Abstract

A fundamental challenge in calcium imaging is to minimize the excitation laser power while still maintaining a sufficient signal-to-noise ratio to distinguish individual transients in the fluorescence traces. It is important to characterize relative fluorescence (i.e., ΔF/F) dependence on the excitation wavelength in vivo where the environment cannot be controlled effectively during imaging. Leveraging time division multiplexing of two excitation beams to achieve nearly simultaneous 2-photon and 3-photon imaging of the calcium transients, we measured systematically the ΔF/F dependence on the excitation wavelength in 2-photon and 3-photon in vivo imaging of neuronal activity in mouse brain labeled with GCaMP6s. The technique can be applied to in vivo measurements of other fluorescence sensors.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-energy polarized soliton synthesis and its application to deep-brain 3-photon microscopy in vivo

Hongji Liu, Ziwei Zhuang, Jiexing He, Shen Tong, Chen He, Xiangquan Deng, Guoli Song, Ping Qiu, and Ke Wang
Opt. Express 27(11) 15309-15317 (2019)

Measurements of multiphoton action cross sections for multiphoton microscopy

Li-Chung Cheng, Nicholas G. Horton, Ke Wang, Shean-Jen Chen, and Chris Xu
Biomed. Opt. Express 5(10) 3427-3433 (2014)

Rapid volumetric imaging with Bessel-Beam three-photon microscopy

Bingying Chen, Xiaoshuai Huang, Dongzhou Gou, Jianzhi Zeng, Guoqing Chen, Meijun Pang, Yanhui Hu, Zhe Zhao, Yunfeng Zhang, Zhuan Zhou, Haitao Wu, Heping Cheng, Zhigang Zhang, Chris Xu, Yulong Li, Liangyi Chen, and Aimin Wang
Biomed. Opt. Express 9(4) 1992-2000 (2018)

References

  • View by:
  • |
  • |
  • |

  1. W. Yang and R. Yuste, “In vivo imaging of neural activity,” Nat. Methods 14(4), 349–359 (2017).
    [Crossref] [PubMed]
  2. D. Smetters, A. Majewska, and R. Yuste, “Detecting action potentials in neuronal populations with calcium imaging,” Methods 18(2), 215–221 (1999).
    [Crossref] [PubMed]
  3. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  4. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Non-linear magic,” Nat. Biotechnol. 21, 1369–1377 (2003).
    [Crossref] [PubMed]
  5. C. Stosiek, O. Garaschuk, K. Holthoff, and A. Konnerth, “In vivo two-photon calcium imaging of neuronal networks,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7319–7324 (2003).
    [Crossref] [PubMed]
  6. J. N. Kerr and W. Denk, “Imaging in vivo: watching the brain in action,” Nat. Rev. Neurosci. 9(3), 195–205 (2008).
    [Crossref] [PubMed]
  7. D. A. Dombeck, A. N. Khabbaz, F. Collman, T. L. Adelman, and D. W. Tank, “Imaging large-scale neural activity with cellular resolution in awake, mobile mice,” Neuron 56(1), 43–57 (2007).
    [Crossref] [PubMed]
  8. T. R. Sato, N. W. Gray, Z. F. Mainen, and K. Svoboda, “The functional microarchitecture of the mouse barrel cortex,” PLoS Biol. 5(7), e189 (2007).
    [Crossref] [PubMed]
  9. W. Mittmann, D. J. Wallace, U. Czubayko, J. T. Herb, A. T. Schaefer, L. L. Looger, W. Denk, and J. N. Kerr, “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nat. Neurosci. 14(8), 1089–1093 (2011).
    [Crossref] [PubMed]
  10. D. A. Dombeck, C. D. Harvey, L. Tian, L. L. Looger, and D. W. Tank, “Functional imaging of hippocampal place cells at cellular resolution during virtual navigation,” Nat. Neurosci. 13(11), 1433–1440 (2010).
    [Crossref] [PubMed]
  11. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
    [Crossref] [PubMed]
  12. D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y. T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
    [Crossref] [PubMed]
  13. T. Wang, D. G. Ouzounov, C. Wu, N. G. Horton, B. Zhang, C. H. Wu, Y. Zhang, M. J. Schnitzer, and C. Xu, “Three-photon imaging of mouse brain structure and function through the intact skull,” Nat. Methods 15(10), 789–792 (2018).
    [Crossref] [PubMed]
  14. S. Weisenburger, F. Tejera, J. Demas, B. Chen, J. Manley, F. T. Sparks, F. Martínez Traub, T. Daigle, H. Zeng, A. Losonczy, and A. Vaziri, “Volumetric Ca2+ Imaging in the Mouse Brain Using Hybrid Multiplexed Sculpted Light Microscopy,” Cell 177(4), 1050–1066 (2019).
    [Crossref] [PubMed]
  15. T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
    [Crossref] [PubMed]
  16. H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J. P. Hasseman, G. Tsegaye, G. T. Holt, A. Hu, D. Walpita, R. Patel, J. J. Macklin, C. I. Bargmann, M. B. Ahrens, E. R. Schreiter, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Sensitive red protein calcium indicators for imaging neural activity,” eLife 5(5), e12727 (2016).
    [Crossref] [PubMed]
  17. C. Grienberger and A. Konnerth, “Imaging Calcium in Neurons,” Neuron 73(5), 862–885 (2012).
    [Crossref] [PubMed]
  18. L. M. Barnett, T. E. Hughes, and M. Drobizhev, “Deciphering the molecular mechanism responsible for GCaMP6m’s Ca2+-dependent change in fluorescence,” PLoS One 12(2), e0170934 (2017).
    [Crossref] [PubMed]
  19. C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
    [Crossref] [PubMed]
  20. X. Deng, Z. Zhuang, H. Liu, P. Qiu, and K. Wang, “Measurement of 3-photon excitation and emission spectra and verification of Kasha’s rule for selected fluorescent proteins excited at the 1700-nm window,” Opt. Express 27(9), 12723–12731 (2019).
    [Crossref] [PubMed]
  21. B. A. Wilt, J. E. Fitzgerald, and M. J. Schnitzer, “Photon Shot Noise Limits on Optical Detection of Neuronal Spikes and Estimation of Spike Timing,” Biophys. J. 104(1), 51–62 (2013).
    [Crossref] [PubMed]
  22. M. Wang, C. Wu, D. Sinefeld, B. Li, F. Xia, and C. Xu, “Comparing the effective attenuation lengths for long wavelength in vivo imaging of the mouse brain,” Biomed. Opt. Express 9(8), 3534–3543 (2018).
    [Crossref] [PubMed]

2019 (2)

S. Weisenburger, F. Tejera, J. Demas, B. Chen, J. Manley, F. T. Sparks, F. Martínez Traub, T. Daigle, H. Zeng, A. Losonczy, and A. Vaziri, “Volumetric Ca2+ Imaging in the Mouse Brain Using Hybrid Multiplexed Sculpted Light Microscopy,” Cell 177(4), 1050–1066 (2019).
[Crossref] [PubMed]

X. Deng, Z. Zhuang, H. Liu, P. Qiu, and K. Wang, “Measurement of 3-photon excitation and emission spectra and verification of Kasha’s rule for selected fluorescent proteins excited at the 1700-nm window,” Opt. Express 27(9), 12723–12731 (2019).
[Crossref] [PubMed]

2018 (2)

T. Wang, D. G. Ouzounov, C. Wu, N. G. Horton, B. Zhang, C. H. Wu, Y. Zhang, M. J. Schnitzer, and C. Xu, “Three-photon imaging of mouse brain structure and function through the intact skull,” Nat. Methods 15(10), 789–792 (2018).
[Crossref] [PubMed]

M. Wang, C. Wu, D. Sinefeld, B. Li, F. Xia, and C. Xu, “Comparing the effective attenuation lengths for long wavelength in vivo imaging of the mouse brain,” Biomed. Opt. Express 9(8), 3534–3543 (2018).
[Crossref] [PubMed]

2017 (3)

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y. T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

L. M. Barnett, T. E. Hughes, and M. Drobizhev, “Deciphering the molecular mechanism responsible for GCaMP6m’s Ca2+-dependent change in fluorescence,” PLoS One 12(2), e0170934 (2017).
[Crossref] [PubMed]

W. Yang and R. Yuste, “In vivo imaging of neural activity,” Nat. Methods 14(4), 349–359 (2017).
[Crossref] [PubMed]

2016 (1)

H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J. P. Hasseman, G. Tsegaye, G. T. Holt, A. Hu, D. Walpita, R. Patel, J. J. Macklin, C. I. Bargmann, M. B. Ahrens, E. R. Schreiter, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Sensitive red protein calcium indicators for imaging neural activity,” eLife 5(5), e12727 (2016).
[Crossref] [PubMed]

2013 (3)

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

B. A. Wilt, J. E. Fitzgerald, and M. J. Schnitzer, “Photon Shot Noise Limits on Optical Detection of Neuronal Spikes and Estimation of Spike Timing,” Biophys. J. 104(1), 51–62 (2013).
[Crossref] [PubMed]

2012 (1)

C. Grienberger and A. Konnerth, “Imaging Calcium in Neurons,” Neuron 73(5), 862–885 (2012).
[Crossref] [PubMed]

2011 (1)

W. Mittmann, D. J. Wallace, U. Czubayko, J. T. Herb, A. T. Schaefer, L. L. Looger, W. Denk, and J. N. Kerr, “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nat. Neurosci. 14(8), 1089–1093 (2011).
[Crossref] [PubMed]

2010 (1)

D. A. Dombeck, C. D. Harvey, L. Tian, L. L. Looger, and D. W. Tank, “Functional imaging of hippocampal place cells at cellular resolution during virtual navigation,” Nat. Neurosci. 13(11), 1433–1440 (2010).
[Crossref] [PubMed]

2008 (1)

J. N. Kerr and W. Denk, “Imaging in vivo: watching the brain in action,” Nat. Rev. Neurosci. 9(3), 195–205 (2008).
[Crossref] [PubMed]

2007 (2)

D. A. Dombeck, A. N. Khabbaz, F. Collman, T. L. Adelman, and D. W. Tank, “Imaging large-scale neural activity with cellular resolution in awake, mobile mice,” Neuron 56(1), 43–57 (2007).
[Crossref] [PubMed]

T. R. Sato, N. W. Gray, Z. F. Mainen, and K. Svoboda, “The functional microarchitecture of the mouse barrel cortex,” PLoS Biol. 5(7), e189 (2007).
[Crossref] [PubMed]

2003 (2)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Non-linear magic,” Nat. Biotechnol. 21, 1369–1377 (2003).
[Crossref] [PubMed]

C. Stosiek, O. Garaschuk, K. Holthoff, and A. Konnerth, “In vivo two-photon calcium imaging of neuronal networks,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7319–7324 (2003).
[Crossref] [PubMed]

1999 (1)

D. Smetters, A. Majewska, and R. Yuste, “Detecting action potentials in neuronal populations with calcium imaging,” Methods 18(2), 215–221 (1999).
[Crossref] [PubMed]

1996 (1)

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Adelman, T. L.

D. A. Dombeck, A. N. Khabbaz, F. Collman, T. L. Adelman, and D. W. Tank, “Imaging large-scale neural activity with cellular resolution in awake, mobile mice,” Neuron 56(1), 43–57 (2007).
[Crossref] [PubMed]

Ahrens, M. B.

H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J. P. Hasseman, G. Tsegaye, G. T. Holt, A. Hu, D. Walpita, R. Patel, J. J. Macklin, C. I. Bargmann, M. B. Ahrens, E. R. Schreiter, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Sensitive red protein calcium indicators for imaging neural activity,” eLife 5(5), e12727 (2016).
[Crossref] [PubMed]

Baohan, A.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Bargmann, C. I.

H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J. P. Hasseman, G. Tsegaye, G. T. Holt, A. Hu, D. Walpita, R. Patel, J. J. Macklin, C. I. Bargmann, M. B. Ahrens, E. R. Schreiter, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Sensitive red protein calcium indicators for imaging neural activity,” eLife 5(5), e12727 (2016).
[Crossref] [PubMed]

Barnett, L. M.

L. M. Barnett, T. E. Hughes, and M. Drobizhev, “Deciphering the molecular mechanism responsible for GCaMP6m’s Ca2+-dependent change in fluorescence,” PLoS One 12(2), e0170934 (2017).
[Crossref] [PubMed]

Chen, B.

S. Weisenburger, F. Tejera, J. Demas, B. Chen, J. Manley, F. T. Sparks, F. Martínez Traub, T. Daigle, H. Zeng, A. Losonczy, and A. Vaziri, “Volumetric Ca2+ Imaging in the Mouse Brain Using Hybrid Multiplexed Sculpted Light Microscopy,” Cell 177(4), 1050–1066 (2019).
[Crossref] [PubMed]

Chen, T. W.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Cheng, Y. T.

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y. T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

Clark, C. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Collman, F.

D. A. Dombeck, A. N. Khabbaz, F. Collman, T. L. Adelman, and D. W. Tank, “Imaging large-scale neural activity with cellular resolution in awake, mobile mice,” Neuron 56(1), 43–57 (2007).
[Crossref] [PubMed]

Cruz-Hernández, J. C.

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y. T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

Czubayko, U.

W. Mittmann, D. J. Wallace, U. Czubayko, J. T. Herb, A. T. Schaefer, L. L. Looger, W. Denk, and J. N. Kerr, “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nat. Neurosci. 14(8), 1089–1093 (2011).
[Crossref] [PubMed]

Daigle, T.

S. Weisenburger, F. Tejera, J. Demas, B. Chen, J. Manley, F. T. Sparks, F. Martínez Traub, T. Daigle, H. Zeng, A. Losonczy, and A. Vaziri, “Volumetric Ca2+ Imaging in the Mouse Brain Using Hybrid Multiplexed Sculpted Light Microscopy,” Cell 177(4), 1050–1066 (2019).
[Crossref] [PubMed]

Dana, H.

H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J. P. Hasseman, G. Tsegaye, G. T. Holt, A. Hu, D. Walpita, R. Patel, J. J. Macklin, C. I. Bargmann, M. B. Ahrens, E. R. Schreiter, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Sensitive red protein calcium indicators for imaging neural activity,” eLife 5(5), e12727 (2016).
[Crossref] [PubMed]

Demas, J.

S. Weisenburger, F. Tejera, J. Demas, B. Chen, J. Manley, F. T. Sparks, F. Martínez Traub, T. Daigle, H. Zeng, A. Losonczy, and A. Vaziri, “Volumetric Ca2+ Imaging in the Mouse Brain Using Hybrid Multiplexed Sculpted Light Microscopy,” Cell 177(4), 1050–1066 (2019).
[Crossref] [PubMed]

Deng, X.

Denk, W.

W. Mittmann, D. J. Wallace, U. Czubayko, J. T. Herb, A. T. Schaefer, L. L. Looger, W. Denk, and J. N. Kerr, “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nat. Neurosci. 14(8), 1089–1093 (2011).
[Crossref] [PubMed]

J. N. Kerr and W. Denk, “Imaging in vivo: watching the brain in action,” Nat. Rev. Neurosci. 9(3), 195–205 (2008).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Dombeck, D. A.

D. A. Dombeck, C. D. Harvey, L. Tian, L. L. Looger, and D. W. Tank, “Functional imaging of hippocampal place cells at cellular resolution during virtual navigation,” Nat. Neurosci. 13(11), 1433–1440 (2010).
[Crossref] [PubMed]

D. A. Dombeck, A. N. Khabbaz, F. Collman, T. L. Adelman, and D. W. Tank, “Imaging large-scale neural activity with cellular resolution in awake, mobile mice,” Neuron 56(1), 43–57 (2007).
[Crossref] [PubMed]

Drobizhev, M.

L. M. Barnett, T. E. Hughes, and M. Drobizhev, “Deciphering the molecular mechanism responsible for GCaMP6m’s Ca2+-dependent change in fluorescence,” PLoS One 12(2), e0170934 (2017).
[Crossref] [PubMed]

Feng, D. D.

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y. T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

Fitzgerald, J. E.

B. A. Wilt, J. E. Fitzgerald, and M. J. Schnitzer, “Photon Shot Noise Limits on Optical Detection of Neuronal Spikes and Estimation of Spike Timing,” Biophys. J. 104(1), 51–62 (2013).
[Crossref] [PubMed]

Garaschuk, O.

C. Stosiek, O. Garaschuk, K. Holthoff, and A. Konnerth, “In vivo two-photon calcium imaging of neuronal networks,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7319–7324 (2003).
[Crossref] [PubMed]

Gordus, A.

H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J. P. Hasseman, G. Tsegaye, G. T. Holt, A. Hu, D. Walpita, R. Patel, J. J. Macklin, C. I. Bargmann, M. B. Ahrens, E. R. Schreiter, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Sensitive red protein calcium indicators for imaging neural activity,” eLife 5(5), e12727 (2016).
[Crossref] [PubMed]

Gray, N. W.

T. R. Sato, N. W. Gray, Z. F. Mainen, and K. Svoboda, “The functional microarchitecture of the mouse barrel cortex,” PLoS Biol. 5(7), e189 (2007).
[Crossref] [PubMed]

Grienberger, C.

C. Grienberger and A. Konnerth, “Imaging Calcium in Neurons,” Neuron 73(5), 862–885 (2012).
[Crossref] [PubMed]

Harvey, C. D.

D. A. Dombeck, C. D. Harvey, L. Tian, L. L. Looger, and D. W. Tank, “Functional imaging of hippocampal place cells at cellular resolution during virtual navigation,” Nat. Neurosci. 13(11), 1433–1440 (2010).
[Crossref] [PubMed]

Hasseman, J. P.

H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J. P. Hasseman, G. Tsegaye, G. T. Holt, A. Hu, D. Walpita, R. Patel, J. J. Macklin, C. I. Bargmann, M. B. Ahrens, E. R. Schreiter, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Sensitive red protein calcium indicators for imaging neural activity,” eLife 5(5), e12727 (2016).
[Crossref] [PubMed]

Herb, J. T.

W. Mittmann, D. J. Wallace, U. Czubayko, J. T. Herb, A. T. Schaefer, L. L. Looger, W. Denk, and J. N. Kerr, “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nat. Neurosci. 14(8), 1089–1093 (2011).
[Crossref] [PubMed]

Holt, G. T.

H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J. P. Hasseman, G. Tsegaye, G. T. Holt, A. Hu, D. Walpita, R. Patel, J. J. Macklin, C. I. Bargmann, M. B. Ahrens, E. R. Schreiter, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Sensitive red protein calcium indicators for imaging neural activity,” eLife 5(5), e12727 (2016).
[Crossref] [PubMed]

Holthoff, K.

C. Stosiek, O. Garaschuk, K. Holthoff, and A. Konnerth, “In vivo two-photon calcium imaging of neuronal networks,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7319–7324 (2003).
[Crossref] [PubMed]

Horton, N. G.

T. Wang, D. G. Ouzounov, C. Wu, N. G. Horton, B. Zhang, C. H. Wu, Y. Zhang, M. J. Schnitzer, and C. Xu, “Three-photon imaging of mouse brain structure and function through the intact skull,” Nat. Methods 15(10), 789–792 (2018).
[Crossref] [PubMed]

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y. T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Hu, A.

H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J. P. Hasseman, G. Tsegaye, G. T. Holt, A. Hu, D. Walpita, R. Patel, J. J. Macklin, C. I. Bargmann, M. B. Ahrens, E. R. Schreiter, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Sensitive red protein calcium indicators for imaging neural activity,” eLife 5(5), e12727 (2016).
[Crossref] [PubMed]

Hughes, T. E.

L. M. Barnett, T. E. Hughes, and M. Drobizhev, “Deciphering the molecular mechanism responsible for GCaMP6m’s Ca2+-dependent change in fluorescence,” PLoS One 12(2), e0170934 (2017).
[Crossref] [PubMed]

Jayaraman, V.

H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J. P. Hasseman, G. Tsegaye, G. T. Holt, A. Hu, D. Walpita, R. Patel, J. J. Macklin, C. I. Bargmann, M. B. Ahrens, E. R. Schreiter, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Sensitive red protein calcium indicators for imaging neural activity,” eLife 5(5), e12727 (2016).
[Crossref] [PubMed]

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Kerr, J. N.

W. Mittmann, D. J. Wallace, U. Czubayko, J. T. Herb, A. T. Schaefer, L. L. Looger, W. Denk, and J. N. Kerr, “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nat. Neurosci. 14(8), 1089–1093 (2011).
[Crossref] [PubMed]

J. N. Kerr and W. Denk, “Imaging in vivo: watching the brain in action,” Nat. Rev. Neurosci. 9(3), 195–205 (2008).
[Crossref] [PubMed]

Kerr, R. A.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Khabbaz, A. N.

D. A. Dombeck, A. N. Khabbaz, F. Collman, T. L. Adelman, and D. W. Tank, “Imaging large-scale neural activity with cellular resolution in awake, mobile mice,” Neuron 56(1), 43–57 (2007).
[Crossref] [PubMed]

Kim, D. S.

H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J. P. Hasseman, G. Tsegaye, G. T. Holt, A. Hu, D. Walpita, R. Patel, J. J. Macklin, C. I. Bargmann, M. B. Ahrens, E. R. Schreiter, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Sensitive red protein calcium indicators for imaging neural activity,” eLife 5(5), e12727 (2016).
[Crossref] [PubMed]

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Kobat, D.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Konnerth, A.

C. Grienberger and A. Konnerth, “Imaging Calcium in Neurons,” Neuron 73(5), 862–885 (2012).
[Crossref] [PubMed]

C. Stosiek, O. Garaschuk, K. Holthoff, and A. Konnerth, “In vivo two-photon calcium imaging of neuronal networks,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7319–7324 (2003).
[Crossref] [PubMed]

Li, B.

Liu, H.

Looger, L. L.

H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J. P. Hasseman, G. Tsegaye, G. T. Holt, A. Hu, D. Walpita, R. Patel, J. J. Macklin, C. I. Bargmann, M. B. Ahrens, E. R. Schreiter, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Sensitive red protein calcium indicators for imaging neural activity,” eLife 5(5), e12727 (2016).
[Crossref] [PubMed]

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

W. Mittmann, D. J. Wallace, U. Czubayko, J. T. Herb, A. T. Schaefer, L. L. Looger, W. Denk, and J. N. Kerr, “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nat. Neurosci. 14(8), 1089–1093 (2011).
[Crossref] [PubMed]

D. A. Dombeck, C. D. Harvey, L. Tian, L. L. Looger, and D. W. Tank, “Functional imaging of hippocampal place cells at cellular resolution during virtual navigation,” Nat. Neurosci. 13(11), 1433–1440 (2010).
[Crossref] [PubMed]

Losonczy, A.

S. Weisenburger, F. Tejera, J. Demas, B. Chen, J. Manley, F. T. Sparks, F. Martínez Traub, T. Daigle, H. Zeng, A. Losonczy, and A. Vaziri, “Volumetric Ca2+ Imaging in the Mouse Brain Using Hybrid Multiplexed Sculpted Light Microscopy,” Cell 177(4), 1050–1066 (2019).
[Crossref] [PubMed]

Macklin, J. J.

H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J. P. Hasseman, G. Tsegaye, G. T. Holt, A. Hu, D. Walpita, R. Patel, J. J. Macklin, C. I. Bargmann, M. B. Ahrens, E. R. Schreiter, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Sensitive red protein calcium indicators for imaging neural activity,” eLife 5(5), e12727 (2016).
[Crossref] [PubMed]

Mainen, Z. F.

T. R. Sato, N. W. Gray, Z. F. Mainen, and K. Svoboda, “The functional microarchitecture of the mouse barrel cortex,” PLoS Biol. 5(7), e189 (2007).
[Crossref] [PubMed]

Majewska, A.

D. Smetters, A. Majewska, and R. Yuste, “Detecting action potentials in neuronal populations with calcium imaging,” Methods 18(2), 215–221 (1999).
[Crossref] [PubMed]

Manley, J.

S. Weisenburger, F. Tejera, J. Demas, B. Chen, J. Manley, F. T. Sparks, F. Martínez Traub, T. Daigle, H. Zeng, A. Losonczy, and A. Vaziri, “Volumetric Ca2+ Imaging in the Mouse Brain Using Hybrid Multiplexed Sculpted Light Microscopy,” Cell 177(4), 1050–1066 (2019).
[Crossref] [PubMed]

Martínez Traub, F.

S. Weisenburger, F. Tejera, J. Demas, B. Chen, J. Manley, F. T. Sparks, F. Martínez Traub, T. Daigle, H. Zeng, A. Losonczy, and A. Vaziri, “Volumetric Ca2+ Imaging in the Mouse Brain Using Hybrid Multiplexed Sculpted Light Microscopy,” Cell 177(4), 1050–1066 (2019).
[Crossref] [PubMed]

Mittmann, W.

W. Mittmann, D. J. Wallace, U. Czubayko, J. T. Herb, A. T. Schaefer, L. L. Looger, W. Denk, and J. N. Kerr, “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nat. Neurosci. 14(8), 1089–1093 (2011).
[Crossref] [PubMed]

Mohar, B.

H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J. P. Hasseman, G. Tsegaye, G. T. Holt, A. Hu, D. Walpita, R. Patel, J. J. Macklin, C. I. Bargmann, M. B. Ahrens, E. R. Schreiter, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Sensitive red protein calcium indicators for imaging neural activity,” eLife 5(5), e12727 (2016).
[Crossref] [PubMed]

Narayan, S.

H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J. P. Hasseman, G. Tsegaye, G. T. Holt, A. Hu, D. Walpita, R. Patel, J. J. Macklin, C. I. Bargmann, M. B. Ahrens, E. R. Schreiter, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Sensitive red protein calcium indicators for imaging neural activity,” eLife 5(5), e12727 (2016).
[Crossref] [PubMed]

Nishimura, N.

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y. T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

Orger, M. B.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Ouzounov, D. G.

T. Wang, D. G. Ouzounov, C. Wu, N. G. Horton, B. Zhang, C. H. Wu, Y. Zhang, M. J. Schnitzer, and C. Xu, “Three-photon imaging of mouse brain structure and function through the intact skull,” Nat. Methods 15(10), 789–792 (2018).
[Crossref] [PubMed]

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y. T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

Patel, R.

H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J. P. Hasseman, G. Tsegaye, G. T. Holt, A. Hu, D. Walpita, R. Patel, J. J. Macklin, C. I. Bargmann, M. B. Ahrens, E. R. Schreiter, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Sensitive red protein calcium indicators for imaging neural activity,” eLife 5(5), e12727 (2016).
[Crossref] [PubMed]

Pulver, S. R.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Qiu, P.

Reimer, J.

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y. T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

Renninger, S. L.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Sato, T. R.

T. R. Sato, N. W. Gray, Z. F. Mainen, and K. Svoboda, “The functional microarchitecture of the mouse barrel cortex,” PLoS Biol. 5(7), e189 (2007).
[Crossref] [PubMed]

Schaefer, A. T.

W. Mittmann, D. J. Wallace, U. Czubayko, J. T. Herb, A. T. Schaefer, L. L. Looger, W. Denk, and J. N. Kerr, “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nat. Neurosci. 14(8), 1089–1093 (2011).
[Crossref] [PubMed]

Schaffer, C. B.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Schnitzer, M. J.

T. Wang, D. G. Ouzounov, C. Wu, N. G. Horton, B. Zhang, C. H. Wu, Y. Zhang, M. J. Schnitzer, and C. Xu, “Three-photon imaging of mouse brain structure and function through the intact skull,” Nat. Methods 15(10), 789–792 (2018).
[Crossref] [PubMed]

B. A. Wilt, J. E. Fitzgerald, and M. J. Schnitzer, “Photon Shot Noise Limits on Optical Detection of Neuronal Spikes and Estimation of Spike Timing,” Biophys. J. 104(1), 51–62 (2013).
[Crossref] [PubMed]

Schreiter, E. R.

H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J. P. Hasseman, G. Tsegaye, G. T. Holt, A. Hu, D. Walpita, R. Patel, J. J. Macklin, C. I. Bargmann, M. B. Ahrens, E. R. Schreiter, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Sensitive red protein calcium indicators for imaging neural activity,” eLife 5(5), e12727 (2016).
[Crossref] [PubMed]

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Shear, J. B.

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

Sinefeld, D.

Smetters, D.

D. Smetters, A. Majewska, and R. Yuste, “Detecting action potentials in neuronal populations with calcium imaging,” Methods 18(2), 215–221 (1999).
[Crossref] [PubMed]

Sparks, F. T.

S. Weisenburger, F. Tejera, J. Demas, B. Chen, J. Manley, F. T. Sparks, F. Martínez Traub, T. Daigle, H. Zeng, A. Losonczy, and A. Vaziri, “Volumetric Ca2+ Imaging in the Mouse Brain Using Hybrid Multiplexed Sculpted Light Microscopy,” Cell 177(4), 1050–1066 (2019).
[Crossref] [PubMed]

Stosiek, C.

C. Stosiek, O. Garaschuk, K. Holthoff, and A. Konnerth, “In vivo two-photon calcium imaging of neuronal networks,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7319–7324 (2003).
[Crossref] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Sun, Y.

H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J. P. Hasseman, G. Tsegaye, G. T. Holt, A. Hu, D. Walpita, R. Patel, J. J. Macklin, C. I. Bargmann, M. B. Ahrens, E. R. Schreiter, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Sensitive red protein calcium indicators for imaging neural activity,” eLife 5(5), e12727 (2016).
[Crossref] [PubMed]

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Svoboda, K.

H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J. P. Hasseman, G. Tsegaye, G. T. Holt, A. Hu, D. Walpita, R. Patel, J. J. Macklin, C. I. Bargmann, M. B. Ahrens, E. R. Schreiter, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Sensitive red protein calcium indicators for imaging neural activity,” eLife 5(5), e12727 (2016).
[Crossref] [PubMed]

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

T. R. Sato, N. W. Gray, Z. F. Mainen, and K. Svoboda, “The functional microarchitecture of the mouse barrel cortex,” PLoS Biol. 5(7), e189 (2007).
[Crossref] [PubMed]

Tank, D. W.

D. A. Dombeck, C. D. Harvey, L. Tian, L. L. Looger, and D. W. Tank, “Functional imaging of hippocampal place cells at cellular resolution during virtual navigation,” Nat. Neurosci. 13(11), 1433–1440 (2010).
[Crossref] [PubMed]

D. A. Dombeck, A. N. Khabbaz, F. Collman, T. L. Adelman, and D. W. Tank, “Imaging large-scale neural activity with cellular resolution in awake, mobile mice,” Neuron 56(1), 43–57 (2007).
[Crossref] [PubMed]

Tejera, F.

S. Weisenburger, F. Tejera, J. Demas, B. Chen, J. Manley, F. T. Sparks, F. Martínez Traub, T. Daigle, H. Zeng, A. Losonczy, and A. Vaziri, “Volumetric Ca2+ Imaging in the Mouse Brain Using Hybrid Multiplexed Sculpted Light Microscopy,” Cell 177(4), 1050–1066 (2019).
[Crossref] [PubMed]

Tian, L.

D. A. Dombeck, C. D. Harvey, L. Tian, L. L. Looger, and D. W. Tank, “Functional imaging of hippocampal place cells at cellular resolution during virtual navigation,” Nat. Neurosci. 13(11), 1433–1440 (2010).
[Crossref] [PubMed]

Tolias, A. S.

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y. T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

Tsegaye, G.

H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J. P. Hasseman, G. Tsegaye, G. T. Holt, A. Hu, D. Walpita, R. Patel, J. J. Macklin, C. I. Bargmann, M. B. Ahrens, E. R. Schreiter, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Sensitive red protein calcium indicators for imaging neural activity,” eLife 5(5), e12727 (2016).
[Crossref] [PubMed]

Vaziri, A.

S. Weisenburger, F. Tejera, J. Demas, B. Chen, J. Manley, F. T. Sparks, F. Martínez Traub, T. Daigle, H. Zeng, A. Losonczy, and A. Vaziri, “Volumetric Ca2+ Imaging in the Mouse Brain Using Hybrid Multiplexed Sculpted Light Microscopy,” Cell 177(4), 1050–1066 (2019).
[Crossref] [PubMed]

Wallace, D. J.

W. Mittmann, D. J. Wallace, U. Czubayko, J. T. Herb, A. T. Schaefer, L. L. Looger, W. Denk, and J. N. Kerr, “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nat. Neurosci. 14(8), 1089–1093 (2011).
[Crossref] [PubMed]

Walpita, D.

H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J. P. Hasseman, G. Tsegaye, G. T. Holt, A. Hu, D. Walpita, R. Patel, J. J. Macklin, C. I. Bargmann, M. B. Ahrens, E. R. Schreiter, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Sensitive red protein calcium indicators for imaging neural activity,” eLife 5(5), e12727 (2016).
[Crossref] [PubMed]

Wang, K.

X. Deng, Z. Zhuang, H. Liu, P. Qiu, and K. Wang, “Measurement of 3-photon excitation and emission spectra and verification of Kasha’s rule for selected fluorescent proteins excited at the 1700-nm window,” Opt. Express 27(9), 12723–12731 (2019).
[Crossref] [PubMed]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Wang, M.

M. Wang, C. Wu, D. Sinefeld, B. Li, F. Xia, and C. Xu, “Comparing the effective attenuation lengths for long wavelength in vivo imaging of the mouse brain,” Biomed. Opt. Express 9(8), 3534–3543 (2018).
[Crossref] [PubMed]

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y. T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

Wang, T.

T. Wang, D. G. Ouzounov, C. Wu, N. G. Horton, B. Zhang, C. H. Wu, Y. Zhang, M. J. Schnitzer, and C. Xu, “Three-photon imaging of mouse brain structure and function through the intact skull,” Nat. Methods 15(10), 789–792 (2018).
[Crossref] [PubMed]

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y. T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

Wardill, T. J.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Non-linear magic,” Nat. Biotechnol. 21, 1369–1377 (2003).
[Crossref] [PubMed]

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Weisenburger, S.

S. Weisenburger, F. Tejera, J. Demas, B. Chen, J. Manley, F. T. Sparks, F. Martínez Traub, T. Daigle, H. Zeng, A. Losonczy, and A. Vaziri, “Volumetric Ca2+ Imaging in the Mouse Brain Using Hybrid Multiplexed Sculpted Light Microscopy,” Cell 177(4), 1050–1066 (2019).
[Crossref] [PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Non-linear magic,” Nat. Biotechnol. 21, 1369–1377 (2003).
[Crossref] [PubMed]

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

Wilt, B. A.

B. A. Wilt, J. E. Fitzgerald, and M. J. Schnitzer, “Photon Shot Noise Limits on Optical Detection of Neuronal Spikes and Estimation of Spike Timing,” Biophys. J. 104(1), 51–62 (2013).
[Crossref] [PubMed]

Wise, F. W.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Wu, C.

T. Wang, D. G. Ouzounov, C. Wu, N. G. Horton, B. Zhang, C. H. Wu, Y. Zhang, M. J. Schnitzer, and C. Xu, “Three-photon imaging of mouse brain structure and function through the intact skull,” Nat. Methods 15(10), 789–792 (2018).
[Crossref] [PubMed]

M. Wang, C. Wu, D. Sinefeld, B. Li, F. Xia, and C. Xu, “Comparing the effective attenuation lengths for long wavelength in vivo imaging of the mouse brain,” Biomed. Opt. Express 9(8), 3534–3543 (2018).
[Crossref] [PubMed]

Wu, C. H.

T. Wang, D. G. Ouzounov, C. Wu, N. G. Horton, B. Zhang, C. H. Wu, Y. Zhang, M. J. Schnitzer, and C. Xu, “Three-photon imaging of mouse brain structure and function through the intact skull,” Nat. Methods 15(10), 789–792 (2018).
[Crossref] [PubMed]

Xia, F.

Xu, C.

M. Wang, C. Wu, D. Sinefeld, B. Li, F. Xia, and C. Xu, “Comparing the effective attenuation lengths for long wavelength in vivo imaging of the mouse brain,” Biomed. Opt. Express 9(8), 3534–3543 (2018).
[Crossref] [PubMed]

T. Wang, D. G. Ouzounov, C. Wu, N. G. Horton, B. Zhang, C. H. Wu, Y. Zhang, M. J. Schnitzer, and C. Xu, “Three-photon imaging of mouse brain structure and function through the intact skull,” Nat. Methods 15(10), 789–792 (2018).
[Crossref] [PubMed]

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y. T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

Yang, W.

W. Yang and R. Yuste, “In vivo imaging of neural activity,” Nat. Methods 14(4), 349–359 (2017).
[Crossref] [PubMed]

Yuste, R.

W. Yang and R. Yuste, “In vivo imaging of neural activity,” Nat. Methods 14(4), 349–359 (2017).
[Crossref] [PubMed]

D. Smetters, A. Majewska, and R. Yuste, “Detecting action potentials in neuronal populations with calcium imaging,” Methods 18(2), 215–221 (1999).
[Crossref] [PubMed]

Zeng, H.

S. Weisenburger, F. Tejera, J. Demas, B. Chen, J. Manley, F. T. Sparks, F. Martínez Traub, T. Daigle, H. Zeng, A. Losonczy, and A. Vaziri, “Volumetric Ca2+ Imaging in the Mouse Brain Using Hybrid Multiplexed Sculpted Light Microscopy,” Cell 177(4), 1050–1066 (2019).
[Crossref] [PubMed]

Zhang, B.

T. Wang, D. G. Ouzounov, C. Wu, N. G. Horton, B. Zhang, C. H. Wu, Y. Zhang, M. J. Schnitzer, and C. Xu, “Three-photon imaging of mouse brain structure and function through the intact skull,” Nat. Methods 15(10), 789–792 (2018).
[Crossref] [PubMed]

Zhang, Y.

T. Wang, D. G. Ouzounov, C. Wu, N. G. Horton, B. Zhang, C. H. Wu, Y. Zhang, M. J. Schnitzer, and C. Xu, “Three-photon imaging of mouse brain structure and function through the intact skull,” Nat. Methods 15(10), 789–792 (2018).
[Crossref] [PubMed]

Zhuang, Z.

Zipfel, W.

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Non-linear magic,” Nat. Biotechnol. 21, 1369–1377 (2003).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Biophys. J. (1)

B. A. Wilt, J. E. Fitzgerald, and M. J. Schnitzer, “Photon Shot Noise Limits on Optical Detection of Neuronal Spikes and Estimation of Spike Timing,” Biophys. J. 104(1), 51–62 (2013).
[Crossref] [PubMed]

Cell (1)

S. Weisenburger, F. Tejera, J. Demas, B. Chen, J. Manley, F. T. Sparks, F. Martínez Traub, T. Daigle, H. Zeng, A. Losonczy, and A. Vaziri, “Volumetric Ca2+ Imaging in the Mouse Brain Using Hybrid Multiplexed Sculpted Light Microscopy,” Cell 177(4), 1050–1066 (2019).
[Crossref] [PubMed]

eLife (1)

H. Dana, B. Mohar, Y. Sun, S. Narayan, A. Gordus, J. P. Hasseman, G. Tsegaye, G. T. Holt, A. Hu, D. Walpita, R. Patel, J. J. Macklin, C. I. Bargmann, M. B. Ahrens, E. R. Schreiter, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Sensitive red protein calcium indicators for imaging neural activity,” eLife 5(5), e12727 (2016).
[Crossref] [PubMed]

Methods (1)

D. Smetters, A. Majewska, and R. Yuste, “Detecting action potentials in neuronal populations with calcium imaging,” Methods 18(2), 215–221 (1999).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Non-linear magic,” Nat. Biotechnol. 21, 1369–1377 (2003).
[Crossref] [PubMed]

Nat. Methods (3)

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y. T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

T. Wang, D. G. Ouzounov, C. Wu, N. G. Horton, B. Zhang, C. H. Wu, Y. Zhang, M. J. Schnitzer, and C. Xu, “Three-photon imaging of mouse brain structure and function through the intact skull,” Nat. Methods 15(10), 789–792 (2018).
[Crossref] [PubMed]

W. Yang and R. Yuste, “In vivo imaging of neural activity,” Nat. Methods 14(4), 349–359 (2017).
[Crossref] [PubMed]

Nat. Neurosci. (2)

W. Mittmann, D. J. Wallace, U. Czubayko, J. T. Herb, A. T. Schaefer, L. L. Looger, W. Denk, and J. N. Kerr, “Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo,” Nat. Neurosci. 14(8), 1089–1093 (2011).
[Crossref] [PubMed]

D. A. Dombeck, C. D. Harvey, L. Tian, L. L. Looger, and D. W. Tank, “Functional imaging of hippocampal place cells at cellular resolution during virtual navigation,” Nat. Neurosci. 13(11), 1433–1440 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Nat. Rev. Neurosci. (1)

J. N. Kerr and W. Denk, “Imaging in vivo: watching the brain in action,” Nat. Rev. Neurosci. 9(3), 195–205 (2008).
[Crossref] [PubMed]

Nature (1)

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Neuron (2)

C. Grienberger and A. Konnerth, “Imaging Calcium in Neurons,” Neuron 73(5), 862–885 (2012).
[Crossref] [PubMed]

D. A. Dombeck, A. N. Khabbaz, F. Collman, T. L. Adelman, and D. W. Tank, “Imaging large-scale neural activity with cellular resolution in awake, mobile mice,” Neuron 56(1), 43–57 (2007).
[Crossref] [PubMed]

Opt. Express (1)

PLoS Biol. (1)

T. R. Sato, N. W. Gray, Z. F. Mainen, and K. Svoboda, “The functional microarchitecture of the mouse barrel cortex,” PLoS Biol. 5(7), e189 (2007).
[Crossref] [PubMed]

PLoS One (1)

L. M. Barnett, T. E. Hughes, and M. Drobizhev, “Deciphering the molecular mechanism responsible for GCaMP6m’s Ca2+-dependent change in fluorescence,” PLoS One 12(2), e0170934 (2017).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

C. Stosiek, O. Garaschuk, K. Holthoff, and A. Konnerth, “In vivo two-photon calcium imaging of neuronal networks,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7319–7324 (2003).
[Crossref] [PubMed]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic illustration of the imaging setup. (b) Time division multiplexing for near-simultaneous 2PM and 3PM of the same brain activity.
Fig. 2
Fig. 2 Characterization of the excitation sources. (a) NOPA output spectrum at various wavelengths filtered with a bandpass filter with 25-nm bandwidth. (b) Typical autocorrelation trace of the NOPA output pulse after spectral filtering. (c) Two-photon excitation spectrum at various wavelengths. (d) 2p (blue) and 3p (red) axial scan of a fluorescent bead showing the similar axial resolution and the overlap of the focal volumes of the two excitation beams. The triangles are the measured data and the solid lines are the Gaussian fittings to the measurements.
Fig. 3
Fig. 3 Three-photon-excited relative fluorescence versus the excitation wavelength. (a) High resolution 3p image of the region where the traces were recorded. Scale bar, 10 μm. (b) Near-simultaneous 2p (top) and 3p (bottom) imaging of GCaMP6s-labeled neurons in transgenic mouse (CamKII-tTA/tetO-GCaMP6s) cortex at depth of ~250 um. (c) Activity trace of the neuron in (a) recorded. Two-photon activity traces (red) are recorded at excitation wavelength of 920 nm. Three-photon activity traces (blue) are recorded at various excitation wavelengths as indicated. All traces are recoded with the same neuron. Tuning the 3p excitation wavelength slightly changes the transverse position of the 3P image (~one micron). (d) Ratio of three-photon excited relative fluorescence at various excitation wavelengths and two-photon excited relative fluorescence at 920-nm excitation wavelength. Each ratio and its variation are calculated from the recorded 2p and 3p traces over 430 – 510 seconds.
Fig. 4
Fig. 4 Two-photon-excited relative fluorescence versus the excitation wavelength. (a) Near-simultaneous 2P (top panel) and 3P (bottom panel) imaging of GCaMP6s-labeled neurons in transgenic mouse (CamKII-tTA/tetO-GCaMP6s) cortex at depth of ~250 um. (b) Activity trace of the neuron in (a) recorded. Three-photon activity traces (blue) are recorded at excitation wavelength of 1310 nm. Two-photon activity traces (red) are recorded at various excitation wavelengths as indicated. All traces are recoded with the same neuron. Tuning the 2p excitation wavelength slightly changes the transverse position of the 2p image (~one micron). (c) Ratio of two-photon excited relative fluorescence at various excitation wavelengths and three-photon excited relative fluorescence at 1310-nm excitation wavelength. Each ratio and its variation are calculated from the recorded 2P and 3P traces over 210 – 350 seconds.
Fig. 5
Fig. 5 Background Fluorescence, F0(λ), measured in vivo at different excitation wavelengths relative to the background fluorescence at 1275-nm excitation, F0(1275nm).
Fig. 6
Fig. 6 Excitation power at the surface of the brain required to achieve the same pulse discrimination index at various imaging depths, all normalized to the excitation power at 1325 nm. Relative water absorption normalized to the absorption coefficient at 1325 nm.
Fig. 7
Fig. 7 Pulse discrimination index at imaging depth of 1000 μm when using maximum allowable power at the surface of the brain for different wavelengths, normalized to the pulse discrimination index at 1300 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d = ΔF F 0 F 0 τ = ΔF F 0 C P focus 3 σ λ τ ,

Metrics