Abstract

This study combined a previously developed optical system with two additional key elements: a supercontinuum light source characterized by high output power and an analytical technique that effectively extracts interference signals required for improving the detection limit of vibration amplitude. Our system visualized 3D tomographic images and nanometer scale vibrations in the cochlear sensory epithelium of a live guinea pig. The transverse- and axial-depth resolution was 3.6 and 2.7 µm, respectively. After exposure to acoustic stimuli of 21–25 kHz at a sound pressure level of 70–85 dB, spatial amplitude and phase distributions were quantified on a targeted surface, whose area was 522 × 522 μm2.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multifrequency-swept optical coherence microscopy for highspeed full-field tomographic vibrometry in biological tissues

Samuel Choi, Keita Sato, Takeru Ota, Fumiaki Nin, Shogo Muramatsu, and Hiroshi Hibino
Biomed. Opt. Express 8(2) 608-621 (2017)

Multifrequency swept common-path en-face OCT for wide-field measurement of interior surface vibrations in thick biological tissues

Samuel Choi, Tomoya Watanabe, Takamasa Suzuki, Fumiaki Nin, Hiroshi Hibino, and Osami Sasaki
Opt. Express 23(16) 21078-21089 (2015)

In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography

Simon S. Gao, Patrick D. Raphael, Rosalie Wang, Jesung Park, Anping Xia, Brian E. Applegate, and John S. Oghalai
Biomed. Opt. Express 4(2) 230-240 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. J. Hudspeth, “Integrating the active process of hair cells with cochlear function,” Nat. Rev. Neurosci. 15(9), 600–614 (2014).
    [Crossref] [PubMed]
  2. L. Robles and M. A. Ruggero, “Mechanics of the mammalian cochlea,” Physiol. Rev. 81(3), 1305–1352 (2001).
    [Crossref] [PubMed]
  3. P. K. Legan, V. A. Lukashkina, R. J. Goodyear, M. Kössi, I. J. Russell, and G. P. Richardson, “A targeted deletion in α-tectorin reveals that the tectorial membrane is required for the gain and timing of cochlear feedback,” Neuron 28(1), 273–285 (2000).
    [Crossref] [PubMed]
  4. M. M. Mellado Lagarde, M. Drexl, V. A. Lukashkina, A. N. Lukashkin, and I. J. Russell, “Outer hair cell somatic, not hair bundle, motility is the basis of the cochlear amplifier,” Nat. Neurosci. 11(7), 746–748 (2008).
    [Crossref] [PubMed]
  5. S. M. Khanna, “Homodyne interferometer for basilar membrane measurements,” Hear. Res. 23(1), 9–26 (1986).
    [Crossref] [PubMed]
  6. M. Ulfendahl, S. M. Khanna, and C. Heneghan, “Shearing motion in the hearing organ measured by confocal laser heterodyne interferometry,” Neuroreport 6(8), 1157–1160 (1995).
    [Crossref] [PubMed]
  7. M. Ulfendahl, S. M. Khanna, and A. Flock, “The vibration pattern of the hearing organ in the waltzing guinea-pig measured using laser heterodyne interferometry,” Neuroscience 72(1), 199–212 (1996).
    [Crossref] [PubMed]
  8. A. L. Nuttall and D. F. Dolan, “Steady-state sinusoidal velocity responses of the basilar membrane in guinea pig,” J. Acoust. Soc. Am. 99(3), 1556–1565 (1996).
    [Crossref] [PubMed]
  9. N. P. Cooper, “Harmonic distortion on the basilar membrane in the basal turn of the guinea-pig cochlea,” J. Physiol. 509(Pt 1), 277–288 (1998).
    [Crossref] [PubMed]
  10. M. A. Ruggero, N. C. Rich, A. Recio, S. S. Narayan, and L. Robles, “Basilar-membrane responses to tones at the base of the chinchilla cochlea,” J. Acoust. Soc. Am. 101(4), 2151–2163 (1997).
    [Crossref] [PubMed]
  11. J. A. N. Fisher, F. Nin, T. Reichenbach, R. C. Uthaiah, and A. J. Hudspeth, “The spatial pattern of cochlear amplification,” Neuron 76(5), 989–997 (2012).
    [Crossref] [PubMed]
  12. P. Picart, J. Leval, J. C. Pascal, J. P. Boileau, M. Grill, J. M. Breteau, B. Gautier, and S. Gillet, “2D full field vibration analysis with multiplexed digital holograms,” Opt. Express 13(22), 8882–8892 (2005).
    [Crossref] [PubMed]
  13. I. Shavrin, L. Lipiäinen, K. Kokkonen, S. Novotny, M. Kaivola, and H. Ludvigsen, “Stroboscopic white-light interferometry of vibrating microstructures,” Opt. Express 21(14), 16901–16907 (2013).
    [Crossref] [PubMed]
  14. M. Khaleghi, C. Furlong, M. Ravicz, J. T. Cheng, and J. J. Rosowski, “Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography,” J. Biomed. Opt. 20(5), 051028 (2015).
    [Crossref] [PubMed]
  15. S. Sato, T. Kurihara, and S. Ando, “Real-time vibration amplitude and phase imaging with heterodyne interferometry and correlation image sensor,” Proc. SPIE 7063,70630I (11 August 2008)
    [Crossref]
  16. S. Choi, Y. Maruyama, T. Suzuki, F. Nin, H. Hibino, and O. Sasaki, “Wide-field heterodyne interferometric vibrometry for two-dimensional surface vibration measurement,” Opt. Commun. 356, 343–349 (2015).
    [Crossref]
  17. S. Choi, K. Sato, T. Ota, F. Nin, S. Muramatsu, and H. Hibino, “Multifrequency-swept optical coherence microscopy for highspeed full-field tomographic vibrometry in biological tissues,” Biomed. Opt. Express 8(2), 608–621 (2017).
    [Crossref] [PubMed]
  18. S. Choi, T. Watanabe, T. Suzuki, F. Nin, H. Hibino, and O. Sasaki, “Multifrequency swept common-path en-face OCT for wide-field measurement of interior surface vibrations in thick biological tissues,” Opt. Express 23(16), 21078–21089 (2015).
    [Crossref] [PubMed]
  19. S. S. Gao, P. D. Raphael, R. Wang, J. Park, A. Xia, B. E. Applegate, and J. S. Oghalai, “In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography,” Biomed. Opt. Express 4(2), 230–240 (2013).
    [Crossref] [PubMed]
  20. S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
    [Crossref] [PubMed]
  21. H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proc. Natl. Acad. Sci. U.S.A. 112(10), 3128–3133 (2015).
    [Crossref] [PubMed]
  22. S. M. Khanna, J. F. Willemin, and M. Ulfendahl, “Measurement of optical reflectivity in cells of the inner ear,” Acta Otolaryngol. Suppl. 467(sup467s467), 69–75 (1989).
    [Crossref] [PubMed]
  23. S. M. Khanna, C. J. Koester, J.-F. Willemin, R. Daendliker, and H. Rosskothen, “Noninvasive optical system for the study of the function of inner ear in living animals,” Proc. SPIE 2732, 64–81 (1996).
    [Crossref]
  24. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (Dover Publications, 1965) chap. 9.
  25. O. Sasaki and H. Okazaki, “Sinusoidal phase modulating interferometry for surface profile measurement,” Appl. Opt. 25(18), 3137–3140 (1986).
    [Crossref] [PubMed]
  26. H. Hibino, Y. Horio, A. Inanobe, K. Doi, M. Ito, M. Yamada, T. Gotow, Y. Uchiyama, M. Kawamura, T. Kubo, and Y. Kurachi, “An ATP-dependent inwardly rectifying potassium channel, KAB-2 (Kir4. 1), in cochlear stria vascularis of inner ear: its specific subcellular localization and correlation with the formation of endocochlear potential,” J. Neurosci. 17(12), 4711–4721 (1997).
    [Crossref] [PubMed]
  27. G. Ogata, Y. Ishii, K. Asai, Y. Sano, F. Nin, T. Yoshida, T. Higuchi, S. Sawamura, T. Ota, K. Hori, K. Maeda, S. Komune, K. Doi, M. Takai, I. Findlay, H. Kusuhara, Y. Einaga, and H. Hibino, “A microsensing system for the in vivo real-time detection of local drug kinetics,” Nat. Biomed. Eng. 1(8), 654–666 (2017).
    [Crossref] [PubMed]
  28. https://www.niigata-u.ac.jp/contribution/research/policy/animal-experiment/
  29. J. Na, W. J. Choi, E. S. Choi, S. Y. Ryu, and B. H. Lee, “Image restoration method based on Hilbert transform for full-field optical coherence tomography,” Appl. Opt. 47(3), 459–466 (2008).
    [Crossref] [PubMed]
  30. https://ncss-wpengine.netdna-ssl.com/wp- content/themes/ncss/pdf/Procedures/NCSS/Circular_Data_Analysis.pdf .
  31. F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
    [Crossref] [PubMed]
  32. D. Zha, F. Chen, S. Ramamoorthy, A. Fridberger, N. Choudhury, S. L. Jacques, R. K. Wang, and A. L. Nuttall, “In vivo outer hair cell length changes expose the active process in the cochlea,” PLoS One 7(4), e32757 (2012).
    [Crossref] [PubMed]
  33. N. P. Cooper and W. S. Rhode, “Basilar membrane mechanics in the hook region of cat and guinea-pig cochleae: Sharp tuning and nonlinearity in the absence of baseline position shifts,” Hear. Res. 63(1-2), 163–190 (1992).
    [Crossref] [PubMed]
  34. F. Nin, T. Reichenbach, J. A. N. Fisher, and A. J. Hudspeth, “Contribution of active hair-bundle motility to nonlinear amplification in the mammalian cochlea,” Proc. Natl. Acad. Sci. U.S.A. 109(51), 21076–21080 (2012).
    [Crossref] [PubMed]
  35. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [Crossref] [PubMed]
  36. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
    [Crossref] [PubMed]
  37. http://www.mra.pt/repositorio/bf89/pdf/9859/2/fastcam-mini-ax200-tech-datasheet.pdf
  38. S. Luo, T. Suzuki, O. Sasaki, S. Choi, Z. Chen, and J. Pu, “Signal correction by detection of scanning position in a white-light interferometer for exact surface profile measurement,” Appl. Opt. 58(13), 3548–3554 (2019).
    [Crossref] [PubMed]
  39. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982).
    [Crossref]

2019 (1)

2017 (2)

G. Ogata, Y. Ishii, K. Asai, Y. Sano, F. Nin, T. Yoshida, T. Higuchi, S. Sawamura, T. Ota, K. Hori, K. Maeda, S. Komune, K. Doi, M. Takai, I. Findlay, H. Kusuhara, Y. Einaga, and H. Hibino, “A microsensing system for the in vivo real-time detection of local drug kinetics,” Nat. Biomed. Eng. 1(8), 654–666 (2017).
[Crossref] [PubMed]

S. Choi, K. Sato, T. Ota, F. Nin, S. Muramatsu, and H. Hibino, “Multifrequency-swept optical coherence microscopy for highspeed full-field tomographic vibrometry in biological tissues,” Biomed. Opt. Express 8(2), 608–621 (2017).
[Crossref] [PubMed]

2015 (4)

S. Choi, T. Watanabe, T. Suzuki, F. Nin, H. Hibino, and O. Sasaki, “Multifrequency swept common-path en-face OCT for wide-field measurement of interior surface vibrations in thick biological tissues,” Opt. Express 23(16), 21078–21089 (2015).
[Crossref] [PubMed]

M. Khaleghi, C. Furlong, M. Ravicz, J. T. Cheng, and J. J. Rosowski, “Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography,” J. Biomed. Opt. 20(5), 051028 (2015).
[Crossref] [PubMed]

S. Choi, Y. Maruyama, T. Suzuki, F. Nin, H. Hibino, and O. Sasaki, “Wide-field heterodyne interferometric vibrometry for two-dimensional surface vibration measurement,” Opt. Commun. 356, 343–349 (2015).
[Crossref]

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proc. Natl. Acad. Sci. U.S.A. 112(10), 3128–3133 (2015).
[Crossref] [PubMed]

2014 (2)

S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
[Crossref] [PubMed]

A. J. Hudspeth, “Integrating the active process of hair cells with cochlear function,” Nat. Rev. Neurosci. 15(9), 600–614 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (3)

J. A. N. Fisher, F. Nin, T. Reichenbach, R. C. Uthaiah, and A. J. Hudspeth, “The spatial pattern of cochlear amplification,” Neuron 76(5), 989–997 (2012).
[Crossref] [PubMed]

D. Zha, F. Chen, S. Ramamoorthy, A. Fridberger, N. Choudhury, S. L. Jacques, R. K. Wang, and A. L. Nuttall, “In vivo outer hair cell length changes expose the active process in the cochlea,” PLoS One 7(4), e32757 (2012).
[Crossref] [PubMed]

F. Nin, T. Reichenbach, J. A. N. Fisher, and A. J. Hudspeth, “Contribution of active hair-bundle motility to nonlinear amplification in the mammalian cochlea,” Proc. Natl. Acad. Sci. U.S.A. 109(51), 21076–21080 (2012).
[Crossref] [PubMed]

2011 (1)

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
[Crossref] [PubMed]

2008 (2)

J. Na, W. J. Choi, E. S. Choi, S. Y. Ryu, and B. H. Lee, “Image restoration method based on Hilbert transform for full-field optical coherence tomography,” Appl. Opt. 47(3), 459–466 (2008).
[Crossref] [PubMed]

M. M. Mellado Lagarde, M. Drexl, V. A. Lukashkina, A. N. Lukashkin, and I. J. Russell, “Outer hair cell somatic, not hair bundle, motility is the basis of the cochlear amplifier,” Nat. Neurosci. 11(7), 746–748 (2008).
[Crossref] [PubMed]

2005 (1)

2003 (2)

2001 (1)

L. Robles and M. A. Ruggero, “Mechanics of the mammalian cochlea,” Physiol. Rev. 81(3), 1305–1352 (2001).
[Crossref] [PubMed]

2000 (1)

P. K. Legan, V. A. Lukashkina, R. J. Goodyear, M. Kössi, I. J. Russell, and G. P. Richardson, “A targeted deletion in α-tectorin reveals that the tectorial membrane is required for the gain and timing of cochlear feedback,” Neuron 28(1), 273–285 (2000).
[Crossref] [PubMed]

1998 (1)

N. P. Cooper, “Harmonic distortion on the basilar membrane in the basal turn of the guinea-pig cochlea,” J. Physiol. 509(Pt 1), 277–288 (1998).
[Crossref] [PubMed]

1997 (2)

M. A. Ruggero, N. C. Rich, A. Recio, S. S. Narayan, and L. Robles, “Basilar-membrane responses to tones at the base of the chinchilla cochlea,” J. Acoust. Soc. Am. 101(4), 2151–2163 (1997).
[Crossref] [PubMed]

H. Hibino, Y. Horio, A. Inanobe, K. Doi, M. Ito, M. Yamada, T. Gotow, Y. Uchiyama, M. Kawamura, T. Kubo, and Y. Kurachi, “An ATP-dependent inwardly rectifying potassium channel, KAB-2 (Kir4. 1), in cochlear stria vascularis of inner ear: its specific subcellular localization and correlation with the formation of endocochlear potential,” J. Neurosci. 17(12), 4711–4721 (1997).
[Crossref] [PubMed]

1996 (3)

S. M. Khanna, C. J. Koester, J.-F. Willemin, R. Daendliker, and H. Rosskothen, “Noninvasive optical system for the study of the function of inner ear in living animals,” Proc. SPIE 2732, 64–81 (1996).
[Crossref]

M. Ulfendahl, S. M. Khanna, and A. Flock, “The vibration pattern of the hearing organ in the waltzing guinea-pig measured using laser heterodyne interferometry,” Neuroscience 72(1), 199–212 (1996).
[Crossref] [PubMed]

A. L. Nuttall and D. F. Dolan, “Steady-state sinusoidal velocity responses of the basilar membrane in guinea pig,” J. Acoust. Soc. Am. 99(3), 1556–1565 (1996).
[Crossref] [PubMed]

1995 (1)

M. Ulfendahl, S. M. Khanna, and C. Heneghan, “Shearing motion in the hearing organ measured by confocal laser heterodyne interferometry,” Neuroreport 6(8), 1157–1160 (1995).
[Crossref] [PubMed]

1992 (1)

N. P. Cooper and W. S. Rhode, “Basilar membrane mechanics in the hook region of cat and guinea-pig cochleae: Sharp tuning and nonlinearity in the absence of baseline position shifts,” Hear. Res. 63(1-2), 163–190 (1992).
[Crossref] [PubMed]

1989 (1)

S. M. Khanna, J. F. Willemin, and M. Ulfendahl, “Measurement of optical reflectivity in cells of the inner ear,” Acta Otolaryngol. Suppl. 467(sup467s467), 69–75 (1989).
[Crossref] [PubMed]

1986 (2)

1982 (1)

Applegate, B. E.

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proc. Natl. Acad. Sci. U.S.A. 112(10), 3128–3133 (2015).
[Crossref] [PubMed]

S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
[Crossref] [PubMed]

S. S. Gao, P. D. Raphael, R. Wang, J. Park, A. Xia, B. E. Applegate, and J. S. Oghalai, “In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography,” Biomed. Opt. Express 4(2), 230–240 (2013).
[Crossref] [PubMed]

Asai, K.

G. Ogata, Y. Ishii, K. Asai, Y. Sano, F. Nin, T. Yoshida, T. Higuchi, S. Sawamura, T. Ota, K. Hori, K. Maeda, S. Komune, K. Doi, M. Takai, I. Findlay, H. Kusuhara, Y. Einaga, and H. Hibino, “A microsensing system for the in vivo real-time detection of local drug kinetics,” Nat. Biomed. Eng. 1(8), 654–666 (2017).
[Crossref] [PubMed]

Boileau, J. P.

Bouma, B. E.

Breteau, J. M.

Cense, B.

Chen, F.

D. Zha, F. Chen, S. Ramamoorthy, A. Fridberger, N. Choudhury, S. L. Jacques, R. K. Wang, and A. L. Nuttall, “In vivo outer hair cell length changes expose the active process in the cochlea,” PLoS One 7(4), e32757 (2012).
[Crossref] [PubMed]

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
[Crossref] [PubMed]

Chen, Z.

Cheng, J. T.

M. Khaleghi, C. Furlong, M. Ravicz, J. T. Cheng, and J. J. Rosowski, “Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography,” J. Biomed. Opt. 20(5), 051028 (2015).
[Crossref] [PubMed]

Choi, E. S.

Choi, S.

Choi, W. J.

Choudhury, N.

D. Zha, F. Chen, S. Ramamoorthy, A. Fridberger, N. Choudhury, S. L. Jacques, R. K. Wang, and A. L. Nuttall, “In vivo outer hair cell length changes expose the active process in the cochlea,” PLoS One 7(4), e32757 (2012).
[Crossref] [PubMed]

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
[Crossref] [PubMed]

Cooper, N. P.

N. P. Cooper, “Harmonic distortion on the basilar membrane in the basal turn of the guinea-pig cochlea,” J. Physiol. 509(Pt 1), 277–288 (1998).
[Crossref] [PubMed]

N. P. Cooper and W. S. Rhode, “Basilar membrane mechanics in the hook region of cat and guinea-pig cochleae: Sharp tuning and nonlinearity in the absence of baseline position shifts,” Hear. Res. 63(1-2), 163–190 (1992).
[Crossref] [PubMed]

Daendliker, R.

S. M. Khanna, C. J. Koester, J.-F. Willemin, R. Daendliker, and H. Rosskothen, “Noninvasive optical system for the study of the function of inner ear in living animals,” Proc. SPIE 2732, 64–81 (1996).
[Crossref]

de Boer, J. F.

Doi, K.

G. Ogata, Y. Ishii, K. Asai, Y. Sano, F. Nin, T. Yoshida, T. Higuchi, S. Sawamura, T. Ota, K. Hori, K. Maeda, S. Komune, K. Doi, M. Takai, I. Findlay, H. Kusuhara, Y. Einaga, and H. Hibino, “A microsensing system for the in vivo real-time detection of local drug kinetics,” Nat. Biomed. Eng. 1(8), 654–666 (2017).
[Crossref] [PubMed]

H. Hibino, Y. Horio, A. Inanobe, K. Doi, M. Ito, M. Yamada, T. Gotow, Y. Uchiyama, M. Kawamura, T. Kubo, and Y. Kurachi, “An ATP-dependent inwardly rectifying potassium channel, KAB-2 (Kir4. 1), in cochlear stria vascularis of inner ear: its specific subcellular localization and correlation with the formation of endocochlear potential,” J. Neurosci. 17(12), 4711–4721 (1997).
[Crossref] [PubMed]

Dolan, D. F.

A. L. Nuttall and D. F. Dolan, “Steady-state sinusoidal velocity responses of the basilar membrane in guinea pig,” J. Acoust. Soc. Am. 99(3), 1556–1565 (1996).
[Crossref] [PubMed]

Drexl, M.

M. M. Mellado Lagarde, M. Drexl, V. A. Lukashkina, A. N. Lukashkin, and I. J. Russell, “Outer hair cell somatic, not hair bundle, motility is the basis of the cochlear amplifier,” Nat. Neurosci. 11(7), 746–748 (2008).
[Crossref] [PubMed]

Einaga, Y.

G. Ogata, Y. Ishii, K. Asai, Y. Sano, F. Nin, T. Yoshida, T. Higuchi, S. Sawamura, T. Ota, K. Hori, K. Maeda, S. Komune, K. Doi, M. Takai, I. Findlay, H. Kusuhara, Y. Einaga, and H. Hibino, “A microsensing system for the in vivo real-time detection of local drug kinetics,” Nat. Biomed. Eng. 1(8), 654–666 (2017).
[Crossref] [PubMed]

Ellerbee, A. K.

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proc. Natl. Acad. Sci. U.S.A. 112(10), 3128–3133 (2015).
[Crossref] [PubMed]

Fercher, A.

Findlay, I.

G. Ogata, Y. Ishii, K. Asai, Y. Sano, F. Nin, T. Yoshida, T. Higuchi, S. Sawamura, T. Ota, K. Hori, K. Maeda, S. Komune, K. Doi, M. Takai, I. Findlay, H. Kusuhara, Y. Einaga, and H. Hibino, “A microsensing system for the in vivo real-time detection of local drug kinetics,” Nat. Biomed. Eng. 1(8), 654–666 (2017).
[Crossref] [PubMed]

Fisher, J. A. N.

F. Nin, T. Reichenbach, J. A. N. Fisher, and A. J. Hudspeth, “Contribution of active hair-bundle motility to nonlinear amplification in the mammalian cochlea,” Proc. Natl. Acad. Sci. U.S.A. 109(51), 21076–21080 (2012).
[Crossref] [PubMed]

J. A. N. Fisher, F. Nin, T. Reichenbach, R. C. Uthaiah, and A. J. Hudspeth, “The spatial pattern of cochlear amplification,” Neuron 76(5), 989–997 (2012).
[Crossref] [PubMed]

Flock, A.

M. Ulfendahl, S. M. Khanna, and A. Flock, “The vibration pattern of the hearing organ in the waltzing guinea-pig measured using laser heterodyne interferometry,” Neuroscience 72(1), 199–212 (1996).
[Crossref] [PubMed]

Fridberger, A.

D. Zha, F. Chen, S. Ramamoorthy, A. Fridberger, N. Choudhury, S. L. Jacques, R. K. Wang, and A. L. Nuttall, “In vivo outer hair cell length changes expose the active process in the cochlea,” PLoS One 7(4), e32757 (2012).
[Crossref] [PubMed]

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
[Crossref] [PubMed]

Furlong, C.

M. Khaleghi, C. Furlong, M. Ravicz, J. T. Cheng, and J. J. Rosowski, “Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography,” J. Biomed. Opt. 20(5), 051028 (2015).
[Crossref] [PubMed]

Gao, S. S.

S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
[Crossref] [PubMed]

S. S. Gao, P. D. Raphael, R. Wang, J. Park, A. Xia, B. E. Applegate, and J. S. Oghalai, “In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography,” Biomed. Opt. Express 4(2), 230–240 (2013).
[Crossref] [PubMed]

Gautier, B.

Gillet, S.

Goodyear, R. J.

P. K. Legan, V. A. Lukashkina, R. J. Goodyear, M. Kössi, I. J. Russell, and G. P. Richardson, “A targeted deletion in α-tectorin reveals that the tectorial membrane is required for the gain and timing of cochlear feedback,” Neuron 28(1), 273–285 (2000).
[Crossref] [PubMed]

Gotow, T.

H. Hibino, Y. Horio, A. Inanobe, K. Doi, M. Ito, M. Yamada, T. Gotow, Y. Uchiyama, M. Kawamura, T. Kubo, and Y. Kurachi, “An ATP-dependent inwardly rectifying potassium channel, KAB-2 (Kir4. 1), in cochlear stria vascularis of inner ear: its specific subcellular localization and correlation with the formation of endocochlear potential,” J. Neurosci. 17(12), 4711–4721 (1997).
[Crossref] [PubMed]

Grill, M.

Groves, A. K.

S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
[Crossref] [PubMed]

Heneghan, C.

M. Ulfendahl, S. M. Khanna, and C. Heneghan, “Shearing motion in the hearing organ measured by confocal laser heterodyne interferometry,” Neuroreport 6(8), 1157–1160 (1995).
[Crossref] [PubMed]

Hibino, H.

G. Ogata, Y. Ishii, K. Asai, Y. Sano, F. Nin, T. Yoshida, T. Higuchi, S. Sawamura, T. Ota, K. Hori, K. Maeda, S. Komune, K. Doi, M. Takai, I. Findlay, H. Kusuhara, Y. Einaga, and H. Hibino, “A microsensing system for the in vivo real-time detection of local drug kinetics,” Nat. Biomed. Eng. 1(8), 654–666 (2017).
[Crossref] [PubMed]

S. Choi, K. Sato, T. Ota, F. Nin, S. Muramatsu, and H. Hibino, “Multifrequency-swept optical coherence microscopy for highspeed full-field tomographic vibrometry in biological tissues,” Biomed. Opt. Express 8(2), 608–621 (2017).
[Crossref] [PubMed]

S. Choi, T. Watanabe, T. Suzuki, F. Nin, H. Hibino, and O. Sasaki, “Multifrequency swept common-path en-face OCT for wide-field measurement of interior surface vibrations in thick biological tissues,” Opt. Express 23(16), 21078–21089 (2015).
[Crossref] [PubMed]

S. Choi, Y. Maruyama, T. Suzuki, F. Nin, H. Hibino, and O. Sasaki, “Wide-field heterodyne interferometric vibrometry for two-dimensional surface vibration measurement,” Opt. Commun. 356, 343–349 (2015).
[Crossref]

H. Hibino, Y. Horio, A. Inanobe, K. Doi, M. Ito, M. Yamada, T. Gotow, Y. Uchiyama, M. Kawamura, T. Kubo, and Y. Kurachi, “An ATP-dependent inwardly rectifying potassium channel, KAB-2 (Kir4. 1), in cochlear stria vascularis of inner ear: its specific subcellular localization and correlation with the formation of endocochlear potential,” J. Neurosci. 17(12), 4711–4721 (1997).
[Crossref] [PubMed]

Higuchi, T.

G. Ogata, Y. Ishii, K. Asai, Y. Sano, F. Nin, T. Yoshida, T. Higuchi, S. Sawamura, T. Ota, K. Hori, K. Maeda, S. Komune, K. Doi, M. Takai, I. Findlay, H. Kusuhara, Y. Einaga, and H. Hibino, “A microsensing system for the in vivo real-time detection of local drug kinetics,” Nat. Biomed. Eng. 1(8), 654–666 (2017).
[Crossref] [PubMed]

Hitzenberger, C.

Hori, K.

G. Ogata, Y. Ishii, K. Asai, Y. Sano, F. Nin, T. Yoshida, T. Higuchi, S. Sawamura, T. Ota, K. Hori, K. Maeda, S. Komune, K. Doi, M. Takai, I. Findlay, H. Kusuhara, Y. Einaga, and H. Hibino, “A microsensing system for the in vivo real-time detection of local drug kinetics,” Nat. Biomed. Eng. 1(8), 654–666 (2017).
[Crossref] [PubMed]

Horio, Y.

H. Hibino, Y. Horio, A. Inanobe, K. Doi, M. Ito, M. Yamada, T. Gotow, Y. Uchiyama, M. Kawamura, T. Kubo, and Y. Kurachi, “An ATP-dependent inwardly rectifying potassium channel, KAB-2 (Kir4. 1), in cochlear stria vascularis of inner ear: its specific subcellular localization and correlation with the formation of endocochlear potential,” J. Neurosci. 17(12), 4711–4721 (1997).
[Crossref] [PubMed]

Hudspeth, A. J.

A. J. Hudspeth, “Integrating the active process of hair cells with cochlear function,” Nat. Rev. Neurosci. 15(9), 600–614 (2014).
[Crossref] [PubMed]

J. A. N. Fisher, F. Nin, T. Reichenbach, R. C. Uthaiah, and A. J. Hudspeth, “The spatial pattern of cochlear amplification,” Neuron 76(5), 989–997 (2012).
[Crossref] [PubMed]

F. Nin, T. Reichenbach, J. A. N. Fisher, and A. J. Hudspeth, “Contribution of active hair-bundle motility to nonlinear amplification in the mammalian cochlea,” Proc. Natl. Acad. Sci. U.S.A. 109(51), 21076–21080 (2012).
[Crossref] [PubMed]

Ina, H.

Inanobe, A.

H. Hibino, Y. Horio, A. Inanobe, K. Doi, M. Ito, M. Yamada, T. Gotow, Y. Uchiyama, M. Kawamura, T. Kubo, and Y. Kurachi, “An ATP-dependent inwardly rectifying potassium channel, KAB-2 (Kir4. 1), in cochlear stria vascularis of inner ear: its specific subcellular localization and correlation with the formation of endocochlear potential,” J. Neurosci. 17(12), 4711–4721 (1997).
[Crossref] [PubMed]

Ishii, Y.

G. Ogata, Y. Ishii, K. Asai, Y. Sano, F. Nin, T. Yoshida, T. Higuchi, S. Sawamura, T. Ota, K. Hori, K. Maeda, S. Komune, K. Doi, M. Takai, I. Findlay, H. Kusuhara, Y. Einaga, and H. Hibino, “A microsensing system for the in vivo real-time detection of local drug kinetics,” Nat. Biomed. Eng. 1(8), 654–666 (2017).
[Crossref] [PubMed]

Ito, M.

H. Hibino, Y. Horio, A. Inanobe, K. Doi, M. Ito, M. Yamada, T. Gotow, Y. Uchiyama, M. Kawamura, T. Kubo, and Y. Kurachi, “An ATP-dependent inwardly rectifying potassium channel, KAB-2 (Kir4. 1), in cochlear stria vascularis of inner ear: its specific subcellular localization and correlation with the formation of endocochlear potential,” J. Neurosci. 17(12), 4711–4721 (1997).
[Crossref] [PubMed]

Jacques, S. L.

D. Zha, F. Chen, S. Ramamoorthy, A. Fridberger, N. Choudhury, S. L. Jacques, R. K. Wang, and A. L. Nuttall, “In vivo outer hair cell length changes expose the active process in the cochlea,” PLoS One 7(4), e32757 (2012).
[Crossref] [PubMed]

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
[Crossref] [PubMed]

Kaivola, M.

Kawamura, M.

H. Hibino, Y. Horio, A. Inanobe, K. Doi, M. Ito, M. Yamada, T. Gotow, Y. Uchiyama, M. Kawamura, T. Kubo, and Y. Kurachi, “An ATP-dependent inwardly rectifying potassium channel, KAB-2 (Kir4. 1), in cochlear stria vascularis of inner ear: its specific subcellular localization and correlation with the formation of endocochlear potential,” J. Neurosci. 17(12), 4711–4721 (1997).
[Crossref] [PubMed]

Khaleghi, M.

M. Khaleghi, C. Furlong, M. Ravicz, J. T. Cheng, and J. J. Rosowski, “Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography,” J. Biomed. Opt. 20(5), 051028 (2015).
[Crossref] [PubMed]

Khanna, S. M.

M. Ulfendahl, S. M. Khanna, and A. Flock, “The vibration pattern of the hearing organ in the waltzing guinea-pig measured using laser heterodyne interferometry,” Neuroscience 72(1), 199–212 (1996).
[Crossref] [PubMed]

S. M. Khanna, C. J. Koester, J.-F. Willemin, R. Daendliker, and H. Rosskothen, “Noninvasive optical system for the study of the function of inner ear in living animals,” Proc. SPIE 2732, 64–81 (1996).
[Crossref]

M. Ulfendahl, S. M. Khanna, and C. Heneghan, “Shearing motion in the hearing organ measured by confocal laser heterodyne interferometry,” Neuroreport 6(8), 1157–1160 (1995).
[Crossref] [PubMed]

S. M. Khanna, J. F. Willemin, and M. Ulfendahl, “Measurement of optical reflectivity in cells of the inner ear,” Acta Otolaryngol. Suppl. 467(sup467s467), 69–75 (1989).
[Crossref] [PubMed]

S. M. Khanna, “Homodyne interferometer for basilar membrane measurements,” Hear. Res. 23(1), 9–26 (1986).
[Crossref] [PubMed]

Kobayashi, S.

Koester, C. J.

S. M. Khanna, C. J. Koester, J.-F. Willemin, R. Daendliker, and H. Rosskothen, “Noninvasive optical system for the study of the function of inner ear in living animals,” Proc. SPIE 2732, 64–81 (1996).
[Crossref]

Kokkonen, K.

Komune, S.

G. Ogata, Y. Ishii, K. Asai, Y. Sano, F. Nin, T. Yoshida, T. Higuchi, S. Sawamura, T. Ota, K. Hori, K. Maeda, S. Komune, K. Doi, M. Takai, I. Findlay, H. Kusuhara, Y. Einaga, and H. Hibino, “A microsensing system for the in vivo real-time detection of local drug kinetics,” Nat. Biomed. Eng. 1(8), 654–666 (2017).
[Crossref] [PubMed]

Kössi, M.

P. K. Legan, V. A. Lukashkina, R. J. Goodyear, M. Kössi, I. J. Russell, and G. P. Richardson, “A targeted deletion in α-tectorin reveals that the tectorial membrane is required for the gain and timing of cochlear feedback,” Neuron 28(1), 273–285 (2000).
[Crossref] [PubMed]

Kubo, T.

H. Hibino, Y. Horio, A. Inanobe, K. Doi, M. Ito, M. Yamada, T. Gotow, Y. Uchiyama, M. Kawamura, T. Kubo, and Y. Kurachi, “An ATP-dependent inwardly rectifying potassium channel, KAB-2 (Kir4. 1), in cochlear stria vascularis of inner ear: its specific subcellular localization and correlation with the formation of endocochlear potential,” J. Neurosci. 17(12), 4711–4721 (1997).
[Crossref] [PubMed]

Kurachi, Y.

H. Hibino, Y. Horio, A. Inanobe, K. Doi, M. Ito, M. Yamada, T. Gotow, Y. Uchiyama, M. Kawamura, T. Kubo, and Y. Kurachi, “An ATP-dependent inwardly rectifying potassium channel, KAB-2 (Kir4. 1), in cochlear stria vascularis of inner ear: its specific subcellular localization and correlation with the formation of endocochlear potential,” J. Neurosci. 17(12), 4711–4721 (1997).
[Crossref] [PubMed]

Kusuhara, H.

G. Ogata, Y. Ishii, K. Asai, Y. Sano, F. Nin, T. Yoshida, T. Higuchi, S. Sawamura, T. Ota, K. Hori, K. Maeda, S. Komune, K. Doi, M. Takai, I. Findlay, H. Kusuhara, Y. Einaga, and H. Hibino, “A microsensing system for the in vivo real-time detection of local drug kinetics,” Nat. Biomed. Eng. 1(8), 654–666 (2017).
[Crossref] [PubMed]

Lee, B. H.

Lee, H. Y.

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proc. Natl. Acad. Sci. U.S.A. 112(10), 3128–3133 (2015).
[Crossref] [PubMed]

Legan, P. K.

P. K. Legan, V. A. Lukashkina, R. J. Goodyear, M. Kössi, I. J. Russell, and G. P. Richardson, “A targeted deletion in α-tectorin reveals that the tectorial membrane is required for the gain and timing of cochlear feedback,” Neuron 28(1), 273–285 (2000).
[Crossref] [PubMed]

Leitgeb, R.

Leval, J.

Lipiäinen, L.

Ludvigsen, H.

Lukashkin, A. N.

M. M. Mellado Lagarde, M. Drexl, V. A. Lukashkina, A. N. Lukashkin, and I. J. Russell, “Outer hair cell somatic, not hair bundle, motility is the basis of the cochlear amplifier,” Nat. Neurosci. 11(7), 746–748 (2008).
[Crossref] [PubMed]

Lukashkina, V. A.

M. M. Mellado Lagarde, M. Drexl, V. A. Lukashkina, A. N. Lukashkin, and I. J. Russell, “Outer hair cell somatic, not hair bundle, motility is the basis of the cochlear amplifier,” Nat. Neurosci. 11(7), 746–748 (2008).
[Crossref] [PubMed]

P. K. Legan, V. A. Lukashkina, R. J. Goodyear, M. Kössi, I. J. Russell, and G. P. Richardson, “A targeted deletion in α-tectorin reveals that the tectorial membrane is required for the gain and timing of cochlear feedback,” Neuron 28(1), 273–285 (2000).
[Crossref] [PubMed]

Luo, S.

Maeda, K.

G. Ogata, Y. Ishii, K. Asai, Y. Sano, F. Nin, T. Yoshida, T. Higuchi, S. Sawamura, T. Ota, K. Hori, K. Maeda, S. Komune, K. Doi, M. Takai, I. Findlay, H. Kusuhara, Y. Einaga, and H. Hibino, “A microsensing system for the in vivo real-time detection of local drug kinetics,” Nat. Biomed. Eng. 1(8), 654–666 (2017).
[Crossref] [PubMed]

Maruyama, Y.

S. Choi, Y. Maruyama, T. Suzuki, F. Nin, H. Hibino, and O. Sasaki, “Wide-field heterodyne interferometric vibrometry for two-dimensional surface vibration measurement,” Opt. Commun. 356, 343–349 (2015).
[Crossref]

Mellado Lagarde, M. M.

M. M. Mellado Lagarde, M. Drexl, V. A. Lukashkina, A. N. Lukashkin, and I. J. Russell, “Outer hair cell somatic, not hair bundle, motility is the basis of the cochlear amplifier,” Nat. Neurosci. 11(7), 746–748 (2008).
[Crossref] [PubMed]

Moayedi, Y.

S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
[Crossref] [PubMed]

Muramatsu, S.

Na, J.

Narayan, S. S.

M. A. Ruggero, N. C. Rich, A. Recio, S. S. Narayan, and L. Robles, “Basilar-membrane responses to tones at the base of the chinchilla cochlea,” J. Acoust. Soc. Am. 101(4), 2151–2163 (1997).
[Crossref] [PubMed]

Nin, F.

G. Ogata, Y. Ishii, K. Asai, Y. Sano, F. Nin, T. Yoshida, T. Higuchi, S. Sawamura, T. Ota, K. Hori, K. Maeda, S. Komune, K. Doi, M. Takai, I. Findlay, H. Kusuhara, Y. Einaga, and H. Hibino, “A microsensing system for the in vivo real-time detection of local drug kinetics,” Nat. Biomed. Eng. 1(8), 654–666 (2017).
[Crossref] [PubMed]

S. Choi, K. Sato, T. Ota, F. Nin, S. Muramatsu, and H. Hibino, “Multifrequency-swept optical coherence microscopy for highspeed full-field tomographic vibrometry in biological tissues,” Biomed. Opt. Express 8(2), 608–621 (2017).
[Crossref] [PubMed]

S. Choi, T. Watanabe, T. Suzuki, F. Nin, H. Hibino, and O. Sasaki, “Multifrequency swept common-path en-face OCT for wide-field measurement of interior surface vibrations in thick biological tissues,” Opt. Express 23(16), 21078–21089 (2015).
[Crossref] [PubMed]

S. Choi, Y. Maruyama, T. Suzuki, F. Nin, H. Hibino, and O. Sasaki, “Wide-field heterodyne interferometric vibrometry for two-dimensional surface vibration measurement,” Opt. Commun. 356, 343–349 (2015).
[Crossref]

J. A. N. Fisher, F. Nin, T. Reichenbach, R. C. Uthaiah, and A. J. Hudspeth, “The spatial pattern of cochlear amplification,” Neuron 76(5), 989–997 (2012).
[Crossref] [PubMed]

F. Nin, T. Reichenbach, J. A. N. Fisher, and A. J. Hudspeth, “Contribution of active hair-bundle motility to nonlinear amplification in the mammalian cochlea,” Proc. Natl. Acad. Sci. U.S.A. 109(51), 21076–21080 (2012).
[Crossref] [PubMed]

Novotny, S.

Nuttall, A. L.

D. Zha, F. Chen, S. Ramamoorthy, A. Fridberger, N. Choudhury, S. L. Jacques, R. K. Wang, and A. L. Nuttall, “In vivo outer hair cell length changes expose the active process in the cochlea,” PLoS One 7(4), e32757 (2012).
[Crossref] [PubMed]

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
[Crossref] [PubMed]

A. L. Nuttall and D. F. Dolan, “Steady-state sinusoidal velocity responses of the basilar membrane in guinea pig,” J. Acoust. Soc. Am. 99(3), 1556–1565 (1996).
[Crossref] [PubMed]

Ogata, G.

G. Ogata, Y. Ishii, K. Asai, Y. Sano, F. Nin, T. Yoshida, T. Higuchi, S. Sawamura, T. Ota, K. Hori, K. Maeda, S. Komune, K. Doi, M. Takai, I. Findlay, H. Kusuhara, Y. Einaga, and H. Hibino, “A microsensing system for the in vivo real-time detection of local drug kinetics,” Nat. Biomed. Eng. 1(8), 654–666 (2017).
[Crossref] [PubMed]

Oghalai, J. S.

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proc. Natl. Acad. Sci. U.S.A. 112(10), 3128–3133 (2015).
[Crossref] [PubMed]

S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
[Crossref] [PubMed]

S. S. Gao, P. D. Raphael, R. Wang, J. Park, A. Xia, B. E. Applegate, and J. S. Oghalai, “In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography,” Biomed. Opt. Express 4(2), 230–240 (2013).
[Crossref] [PubMed]

Okazaki, H.

Ota, T.

G. Ogata, Y. Ishii, K. Asai, Y. Sano, F. Nin, T. Yoshida, T. Higuchi, S. Sawamura, T. Ota, K. Hori, K. Maeda, S. Komune, K. Doi, M. Takai, I. Findlay, H. Kusuhara, Y. Einaga, and H. Hibino, “A microsensing system for the in vivo real-time detection of local drug kinetics,” Nat. Biomed. Eng. 1(8), 654–666 (2017).
[Crossref] [PubMed]

S. Choi, K. Sato, T. Ota, F. Nin, S. Muramatsu, and H. Hibino, “Multifrequency-swept optical coherence microscopy for highspeed full-field tomographic vibrometry in biological tissues,” Biomed. Opt. Express 8(2), 608–621 (2017).
[Crossref] [PubMed]

Park, B. H.

Park, J.

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proc. Natl. Acad. Sci. U.S.A. 112(10), 3128–3133 (2015).
[Crossref] [PubMed]

S. S. Gao, P. D. Raphael, R. Wang, J. Park, A. Xia, B. E. Applegate, and J. S. Oghalai, “In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography,” Biomed. Opt. Express 4(2), 230–240 (2013).
[Crossref] [PubMed]

Pascal, J. C.

Picart, P.

Pierce, M. C.

Pu, J.

Ramamoorthy, S.

D. Zha, F. Chen, S. Ramamoorthy, A. Fridberger, N. Choudhury, S. L. Jacques, R. K. Wang, and A. L. Nuttall, “In vivo outer hair cell length changes expose the active process in the cochlea,” PLoS One 7(4), e32757 (2012).
[Crossref] [PubMed]

Raphael, P. D.

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proc. Natl. Acad. Sci. U.S.A. 112(10), 3128–3133 (2015).
[Crossref] [PubMed]

S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
[Crossref] [PubMed]

S. S. Gao, P. D. Raphael, R. Wang, J. Park, A. Xia, B. E. Applegate, and J. S. Oghalai, “In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography,” Biomed. Opt. Express 4(2), 230–240 (2013).
[Crossref] [PubMed]

Ravicz, M.

M. Khaleghi, C. Furlong, M. Ravicz, J. T. Cheng, and J. J. Rosowski, “Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography,” J. Biomed. Opt. 20(5), 051028 (2015).
[Crossref] [PubMed]

Recio, A.

M. A. Ruggero, N. C. Rich, A. Recio, S. S. Narayan, and L. Robles, “Basilar-membrane responses to tones at the base of the chinchilla cochlea,” J. Acoust. Soc. Am. 101(4), 2151–2163 (1997).
[Crossref] [PubMed]

Reichenbach, T.

J. A. N. Fisher, F. Nin, T. Reichenbach, R. C. Uthaiah, and A. J. Hudspeth, “The spatial pattern of cochlear amplification,” Neuron 76(5), 989–997 (2012).
[Crossref] [PubMed]

F. Nin, T. Reichenbach, J. A. N. Fisher, and A. J. Hudspeth, “Contribution of active hair-bundle motility to nonlinear amplification in the mammalian cochlea,” Proc. Natl. Acad. Sci. U.S.A. 109(51), 21076–21080 (2012).
[Crossref] [PubMed]

Rhode, W. S.

N. P. Cooper and W. S. Rhode, “Basilar membrane mechanics in the hook region of cat and guinea-pig cochleae: Sharp tuning and nonlinearity in the absence of baseline position shifts,” Hear. Res. 63(1-2), 163–190 (1992).
[Crossref] [PubMed]

Rich, N. C.

M. A. Ruggero, N. C. Rich, A. Recio, S. S. Narayan, and L. Robles, “Basilar-membrane responses to tones at the base of the chinchilla cochlea,” J. Acoust. Soc. Am. 101(4), 2151–2163 (1997).
[Crossref] [PubMed]

Richardson, G. P.

P. K. Legan, V. A. Lukashkina, R. J. Goodyear, M. Kössi, I. J. Russell, and G. P. Richardson, “A targeted deletion in α-tectorin reveals that the tectorial membrane is required for the gain and timing of cochlear feedback,” Neuron 28(1), 273–285 (2000).
[Crossref] [PubMed]

Robles, L.

L. Robles and M. A. Ruggero, “Mechanics of the mammalian cochlea,” Physiol. Rev. 81(3), 1305–1352 (2001).
[Crossref] [PubMed]

M. A. Ruggero, N. C. Rich, A. Recio, S. S. Narayan, and L. Robles, “Basilar-membrane responses to tones at the base of the chinchilla cochlea,” J. Acoust. Soc. Am. 101(4), 2151–2163 (1997).
[Crossref] [PubMed]

Rosowski, J. J.

M. Khaleghi, C. Furlong, M. Ravicz, J. T. Cheng, and J. J. Rosowski, “Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography,” J. Biomed. Opt. 20(5), 051028 (2015).
[Crossref] [PubMed]

Rosskothen, H.

S. M. Khanna, C. J. Koester, J.-F. Willemin, R. Daendliker, and H. Rosskothen, “Noninvasive optical system for the study of the function of inner ear in living animals,” Proc. SPIE 2732, 64–81 (1996).
[Crossref]

Ruggero, M. A.

L. Robles and M. A. Ruggero, “Mechanics of the mammalian cochlea,” Physiol. Rev. 81(3), 1305–1352 (2001).
[Crossref] [PubMed]

M. A. Ruggero, N. C. Rich, A. Recio, S. S. Narayan, and L. Robles, “Basilar-membrane responses to tones at the base of the chinchilla cochlea,” J. Acoust. Soc. Am. 101(4), 2151–2163 (1997).
[Crossref] [PubMed]

Russell, I. J.

M. M. Mellado Lagarde, M. Drexl, V. A. Lukashkina, A. N. Lukashkin, and I. J. Russell, “Outer hair cell somatic, not hair bundle, motility is the basis of the cochlear amplifier,” Nat. Neurosci. 11(7), 746–748 (2008).
[Crossref] [PubMed]

P. K. Legan, V. A. Lukashkina, R. J. Goodyear, M. Kössi, I. J. Russell, and G. P. Richardson, “A targeted deletion in α-tectorin reveals that the tectorial membrane is required for the gain and timing of cochlear feedback,” Neuron 28(1), 273–285 (2000).
[Crossref] [PubMed]

Ryu, S. Y.

Sano, Y.

G. Ogata, Y. Ishii, K. Asai, Y. Sano, F. Nin, T. Yoshida, T. Higuchi, S. Sawamura, T. Ota, K. Hori, K. Maeda, S. Komune, K. Doi, M. Takai, I. Findlay, H. Kusuhara, Y. Einaga, and H. Hibino, “A microsensing system for the in vivo real-time detection of local drug kinetics,” Nat. Biomed. Eng. 1(8), 654–666 (2017).
[Crossref] [PubMed]

Sasaki, O.

Sato, K.

Sawamura, S.

G. Ogata, Y. Ishii, K. Asai, Y. Sano, F. Nin, T. Yoshida, T. Higuchi, S. Sawamura, T. Ota, K. Hori, K. Maeda, S. Komune, K. Doi, M. Takai, I. Findlay, H. Kusuhara, Y. Einaga, and H. Hibino, “A microsensing system for the in vivo real-time detection of local drug kinetics,” Nat. Biomed. Eng. 1(8), 654–666 (2017).
[Crossref] [PubMed]

Shavrin, I.

Shi, X.

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
[Crossref] [PubMed]

Suzuki, T.

Takai, M.

G. Ogata, Y. Ishii, K. Asai, Y. Sano, F. Nin, T. Yoshida, T. Higuchi, S. Sawamura, T. Ota, K. Hori, K. Maeda, S. Komune, K. Doi, M. Takai, I. Findlay, H. Kusuhara, Y. Einaga, and H. Hibino, “A microsensing system for the in vivo real-time detection of local drug kinetics,” Nat. Biomed. Eng. 1(8), 654–666 (2017).
[Crossref] [PubMed]

Takeda, M.

Tearney, G. J.

Uchiyama, Y.

H. Hibino, Y. Horio, A. Inanobe, K. Doi, M. Ito, M. Yamada, T. Gotow, Y. Uchiyama, M. Kawamura, T. Kubo, and Y. Kurachi, “An ATP-dependent inwardly rectifying potassium channel, KAB-2 (Kir4. 1), in cochlear stria vascularis of inner ear: its specific subcellular localization and correlation with the formation of endocochlear potential,” J. Neurosci. 17(12), 4711–4721 (1997).
[Crossref] [PubMed]

Ulfendahl, M.

M. Ulfendahl, S. M. Khanna, and A. Flock, “The vibration pattern of the hearing organ in the waltzing guinea-pig measured using laser heterodyne interferometry,” Neuroscience 72(1), 199–212 (1996).
[Crossref] [PubMed]

M. Ulfendahl, S. M. Khanna, and C. Heneghan, “Shearing motion in the hearing organ measured by confocal laser heterodyne interferometry,” Neuroreport 6(8), 1157–1160 (1995).
[Crossref] [PubMed]

S. M. Khanna, J. F. Willemin, and M. Ulfendahl, “Measurement of optical reflectivity in cells of the inner ear,” Acta Otolaryngol. Suppl. 467(sup467s467), 69–75 (1989).
[Crossref] [PubMed]

Uthaiah, R. C.

J. A. N. Fisher, F. Nin, T. Reichenbach, R. C. Uthaiah, and A. J. Hudspeth, “The spatial pattern of cochlear amplification,” Neuron 76(5), 989–997 (2012).
[Crossref] [PubMed]

Wang, R.

S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
[Crossref] [PubMed]

S. S. Gao, P. D. Raphael, R. Wang, J. Park, A. Xia, B. E. Applegate, and J. S. Oghalai, “In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography,” Biomed. Opt. Express 4(2), 230–240 (2013).
[Crossref] [PubMed]

Wang, R. K.

D. Zha, F. Chen, S. Ramamoorthy, A. Fridberger, N. Choudhury, S. L. Jacques, R. K. Wang, and A. L. Nuttall, “In vivo outer hair cell length changes expose the active process in the cochlea,” PLoS One 7(4), e32757 (2012).
[Crossref] [PubMed]

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
[Crossref] [PubMed]

Watanabe, T.

Willemin, J. F.

S. M. Khanna, J. F. Willemin, and M. Ulfendahl, “Measurement of optical reflectivity in cells of the inner ear,” Acta Otolaryngol. Suppl. 467(sup467s467), 69–75 (1989).
[Crossref] [PubMed]

Willemin, J.-F.

S. M. Khanna, C. J. Koester, J.-F. Willemin, R. Daendliker, and H. Rosskothen, “Noninvasive optical system for the study of the function of inner ear in living animals,” Proc. SPIE 2732, 64–81 (1996).
[Crossref]

Xia, A.

Yamada, M.

H. Hibino, Y. Horio, A. Inanobe, K. Doi, M. Ito, M. Yamada, T. Gotow, Y. Uchiyama, M. Kawamura, T. Kubo, and Y. Kurachi, “An ATP-dependent inwardly rectifying potassium channel, KAB-2 (Kir4. 1), in cochlear stria vascularis of inner ear: its specific subcellular localization and correlation with the formation of endocochlear potential,” J. Neurosci. 17(12), 4711–4721 (1997).
[Crossref] [PubMed]

Yoshida, T.

G. Ogata, Y. Ishii, K. Asai, Y. Sano, F. Nin, T. Yoshida, T. Higuchi, S. Sawamura, T. Ota, K. Hori, K. Maeda, S. Komune, K. Doi, M. Takai, I. Findlay, H. Kusuhara, Y. Einaga, and H. Hibino, “A microsensing system for the in vivo real-time detection of local drug kinetics,” Nat. Biomed. Eng. 1(8), 654–666 (2017).
[Crossref] [PubMed]

Zha, D.

D. Zha, F. Chen, S. Ramamoorthy, A. Fridberger, N. Choudhury, S. L. Jacques, R. K. Wang, and A. L. Nuttall, “In vivo outer hair cell length changes expose the active process in the cochlea,” PLoS One 7(4), e32757 (2012).
[Crossref] [PubMed]

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
[Crossref] [PubMed]

Zheng, J.

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
[Crossref] [PubMed]

Zuo, J.

S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
[Crossref] [PubMed]

Acta Otolaryngol. Suppl. (1)

S. M. Khanna, J. F. Willemin, and M. Ulfendahl, “Measurement of optical reflectivity in cells of the inner ear,” Acta Otolaryngol. Suppl. 467(sup467s467), 69–75 (1989).
[Crossref] [PubMed]

Appl. Opt. (3)

Biomed. Opt. Express (2)

Hear. Res. (2)

S. M. Khanna, “Homodyne interferometer for basilar membrane measurements,” Hear. Res. 23(1), 9–26 (1986).
[Crossref] [PubMed]

N. P. Cooper and W. S. Rhode, “Basilar membrane mechanics in the hook region of cat and guinea-pig cochleae: Sharp tuning and nonlinearity in the absence of baseline position shifts,” Hear. Res. 63(1-2), 163–190 (1992).
[Crossref] [PubMed]

J. Acoust. Soc. Am. (2)

A. L. Nuttall and D. F. Dolan, “Steady-state sinusoidal velocity responses of the basilar membrane in guinea pig,” J. Acoust. Soc. Am. 99(3), 1556–1565 (1996).
[Crossref] [PubMed]

M. A. Ruggero, N. C. Rich, A. Recio, S. S. Narayan, and L. Robles, “Basilar-membrane responses to tones at the base of the chinchilla cochlea,” J. Acoust. Soc. Am. 101(4), 2151–2163 (1997).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

M. Khaleghi, C. Furlong, M. Ravicz, J. T. Cheng, and J. J. Rosowski, “Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography,” J. Biomed. Opt. 20(5), 051028 (2015).
[Crossref] [PubMed]

J. Neurophysiol. (1)

S. S. Gao, R. Wang, P. D. Raphael, Y. Moayedi, A. K. Groves, J. Zuo, B. E. Applegate, and J. S. Oghalai, “Vibration of the organ of Corti within the cochlear apex in mice,” J. Neurophysiol. 112(5), 1192–1204 (2014).
[Crossref] [PubMed]

J. Neurosci. (1)

H. Hibino, Y. Horio, A. Inanobe, K. Doi, M. Ito, M. Yamada, T. Gotow, Y. Uchiyama, M. Kawamura, T. Kubo, and Y. Kurachi, “An ATP-dependent inwardly rectifying potassium channel, KAB-2 (Kir4. 1), in cochlear stria vascularis of inner ear: its specific subcellular localization and correlation with the formation of endocochlear potential,” J. Neurosci. 17(12), 4711–4721 (1997).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Physiol. (1)

N. P. Cooper, “Harmonic distortion on the basilar membrane in the basal turn of the guinea-pig cochlea,” J. Physiol. 509(Pt 1), 277–288 (1998).
[Crossref] [PubMed]

Nat. Biomed. Eng. (1)

G. Ogata, Y. Ishii, K. Asai, Y. Sano, F. Nin, T. Yoshida, T. Higuchi, S. Sawamura, T. Ota, K. Hori, K. Maeda, S. Komune, K. Doi, M. Takai, I. Findlay, H. Kusuhara, Y. Einaga, and H. Hibino, “A microsensing system for the in vivo real-time detection of local drug kinetics,” Nat. Biomed. Eng. 1(8), 654–666 (2017).
[Crossref] [PubMed]

Nat. Neurosci. (2)

F. Chen, D. Zha, A. Fridberger, J. Zheng, N. Choudhury, S. L. Jacques, R. K. Wang, X. Shi, and A. L. Nuttall, “A differentially amplified motion in the ear for near-threshold sound detection,” Nat. Neurosci. 14(6), 770–774 (2011).
[Crossref] [PubMed]

M. M. Mellado Lagarde, M. Drexl, V. A. Lukashkina, A. N. Lukashkin, and I. J. Russell, “Outer hair cell somatic, not hair bundle, motility is the basis of the cochlear amplifier,” Nat. Neurosci. 11(7), 746–748 (2008).
[Crossref] [PubMed]

Nat. Rev. Neurosci. (1)

A. J. Hudspeth, “Integrating the active process of hair cells with cochlear function,” Nat. Rev. Neurosci. 15(9), 600–614 (2014).
[Crossref] [PubMed]

Neuron (2)

P. K. Legan, V. A. Lukashkina, R. J. Goodyear, M. Kössi, I. J. Russell, and G. P. Richardson, “A targeted deletion in α-tectorin reveals that the tectorial membrane is required for the gain and timing of cochlear feedback,” Neuron 28(1), 273–285 (2000).
[Crossref] [PubMed]

J. A. N. Fisher, F. Nin, T. Reichenbach, R. C. Uthaiah, and A. J. Hudspeth, “The spatial pattern of cochlear amplification,” Neuron 76(5), 989–997 (2012).
[Crossref] [PubMed]

Neuroreport (1)

M. Ulfendahl, S. M. Khanna, and C. Heneghan, “Shearing motion in the hearing organ measured by confocal laser heterodyne interferometry,” Neuroreport 6(8), 1157–1160 (1995).
[Crossref] [PubMed]

Neuroscience (1)

M. Ulfendahl, S. M. Khanna, and A. Flock, “The vibration pattern of the hearing organ in the waltzing guinea-pig measured using laser heterodyne interferometry,” Neuroscience 72(1), 199–212 (1996).
[Crossref] [PubMed]

Opt. Commun. (1)

S. Choi, Y. Maruyama, T. Suzuki, F. Nin, H. Hibino, and O. Sasaki, “Wide-field heterodyne interferometric vibrometry for two-dimensional surface vibration measurement,” Opt. Commun. 356, 343–349 (2015).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Physiol. Rev. (1)

L. Robles and M. A. Ruggero, “Mechanics of the mammalian cochlea,” Physiol. Rev. 81(3), 1305–1352 (2001).
[Crossref] [PubMed]

PLoS One (1)

D. Zha, F. Chen, S. Ramamoorthy, A. Fridberger, N. Choudhury, S. L. Jacques, R. K. Wang, and A. L. Nuttall, “In vivo outer hair cell length changes expose the active process in the cochlea,” PLoS One 7(4), e32757 (2012).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

F. Nin, T. Reichenbach, J. A. N. Fisher, and A. J. Hudspeth, “Contribution of active hair-bundle motility to nonlinear amplification in the mammalian cochlea,” Proc. Natl. Acad. Sci. U.S.A. 109(51), 21076–21080 (2012).
[Crossref] [PubMed]

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proc. Natl. Acad. Sci. U.S.A. 112(10), 3128–3133 (2015).
[Crossref] [PubMed]

Proc. SPIE (1)

S. M. Khanna, C. J. Koester, J.-F. Willemin, R. Daendliker, and H. Rosskothen, “Noninvasive optical system for the study of the function of inner ear in living animals,” Proc. SPIE 2732, 64–81 (1996).
[Crossref]

Other (5)

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (Dover Publications, 1965) chap. 9.

https://www.niigata-u.ac.jp/contribution/research/policy/animal-experiment/

http://www.mra.pt/repositorio/bf89/pdf/9859/2/fastcam-mini-ax200-tech-datasheet.pdf

https://ncss-wpengine.netdna-ssl.com/wp- content/themes/ncss/pdf/Procedures/NCSS/Circular_Data_Analysis.pdf .

S. Sato, T. Kurihara, and S. Ando, “Real-time vibration amplitude and phase imaging with heterodyne interferometry and correlation image sensor,” Proc. SPIE 7063,70630I (11 August 2008)
[Crossref]

Supplementary Material (2)

NameDescription
» Visualization 1       The visualization of a 3D volumetric image of sensory epithelium.
» Visualization 2       Vibration on the sensory epithelium

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 Instrumentation of the improved MS-OCMV system. (A) The schematic of the setup. A: analyzer; FC: fiber collimator; FG: function generator; FPF: Fabry–Pérot filter; GP: glass plate for dispersion compensation; HPA: high-power amplifier; M: mirror; OBF: optical bandpass filter; P: polarizer; PA: piezoelectric actuator; PBS: polarized beam splitter; QWP: quarter wave plate; PZT: piezoelectric transducer; RM: reference mirror; TRIG: trigger. (B) Spectra of SC and SLD light sources. Note that the signal intensity in either case was normalized. (C) A micrograph of a test target. Our system distinguished 144 line pairs/mm (Group 7, Element 2).
Fig. 2
Fig. 2 Modification of the WHIV technique. In the original vibrometric method (A) [16], simple sinusoidal modulation illustrated in the upper panel was applied to the reference mirror. In this condition, the zeroth component F(0) overlapped with the DC component, A (lower panel). By contrast, in the improved method (B), sinusoidal DC offset modulation was added to the reference modulation (upper panel). This approach completely separates the zeroth component from bias noise at a frequency of f0 Hz, i.e., F1,0 (lower panel). From frequency components F1,0 and F1,1, vibration amplitude Zs and phase Φs can be properly estimated without disturbance by the DC component (see Subsection 4.2).
Fig. 3
Fig. 3 Sample preparation. The cochlea of a live guinea pig was surgically exposed (left panel) and subjected to the experiment. Light was applied to the sensory epithelium (middle panel) through a transparent round window (the dotted circle in the left-hand panel). A schematic image of irradiation of the epithelium is provided in the right-hand panel.
Fig. 4
Fig. 4 The first-order interference peak obtained by the axial depth scan. (A) Interference fringe with its envelope after reduction of the DC component from the raw signal. (B) An enlarged plot near the interference fringe peak. (C) A typical A-line obtained from the envelope of the interference fringe. FWHM: full width at half maximum. (D) The logarithmic scale of (C). The green and blue plots in (D) denote the intensity profiles obtained by a single scan and by averaging the data from the neighboring 100 pixels, respectively.
Fig. 5
Fig. 5 Heterodyne signals detected by the WHIV technique with a vibrated mirror. (A) Microscopic en face interference raw images of the sample’s surface at time points 0.42, 1.00, and 1.53 s. (B) A typical temporal heterodyne interferogram obtained in a point region indicated by a in (A). (C) Frequency domain signals obtained by FFT. (D) A 2D distribution of the frequency components |F0,1| (170 Hz) and |F1,1| (250 Hz) and a noise component (800 Hz).
Fig. 6
Fig. 6 Analysis of the vibrations measured in the mirror by the WHIV technique. For this assay, the data described in Fig. 5 were used. 2D distributions of vibration amplitude Zs, vibration phase Φs, and interference phase α are displayed in panels (A), (B), and (C), respectively. The signals of the unmeasurable area were removed from the data, and the distributions of Zs are reproduced in (D). The pixels were profiled in accordance with the Zs and α values, and they are plotted in the histogram in (E). Similarly, the pixels of phase Φs values are plotted in the histogram in (F). The unmeasurable areas are indicated by hatching in panels (E) and (F).
Fig. 7
Fig. 7 Performance evaluation of the improved WHIV technique. (A) Comparison of measurement accuracy between the WHIV technique and a conventional LDV. For the two methods, a planar mirror vibrated at a frequency of 26 kHz served as a sample. Nonuniformity of the amplitude distribution can be evaluated by the standard deviation indicated as error bars. (B) The limit of detection of the vibration amplitude in the WHIV technique. The mirror was stimulated with 0.2 V. The obtained data were transformed to frequency domain heterodyne signals, and components F1,0 and F1,1 are presented in the panel. The noise floor is indicated by a dotted line. Refer to the text for the determination of the measurement threshold. (C) Changes in the SDs of vibration amplitude σZ and phase deviation σΦ with respect to Zs.
Fig.8
Fig.8 Results of 3D volumetric imaging. (A) The 3D volumetric image of the sensory epithelium located between neighboring bony tissues. (B) A recalibrated image of the sensory epithelium from different viewpoints (see Visualization 1). (C) The remeasurement result from the portion enclosed by the dotted line in (B). The length of each side of the yellow parallelepiped is 50 μm. (D–F) X-Z cross-sectional images along lines 1, 2, and 3, respectively, indicated in (C). (G) Schematic illustration of the cross-sectional view of the sensory epithelium. BM, RL, and TM denote the basilar membrane, reticular lamina, and tectorial membrane, respectively. The inner sulcus and tunnel of Corti are marked by a dotted circle and triangle, respectively, which are also overlaid in D–F.
Fig. 9
Fig. 9 The masking procedure. In mask 1, when the absolute value of the peak of F1,1 in a pixel exceeded the threshold determined as described in the text, the pixel value was transformed to “1” or “white.” Mask 2 served to filter out the unmeasurable area according to the value of interference phase α. In this configuration, the measurable pixel was referred to as “1” or “white.” Masks 1 and 2 were merged by the “AND operation,” in which the pixel with the value of “1” in both masks was set to “1” or “white.” Finally, to the conclusive mask, the median filter was applied for data smoothing. For the detailed procedure, refer to the text. As indicated in the boxed panel, the distributions of (a) Zs and (b) Φs were segmented through the conclusive mask. The ROI of the sensory epithelium in the wide-field mode was determined by this procedure.
Fig. 10
Fig. 10 Two-dimensional visualization of vibrations in the cochlear sensory epithelium of a live guinea pig. Vibration amplitude Zs (A–D) and phase Φs (E–H) in the ROI on the epithelium (see text) are denoted by the color bar shown in the upper right part of each panel and mapped on a slice section of the 3D volumetric image obtained in Fig. 8(A). In the measurements, the animal was exposed to acoustic stimuli at various SPLs: 85 dB [(A) and (E)], 80 dB [(B) and (F)], 75 dB [(C) and (G)], or 70 dB [(D) and (H)]. The insets in the lower right corners of panels (A–D) indicate the amplitude histograms, whereas those in (E–H) indicate phase histograms. By means of these parameters and the volumetric data, the pattern of the vibration can be visualized schematically (see Visualization 2).
Fig. 11
Fig. 11 Two-dimensional visualization of vibrations in the sensory epithelium of the guinea pig postmortem. The tested animal, experimental conditions, data analyses, and displayed parameters are the same as those in Fig. 10.
Fig. 12
Fig. 12 Epithelial vibrations measured with the improved WHIV technique. (A) Vibration amplitude. The data were collected from the ROI (~2000 pixels) of the sensory epithelium in the control (red curve; live guinea pig) and postmortem (black curve). The animal was exposed to stimuli of 23 kHz at various SPLs. The average values and standard deviations (SD) are plotted. (B) The tuning curve of the vibration amplitude (blue curve) and phase (orange curve; σΦ). In this assay series, the live animal was acoustically stimulated with different frequencies (21−25 kHz; 85 dB SPL). The averages and SD of the data in the ROI individually determined for each stimulus are shown. The phase values were obtained with Eq. (6) (see text).
Fig. 13
Fig. 13 Analysis of the phase gradient caused by a travelling wave on the BM. (A) Variation of the phase gradient plotted in terms of radian/mm as a function of sound stimulation frequency. The gradient values were obtained from the spatial phase distributions of vibration stimulated by a pure tone sound at 85 dB SPL. (B, C) Spatial phase distributions and their phase gradients on the BM of a live guinea pig at a frequency of 23 and 24 kHz, respectively. The phase gradients were obtained by calculating the average phase value along the centroid line (yellow lines on each distribution). (D–F) Spatial phase distributions and their phase gradient corresponding to frequencies of 23, 24, and 25 kHz, respectively. The tested animal, experimental conditions, and data analysis are the same as those in panels (B) and (C).
Fig. 14
Fig. 14 Typical heterodyne signals in the frequency domain detected by (A) the original and (B) improved WHIV techniques with a vibrated mirror. In the original methods, 2D distributions of the frequency components |F(0)| (0 Hz) and |F(Δf)| (250 Hz) were obtained. The distribution of |F(0)| shows an interference fringe pattern, which means that the DC component and first-order signal merged in the distribution. On the other hand, in the improved technique, the distributions of the DC component of |F(0)| (0 Hz) and high-order frequency components of |F0,1| (170 Hz) and |F1,1| (250 Hz) were obtained separately.
Fig. 15
Fig. 15 In silico analysis for evaluation of the improved WHIV technique. Four series of sampling points (2000, 4000, 8000, and 16000), which represent measurements during 1, 2, 4, and 8 s, respectively, were computationally prepared as described in the text. As a function of vibration amplitude the relative error (A) and SNR of the |F1,1| component (B) were plotted. Refer to the text for details. In (A), the calculation was carried out 100 times, and the averaged values with standard deviations are presented (error bars).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I xy ( t ) = A xy + B xy cos[ Z s cos(2p f s t + F s ) + Z r cos(2p f r t + F r ) + Z 0 cos(2p f 0 t + F 0 ) + a xy ],
I xy (t)= A xy + B xy cos α xy m=1 M n=1 N (1) m+n J 2m ( Z 0 ) J n ( Z s ) J n ( Z r )cos{2π(2m f 0 ±nΔf)t+2m Φ 0 ±nΦ} + B xy sin α xy m=1 M n=1 N (1) m+n+1 J 2m1 ( Z 0 ) J n ( Z s ) J n ( Z r )cos[2π{(2m1) f 0 ±nΔf}t+(2m1) Φ 0 ±nΦ ]
F 2m1,n = (1) m+n+1 Bsinα J n ( Z s ) J n ( Z r ) J 2m1 ( Z 0 )expi[n Φ s +(2m1) Φ 0 ], F 2m,n = (1) m+n Bcosα J n ( Z s ) J n ( Z r ) J 2m ( Z 0 )expi[n Φ s +2m Φ 0 ].
Φ s = tan 1 [ Im( F 1,1 / F 1,0 ) Re( F 1,1 / F 1,0 ) ].
α= tan 1 [ | F 2,0 | J 2 ( Z 0 ) / | F 1,0 | J 1 ( Z 0 ) ].
σ Φ = 2ln| 1 MN m=1 M n=1 N exp{i Φ s (m,n)} | ,
noise= N td 2 + N s 2
| F( 0 ) | = | A xy + B xy cos( a xy ) J 0 ( Z s ) J 0 ( Z r )|.

Metrics