy, tolerability and biological mechanisms,” J. Affect. Disord. 243, 262–273 (2019).
[Crossref]

2018 (6)

M. R. Hamblin, “Photobiomodulation for traumatic brain injury and stroke,” J. Neurosci. Res. 96, 731–743 (2018).
[Crossref]

Z. Xue, S. Zeng, and J. Hao, “Non-invasive through-skull brain vascular imaging and small tumor diagnosis based on NIR-II emissive lanthanide nanoprobes beyond 1500 nm,” Biomaterials 171, 153–163 (2018).
[Crossref] [PubMed]

A. N. Bashkatov, K. V. Berezin, K. N. Dvoretskiy, M. L. Chernavina, E. A. Genina, V. D. Genin, V. I. Kochubey, E. N. Lazareva, A. B. Pravdin, M. E. Shvachkina, and P. A. Timoshina, “Measurement of tissue optical properties in the context of tissue optical clearing,” J. biomedical optics 23,091416 (2018).
[Crossref]

S. Golovynskyi, I. Golovynska, L. I. Stepanova, O. I. Datsenko, L. Liu, J. Qu, and T. Y. Ohulchanskyy, “Optical windows for head tissues in near-infrared and short-wave infrared regions: Approaching transcranial light applications,” J. biophotonics 11, e201800141 (2018).
[Crossref] [PubMed]

Y.-J. Zhao, T.-T. Yu, C. Zhang, Z. Li, Q.-M. Luo, T.-H. Xu, and D. Zhu, “Skull optical clearing window for in vivo imaging of the mouse cortex at synaptic resolution,” Light. Sci. Appl. 7, 17153 (2018).
[Crossref]

N. Davoodzadeh, M. S. Cano-Velázquez, D. L. Halaney, C. R. Jonak, D. K. Binder, and G. Aguilar, “Evaluation of a transparent cranial implant as a permanent window for cerebral blood flow imaging,” Biomed. Opt. Express 9, 4879–4892 (2018).
[Crossref] [PubMed]

2017 (5)

M. I. Gutierrez, E. H. Penilla, L. Leija, A. Vera, J. E. Garay, and G. Aguilar, “Novel cranial implants of Yttria-Stabilized zirconia as acoustic windows for ultrasonic brain therapy,” Adv. Healthc. Mater. 6, 1700214 (2017).
[Crossref] [PubMed]

G. Hong, A. L. Antaris, and H. Dai, “Near-infrared fluorophores for biomedical imaging,” Nat. Biomed. Eng. 1, 0010 (2017).
[Crossref]

D. C. Sordillo, L. A. Sordillo, P. P. Sordillo, L. Shi, and R. R. Alfano, “Short wavelength infrared optical windows for evaluation of benign and malignant tissues,” J. Biomed. Opt. 22, 45002 (2017).
[Crossref] [PubMed]

R. Shi, L. Guo, C. Zhang, W. Feng, P. Li, Z. Ding, and D. Zhu, “A useful way to develop effective in vivo skin optical clearing agents,” J. Biophotonics 10, 887–895 (2017).
[Crossref]

S. A. Filatova, I. A. Shcherbakov, and V. B. Tsvetkov, “Optical properties of animal tissues in the wavelength range from 350 to 2600 nm,” J. Biomed. Opt. 22, 35009 (2017).
[Crossref]

2016 (4)

E. Hemmer, A. Benayas, F. Légaré, and F. Vetrone, “Exploiting the biological windows: current perspectives on fluorescent bioprobes emitting above 1000 nm,” Nanoscale Horizons 1, 168–184 (2016).
[Crossref]

L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophotonics 9, 38–43 (2016).
[Crossref]

C. Heo, H. Park, Y.-T. Kim, E. Baeg, Y. H. Kim, S.-G. Kim, and M. Suh, “A soft, transparent, freely accessible cranial window for chronic imaging and electrophysiology,” Sci. Rep. 6, 27818 (2016).
[Crossref] [PubMed]

Y. Damestani, D. E. Galan-Hoffman, D. Ortiz, P. Cabrales, and G. Aguilar, “Inflammatory response to implantation of transparent nanocrystalline yttria-stabilized zirconia using a dorsal window chamber model,” Nanomedicine 12, 1757–1763 (2016).
[Crossref] [PubMed]

2015 (2)

V. Zuluaga-Ramirez, S. Rom, and Y. Persidsky, “Craniula: A cranial window technique for prolonged imaging of brain surface vasculature with simultaneous adjacent intracerebral injection,” Fluids Barriers CNS 12, 24 (2015).
[Crossref] [PubMed]

R. H. Wilson, K. P. Nadeau, F. B. Jaworski, B. J. Tromberg, and A. J. Durkin, “Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization,” J. Biomed. Opt. 20, 030901 (2015).
[Crossref] [PubMed]

2014 (4)

Y. Tsukasaki, M. Morimatsu, G. Nishimura, T. Sakata, H. Yasuda, A. Komatsuzaki, T. M. Watanabe, and T. Jin, “Synthesis and optical properties of emission-tunable PbS/CdS core–shell quantum dots for in vivo fluorescence imaging in the second near-infrared window,” RSC Adv. 4, 41164–41171 (2014).
[Crossref]

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8, 723–730 (2014).
[Crossref] [PubMed]

L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and R. R. Alfano, “Deep optical imaging of tissue using the second and third near-infrared spectral windows,” J. Biomed. Opt. 19, 056004 (2014).
[Crossref] [PubMed]

C. J. Roome and B. Kuhn, “Chronic cranial window with access port for repeated cellular manipulations, drug application, and electrophysiology,” Front. Cell. Neurosci. 8, 379 (2014).
[Crossref] [PubMed]

2013 (4)

Y. Damestani, C. L. Reynolds, J. Szu, M. S. Hsu, Y. Kodera, D. K. Binder, B. H. Park, J. E. Garay, M. P. Rao, and G. Aguilar, “Transparent nanocrystalline yttria-stabilized-zirconia calvarium prosthesis,” Nanomedicine 9, 1135–1138 (2013).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58, R37 (2013).
[Crossref] [PubMed]

N. S. James, T. Y. Ohulchanskyy, Y. Chen, P. Joshi, X. Zheng, L. N. Goswami, and R. K. Pandey, “Comparative tumor imaging and PDT efficacy of HPPH conjugated in the mono- and di-forms to various polymethine cyanine dyes: part - 2,” Theranostics 3, 703–718 (2013).
[Crossref] [PubMed]

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photon. Rev. 7, 732–757 (2013).
[Crossref] [PubMed]

2012 (1)

J. Wang, Y. Zhang, T. H. Xu, Q. M. Luo, and D. Zhu, “An innovative transparent cranial window based on skull optical clearing,” Laser Phys. Lett. 9, 469 (2012).
[Crossref]

2010 (4)

K. Nakamura, T. Kanno, P. Milleding, and U. Ortengren, “Zirconia as a dental implant abutment material: a systematic review,” Int. J. Prosthodont. 23, 299–309 (2010).
[PubMed]

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7, 981–984 (2010).
[Crossref] [PubMed]

A. B. Parthasarathy, S. M. S. Kazmi, and A. K. Dunn, “Quantitative imaging of ischemic stroke through thinned skull in mice with multi exposure speckle imaging,” Biomed. Opt. Express 1, 246–259 (2010).
[Crossref]

J. E. Garay, “Current-Activated, Pressure-Assisted densification of materials,” Annu. Rev. Mater. Res. 40, 445–468 (2010).
[Crossref]

2009 (2)

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4, 1128–1144 (2009).
[Crossref] [PubMed]

J. E. Alaniz, F. G. Perez-Gutierrez, G. Aguilar, and J. E. Garay, “Optical properties of transparent nanocrystalline yttria stabilized zirconia,” Opt. Mater. 32, 62–68 (2009).
[Crossref]

2008 (3)

S. R. Casolco, J. Xu, and J. E. Garay, “Transparent/translucent polycrystalline nanostructured yttria stabilized zirconia with varying colors,” Scr. Mater. 58, 516–519 (2008).
[Crossref]

E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, “Optical clearing of cranial bone,” Adv. Opt. Technol. 2008, 267867 (2008).
[Crossref]

W.-C. A. Lee, J. L. Chen, H. Huang, J. H. Leslie, Y. Amitai, P. T. So, and E. Nedivi, “A dynamic zone defines interneuron remodeling in the adult neocortex,” Proc. Natl. Acad. Sci. U. S. A. 105, 19968–19973 (2008).
[Crossref] [PubMed]

2007 (1)

H.-T. Xu, F. Pan, G. Yang, and W.-B. Gan, “Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex,” Nat. Neurosci. 10, 549–551 (2007).
[Crossref] [PubMed]

2005 (1)

J. R. Thiagarajah, M. C. Papadopoulos, and A. S. Verkman, “Noninvasive early detection of brain edema in mice by near-infrared light scattering,” J. Neurosci. Res. 80, 293–299 (2005).
[Crossref] [PubMed]

2002 (1)

J. Grutzendler, N. Kasthuri, and W.-B. Gan, “Long-term dendritic spine stability in the adult cortex,” Nature 420, 812–816 (2002).
[Crossref] [PubMed]

2001 (1)

C.-L. Tsai, J.-C. Chen, and W.-J. Wang, and Others, “Near-infrared absorption property of biological soft tissue constituents,” J. Med. Biol. Eng. 21, 7–14 (2001).

1997 (1)

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlyutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomedical Optics 2, 401–418 (1997).
[Crossref]

1989 (1)

P. Christel, A. Meunier, M. Heller, J. P. Torre, and C. N. Peille, “Mechanical properties and short-term in-vivo evaluation of yttrium-oxide-partially-stabilized zirconia,” J. Biomed. Mater. Res. 23, 45–61 (1989).
[Crossref] [PubMed]

1988 (1)

P. Christel, A. Meunier, J. M. Dorlot, J. M. Crolet, J. Witvoet, L. Sedel, and P. Boutin, “Biomechanical compatibility and design of ceramic implants for orthopedic surgery,” Ann. N. Y. Acad. Sci. 523, 234–256 (1988).
[Crossref] [PubMed]

1951 (1)

J. A. Curcio and C. C. Petty, “The near infrared absorption spectrum of liquid water,” J. Opt. Soc. Am., JOSA 41, 302–304 (1951).
[Crossref]

Aguilar, G.

N. Davoodzadeh, M. S. Cano-Velázquez, D. L. Halaney, C. R. Jonak, D. K. Binder, and G. Aguilar, “Evaluation of a transparent cranial implant as a permanent window for cerebral blood flow imaging,” Biomed. Opt. Express 9, 4879–4892 (2018).
[Crossref] [PubMed]

M. I. Gutierrez, E. H. Penilla, L. Leija, A. Vera, J. E. Garay, and G. Aguilar, “Novel cranial implants of Yttria-Stabilized zirconia as acoustic windows for ultrasonic brain therapy,” Adv. Healthc. Mater. 6, 1700214 (2017).
[Crossref] [PubMed]

Y. Damestani, D. E. Galan-Hoffman, D. Ortiz, P. Cabrales, and G. Aguilar, “Inflammatory response to implantation of transparent nanocrystalline yttria-stabilized zirconia using a dorsal window chamber model,” Nanomedicine 12, 1757–1763 (2016).
[Crossref] [PubMed]

Y. Damestani, C. L. Reynolds, J. Szu, M. S. Hsu, Y. Kodera, D. K. Binder, B. H. Park, J. E. Garay, M. P. Rao, and G. Aguilar, “Transparent nanocrystalline yttria-stabilized-zirconia calvarium prosthesis,” Nanomedicine 9, 1135–1138 (2013).
[Crossref] [PubMed]

J. E. Alaniz, F. G. Perez-Gutierrez, G. Aguilar, and J. E. Garay, “Optical properties of transparent nanocrystalline yttria stabilized zirconia,” Opt. Mater. 32, 62–68 (2009).
[Crossref]

N. Davoodzadeh, M. S. Cano-Velázquez, D. L. Halaney, C. R. Jonak, D. K. Binder, and G. Aguilar, “Evaluation of a transparent cranial implant for multi-wavelength intrinsic optical signal imaging,” in Neural Imaging and Sensing 2019, vol. 10865 (International Society for Optics and Photonics, 2019), p. 108650B.

N. Davoodzadeh, D. Halaney, C. R. Jonak, N. Cuando, A. Aminfar, D. K. Binder, and G. Aguilar, “Laser speckle imaging of brain blood flow through a transparent nanocrystalline yttria-stabilized-zirconia cranial implant,” in Dynamics and Fluctuations in Biomedical Photonics XV, vol. 10493 (International Society for Optics and Photonics, 2018), p. 1049303.

N. Davoodzadeh, N. Cuando, A. H. Aminfar, M. Cano, and G. Aguilar, “Assessment of bacteria growth under transparent nanocrystalline yttriastabilized-zirconia cranial implant using laser speckle imaging,” in Lasers in Surgery and Medicine, vol. 50 (Wiley, 2018), pp. S5–S6.

N. Davoodzadeh, G. Uahengo, D. Halaney, J. E. Garay, and G. Aguilar, “Influence of low temperature ageing on optical and mechanical properties of transparent yittria stabilized-zirconia cranial prosthesis,” in Design and Quality for Biomedical Technologies XI, vol. 10486 (International Society for Optics and Photonics, 2018), p. 104860A.

Akassoglou, K.

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7, 981–984 (2010).
[Crossref] [PubMed]

Alaniz, J. E.

J. E. Alaniz, F. G. Perez-Gutierrez, G. Aguilar, and J. E. Garay, “Optical properties of transparent nanocrystalline yttria stabilized zirconia,” Opt. Mater. 32, 62–68 (2009).
[Crossref]

Alfano, R.

L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophotonics 9, 38–43 (2016).
[Crossref]

Alfano, R. R.

D. C. Sordillo, L. A. Sordillo, P. P. Sordillo, L. Shi, and R. R. Alfano, “Short wavelength infrared optical windows for evaluation of benign and malignant tissues,” J. Biomed. Opt. 22, 45002 (2017).
[Crossref] [PubMed]

L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and R. R. Alfano, “Deep optical imaging of tissue using the second and third near-infrared spectral windows,” J. Biomed. Opt. 19, 056004 (2014).
[Crossref] [PubMed]

Aminfar, A.

N. Davoodzadeh, D. Halaney, C. R. Jonak, N. Cuando, A. Aminfar, D. K. Binder, and G. Aguilar, “Laser speckle imaging of brain blood flow through a transparent nanocrystalline yttria-stabilized-zirconia cranial implant,” in Dynamics and Fluctuations in Biomedical Photonics XV, vol. 10493 (International Society for Optics and Photonics, 2018), p. 1049303.

Aminfar, A. H.

N. Davoodzadeh, N. Cuando, A. H. Aminfar, M. Cano, and G. Aguilar, “Assessment of bacteria growth under transparent nanocrystalline yttriastabilized-zirconia cranial implant using laser speckle imaging,” in Lasers in Surgery and Medicine, vol. 50 (Wiley, 2018), pp. S5–S6.

Amitai, Y.

W.-C. A. Lee, J. L. Chen, H. Huang, J. H. Leslie, Y. Amitai, P. T. So, and E. Nedivi, “A dynamic zone defines interneuron remodeling in the adult neocortex,” Proc. Natl. Acad. Sci. U. S. A. 105, 19968–19973 (2008).
[Crossref] [PubMed]

Andreasson, K. I.

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8, 723–730 (2014).
[Crossref] [PubMed]

Antaris, A. L.

G. Hong, A. L. Antaris, and H. Dai, “Near-infrared fluorophores for biomedical imaging,” Nat. Biomed. Eng. 1, 0010 (2017).
[Crossref]

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8, 723–730 (2014).
[Crossref] [PubMed]

Atochin, D. N.

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8, 723–730 (2014).
[Crossref] [PubMed]

Baeg, E.

C. Heo, H. Park, Y.-T. Kim, E. Baeg, Y. H. Kim, S.-G. Kim, and M. Suh, “A soft, transparent, freely accessible cranial window for chronic imaging and electrophysiology,” Sci. Rep. 6, 27818 (2016).
[Crossref] [PubMed]

Bashkatov, A. N.

A. N. Bashkatov, K. V. Berezin, K. N. Dvoretskiy, M. L. Chernavina, E. A. Genina, V. D. Genin, V. I. Kochubey, E. N. Lazareva, A. B. Pravdin, M. E. Shvachkina, and P. A. Timoshina, “Measurement of tissue optical properties in the context of tissue optical clearing,” J. biomedical optics 23,091416 (2018).
[Crossref]

E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, “Optical clearing of cranial bone,” Adv. Opt. Technol. 2008, 267867 (2008).
[Crossref]

E. A. Genina, A. N. Bashkatov, Y. P. Sinichkin, I. Y. Yanina, and V. V. Tuchin, “Optical clearing of tissues: Benefits for biology, medical diagnostics, and phototherapy,” in Handbook of Optical Biomedical Diagnostics, Second Edition, Volume 2: Methods, V. V. Tuchin, ed. (SPIE Press, 2016).
[Crossref]

Benayas, A.

E. Hemmer, A. Benayas, F. Légaré, and F. Vetrone, “Exploiting the biological windows: current perspectives on fluorescent bioprobes emitting above 1000 nm,” Nanoscale Horizons 1, 168–184 (2016).
[Crossref]

Berezin, K. V.

A. N. Bashkatov, K. V. Berezin, K. N. Dvoretskiy, M. L. Chernavina, E. A. Genina, V. D. Genin, V. I. Kochubey, E. N. Lazareva, A. B. Pravdin, M. E. Shvachkina, and P. A. Timoshina, “Measurement of tissue optical properties in the context of tissue optical clearing,” J. biomedical optics 23,091416 (2018).
[Crossref]

Binder, D. K.

N. Davoodzadeh, M. S. Cano-Velázquez, D. L. Halaney, C. R. Jonak, D. K. Binder, and G. Aguilar, “Evaluation of a transparent cranial implant as a permanent window for cerebral blood flow imaging,” Biomed. Opt. Express 9, 4879–4892 (2018).
[Crossref] [PubMed]

Y. Damestani, C. L. Reynolds, J. Szu, M. S. Hsu, Y. Kodera, D. K. Binder, B. H. Park, J. E. Garay, M. P. Rao, and G. Aguilar, “Transparent nanocrystalline yttria-stabilized-zirconia calvarium prosthesis,” Nanomedicine 9, 1135–1138 (2013).
[Crossref] [PubMed]

N. Davoodzadeh, D. Halaney, C. R. Jonak, N. Cuando, A. Aminfar, D. K. Binder, and G. Aguilar, “Laser speckle imaging of brain blood flow through a transparent nanocrystalline yttria-stabilized-zirconia cranial implant,” in Dynamics and Fluctuations in Biomedical Photonics XV, vol. 10493 (International Society for Optics and Photonics, 2018), p. 1049303.

N. Davoodzadeh, M. S. Cano-Velázquez, D. L. Halaney, C. R. Jonak, D. K. Binder, and G. Aguilar, “Evaluation of a transparent cranial implant for multi-wavelength intrinsic optical signal imaging,” in Neural Imaging and Sensing 2019, vol. 10865 (International Society for Optics and Photonics, 2019), p. 108650B.

Blinder, P.

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7, 981–984 (2010).
[Crossref] [PubMed]

Bonhoeffer, T.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4, 1128–1144 (2009).
[Crossref] [PubMed]

Boutin, P.

P. Christel, A. Meunier, J. M. Dorlot, J. M. Crolet, J. Witvoet, L. Sedel, and P. Boutin, “Biomechanical compatibility and design of ceramic implants for orthopedic surgery,” Ann. N. Y. Acad. Sci. 523, 234–256 (1988).
[Crossref] [PubMed]

Budansky, Y.

L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and R. R. Alfano, “Deep optical imaging of tissue using the second and third near-infrared spectral windows,” J. Biomed. Opt. 19, 056004 (2014).
[Crossref] [PubMed]

Cabrales, P.

Y. Damestani, D. E. Galan-Hoffman, D. Ortiz, P. Cabrales, and G. Aguilar, “Inflammatory response to implantation of transparent nanocrystalline yttria-stabilized zirconia using a dorsal window chamber model,” Nanomedicine 12, 1757–1763 (2016).
[Crossref] [PubMed]

Caldieraro, M. A.

M. A. Caldieraro and P. Cassano, “Transcranial and systemic photobiomodulation for major depressive disorder: A systematic review of efficacy, tolerability and biological mechanisms,” J. Affect. Disord. 243, 262–273 (2019).
[Crossref]

Cano, M.

N. Davoodzadeh, N. Cuando, A. H. Aminfar, M. Cano, and G. Aguilar, “Assessment of bacteria growth under transparent nanocrystalline yttriastabilized-zirconia cranial implant using laser speckle imaging,” in Lasers in Surgery and Medicine, vol. 50 (Wiley, 2018), pp. S5–S6.

Cano-Velázquez, M. S.

N. Davoodzadeh, M. S. Cano-Velázquez, D. L. Halaney, C. R. Jonak, D. K. Binder, and G. Aguilar, “Evaluation of a transparent cranial implant as a permanent window for cerebral blood flow imaging,” Biomed. Opt. Express 9, 4879–4892 (2018).
[Crossref] [PubMed]

N. Davoodzadeh, M. S. Cano-Velázquez, D. L. Halaney, C. R. Jonak, D. K. Binder, and G. Aguilar, “Evaluation of a transparent cranial implant for multi-wavelength intrinsic optical signal imaging,” in Neural Imaging and Sensing 2019, vol. 10865 (International Society for Optics and Photonics, 2019), p. 108650B.

Casolco, S. R.

S. R. Casolco, J. Xu, and J. E. Garay, “Transparent/translucent polycrystalline nanostructured yttria stabilized zirconia with varying colors,” Scr. Mater. 58, 516–519 (2008).
[Crossref]

Cassano, P.

M. A. Caldieraro and P. Cassano, “Transcranial and systemic photobiomodulation for major depressive disorder: A systematic review of efficacy, tolerability and biological mechanisms,” J. Affect. Disord. 243, 262–273 (2019).
[Crossref]

F. Salehpour, F. Farajdokht, P. Cassano, S. Sadigh-Eteghad, M. Erfani, M. R. Hamblin, M. M. Salimi, P. Karimi, S. H. Rasta, and J. Mahmoudi, “Near-infrared photobiomodulation combined with coenzyme Q for depression in a mouse model of restraint stress: reduction in oxidative stress, neuroinflammation, and apoptosis,” Brain Res. Bull. 144, 213–222 (2019).
[Crossref]

Chang, J.

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8, 723–730 (2014).
[Crossref] [PubMed]

Chen, C.

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8, 723–730 (2014).
[Crossref] [PubMed]

Chen, J. L.

W.-C. A. Lee, J. L. Chen, H. Huang, J. H. Leslie, Y. Amitai, P. T. So, and E. Nedivi, “A dynamic zone defines interneuron remodeling in the adult neocortex,” Proc. Natl. Acad. Sci. U. S. A. 105, 19968–19973 (2008).
[Crossref] [PubMed]

Chen, J.-C.

C.-L. Tsai, J.-C. Chen, and W.-J. Wang, and Others, “Near-infrared absorption property of biological soft tissue constituents,” J. Med. Biol. Eng. 21, 7–14 (2001).

Chen, Y.

N. S. James, T. Y. Ohulchanskyy, Y. Chen, P. Joshi, X. Zheng, L. N. Goswami, and R. K. Pandey, “Comparative tumor imaging and PDT efficacy of HPPH conjugated in the mono- and di-forms to various polymethine cyanine dyes: part - 2,” Theranostics 3, 703–718 (2013).
[Crossref] [PubMed]

Chernavina, M. L.

A. N. Bashkatov, K. V. Berezin, K. N. Dvoretskiy, M. L. Chernavina, E. A. Genina, V. D. Genin, V. I. Kochubey, E. N. Lazareva, A. B. Pravdin, M. E. Shvachkina, and P. A. Timoshina, “Measurement of tissue optical properties in the context of tissue optical clearing,” J. biomedical optics 23,091416 (2018).
[Crossref]

Chow, D. K.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4, 1128–1144 (2009).
[Crossref] [PubMed]

Christel, P.

P. Christel, A. Meunier, M. Heller, J. P. Torre, and C. N. Peille, “Mechanical properties and short-term in-vivo evaluation of yttrium-oxide-partially-stabilized zirconia,” J. Biomed. Mater. Res. 23, 45–61 (1989).
[Crossref] [PubMed]

P. Christel, A. Meunier, J. M. Dorlot, J. M. Crolet, J. Witvoet, L. Sedel, and P. Boutin, “Biomechanical compatibility and design of ceramic implants for orthopedic surgery,” Ann. N. Y. Acad. Sci. 523, 234–256 (1988).
[Crossref] [PubMed]

Chuckowree, J.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4, 1128–1144 (2009).
[Crossref] [PubMed]

Crolet, J. M.

P. Christel, A. Meunier, J. M. Dorlot, J. M. Crolet, J. Witvoet, L. Sedel, and P. Boutin, “Biomechanical compatibility and design of ceramic implants for orthopedic surgery,” Ann. N. Y. Acad. Sci. 523, 234–256 (1988).
[Crossref] [PubMed]

Cuando, N.

N. Davoodzadeh, D. Halaney, C. R. Jonak, N. Cuando, A. Aminfar, D. K. Binder, and G. Aguilar, “Laser speckle imaging of brain blood flow through a transparent nanocrystalline yttria-stabilized-zirconia cranial implant,” in Dynamics and Fluctuations in Biomedical Photonics XV, vol. 10493 (International Society for Optics and Photonics, 2018), p. 1049303.

N. Davoodzadeh, N. Cuando, A. H. Aminfar, M. Cano, and G. Aguilar, “Assessment of bacteria growth under transparent nanocrystalline yttriastabilized-zirconia cranial implant using laser speckle imaging,” in Lasers in Surgery and Medicine, vol. 50 (Wiley, 2018), pp. S5–S6.

Curcio, J. A.

J. A. Curcio and C. C. Petty, “The near infrared absorption spectrum of liquid water,” J. Opt. Soc. Am., JOSA 41, 302–304 (1951).
[Crossref]

Dai, H.

G. Hong, A. L. Antaris, and H. Dai, “Near-infrared fluorophores for biomedical imaging,” Nat. Biomed. Eng. 1, 0010 (2017).
[Crossref]

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8, 723–730 (2014).
[Crossref] [PubMed]

Damestani, Y.

Y. Damestani, D. E. Galan-Hoffman, D. Ortiz, P. Cabrales, and G. Aguilar, “Inflammatory response to implantation of transparent nanocrystalline yttria-stabilized zirconia using a dorsal window chamber model,” Nanomedicine 12, 1757–1763 (2016).
[Crossref] [PubMed]

Y. Damestani, C. L. Reynolds, J. Szu, M. S. Hsu, Y. Kodera, D. K. Binder, B. H. Park, J. E. Garay, M. P. Rao, and G. Aguilar, “Transparent nanocrystalline yttria-stabilized-zirconia calvarium prosthesis,” Nanomedicine 9, 1135–1138 (2013).
[Crossref] [PubMed]

Datsenko, O. I.

S. Golovynskyi, I. Golovynska, L. I. Stepanova, O. I. Datsenko, L. Liu, J. Qu, and T. Y. Ohulchanskyy, “Optical windows for head tissues in near-infrared and short-wave infrared regions: Approaching transcranial light applications,” J. biophotonics 11, e201800141 (2018).
[Crossref] [PubMed]

Davalos, D.

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7, 981–984 (2010).
[Crossref] [PubMed]

Davoodzadeh, N.

N. Davoodzadeh, M. S. Cano-Velázquez, D. L. Halaney, C. R. Jonak, D. K. Binder, and G. Aguilar, “Evaluation of a transparent cranial implant as a permanent window for cerebral blood flow imaging,” Biomed. Opt. Express 9, 4879–4892 (2018).
[Crossref] [PubMed]

N. Davoodzadeh, N. Cuando, A. H. Aminfar, M. Cano, and G. Aguilar, “Assessment of bacteria growth under transparent nanocrystalline yttriastabilized-zirconia cranial implant using laser speckle imaging,” in Lasers in Surgery and Medicine, vol. 50 (Wiley, 2018), pp. S5–S6.

N. Davoodzadeh, G. Uahengo, D. Halaney, J. E. Garay, and G. Aguilar, “Influence of low temperature ageing on optical and mechanical properties of transparent yittria stabilized-zirconia cranial prosthesis,” in Design and Quality for Biomedical Technologies XI, vol. 10486 (International Society for Optics and Photonics, 2018), p. 104860A.

N. Davoodzadeh, D. Halaney, C. R. Jonak, N. Cuando, A. Aminfar, D. K. Binder, and G. Aguilar, “Laser speckle imaging of brain blood flow through a transparent nanocrystalline yttria-stabilized-zirconia cranial implant,” in Dynamics and Fluctuations in Biomedical Photonics XV, vol. 10493 (International Society for Optics and Photonics, 2018), p. 1049303.

N. Davoodzadeh, M. S. Cano-Velázquez, D. L. Halaney, C. R. Jonak, D. K. Binder, and G. Aguilar, “Evaluation of a transparent cranial implant for multi-wavelength intrinsic optical signal imaging,” in Neural Imaging and Sensing 2019, vol. 10865 (International Society for Optics and Photonics, 2019), p. 108650B.

De Paola, V.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4, 1128–1144 (2009).
[Crossref] [PubMed]

Diao, S.

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8, 723–730 (2014).
[Crossref] [PubMed]

Ding, Z.

R. Shi, L. Guo, C. Zhang, W. Feng, P. Li, Z. Ding, and D. Zhu, “A useful way to develop effective in vivo skin optical clearing agents,” J. Biophotonics 10, 887–895 (2017).
[Crossref]

Dorlot, J. M.

P. Christel, A. Meunier, J. M. Dorlot, J. M. Crolet, J. Witvoet, L. Sedel, and P. Boutin, “Biomechanical compatibility and design of ceramic implants for orthopedic surgery,” Ann. N. Y. Acad. Sci. 523, 234–256 (1988).
[Crossref] [PubMed]

Drew, P. J.

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7, 981–984 (2010).
[Crossref] [PubMed]

Driscoll, J. D.

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7, 981–984 (2010).
[Crossref] [PubMed]

Dunn, A. K.

Durkin, A. J.

R. H. Wilson, K. P. Nadeau, F. B. Jaworski, B. J. Tromberg, and A. J. Durkin, “Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization,” J. Biomed. Opt. 20, 030901 (2015).
[Crossref] [PubMed]

Dvoretskiy, K. N.

A. N. Bashkatov, K. V. Berezin, K. N. Dvoretskiy, M. L. Chernavina, E. A. Genina, V. D. Genin, V. I. Kochubey, E. N. Lazareva, A. B. Pravdin, M. E. Shvachkina, and P. A. Timoshina, “Measurement of tissue optical properties in the context of tissue optical clearing,” J. biomedical optics 23,091416 (2018).
[Crossref]

Erfani, M.

F. Salehpour, F. Farajdokht, P. Cassano, S. Sadigh-Eteghad, M. Erfani, M. R. Hamblin, M. M. Salimi, P. Karimi, S. H. Rasta, and J. Mahmoudi, “Near-infrared photobiomodulation combined with coenzyme Q for depression in a mouse model of restraint stress: reduction in oxidative stress, neuroinflammation, and apoptosis,” Brain Res. Bull. 144, 213–222 (2019).
[Crossref]

Farajdokht, F.

F. Salehpour, F. Farajdokht, P. Cassano, S. Sadigh-Eteghad, M. Erfani, M. R. Hamblin, M. M. Salimi, P. Karimi, S. H. Rasta, and J. Mahmoudi, “Near-infrared photobiomodulation combined with coenzyme Q for depression in a mouse model of restraint stress: reduction in oxidative stress, neuroinflammation, and apoptosis,” Brain Res. Bull. 144, 213–222 (2019).
[Crossref]

Feng, W.

R. Shi, L. Guo, C. Zhang, W. Feng, P. Li, Z. Ding, and D. Zhu, “A useful way to develop effective in vivo skin optical clearing agents,” J. Biophotonics 10, 887–895 (2017).
[Crossref]

Filatova, S. A.

S. A. Filatova, I. A. Shcherbakov, and V. B. Tsvetkov, “Optical properties of animal tissues in the wavelength range from 350 to 2600 nm,” J. Biomed. Opt. 22, 35009 (2017).
[Crossref]

Galan-Hoffman, D. E.

Y. Damestani, D. E. Galan-Hoffman, D. Ortiz, P. Cabrales, and G. Aguilar, “Inflammatory response to implantation of transparent nanocrystalline yttria-stabilized zirconia using a dorsal window chamber model,” Nanomedicine 12, 1757–1763 (2016).
[Crossref] [PubMed]

Gan, W.-B.

H.-T. Xu, F. Pan, G. Yang, and W.-B. Gan, “Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex,” Nat. Neurosci. 10, 549–551 (2007).
[Crossref] [PubMed]

J. Grutzendler, N. Kasthuri, and W.-B. Gan, “Long-term dendritic spine stability in the adult cortex,” Nature 420, 812–816 (2002).
[Crossref] [PubMed]

Garay, J. E.

M. I. Gutierrez, E. H. Penilla, L. Leija, A. Vera, J. E. Garay, and G. Aguilar, “Novel cranial implants of Yttria-Stabilized zirconia as acoustic windows for ultrasonic brain therapy,” Adv. Healthc. Mater. 6, 1700214 (2017).
[Crossref] [PubMed]

Y. Damestani, C. L. Reynolds, J. Szu, M. S. Hsu, Y. Kodera, D. K. Binder, B. H. Park, J. E. Garay, M. P. Rao, and G. Aguilar, “Transparent nanocrystalline yttria-stabilized-zirconia calvarium prosthesis,” Nanomedicine 9, 1135–1138 (2013).
[Crossref] [PubMed]

J. E. Garay, “Current-Activated, Pressure-Assisted densification of materials,” Annu. Rev. Mater. Res. 40, 445–468 (2010).
[Crossref]

J. E. Alaniz, F. G. Perez-Gutierrez, G. Aguilar, and J. E. Garay, “Optical properties of transparent nanocrystalline yttria stabilized zirconia,” Opt. Mater. 32, 62–68 (2009).
[Crossref]

S. R. Casolco, J. Xu, and J. E. Garay, “Transparent/translucent polycrystalline nanostructured yttria stabilized zirconia with varying colors,” Scr. Mater. 58, 516–519 (2008).
[Crossref]

N. Davoodzadeh, G. Uahengo, D. Halaney, J. E. Garay, and G. Aguilar, “Influence of low temperature ageing on optical and mechanical properties of transparent yittria stabilized-zirconia cranial prosthesis,” in Design and Quality for Biomedical Technologies XI, vol. 10486 (International Society for Optics and Photonics, 2018), p. 104860A.

Genin, V. D.

A. N. Bashkatov, K. V. Berezin, K. N. Dvoretskiy, M. L. Chernavina, E. A. Genina, V. D. Genin, V. I. Kochubey, E. N. Lazareva, A. B. Pravdin, M. E. Shvachkina, and P. A. Timoshina, “Measurement of tissue optical properties in the context of tissue optical clearing,” J. biomedical optics 23,091416 (2018).
[Crossref]

Genina, E. A.

A. N. Bashkatov, K. V. Berezin, K. N. Dvoretskiy, M. L. Chernavina, E. A. Genina, V. D. Genin, V. I. Kochubey, E. N. Lazareva, A. B. Pravdin, M. E. Shvachkina, and P. A. Timoshina, “Measurement of tissue optical properties in the context of tissue optical clearing,” J. biomedical optics 23,091416 (2018).
[Crossref]

E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, “Optical clearing of cranial bone,” Adv. Opt. Technol. 2008, 267867 (2008).
[Crossref]

E. A. Genina, A. N. Bashkatov, Y. P. Sinichkin, I. Y. Yanina, and V. V. Tuchin, “Optical clearing of tissues: Benefits for biology, medical diagnostics, and phototherapy,” in Handbook of Optical Biomedical Diagnostics, Second Edition, Volume 2: Methods, V. V. Tuchin, ed. (SPIE Press, 2016).
[Crossref]

Golovynska, I.

S. Golovynskyi, I. Golovynska, L. I. Stepanova, O. I. Datsenko, L. Liu, J. Qu, and T. Y. Ohulchanskyy, “Optical windows for head tissues in near-infrared and short-wave infrared regions: Approaching transcranial light applications,” J. biophotonics 11, e201800141 (2018).
[Crossref] [PubMed]

Golovynskyi, S.

S. Golovynskyi, I. Golovynska, L. I. Stepanova, O. I. Datsenko, L. Liu, J. Qu, and T. Y. Ohulchanskyy, “Optical windows for head tissues in near-infrared and short-wave infrared regions: Approaching transcranial light applications,” J. biophotonics 11, e201800141 (2018).
[Crossref] [PubMed]

Goswami, L. N.

N. S. James, T. Y. Ohulchanskyy, Y. Chen, P. Joshi, X. Zheng, L. N. Goswami, and R. K. Pandey, “Comparative tumor imaging and PDT efficacy of HPPH conjugated in the mono- and di-forms to various polymethine cyanine dyes: part - 2,” Theranostics 3, 703–718 (2013).
[Crossref] [PubMed]

Grutzendler, J.

J. Grutzendler, N. Kasthuri, and W.-B. Gan, “Long-term dendritic spine stability in the adult cortex,” Nature 420, 812–816 (2002).
[Crossref] [PubMed]

Guo, L.

R. Shi, L. Guo, C. Zhang, W. Feng, P. Li, Z. Ding, and D. Zhu, “A useful way to develop effective in vivo skin optical clearing agents,” J. Biophotonics 10, 887–895 (2017).
[Crossref]

Gutierrez, M. I.

M. I. Gutierrez, E. H. Penilla, L. Leija, A. Vera, J. E. Garay, and G. Aguilar, “Novel cranial implants of Yttria-Stabilized zirconia as acoustic windows for ultrasonic brain therapy,” Adv. Healthc. Mater. 6, 1700214 (2017).
[Crossref] [PubMed]

Halaney, D.

N. Davoodzadeh, D. Halaney, C. R. Jonak, N. Cuando, A. Aminfar, D. K. Binder, and G. Aguilar, “Laser speckle imaging of brain blood flow through a transparent nanocrystalline yttria-stabilized-zirconia cranial implant,” in Dynamics and Fluctuations in Biomedical Photonics XV, vol. 10493 (International Society for Optics and Photonics, 2018), p. 1049303.

N. Davoodzadeh, G. Uahengo, D. Halaney, J. E. Garay, and G. Aguilar, “Influence of low temperature ageing on optical and mechanical properties of transparent yittria stabilized-zirconia cranial prosthesis,” in Design and Quality for Biomedical Technologies XI, vol. 10486 (International Society for Optics and Photonics, 2018), p. 104860A.

Halaney, D. L.

N. Davoodzadeh, M. S. Cano-Velázquez, D. L. Halaney, C. R. Jonak, D. K. Binder, and G. Aguilar, “Evaluation of a transparent cranial implant as a permanent window for cerebral blood flow imaging,” Biomed. Opt. Express 9, 4879–4892 (2018).
[Crossref] [PubMed]

N. Davoodzadeh, M. S. Cano-Velázquez, D. L. Halaney, C. R. Jonak, D. K. Binder, and G. Aguilar, “Evaluation of a transparent cranial implant for multi-wavelength intrinsic optical signal imaging,” in Neural Imaging and Sensing 2019, vol. 10865 (International Society for Optics and Photonics, 2019), p. 108650B.

Hamblin, M. R.

F. Salehpour, F. Farajdokht, P. Cassano, S. Sadigh-Eteghad, M. Erfani, M. R. Hamblin, M. M. Salimi, P. Karimi, S. H. Rasta, and J. Mahmoudi, “Near-infrared photobiomodulation combined with coenzyme Q for depression in a mouse model of restraint stress: reduction in oxidative stress, neuroinflammation, and apoptosis,” Brain Res. Bull. 144, 213–222 (2019).
[Crossref]

M. R. Hamblin, “Photobiomodulation for traumatic brain injury and stroke,” J. Neurosci. Res. 96, 731–743 (2018).
[Crossref]

Hao, J.

Z. Xue, S. Zeng, and J. Hao, “Non-invasive through-skull brain vascular imaging and small tumor diagnosis based on NIR-II emissive lanthanide nanoprobes beyond 1500 nm,” Biomaterials 171, 153–163 (2018).
[Crossref] [PubMed]

Heller, M.

P. Christel, A. Meunier, M. Heller, J. P. Torre, and C. N. Peille, “Mechanical properties and short-term in-vivo evaluation of yttrium-oxide-partially-stabilized zirconia,” J. Biomed. Mater. Res. 23, 45–61 (1989).
[Crossref] [PubMed]

Hemmer, E.

E. Hemmer, A. Benayas, F. Légaré, and F. Vetrone, “Exploiting the biological windows: current perspectives on fluorescent bioprobes emitting above 1000 nm,” Nanoscale Horizons 1, 168–184 (2016).
[Crossref]

Heo, C.

C. Heo, H. Park, Y.-T. Kim, E. Baeg, Y. H. Kim, S.-G. Kim, and M. Suh, “A soft, transparent, freely accessible cranial window for chronic imaging and electrophysiology,” Sci. Rep. 6, 27818 (2016).
[Crossref] [PubMed]

Hofer, S. B.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4, 1128–1144 (2009).
[Crossref] [PubMed]

Holtmaat, A.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4, 1128–1144 (2009).
[Crossref] [PubMed]

Hong, G.

G. Hong, A. L. Antaris, and H. Dai, “Near-infrared fluorophores for biomedical imaging,” Nat. Biomed. Eng. 1, 0010 (2017).
[Crossref]

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8, 723–730 (2014).
[Crossref] [PubMed]

Hsu, M. S.

Y. Damestani, C. L. Reynolds, J. Szu, M. S. Hsu, Y. Kodera, D. K. Binder, B. H. Park, J. E. Garay, M. P. Rao, and G. Aguilar, “Transparent nanocrystalline yttria-stabilized-zirconia calvarium prosthesis,” Nanomedicine 9, 1135–1138 (2013).
[Crossref] [PubMed]

Huang, H.

W.-C. A. Lee, J. L. Chen, H. Huang, J. H. Leslie, Y. Amitai, P. T. So, and E. Nedivi, “A dynamic zone defines interneuron remodeling in the adult neocortex,” Proc. Natl. Acad. Sci. U. S. A. 105, 19968–19973 (2008).
[Crossref] [PubMed]

Huang, P. L.

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8, 723–730 (2014).
[Crossref] [PubMed]

Hübener, M.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4, 1128–1144 (2009).
[Crossref] [PubMed]

Hulbert, S. F.

S. F. Hulbert, “The use of alumina and zirconia in surgical implants,” in An Introduction to Bioceramics, (2013), pp. 27–47.
[Crossref]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58, R37 (2013).
[Crossref] [PubMed]

James, N. S.

N. S. James, T. Y. Ohulchanskyy, Y. Chen, P. Joshi, X. Zheng, L. N. Goswami, and R. K. Pandey, “Comparative tumor imaging and PDT efficacy of HPPH conjugated in the mono- and di-forms to various polymethine cyanine dyes: part - 2,” Theranostics 3, 703–718 (2013).
[Crossref] [PubMed]

Jaworski, F. B.

R. H. Wilson, K. P. Nadeau, F. B. Jaworski, B. J. Tromberg, and A. J. Durkin, “Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization,” J. Biomed. Opt. 20, 030901 (2015).
[Crossref] [PubMed]

Jin, T.

Y. Tsukasaki, M. Morimatsu, G. Nishimura, T. Sakata, H. Yasuda, A. Komatsuzaki, T. M. Watanabe, and T. Jin, “Synthesis and optical properties of emission-tunable PbS/CdS core–shell quantum dots for in vivo fluorescence imaging in the second near-infrared window,” RSC Adv. 4, 41164–41171 (2014).
[Crossref]

Jonak, C. R.

N. Davoodzadeh, M. S. Cano-Velázquez, D. L. Halaney, C. R. Jonak, D. K. Binder, and G. Aguilar, “Evaluation of a transparent cranial implant as a permanent window for cerebral blood flow imaging,” Biomed. Opt. Express 9, 4879–4892 (2018).
[Crossref] [PubMed]

N. Davoodzadeh, M. S. Cano-Velázquez, D. L. Halaney, C. R. Jonak, D. K. Binder, and G. Aguilar, “Evaluation of a transparent cranial implant for multi-wavelength intrinsic optical signal imaging,” in Neural Imaging and Sensing 2019, vol. 10865 (International Society for Optics and Photonics, 2019), p. 108650B.

N. Davoodzadeh, D. Halaney, C. R. Jonak, N. Cuando, A. Aminfar, D. K. Binder, and G. Aguilar, “Laser speckle imaging of brain blood flow through a transparent nanocrystalline yttria-stabilized-zirconia cranial implant,” in Dynamics and Fluctuations in Biomedical Photonics XV, vol. 10493 (International Society for Optics and Photonics, 2018), p. 1049303.

Joshi, P.

N. S. James, T. Y. Ohulchanskyy, Y. Chen, P. Joshi, X. Zheng, L. N. Goswami, and R. K. Pandey, “Comparative tumor imaging and PDT efficacy of HPPH conjugated in the mono- and di-forms to various polymethine cyanine dyes: part - 2,” Theranostics 3, 703–718 (2013).
[Crossref] [PubMed]

Kanno, T.

K. Nakamura, T. Kanno, P. Milleding, and U. Ortengren, “Zirconia as a dental implant abutment material: a systematic review,” Int. J. Prosthodont. 23, 299–309 (2010).
[PubMed]

Karimi, P.

F. Salehpour, F. Farajdokht, P. Cassano, S. Sadigh-Eteghad, M. Erfani, M. R. Hamblin, M. M. Salimi, P. Karimi, S. H. Rasta, and J. Mahmoudi, “Near-infrared photobiomodulation combined with coenzyme Q for depression in a mouse model of restraint stress: reduction in oxidative stress, neuroinflammation, and apoptosis,” Brain Res. Bull. 144, 213–222 (2019).
[Crossref]

Kasthuri, N.

J. Grutzendler, N. Kasthuri, and W.-B. Gan, “Long-term dendritic spine stability in the adult cortex,” Nature 420, 812–816 (2002).
[Crossref] [PubMed]

Kazmi, S. M. S.

Keck, T.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4, 1128–1144 (2009).
[Crossref] [PubMed]

Kim, S.-G.

C. Heo, H. Park, Y.-T. Kim, E. Baeg, Y. H. Kim, S.-G. Kim, and M. Suh, “A soft, transparent, freely accessible cranial window for chronic imaging and electrophysiology,” Sci. Rep. 6, 27818 (2016).
[Crossref] [PubMed]

Kim, Y. H.

C. Heo, H. Park, Y.-T. Kim, E. Baeg, Y. H. Kim, S.-G. Kim, and M. Suh, “A soft, transparent, freely accessible cranial window for chronic imaging and electrophysiology,” Sci. Rep. 6, 27818 (2016).
[Crossref] [PubMed]

Kim, Y.-T.

C. Heo, H. Park, Y.-T. Kim, E. Baeg, Y. H. Kim, S.-G. Kim, and M. Suh, “A soft, transparent, freely accessible cranial window for chronic imaging and electrophysiology,” Sci. Rep. 6, 27818 (2016).
[Crossref] [PubMed]

Kleinfeld, D.

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7, 981–984 (2010).
[Crossref] [PubMed]

Knott, G.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4, 1128–1144 (2009).
[Crossref] [PubMed]

Knutsen, P. M.

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7, 981–984 (2010).
[Crossref] [PubMed]

Kochubey, V. I.

A. N. Bashkatov, K. V. Berezin, K. N. Dvoretskiy, M. L. Chernavina, E. A. Genina, V. D. Genin, V. I. Kochubey, E. N. Lazareva, A. B. Pravdin, M. E. Shvachkina, and P. A. Timoshina, “Measurement of tissue optical properties in the context of tissue optical clearing,” J. biomedical optics 23,091416 (2018).
[Crossref]

Kodera, Y.

Y. Damestani, C. L. Reynolds, J. Szu, M. S. Hsu, Y. Kodera, D. K. Binder, B. H. Park, J. E. Garay, M. P. Rao, and G. Aguilar, “Transparent nanocrystalline yttria-stabilized-zirconia calvarium prosthesis,” Nanomedicine 9, 1135–1138 (2013).
[Crossref] [PubMed]

Komatsuzaki, A.

Y. Tsukasaki, M. Morimatsu, G. Nishimura, T. Sakata, H. Yasuda, A. Komatsuzaki, T. M. Watanabe, and T. Jin, “Synthesis and optical properties of emission-tunable PbS/CdS core–shell quantum dots for in vivo fluorescence imaging in the second near-infrared window,” RSC Adv. 4, 41164–41171 (2014).
[Crossref]

Kon, I. L.

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlyutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomedical Optics 2, 401–418 (1997).
[Crossref]

Kuhn, B.

C. J. Roome and B. Kuhn, “Chronic cranial window with access port for repeated cellular manipulations, drug application, and electrophysiology,” Front. Cell. Neurosci. 8, 379 (2014).
[Crossref] [PubMed]

Kuo, C. J.

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8, 723–730 (2014).
[Crossref] [PubMed]

Kurlov, V.

A. Sharova, Y. S. Maklygina, G. Yusubalieva, I. Shikunova, V. Kurlov, and V. Loschenov, “Sapphire implant based neuro-complex for deep-lying brain tumors phototheranostics,” in Journal of Physics: Conference Series, vol. 945 (IOP Publishing, 2018), p. 012009.

Larin, K. V.

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photon. Rev. 7, 732–757 (2013).
[Crossref] [PubMed]

Lazareva, E. N.

A. N. Bashkatov, K. V. Berezin, K. N. Dvoretskiy, M. L. Chernavina, E. A. Genina, V. D. Genin, V. I. Kochubey, E. N. Lazareva, A. B. Pravdin, M. E. Shvachkina, and P. A. Timoshina, “Measurement of tissue optical properties in the context of tissue optical clearing,” J. biomedical optics 23,091416 (2018).
[Crossref]

Lee, W.-C. A.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4, 1128–1144 (2009).
[Crossref] [PubMed]

W.-C. A. Lee, J. L. Chen, H. Huang, J. H. Leslie, Y. Amitai, P. T. So, and E. Nedivi, “A dynamic zone defines interneuron remodeling in the adult neocortex,” Proc. Natl. Acad. Sci. U. S. A. 105, 19968–19973 (2008).
[Crossref] [PubMed]

Légaré, F.

E. Hemmer, A. Benayas, F. Légaré, and F. Vetrone, “Exploiting the biological windows: current perspectives on fluorescent bioprobes emitting above 1000 nm,” Nanoscale Horizons 1, 168–184 (2016).
[Crossref]

Leija, L.

M. I. Gutierrez, E. H. Penilla, L. Leija, A. Vera, J. E. Garay, and G. Aguilar, “Novel cranial implants of Yttria-Stabilized zirconia as acoustic windows for ultrasonic brain therapy,” Adv. Healthc. Mater. 6, 1700214 (2017).
[Crossref] [PubMed]

Leslie, J. H.

W.-C. A. Lee, J. L. Chen, H. Huang, J. H. Leslie, Y. Amitai, P. T. So, and E. Nedivi, “A dynamic zone defines interneuron remodeling in the adult neocortex,” Proc. Natl. Acad. Sci. U. S. A. 105, 19968–19973 (2008).
[Crossref] [PubMed]

Li, P.

R. Shi, L. Guo, C. Zhang, W. Feng, P. Li, Z. Ding, and D. Zhu, “A useful way to develop effective in vivo skin optical clearing agents,” J. Biophotonics 10, 887–895 (2017).
[Crossref]

Li, Z.

Y.-J. Zhao, T.-T. Yu, C. Zhang, Z. Li, Q.-M. Luo, T.-H. Xu, and D. Zhu, “Skull optical clearing window for in vivo imaging of the mouse cortex at synaptic resolution,” Light. Sci. Appl. 7, 17153 (2018).
[Crossref]

Liu, L.

S. Golovynskyi, I. Golovynska, L. I. Stepanova, O. I. Datsenko, L. Liu, J. Qu, and T. Y. Ohulchanskyy, “Optical windows for head tissues in near-infrared and short-wave infrared regions: Approaching transcranial light applications,” J. biophotonics 11, e201800141 (2018).
[Crossref] [PubMed]

Loschenov, V.

A. Sharova, Y. S. Maklygina, G. Yusubalieva, I. Shikunova, V. Kurlov, and V. Loschenov, “Sapphire implant based neuro-complex for deep-lying brain tumors phototheranostics,” in Journal of Physics: Conference Series, vol. 945 (IOP Publishing, 2018), p. 012009.

Luo, Q.

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photon. Rev. 7, 732–757 (2013).
[Crossref] [PubMed]

Luo, Q. M.

J. Wang, Y. Zhang, T. H. Xu, Q. M. Luo, and D. Zhu, “An innovative transparent cranial window based on skull optical clearing,” Laser Phys. Lett. 9, 469 (2012).
[Crossref]

Luo, Q.-M.

Y.-J. Zhao, T.-T. Yu, C. Zhang, Z. Li, Q.-M. Luo, T.-H. Xu, and D. Zhu, “Skull optical clearing window for in vivo imaging of the mouse cortex at synaptic resolution,” Light. Sci. Appl. 7, 17153 (2018).
[Crossref]

Madsen, S. J.

S. J. Madsen, Optical Methods and Instrumentation in Brain Imaging and Therapy(Springer Science & Business Media, 2012).

Magnusen, P.

S. S. Smith, P. Magnusen, and B. J. Pletka, “Fracture toughness of glass using the indentation fracture technique,” in Fracture Mechanics for Ceramics, Rocks, and Concrete, (ASTM International, 1981), pp. 33.

Mahmoudi, J.

F. Salehpour, F. Farajdokht, P. Cassano, S. Sadigh-Eteghad, M. Erfani, M. R. Hamblin, M. M. Salimi, P. Karimi, S. H. Rasta, and J. Mahmoudi, “Near-infrared photobiomodulation combined with coenzyme Q for depression in a mouse model of restraint stress: reduction in oxidative stress, neuroinflammation, and apoptosis,” Brain Res. Bull. 144, 213–222 (2019).
[Crossref]

Maklygina, Y. S.

A. Sharova, Y. S. Maklygina, G. Yusubalieva, I. Shikunova, V. Kurlov, and V. Loschenov, “Sapphire implant based neuro-complex for deep-lying brain tumors phototheranostics,” in Journal of Physics: Conference Series, vol. 945 (IOP Publishing, 2018), p. 012009.

Maksimova, I. L.

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlyutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomedical Optics 2, 401–418 (1997).
[Crossref]

Mavlyutov, A. H.

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlyutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomedical Optics 2, 401–418 (1997).
[Crossref]

Meunier, A.

P. Christel, A. Meunier, M. Heller, J. P. Torre, and C. N. Peille, “Mechanical properties and short-term in-vivo evaluation of yttrium-oxide-partially-stabilized zirconia,” J. Biomed. Mater. Res. 23, 45–61 (1989).
[Crossref] [PubMed]

P. Christel, A. Meunier, J. M. Dorlot, J. M. Crolet, J. Witvoet, L. Sedel, and P. Boutin, “Biomechanical compatibility and design of ceramic implants for orthopedic surgery,” Ann. N. Y. Acad. Sci. 523, 234–256 (1988).
[Crossref] [PubMed]

Milleding, P.

K. Nakamura, T. Kanno, P. Milleding, and U. Ortengren, “Zirconia as a dental implant abutment material: a systematic review,” Int. J. Prosthodont. 23, 299–309 (2010).
[PubMed]

Mishin, A. A.

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlyutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomedical Optics 2, 401–418 (1997).
[Crossref]

Morimatsu, M.

Y. Tsukasaki, M. Morimatsu, G. Nishimura, T. Sakata, H. Yasuda, A. Komatsuzaki, T. M. Watanabe, and T. Jin, “Synthesis and optical properties of emission-tunable PbS/CdS core–shell quantum dots for in vivo fluorescence imaging in the second near-infrared window,” RSC Adv. 4, 41164–41171 (2014).
[Crossref]

Mostany, R.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4, 1128–1144 (2009).
[Crossref] [PubMed]

Mrsic-Flogel, T. D.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4, 1128–1144 (2009).
[Crossref] [PubMed]

Nadeau, K. P.

R. H. Wilson, K. P. Nadeau, F. B. Jaworski, B. J. Tromberg, and A. J. Durkin, “Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization,” J. Biomed. Opt. 20, 030901 (2015).
[Crossref] [PubMed]

Nakamura, K.

K. Nakamura, T. Kanno, P. Milleding, and U. Ortengren, “Zirconia as a dental implant abutment material: a systematic review,” Int. J. Prosthodont. 23, 299–309 (2010).
[PubMed]

Nedivi, E.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4, 1128–1144 (2009).
[Crossref] [PubMed]

W.-C. A. Lee, J. L. Chen, H. Huang, J. H. Leslie, Y. Amitai, P. T. So, and E. Nedivi, “A dynamic zone defines interneuron remodeling in the adult neocortex,” Proc. Natl. Acad. Sci. U. S. A. 105, 19968–19973 (2008).
[Crossref] [PubMed]

Nishimura, G.

Y. Tsukasaki, M. Morimatsu, G. Nishimura, T. Sakata, H. Yasuda, A. Komatsuzaki, T. M. Watanabe, and T. Jin, “Synthesis and optical properties of emission-tunable PbS/CdS core–shell quantum dots for in vivo fluorescence imaging in the second near-infrared window,” RSC Adv. 4, 41164–41171 (2014).
[Crossref]

Ohulchanskyy, T. Y.

S. Golovynskyi, I. Golovynska, L. I. Stepanova, O. I. Datsenko, L. Liu, J. Qu, and T. Y. Ohulchanskyy, “Optical windows for head tissues in near-infrared and short-wave infrared regions: Approaching transcranial light applications,” J. biophotonics 11, e201800141 (2018).
[Crossref] [PubMed]

N. S. James, T. Y. Ohulchanskyy, Y. Chen, P. Joshi, X. Zheng, L. N. Goswami, and R. K. Pandey, “Comparative tumor imaging and PDT efficacy of HPPH conjugated in the mono- and di-forms to various polymethine cyanine dyes: part - 2,” Theranostics 3, 703–718 (2013).
[Crossref] [PubMed]

Ortengren, U.

K. Nakamura, T. Kanno, P. Milleding, and U. Ortengren, “Zirconia as a dental implant abutment material: a systematic review,” Int. J. Prosthodont. 23, 299–309 (2010).
[PubMed]

Ortiz, D.

Y. Damestani, D. E. Galan-Hoffman, D. Ortiz, P. Cabrales, and G. Aguilar, “Inflammatory response to implantation of transparent nanocrystalline yttria-stabilized zirconia using a dorsal window chamber model,” Nanomedicine 12, 1757–1763 (2016).
[Crossref] [PubMed]

Pan, F.

H.-T. Xu, F. Pan, G. Yang, and W.-B. Gan, “Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex,” Nat. Neurosci. 10, 549–551 (2007).
[Crossref] [PubMed]

Pandey, R. K.

N. S. James, T. Y. Ohulchanskyy, Y. Chen, P. Joshi, X. Zheng, L. N. Goswami, and R. K. Pandey, “Comparative tumor imaging and PDT efficacy of HPPH conjugated in the mono- and di-forms to various polymethine cyanine dyes: part - 2,” Theranostics 3, 703–718 (2013).
[Crossref] [PubMed]

Papadopoulos, M. C.

J. R. Thiagarajah, M. C. Papadopoulos, and A. S. Verkman, “Noninvasive early detection of brain edema in mice by near-infrared light scattering,” J. Neurosci. Res. 80, 293–299 (2005).
[Crossref] [PubMed]

Park, B. H.

Y. Damestani, C. L. Reynolds, J. Szu, M. S. Hsu, Y. Kodera, D. K. Binder, B. H. Park, J. E. Garay, M. P. Rao, and G. Aguilar, “Transparent nanocrystalline yttria-stabilized-zirconia calvarium prosthesis,” Nanomedicine 9, 1135–1138 (2013).
[Crossref] [PubMed]

Park, H.

C. Heo, H. Park, Y.-T. Kim, E. Baeg, Y. H. Kim, S.-G. Kim, and M. Suh, “A soft, transparent, freely accessible cranial window for chronic imaging and electrophysiology,” Sci. Rep. 6, 27818 (2016).
[Crossref] [PubMed]

Parthasarathy, A. B.

Peille, C. N.

P. Christel, A. Meunier, M. Heller, J. P. Torre, and C. N. Peille, “Mechanical properties and short-term in-vivo evaluation of yttrium-oxide-partially-stabilized zirconia,” J. Biomed. Mater. Res. 23, 45–61 (1989).
[Crossref] [PubMed]

Penilla, E. H.

M. I. Gutierrez, E. H. Penilla, L. Leija, A. Vera, J. E. Garay, and G. Aguilar, “Novel cranial implants of Yttria-Stabilized zirconia as acoustic windows for ultrasonic brain therapy,” Adv. Healthc. Mater. 6, 1700214 (2017).
[Crossref] [PubMed]

Perez-Gutierrez, F. G.

J. E. Alaniz, F. G. Perez-Gutierrez, G. Aguilar, and J. E. Garay, “Optical properties of transparent nanocrystalline yttria stabilized zirconia,” Opt. Mater. 32, 62–68 (2009).
[Crossref]

Persidsky, Y.

V. Zuluaga-Ramirez, S. Rom, and Y. Persidsky, “Craniula: A cranial window technique for prolonged imaging of brain surface vasculature with simultaneous adjacent intracerebral injection,” Fluids Barriers CNS 12, 24 (2015).
[Crossref] [PubMed]

Petty, C. C.

J. A. Curcio and C. C. Petty, “The near infrared absorption spectrum of liquid water,” J. Opt. Soc. Am., JOSA 41, 302–304 (1951).
[Crossref]

Pletka, B. J.

S. S. Smith, P. Magnusen, and B. J. Pletka, “Fracture toughness of glass using the indentation fracture technique,” in Fracture Mechanics for Ceramics, Rocks, and Concrete, (ASTM International, 1981), pp. 33.

Portera-Cailliau, C.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4, 1128–1144 (2009).
[Crossref] [PubMed]

Pratavieira, S.

L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and R. R. Alfano, “Deep optical imaging of tissue using the second and third near-infrared spectral windows,” J. Biomed. Opt. 19, 056004 (2014).
[Crossref] [PubMed]

Pravdin, A. B.

A. N. Bashkatov, K. V. Berezin, K. N. Dvoretskiy, M. L. Chernavina, E. A. Genina, V. D. Genin, V. I. Kochubey, E. N. Lazareva, A. B. Pravdin, M. E. Shvachkina, and P. A. Timoshina, “Measurement of tissue optical properties in the context of tissue optical clearing,” J. biomedical optics 23,091416 (2018).
[Crossref]

Pu, Y.

L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and R. R. Alfano, “Deep optical imaging of tissue using the second and third near-infrared spectral windows,” J. Biomed. Opt. 19, 056004 (2014).
[Crossref] [PubMed]

Qu, J.

S. Golovynskyi, I. Golovynska, L. I. Stepanova, O. I. Datsenko, L. Liu, J. Qu, and T. Y. Ohulchanskyy, “Optical windows for head tissues in near-infrared and short-wave infrared regions: Approaching transcranial light applications,” J. biophotonics 11, e201800141 (2018).
[Crossref] [PubMed]

Rao, M. P.

Y. Damestani, C. L. Reynolds, J. Szu, M. S. Hsu, Y. Kodera, D. K. Binder, B. H. Park, J. E. Garay, M. P. Rao, and G. Aguilar, “Transparent nanocrystalline yttria-stabilized-zirconia calvarium prosthesis,” Nanomedicine 9, 1135–1138 (2013).
[Crossref] [PubMed]

Rasta, S. H.

F. Salehpour, F. Farajdokht, P. Cassano, S. Sadigh-Eteghad, M. Erfani, M. R. Hamblin, M. M. Salimi, P. Karimi, S. H. Rasta, and J. Mahmoudi, “Near-infrared photobiomodulation combined with coenzyme Q for depression in a mouse model of restraint stress: reduction in oxidative stress, neuroinflammation, and apoptosis,” Brain Res. Bull. 144, 213–222 (2019).
[Crossref]

Reynolds, C. L.

Y. Damestani, C. L. Reynolds, J. Szu, M. S. Hsu, Y. Kodera, D. K. Binder, B. H. Park, J. E. Garay, M. P. Rao, and G. Aguilar, “Transparent nanocrystalline yttria-stabilized-zirconia calvarium prosthesis,” Nanomedicine 9, 1135–1138 (2013).
[Crossref] [PubMed]

Rodríguez-Contreras, A.

L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophotonics 9, 38–43 (2016).
[Crossref]

Rom, S.

V. Zuluaga-Ramirez, S. Rom, and Y. Persidsky, “Craniula: A cranial window technique for prolonged imaging of brain surface vasculature with simultaneous adjacent intracerebral injection,” Fluids Barriers CNS 12, 24 (2015).
[Crossref] [PubMed]

Roome, C. J.

C. J. Roome and B. Kuhn, “Chronic cranial window with access port for repeated cellular manipulations, drug application, and electrophysiology,” Front. Cell. Neurosci. 8, 379 (2014).
[Crossref] [PubMed]

Sadigh-Eteghad, S.

F. Salehpour, F. Farajdokht, P. Cassano, S. Sadigh-Eteghad, M. Erfani, M. R. Hamblin, M. M. Salimi, P. Karimi, S. H. Rasta, and J. Mahmoudi, “Near-infrared photobiomodulation combined with coenzyme Q for depression in a mouse model of restraint stress: reduction in oxidative stress, neuroinflammation, and apoptosis,” Brain Res. Bull. 144, 213–222 (2019).
[Crossref]

Sakata, T.

Y. Tsukasaki, M. Morimatsu, G. Nishimura, T. Sakata, H. Yasuda, A. Komatsuzaki, T. M. Watanabe, and T. Jin, “Synthesis and optical properties of emission-tunable PbS/CdS core–shell quantum dots for in vivo fluorescence imaging in the second near-infrared window,” RSC Adv. 4, 41164–41171 (2014).
[Crossref]

Salehpour, F.

F. Salehpour, F. Farajdokht, P. Cassano, S. Sadigh-Eteghad, M. Erfani, M. R. Hamblin, M. M. Salimi, P. Karimi, S. H. Rasta, and J. Mahmoudi, “Near-infrared photobiomodulation combined with coenzyme Q for depression in a mouse model of restraint stress: reduction in oxidative stress, neuroinflammation, and apoptosis,” Brain Res. Bull. 144, 213–222 (2019).
[Crossref]

Salimi, M. M.

F. Salehpour, F. Farajdokht, P. Cassano, S. Sadigh-Eteghad, M. Erfani, M. R. Hamblin, M. M. Salimi, P. Karimi, S. H. Rasta, and J. Mahmoudi, “Near-infrared photobiomodulation combined with coenzyme Q for depression in a mouse model of restraint stress: reduction in oxidative stress, neuroinflammation, and apoptosis,” Brain Res. Bull. 144, 213–222 (2019).
[Crossref]

Sedel, L.

P. Christel, A. Meunier, J. M. Dorlot, J. M. Crolet, J. Witvoet, L. Sedel, and P. Boutin, “Biomechanical compatibility and design of ceramic implants for orthopedic surgery,” Ann. N. Y. Acad. Sci. 523, 234–256 (1988).
[Crossref] [PubMed]

Sharova, A.

A. Sharova, Y. S. Maklygina, G. Yusubalieva, I. Shikunova, V. Kurlov, and V. Loschenov, “Sapphire implant based neuro-complex for deep-lying brain tumors phototheranostics,” in Journal of Physics: Conference Series, vol. 945 (IOP Publishing, 2018), p. 012009.

Shcherbakov, I. A.

S. A. Filatova, I. A. Shcherbakov, and V. B. Tsvetkov, “Optical properties of animal tissues in the wavelength range from 350 to 2600 nm,” J. Biomed. Opt. 22, 35009 (2017).
[Crossref]

Shi, L.

D. C. Sordillo, L. A. Sordillo, P. P. Sordillo, L. Shi, and R. R. Alfano, “Short wavelength infrared optical windows for evaluation of benign and malignant tissues,” J. Biomed. Opt. 22, 45002 (2017).
[Crossref] [PubMed]

L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophotonics 9, 38–43 (2016).
[Crossref]

Shi, R.

R. Shi, L. Guo, C. Zhang, W. Feng, P. Li, Z. Ding, and D. Zhu, “A useful way to develop effective in vivo skin optical clearing agents,” J. Biophotonics 10, 887–895 (2017).
[Crossref]

Shih, A. Y.

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7, 981–984 (2010).
[Crossref] [PubMed]

Shikunova, I.

A. Sharova, Y. S. Maklygina, G. Yusubalieva, I. Shikunova, V. Kurlov, and V. Loschenov, “Sapphire implant based neuro-complex for deep-lying brain tumors phototheranostics,” in Journal of Physics: Conference Series, vol. 945 (IOP Publishing, 2018), p. 012009.

Shvachkina, M. E.

A. N. Bashkatov, K. V. Berezin, K. N. Dvoretskiy, M. L. Chernavina, E. A. Genina, V. D. Genin, V. I. Kochubey, E. N. Lazareva, A. B. Pravdin, M. E. Shvachkina, and P. A. Timoshina, “Measurement of tissue optical properties in the context of tissue optical clearing,” J. biomedical optics 23,091416 (2018).
[Crossref]

Sinichkin, Y. P.

E. A. Genina, A. N. Bashkatov, Y. P. Sinichkin, I. Y. Yanina, and V. V. Tuchin, “Optical clearing of tissues: Benefits for biology, medical diagnostics, and phototherapy,” in Handbook of Optical Biomedical Diagnostics, Second Edition, Volume 2: Methods, V. V. Tuchin, ed. (SPIE Press, 2016).
[Crossref]

Smith, S. S.

S. S. Smith, P. Magnusen, and B. J. Pletka, “Fracture toughness of glass using the indentation fracture technique,” in Fracture Mechanics for Ceramics, Rocks, and Concrete, (ASTM International, 1981), pp. 33.

So, P. T.

W.-C. A. Lee, J. L. Chen, H. Huang, J. H. Leslie, Y. Amitai, P. T. So, and E. Nedivi, “A dynamic zone defines interneuron remodeling in the adult neocortex,” Proc. Natl. Acad. Sci. U. S. A. 105, 19968–19973 (2008).
[Crossref] [PubMed]

Sordillo, D. C.

D. C. Sordillo, L. A. Sordillo, P. P. Sordillo, L. Shi, and R. R. Alfano, “Short wavelength infrared optical windows for evaluation of benign and malignant tissues,” J. Biomed. Opt. 22, 45002 (2017).
[Crossref] [PubMed]

Sordillo, L. A.

D. C. Sordillo, L. A. Sordillo, P. P. Sordillo, L. Shi, and R. R. Alfano, “Short wavelength infrared optical windows for evaluation of benign and malignant tissues,” J. Biomed. Opt. 22, 45002 (2017).
[Crossref] [PubMed]

L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophotonics 9, 38–43 (2016).
[Crossref]

L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and R. R. Alfano, “Deep optical imaging of tissue using the second and third near-infrared spectral windows,” J. Biomed. Opt. 19, 056004 (2014).
[Crossref] [PubMed]

Sordillo, P. P.

D. C. Sordillo, L. A. Sordillo, P. P. Sordillo, L. Shi, and R. R. Alfano, “Short wavelength infrared optical windows for evaluation of benign and malignant tissues,” J. Biomed. Opt. 22, 45002 (2017).
[Crossref] [PubMed]

Stepanova, L. I.

S. Golovynskyi, I. Golovynska, L. I. Stepanova, O. I. Datsenko, L. Liu, J. Qu, and T. Y. Ohulchanskyy, “Optical windows for head tissues in near-infrared and short-wave infrared regions: Approaching transcranial light applications,” J. biophotonics 11, e201800141 (2018).
[Crossref] [PubMed]

Suh, M.

C. Heo, H. Park, Y.-T. Kim, E. Baeg, Y. H. Kim, S.-G. Kim, and M. Suh, “A soft, transparent, freely accessible cranial window for chronic imaging and electrophysiology,” Sci. Rep. 6, 27818 (2016).
[Crossref] [PubMed]

Svoboda, K.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4, 1128–1144 (2009).
[Crossref] [PubMed]

Szu, J.

Y. Damestani, C. L. Reynolds, J. Szu, M. S. Hsu, Y. Kodera, D. K. Binder, B. H. Park, J. E. Garay, M. P. Rao, and G. Aguilar, “Transparent nanocrystalline yttria-stabilized-zirconia calvarium prosthesis,” Nanomedicine 9, 1135–1138 (2013).
[Crossref] [PubMed]

Thiagarajah, J. R.

J. R. Thiagarajah, M. C. Papadopoulos, and A. S. Verkman, “Noninvasive early detection of brain edema in mice by near-infrared light scattering,” J. Neurosci. Res. 80, 293–299 (2005).
[Crossref] [PubMed]

Timoshina, P. A.

A. N. Bashkatov, K. V. Berezin, K. N. Dvoretskiy, M. L. Chernavina, E. A. Genina, V. D. Genin, V. I. Kochubey, E. N. Lazareva, A. B. Pravdin, M. E. Shvachkina, and P. A. Timoshina, “Measurement of tissue optical properties in the context of tissue optical clearing,” J. biomedical optics 23,091416 (2018).
[Crossref]

Torre, J. P.

P. Christel, A. Meunier, M. Heller, J. P. Torre, and C. N. Peille, “Mechanical properties and short-term in-vivo evaluation of yttrium-oxide-partially-stabilized zirconia,” J. Biomed. Mater. Res. 23, 45–61 (1989).
[Crossref] [PubMed]

Trachtenberg, J. T.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4, 1128–1144 (2009).
[Crossref] [PubMed]

Tromberg, B. J.

R. H. Wilson, K. P. Nadeau, F. B. Jaworski, B. J. Tromberg, and A. J. Durkin, “Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization,” J. Biomed. Opt. 20, 030901 (2015).
[Crossref] [PubMed]

Tsai, C.-L.

C.-L. Tsai, J.-C. Chen, and W.-J. Wang, and Others, “Near-infrared absorption property of biological soft tissue constituents,” J. Med. Biol. Eng. 21, 7–14 (2001).

Tsai, P. S.

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7, 981–984 (2010).
[Crossref] [PubMed]

Tsukasaki, Y.

Y. Tsukasaki, M. Morimatsu, G. Nishimura, T. Sakata, H. Yasuda, A. Komatsuzaki, T. M. Watanabe, and T. Jin, “Synthesis and optical properties of emission-tunable PbS/CdS core–shell quantum dots for in vivo fluorescence imaging in the second near-infrared window,” RSC Adv. 4, 41164–41171 (2014).
[Crossref]

Tsvetkov, V. B.

S. A. Filatova, I. A. Shcherbakov, and V. B. Tsvetkov, “Optical properties of animal tissues in the wavelength range from 350 to 2600 nm,” J. Biomed. Opt. 22, 35009 (2017).
[Crossref]

Tuchin, V.

V. Tuchin, Tissue Optics Light Scattering Methods and Instruments for Medical Diagnosis (SPIE,2000).

Tuchin, V. V.

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photon. Rev. 7, 732–757 (2013).
[Crossref] [PubMed]

E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, “Optical clearing of cranial bone,” Adv. Opt. Technol. 2008, 267867 (2008).
[Crossref]

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlyutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomedical Optics 2, 401–418 (1997).
[Crossref]

E. A. Genina, A. N. Bashkatov, Y. P. Sinichkin, I. Y. Yanina, and V. V. Tuchin, “Optical clearing of tissues: Benefits for biology, medical diagnostics, and phototherapy,” in Handbook of Optical Biomedical Diagnostics, Second Edition, Volume 2: Methods, V. V. Tuchin, ed. (SPIE Press, 2016).
[Crossref]

Uahengo, G.

N. Davoodzadeh, G. Uahengo, D. Halaney, J. E. Garay, and G. Aguilar, “Influence of low temperature ageing on optical and mechanical properties of transparent yittria stabilized-zirconia cranial prosthesis,” in Design and Quality for Biomedical Technologies XI, vol. 10486 (International Society for Optics and Photonics, 2018), p. 104860A.

Vera, A.

M. I. Gutierrez, E. H. Penilla, L. Leija, A. Vera, J. E. Garay, and G. Aguilar, “Novel cranial implants of Yttria-Stabilized zirconia as acoustic windows for ultrasonic brain therapy,” Adv. Healthc. Mater. 6, 1700214 (2017).
[Crossref] [PubMed]

Verkman, A. S.

J. R. Thiagarajah, M. C. Papadopoulos, and A. S. Verkman, “Noninvasive early detection of brain edema in mice by near-infrared light scattering,” J. Neurosci. Res. 80, 293–299 (2005).
[Crossref] [PubMed]

Vetrone, F.

E. Hemmer, A. Benayas, F. Légaré, and F. Vetrone, “Exploiting the biological windows: current perspectives on fluorescent bioprobes emitting above 1000 nm,” Nanoscale Horizons 1, 168–184 (2016).
[Crossref]

Wang, J.

J. Wang, Y. Zhang, T. H. Xu, Q. M. Luo, and D. Zhu, “An innovative transparent cranial window based on skull optical clearing,” Laser Phys. Lett. 9, 469 (2012).
[Crossref]

Wang, W.-J.

C.-L. Tsai, J.-C. Chen, and W.-J. Wang, and Others, “Near-infrared absorption property of biological soft tissue constituents,” J. Med. Biol. Eng. 21, 7–14 (2001).

Watanabe, T. M.

Y. Tsukasaki, M. Morimatsu, G. Nishimura, T. Sakata, H. Yasuda, A. Komatsuzaki, T. M. Watanabe, and T. Jin, “Synthesis and optical properties of emission-tunable PbS/CdS core–shell quantum dots for in vivo fluorescence imaging in the second near-infrared window,” RSC Adv. 4, 41164–41171 (2014).
[Crossref]

Wilbrecht, L.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4, 1128–1144 (2009).
[Crossref] [PubMed]

Wilson, R. H.

R. H. Wilson, K. P. Nadeau, F. B. Jaworski, B. J. Tromberg, and A. J. Durkin, “Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization,” J. Biomed. Opt. 20, 030901 (2015).
[Crossref] [PubMed]

Witvoet, J.

P. Christel, A. Meunier, J. M. Dorlot, J. M. Crolet, J. Witvoet, L. Sedel, and P. Boutin, “Biomechanical compatibility and design of ceramic implants for orthopedic surgery,” Ann. N. Y. Acad. Sci. 523, 234–256 (1988).
[Crossref] [PubMed]

Xu, H.-T.

H.-T. Xu, F. Pan, G. Yang, and W.-B. Gan, “Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex,” Nat. Neurosci. 10, 549–551 (2007).
[Crossref] [PubMed]

Xu, J.

S. R. Casolco, J. Xu, and J. E. Garay, “Transparent/translucent polycrystalline nanostructured yttria stabilized zirconia with varying colors,” Scr. Mater. 58, 516–519 (2008).
[Crossref]

Xu, T. H.

J. Wang, Y. Zhang, T. H. Xu, Q. M. Luo, and D. Zhu, “An innovative transparent cranial window based on skull optical clearing,” Laser Phys. Lett. 9, 469 (2012).
[Crossref]

Xu, T.-H.

Y.-J. Zhao, T.-T. Yu, C. Zhang, Z. Li, Q.-M. Luo, T.-H. Xu, and D. Zhu, “Skull optical clearing window for in vivo imaging of the mouse cortex at synaptic resolution,” Light. Sci. Appl. 7, 17153 (2018).
[Crossref]

Xue, Z.

Z. Xue, S. Zeng, and J. Hao, “Non-invasive through-skull brain vascular imaging and small tumor diagnosis based on NIR-II emissive lanthanide nanoprobes beyond 1500 nm,” Biomaterials 171, 153–163 (2018).
[Crossref] [PubMed]

Yang, G.

H.-T. Xu, F. Pan, G. Yang, and W.-B. Gan, “Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex,” Nat. Neurosci. 10, 549–551 (2007).
[Crossref] [PubMed]

Yanina, I. Y.

E. A. Genina, A. N. Bashkatov, Y. P. Sinichkin, I. Y. Yanina, and V. V. Tuchin, “Optical clearing of tissues: Benefits for biology, medical diagnostics, and phototherapy,” in Handbook of Optical Biomedical Diagnostics, Second Edition, Volume 2: Methods, V. V. Tuchin, ed. (SPIE Press, 2016).
[Crossref]

Yasuda, H.

Y. Tsukasaki, M. Morimatsu, G. Nishimura, T. Sakata, H. Yasuda, A. Komatsuzaki, T. M. Watanabe, and T. Jin, “Synthesis and optical properties of emission-tunable PbS/CdS core–shell quantum dots for in vivo fluorescence imaging in the second near-infrared window,” RSC Adv. 4, 41164–41171 (2014).
[Crossref]

Yu, T.-T.

Y.-J. Zhao, T.-T. Yu, C. Zhang, Z. Li, Q.-M. Luo, T.-H. Xu, and D. Zhu, “Skull optical clearing window for in vivo imaging of the mouse cortex at synaptic resolution,” Light. Sci. Appl. 7, 17153 (2018).
[Crossref]

Yusubalieva, G.

A. Sharova, Y. S. Maklygina, G. Yusubalieva, I. Shikunova, V. Kurlov, and V. Loschenov, “Sapphire implant based neuro-complex for deep-lying brain tumors phototheranostics,” in Journal of Physics: Conference Series, vol. 945 (IOP Publishing, 2018), p. 012009.

Zeng, S.

Z. Xue, S. Zeng, and J. Hao, “Non-invasive through-skull brain vascular imaging and small tumor diagnosis based on NIR-II emissive lanthanide nanoprobes beyond 1500 nm,” Biomaterials 171, 153–163 (2018).
[Crossref] [PubMed]

Zhang, B.

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8, 723–730 (2014).
[Crossref] [PubMed]

Zhang, C.

Y.-J. Zhao, T.-T. Yu, C. Zhang, Z. Li, Q.-M. Luo, T.-H. Xu, and D. Zhu, “Skull optical clearing window for in vivo imaging of the mouse cortex at synaptic resolution,” Light. Sci. Appl. 7, 17153 (2018).
[Crossref]

R. Shi, L. Guo, C. Zhang, W. Feng, P. Li, Z. Ding, and D. Zhu, “A useful way to develop effective in vivo skin optical clearing agents,” J. Biophotonics 10, 887–895 (2017).
[Crossref]

Zhang, Y.

J. Wang, Y. Zhang, T. H. Xu, Q. M. Luo, and D. Zhu, “An innovative transparent cranial window based on skull optical clearing,” Laser Phys. Lett. 9, 469 (2012).
[Crossref]

Zhao, S.

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8, 723–730 (2014).
[Crossref] [PubMed]

Zhao, Y.-J.

Y.-J. Zhao, T.-T. Yu, C. Zhang, Z. Li, Q.-M. Luo, T.-H. Xu, and D. Zhu, “Skull optical clearing window for in vivo imaging of the mouse cortex at synaptic resolution,” Light. Sci. Appl. 7, 17153 (2018).
[Crossref]

Zheng, X.

N. S. James, T. Y. Ohulchanskyy, Y. Chen, P. Joshi, X. Zheng, L. N. Goswami, and R. K. Pandey, “Comparative tumor imaging and PDT efficacy of HPPH conjugated in the mono- and di-forms to various polymethine cyanine dyes: part - 2,” Theranostics 3, 703–718 (2013).
[Crossref] [PubMed]

Zhu, D.

Y.-J. Zhao, T.-T. Yu, C. Zhang, Z. Li, Q.-M. Luo, T.-H. Xu, and D. Zhu, “Skull optical clearing window for in vivo imaging of the mouse cortex at synaptic resolution,” Light. Sci. Appl. 7, 17153 (2018).
[Crossref]

R. Shi, L. Guo, C. Zhang, W. Feng, P. Li, Z. Ding, and D. Zhu, “A useful way to develop effective in vivo skin optical clearing agents,” J. Biophotonics 10, 887–895 (2017).
[Crossref]

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photon. Rev. 7, 732–757 (2013).
[Crossref] [PubMed]

J. Wang, Y. Zhang, T. H. Xu, Q. M. Luo, and D. Zhu, “An innovative transparent cranial window based on skull optical clearing,” Laser Phys. Lett. 9, 469 (2012).
[Crossref]

Zimnyakov, D. A.

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlyutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomedical Optics 2, 401–418 (1997).
[Crossref]

Zuluaga-Ramirez, V.

V. Zuluaga-Ramirez, S. Rom, and Y. Persidsky, “Craniula: A cranial window technique for prolonged imaging of brain surface vasculature with simultaneous adjacent intracerebral injection,” Fluids Barriers CNS 12, 24 (2015).
[Crossref] [PubMed]

Adv. Healthc. Mater. (1)

M. I. Gutierrez, E. H. Penilla, L. Leija, A. Vera, J. E. Garay, and G. Aguilar, “Novel cranial implants of Yttria-Stabilized zirconia as acoustic windows for ultrasonic brain therapy,” Adv. Healthc. Mater. 6, 1700214 (2017).
[Crossref] [PubMed]

Adv. Opt. Technol. (1)

E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, “Optical clearing of cranial bone,” Adv. Opt. Technol. 2008, 267867 (2008).
[Crossref]

Ann. N. Y. Acad. Sci. (1)

P. Christel, A. Meunier, J. M. Dorlot, J. M. Crolet, J. Witvoet, L. Sedel, and P. Boutin, “Biomechanical compatibility and design of ceramic implants for orthopedic surgery,” Ann. N. Y. Acad. Sci. 523, 234–256 (1988).
[Crossref] [PubMed]

Annu. Rev. Mater. Res. (1)

J. E. Garay, “Current-Activated, Pressure-Assisted densification of materials,” Annu. Rev. Mater. Res. 40, 445–468 (2010).
[Crossref]

Biomaterials (1)

Z. Xue, S. Zeng, and J. Hao, “Non-invasive through-skull brain vascular imaging and small tumor diagnosis based on NIR-II emissive lanthanide nanoprobes beyond 1500 nm,” Biomaterials 171, 153–163 (2018).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Brain Res. Bull. (1)

F. Salehpour, F. Farajdokht, P. Cassano, S. Sadigh-Eteghad, M. Erfani, M. R. Hamblin, M. M. Salimi, P. Karimi, S. H. Rasta, and J. Mahmoudi, “Near-infrared photobiomodulation combined with coenzyme Q for depression in a mouse model of restraint stress: reduction in oxidative stress, neuroinflammation, and apoptosis,” Brain Res. Bull. 144, 213–222 (2019).
[Crossref]

Fluids Barriers CNS (1)

V. Zuluaga-Ramirez, S. Rom, and Y. Persidsky, “Craniula: A cranial window technique for prolonged imaging of brain surface vasculature with simultaneous adjacent intracerebral injection,” Fluids Barriers CNS 12, 24 (2015).
[Crossref] [PubMed]

Front. Cell. Neurosci. (1)

C. J. Roome and B. Kuhn, “Chronic cranial window with access port for repeated cellular manipulations, drug application, and electrophysiology,” Front. Cell. Neurosci. 8, 379 (2014).
[Crossref] [PubMed]

Int. J. Prosthodont. (1)

K. Nakamura, T. Kanno, P. Milleding, and U. Ortengren, “Zirconia as a dental implant abutment material: a systematic review,” Int. J. Prosthodont. 23, 299–309 (2010).
[PubMed]

J. Affect. Disord. (1)

M. A. Caldieraro and P. Cassano, “Transcranial and systemic photobiomodulation for major depressive disorder: A systematic review of efficacy, tolerability and biological mechanisms,” J. Affect. Disord. 243, 262–273 (2019).
[Crossref]

J. Biomed. Mater. Res. (1)

P. Christel, A. Meunier, M. Heller, J. P. Torre, and C. N. Peille, “Mechanical properties and short-term in-vivo evaluation of yttrium-oxide-partially-stabilized zirconia,” J. Biomed. Mater. Res. 23, 45–61 (1989).
[Crossref] [PubMed]

J. Biomed. Opt. (4)

R. H. Wilson, K. P. Nadeau, F. B. Jaworski, B. J. Tromberg, and A. J. Durkin, “Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization,” J. Biomed. Opt. 20, 030901 (2015).
[Crossref] [PubMed]

L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and R. R. Alfano, “Deep optical imaging of tissue using the second and third near-infrared spectral windows,” J. Biomed. Opt. 19, 056004 (2014).
[Crossref] [PubMed]

D. C. Sordillo, L. A. Sordillo, P. P. Sordillo, L. Shi, and R. R. Alfano, “Short wavelength infrared optical windows for evaluation of benign and malignant tissues,” J. Biomed. Opt. 22, 45002 (2017).
[Crossref] [PubMed]

S. A. Filatova, I. A. Shcherbakov, and V. B. Tsvetkov, “Optical properties of animal tissues in the wavelength range from 350 to 2600 nm,” J. Biomed. Opt. 22, 35009 (2017).
[Crossref]

J. Biomedical Optics (1)

V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlyutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomedical Optics 2, 401–418 (1997).
[Crossref]

A. N. Bashkatov, K. V. Berezin, K. N. Dvoretskiy, M. L. Chernavina, E. A. Genina, V. D. Genin, V. I. Kochubey, E. N. Lazareva, A. B. Pravdin, M. E. Shvachkina, and P. A. Timoshina, “Measurement of tissue optical properties in the context of tissue optical clearing,” J. biomedical optics 23,091416 (2018).
[Crossref]

J. biophotonics (1)

S. Golovynskyi, I. Golovynska, L. I. Stepanova, O. I. Datsenko, L. Liu, J. Qu, and T. Y. Ohulchanskyy, “Optical windows for head tissues in near-infrared and short-wave infrared regions: Approaching transcranial light applications,” J. biophotonics 11, e201800141 (2018).
[Crossref] [PubMed]

L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophotonics 9, 38–43 (2016).
[Crossref]

R. Shi, L. Guo, C. Zhang, W. Feng, P. Li, Z. Ding, and D. Zhu, “A useful way to develop effective in vivo skin optical clearing agents,” J. Biophotonics 10, 887–895 (2017).
[Crossref]

J. Med. Biol. Eng. (1)

C.-L. Tsai, J.-C. Chen, and W.-J. Wang, and Others, “Near-infrared absorption property of biological soft tissue constituents,” J. Med. Biol. Eng. 21, 7–14 (2001).

J. Neurosci. Res. (2)

J. R. Thiagarajah, M. C. Papadopoulos, and A. S. Verkman, “Noninvasive early detection of brain edema in mice by near-infrared light scattering,” J. Neurosci. Res. 80, 293–299 (2005).
[Crossref] [PubMed]

M. R. Hamblin, “Photobiomodulation for traumatic brain injury and stroke,” J. Neurosci. Res. 96, 731–743 (2018).
[Crossref]

J. Opt. Soc. Am., JOSA (1)

J. A. Curcio and C. C. Petty, “The near infrared absorption spectrum of liquid water,” J. Opt. Soc. Am., JOSA 41, 302–304 (1951).
[Crossref]

Laser Photon. Rev. (1)

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photon. Rev. 7, 732–757 (2013).
[Crossref] [PubMed]

Laser Phys. Lett. (1)

J. Wang, Y. Zhang, T. H. Xu, Q. M. Luo, and D. Zhu, “An innovative transparent cranial window based on skull optical clearing,” Laser Phys. Lett. 9, 469 (2012).
[Crossref]

Light. Sci. Appl. (1)

Y.-J. Zhao, T.-T. Yu, C. Zhang, Z. Li, Q.-M. Luo, T.-H. Xu, and D. Zhu, “Skull optical clearing window for in vivo imaging of the mouse cortex at synaptic resolution,” Light. Sci. Appl. 7, 17153 (2018).
[Crossref]

Nanomedicine (2)

Y. Damestani, C. L. Reynolds, J. Szu, M. S. Hsu, Y. Kodera, D. K. Binder, B. H. Park, J. E. Garay, M. P. Rao, and G. Aguilar, “Transparent nanocrystalline yttria-stabilized-zirconia calvarium prosthesis,” Nanomedicine 9, 1135–1138 (2013).
[Crossref] [PubMed]

Y. Damestani, D. E. Galan-Hoffman, D. Ortiz, P. Cabrales, and G. Aguilar, “Inflammatory response to implantation of transparent nanocrystalline yttria-stabilized zirconia using a dorsal window chamber model,” Nanomedicine 12, 1757–1763 (2016).
[Crossref] [PubMed]

Nanoscale Horizons (1)

E. Hemmer, A. Benayas, F. Légaré, and F. Vetrone, “Exploiting the biological windows: current perspectives on fluorescent bioprobes emitting above 1000 nm,” Nanoscale Horizons 1, 168–184 (2016).
[Crossref]

Nat. Biomed. Eng. (1)

G. Hong, A. L. Antaris, and H. Dai, “Near-infrared fluorophores for biomedical imaging,” Nat. Biomed. Eng. 1, 0010 (2017).
[Crossref]

Nat. Methods (1)

P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7, 981–984 (2010).
[Crossref] [PubMed]

Nat. Neurosci. (1)

H.-T. Xu, F. Pan, G. Yang, and W.-B. Gan, “Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex,” Nat. Neurosci. 10, 549–551 (2007).
[Crossref] [PubMed]

Nat. Photonics (1)

G. Hong, S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. Dai, “Through-skull fluorescence imaging of the brain in a new near-infrared window,” Nat. Photonics 8, 723–730 (2014).
[Crossref] [PubMed]

Nat. Protoc. (1)

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W.-C. A. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4, 1128–1144 (2009).
[Crossref] [PubMed]

Nature (1)

J. Grutzendler, N. Kasthuri, and W.-B. Gan, “Long-term dendritic spine stability in the adult cortex,” Nature 420, 812–816 (2002).
[Crossref] [PubMed]

Opt. Mater. (1)

J. E. Alaniz, F. G. Perez-Gutierrez, G. Aguilar, and J. E. Garay, “Optical properties of transparent nanocrystalline yttria stabilized zirconia,” Opt. Mater. 32, 62–68 (2009).
[Crossref]

Phys. Med. Biol. (1)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58, R37 (2013).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U. S. A. (1)

W.-C. A. Lee, J. L. Chen, H. Huang, J. H. Leslie, Y. Amitai, P. T. So, and E. Nedivi, “A dynamic zone defines interneuron remodeling in the adult neocortex,” Proc. Natl. Acad. Sci. U. S. A. 105, 19968–19973 (2008).
[Crossref] [PubMed]

RSC Adv. (1)

Y. Tsukasaki, M. Morimatsu, G. Nishimura, T. Sakata, H. Yasuda, A. Komatsuzaki, T. M. Watanabe, and T. Jin, “Synthesis and optical properties of emission-tunable PbS/CdS core–shell quantum dots for in vivo fluorescence imaging in the second near-infrared window,” RSC Adv. 4, 41164–41171 (2014).
[Crossref]

Sci. Rep. (1)

C. Heo, H. Park, Y.-T. Kim, E. Baeg, Y. H. Kim, S.-G. Kim, and M. Suh, “A soft, transparent, freely accessible cranial window for chronic imaging and electrophysiology,” Sci. Rep. 6, 27818 (2016).
[Crossref] [PubMed]

Scr. Mater. (1)

S. R. Casolco, J. Xu, and J. E. Garay, “Transparent/translucent polycrystalline nanostructured yttria stabilized zirconia with varying colors,” Scr. Mater. 58, 516–519 (2008).
[Crossref]

Theranostics (1)

N. S. James, T. Y. Ohulchanskyy, Y. Chen, P. Joshi, X. Zheng, L. N. Goswami, and R. K. Pandey, “Comparative tumor imaging and PDT efficacy of HPPH conjugated in the mono- and di-forms to various polymethine cyanine dyes: part - 2,” Theranostics 3, 703–718 (2013).
[Crossref] [PubMed]

Other (10)

S. J. Madsen, Optical Methods and Instrumentation in Brain Imaging and Therapy(Springer Science & Business Media, 2012).

S. S. Smith, P. Magnusen, and B. J. Pletka, “Fracture toughness of glass using the indentation fracture technique,” in Fracture Mechanics for Ceramics, Rocks, and Concrete, (ASTM International, 1981), pp. 33.

S. F. Hulbert, “The use of alumina and zirconia in surgical implants,” in An Introduction to Bioceramics, (2013), pp. 27–47.
[Crossref]

A. Sharova, Y. S. Maklygina, G. Yusubalieva, I. Shikunova, V. Kurlov, and V. Loschenov, “Sapphire implant based neuro-complex for deep-lying brain tumors phototheranostics,” in Journal of Physics: Conference Series, vol. 945 (IOP Publishing, 2018), p. 012009.

V. Tuchin, Tissue Optics Light Scattering Methods and Instruments for Medical Diagnosis (SPIE,2000).

N. Davoodzadeh, M. S. Cano-Velázquez, D. L. Halaney, C. R. Jonak, D. K. Binder, and G. Aguilar, “Evaluation of a transparent cranial implant for multi-wavelength intrinsic optical signal imaging,” in Neural Imaging and Sensing 2019, vol. 10865 (International Society for Optics and Photonics, 2019), p. 108650B.

N. Davoodzadeh, D. Halaney, C. R. Jonak, N. Cuando, A. Aminfar, D. K. Binder, and G. Aguilar, “Laser speckle imaging of brain blood flow through a transparent nanocrystalline yttria-stabilized-zirconia cranial implant,” in Dynamics and Fluctuations in Biomedical Photonics XV, vol. 10493 (International Society for Optics and Photonics, 2018), p. 1049303.

N. Davoodzadeh, G. Uahengo, D. Halaney, J. E. Garay, and G. Aguilar, “Influence of low temperature ageing on optical and mechanical properties of transparent yittria stabilized-zirconia cranial prosthesis,” in Design and Quality for Biomedical Technologies XI, vol. 10486 (International Society for Optics and Photonics, 2018), p. 104860A.

E. A. Genina, A. N. Bashkatov, Y. P. Sinichkin, I. Y. Yanina, and V. V. Tuchin, “Optical clearing of tissues: Benefits for biology, medical diagnostics, and phototherapy,” in Handbook of Optical Biomedical Diagnostics, Second Edition, Volume 2: Methods, V. V. Tuchin, ed. (SPIE Press, 2016).
[Crossref]

N. Davoodzadeh, N. Cuando, A. H. Aminfar, M. Cano, and G. Aguilar, “Assessment of bacteria growth under transparent nanocrystalline yttriastabilized-zirconia cranial implant using laser speckle imaging,” in Lasers in Surgery and Medicine, vol. 50 (Wiley, 2018), pp. S5–S6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Collimated transmittance measurements setup. The inset shows the housing for fixing the sample, i.e., the fiber holders with the VIS-NIR collimating lenses. As seen in the inset, the samples are placed between coverslips (see text for further details).
Fig. 2
Fig. 2 Stacked sample arrangement used to obtain the spectral transmittance of: 1) the native skull and YSZ implant, 2) the scalp on top of the skull and the YSZ implant, 3) optical cleared (OC) scalp on top of native skull and implant.
Fig. 3
Fig. 3 Transmittance (a) and total attenuation length (b) for the skull and the YSZ implant. The YSZ implant shows better transmittance throughout the full 900-2400 nm spectral range compared to the native skull.
Fig. 4
Fig. 4 Transmittance (a) and total attenuation length (b) comparing the stacked samples of the scalp on top of the skull and on the YSZ implant. The sample with the YSZ implant still shows better transmittance and improved attenuation length compared tothe sample with the native skull; however, the enhancement is only of 6% in the best case.
Fig. 5
Fig. 5 Transmittance (a) and total attenuation length (b) comparing the stacked samples of the scalp on top of the skull and on the YSZ implant after using the OCAs. The sample using the YSZ implant with optically cleared scalp (OC scalp) shows an increase of up to 30% in transmittance compared to the sample with the skull.
Fig. 6
Fig. 6 Summary of the registered transmittance (a) and total attenuation length (b) for the different samples tested in our experiments. Throughout the whole NIR spectral range the YSZ implant shows enhanced transmittance among all the samples. The use of OCAs on the scalp effectively increases both, the transmittance and the attenuation length, providing enhanced light penetration. The most favored optical window for the stacked sample of optically cleared scalp on top of the YSZ implant is the NIR III(1550-1870 nm, T=67%, lt = 2.86 mm). Error bars represent standard deviation (n=3).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T ( λ ) = S ( λ ) D I ( λ ) D
l t ( λ ) = z l n ( T ( λ ) )

Metrics