Abstract

Safe use of retinal imaging with two-photon excitation in human eyes is crucial, as the effects of ultrashort pulsed lasers on the retina are relatively unknown. At the time of the study, the laser safety standards were inadequate due to the lack of biological data. This article addresses the feasibility of two-photon retinal imaging with respect to laser safety. In this study, rat retinas were evaluated at various laser exposure levels and with different laser parameters to determine the effects of laser-induced optical damage. The results were experimentally verified using confocal reflectance imaging, two-photon fluorescein angiography, immunohistochemistry, and correlated to the IEC 60825-1 laser safety standard.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy

Jennifer J. Hunter, Benjamin Masella, Alfredo Dubra, Robin Sharma, Lu Yin, William H. Merigan, Grazyna Palczewska, Krzysztof Palczewski, and David R. Williams
Biomed. Opt. Express 2(1) 139-148 (2011)

Multi-wavelength, en-face photoacoustic microscopy and optical coherence tomography imaging for early and selective detection of laser induced retinal vein occlusion

Van Phuc Nguyen, Yanxiu Li, Wei Zhang, Xueding Wang, and Yannis M. Paulus
Biomed. Opt. Express 9(12) 5915-5938 (2018)

In vivo two-photon imaging of the mouse retina

Robin Sharma, Lu Yin, Ying Geng, William H. Merigan, Grazyna Palczewska, Krzysztof Palczewski, David R. Williams, and Jennifer J. Hunter
Biomed. Opt. Express 4(8) 1285-1293 (2013)

References

  • View by:
  • |
  • |
  • |

  1. G. Palczewska, Z. Dong, M. Golczak, J. J. Hunter, D. R. Williams, N. S. Alexander, and K. Palczewski, “Noninvasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium through the pupil of the eye,” Nat. Med. 20(7), 785–789 (2014).
    [Crossref] [PubMed]
  2. P. Stremplewski, K. Komar, K. Palczewski, M. Wojtkowski, and G. Palczewska, “Periscope for noninvasive two-photon imaging of murine retina in vivo,” Biomed. Opt. Express 6(9), 3352–3361 (2015).
    [Crossref] [PubMed]
  3. A. S. Bar-Noam, N. Farah, and S. Shoham, “Correction-free remotely scanned two-photon in vivo mouse retinal imaging,” Light Sci. Appl. 5(1), e16007 (2016).
    [Crossref] [PubMed]
  4. R. Sharma, D. R. Williams, G. Palczewska, K. Palczewski, and J. J. Hunter, “Two-photon autofluorescence imaging reveals cellular structures throughout the retina of the living primate eye,” Invest. Ophthalmol. Vis. Sci. 57(2), 632–646 (2016).
    [Crossref] [PubMed]
  5. T. Kamali, J. Fischer, S. Farrell, W. H. Baldridge, G. Zinser, and B. C. Chauhan, “Simultaneous in vivo confocal reflectance and two-photon retinal ganglion cell imaging based on a hollow core fiber platform,” J. Biomed. Opt. 23(9), 1–4 (2018).
    [Crossref] [PubMed]
  6. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  7. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
    [Crossref] [PubMed]
  8. S. Huang, A. A. Heikal, and W. W. Webb, “Two-Photon Fluorescence Spectroscopy and Microscopy of NAD(P)H and Flavoprotein,” Biophys. J. 82(5), 2811–2825 (2002).
    [Crossref] [PubMed]
  9. G. Palczewska, T. Maeda, Y. Imanishi, W. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, and K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med. 16(12), 1444–1449 (2010).
    [Crossref] [PubMed]
  10. R. D. Glickman, “Ultraviolet phototoxicity to the retina,” Eye Contact Lens 37(4), 196–205 (2011).
    [Crossref] [PubMed]
  11. American National Standards Institute (ANSI), “American National Standard for Safe Use of Lasers: ANSI Z136.1” (2014).
  12. International Electrotechnical Commission (IEC), “Safety of Laser Products-Part 1: Equipment, Classification, Requirements, IEC 60825-1” (2014).
  13. International Commission on Non-Ionizing Radiation Protection, “ICNIRP Guidelines- On limits of exposure to laser radiation of wavelengths between 180 nm and 1000 µm,” Health Phys. 105(3), 271–295 (2013).
    [Crossref] [PubMed]
  14. W. T. Ham, H. A. Mueller, M. L. Wolbarsht, and D. H. Sliney, “Evaluation of retinal exposures from repetitively pulsed and scanning lasers,” Health Phys. 54(3), 337–344 (1988).
    [Crossref] [PubMed]
  15. C. P. Cain, C. D. DiCarlo, B. A. Rockwell, P. K. Kennedy, G. D. Noojin, D. J. Stolarski, D. X. Hammer, C. A. Toth, and W. P. Roach, “Retinal damage and laser-induced breakdown produced by ultrashort-pulse lasers,” Graefes Arch. Clin. Exp. Ophthalmol. 234(8), S28–S37 (1996).
    [Crossref] [PubMed]
  16. B. A. Rockwell, D. X. Hammer, R. A. Hopkins, D. J. Payne, C. A. Toth, W. P. Roach, J. J. Druessel, P. K. Kennedy, R. E. Amnotte, B. Eilert, S. Phillips, G. D. Noojin, D. J. Stolarski, and C. Cain, “Ultrashort laser pulse bioeffects and safety,” J. Laser Appl. 11(1), 42–44 (1999).
    [Crossref] [PubMed]
  17. C. P. Cain, C. A. Toth, G. D. Noojin, D. J. Stolarski, R. J. Thomas, and B. A. Rockwell, “Thresholds for retinal injury from multiple near-infrared ultrashort laser pulses,” Health Phys. 82(6), 855–862 (2002).
    [Crossref] [PubMed]
  18. R. J. Thomas, G. D. Noojin, D. J. Stolarski, R. T. Hall, C. P. Cain, C. A. Toth, and B. A. Rockwell, “A comparative study of retinal effects from continuous wave and femtosecond mode-locked lasers,” Lasers Surg. Med. 31(1), 9–17 (2002).
    [Crossref] [PubMed]
  19. C. Schwarz, R. Sharma, W. S. Fischer, M. Chung, G. Palczewska, K. Palczewski, D. R. Williams, and J. J. Hunter, “Safety assessment in macaques of light exposures for functional two-photon ophthalmoscopy in humans,” Biomed. Opt. Express 7(12), 5148–5169 (2016).
    [Crossref] [PubMed]
  20. C. Schwarz, R. Sharma, S. K. Cheong, M. Keller, D. R. Williams, and J. J. Hunter, “Selective S Cone Damage and Retinal Remodeling Following Intense Ultrashort Pulse Laser Exposures in the Near-Infrared,” Invest. Ophthalmol. Vis. Sci. 59(15), 5973–5984 (2018).
    [Crossref] [PubMed]
  21. G. S. Jayabalan, Y. K. Wu, J. F. Bille, S. Kim, X. W. Mao, H. V. Gimbel, M. E. Rauser, and J. T. Fan, “In vivo two-photon imaging of retina in rabbits and rats,” Exp. Eye Res. 166, 40–48 (2018).
    [Crossref] [PubMed]
  22. DeadEnd™ Fluorometric TUNEL System Technical Bulletin, “Promega corporation- Product G3250,” https://www.promega.de/-/media/files/resources/protocols/technical-bulletins/0/deadend-fluorometric-tunel-system-protocol.pdf .
  23. S. Schmitz-Valckenberg, L. Guo, A. Maass, W. Cheung, A. Vugler, S. E. Moss, P. M. Munro, F. W. Fitzke, and M. F. Cordeiro, “Real-time in vivo imaging of retinal cell apoptosis after laser exposure,” Invest. Ophthalmol. Vis. Sci. 49(6), 2773–2780 (2008).
    [Crossref] [PubMed]
  24. M. A. Contín, M. M. Arietti, M. M. Benedetto, C. Bussi, and M. E. Guido, “Photoreceptor damage induced by low-intensity light: model of retinal degeneration in mammals,” Mol. Vis. 19, 1614–1625 (2013).
    [PubMed]
  25. J. P. M. Wood, O. Shibeeb, M. Plunkett, R. J. Casson, and G. Chidlow, “Retinal damage profiles and neuronal effects of laser treatment: comparison of a conventional photocoagulator and a novel 3-nanosecond pulse laser,” Invest. Ophthalmol. Vis. Sci. 54(3), 2305–2318 (2013).
    [Crossref] [PubMed]
  26. D. T. Organisciak and D. K. Vaughan, “Retinal light damage: mechanisms and protection,” Prog. Retin. Eye Res. 29(2), 113–134 (2010).
    [Crossref] [PubMed]
  27. D. McHugh, C. England, E. van der Zypen, J. Marshall, F. Fankhauser, and S. Fankhauser-Kwasnieska, “Irradiation of rabbit retina with diode and Nd:YAG lasers,” Br. J. Ophthalmol. 79(7), 672–677 (1995).
    [Crossref] [PubMed]
  28. Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In Vivo Imaging of Microscopic Structures in the Rat Retina,” Invest. Ophthalmol. Vis. Sci. 50(12), 5872–5879 (2009).
    [Crossref] [PubMed]
  29. J. T. Henriksson, J. P. G. Bergmanson, and J. E. Walsh, “Ultraviolet radiation transmittance of the mouse eye and its individual media components,” Exp. Eye Res. 90(3), 382–387 (2010).
    [Crossref] [PubMed]
  30. D. J. Lund, P. Edsall, B. E. Stuck, and K. Schulmeister, “Variation of laser-induced retinal injury thresholds with retinal irradiated area: 0.1-s duration, 514-nm exposures,” J. Biomed. Opt. 12(2), 024023 (2007).
    [Crossref] [PubMed]
  31. S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
    [Crossref] [PubMed]
  32. “SPECTRALIS High Magnification Module | Heidelberg Engineering,” https://business-lounge.heidelbergengineering.com/us/en/products/spectralis/high-magnification-module/ .
  33. J. F. Bille, M. Agopov, C. Alvarez-Diez, M. Han, N. Korablinova, O. La Schiazza, H. Zhang, and F. Muller, “Compact Adaptive Optics System for Multiphoton Fundus Imaging,” J. Mod. Opt. 55(4–5), 749–758 (2008).
    [Crossref]
  34. J. I. W. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, and D. R. Williams, “Light-Induced Retinal Changes Observed with High-Resolution Autofluorescence Imaging of the Retinal Pigment Epithelium,” Invest. Ophthalmol. Vis. Sci. 49(8), 3715–3729 (2008).
    [Crossref] [PubMed]

2018 (3)

T. Kamali, J. Fischer, S. Farrell, W. H. Baldridge, G. Zinser, and B. C. Chauhan, “Simultaneous in vivo confocal reflectance and two-photon retinal ganglion cell imaging based on a hollow core fiber platform,” J. Biomed. Opt. 23(9), 1–4 (2018).
[Crossref] [PubMed]

C. Schwarz, R. Sharma, S. K. Cheong, M. Keller, D. R. Williams, and J. J. Hunter, “Selective S Cone Damage and Retinal Remodeling Following Intense Ultrashort Pulse Laser Exposures in the Near-Infrared,” Invest. Ophthalmol. Vis. Sci. 59(15), 5973–5984 (2018).
[Crossref] [PubMed]

G. S. Jayabalan, Y. K. Wu, J. F. Bille, S. Kim, X. W. Mao, H. V. Gimbel, M. E. Rauser, and J. T. Fan, “In vivo two-photon imaging of retina in rabbits and rats,” Exp. Eye Res. 166, 40–48 (2018).
[Crossref] [PubMed]

2017 (1)

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

2016 (3)

C. Schwarz, R. Sharma, W. S. Fischer, M. Chung, G. Palczewska, K. Palczewski, D. R. Williams, and J. J. Hunter, “Safety assessment in macaques of light exposures for functional two-photon ophthalmoscopy in humans,” Biomed. Opt. Express 7(12), 5148–5169 (2016).
[Crossref] [PubMed]

A. S. Bar-Noam, N. Farah, and S. Shoham, “Correction-free remotely scanned two-photon in vivo mouse retinal imaging,” Light Sci. Appl. 5(1), e16007 (2016).
[Crossref] [PubMed]

R. Sharma, D. R. Williams, G. Palczewska, K. Palczewski, and J. J. Hunter, “Two-photon autofluorescence imaging reveals cellular structures throughout the retina of the living primate eye,” Invest. Ophthalmol. Vis. Sci. 57(2), 632–646 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (1)

G. Palczewska, Z. Dong, M. Golczak, J. J. Hunter, D. R. Williams, N. S. Alexander, and K. Palczewski, “Noninvasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium through the pupil of the eye,” Nat. Med. 20(7), 785–789 (2014).
[Crossref] [PubMed]

2013 (3)

International Commission on Non-Ionizing Radiation Protection, “ICNIRP Guidelines- On limits of exposure to laser radiation of wavelengths between 180 nm and 1000 µm,” Health Phys. 105(3), 271–295 (2013).
[Crossref] [PubMed]

M. A. Contín, M. M. Arietti, M. M. Benedetto, C. Bussi, and M. E. Guido, “Photoreceptor damage induced by low-intensity light: model of retinal degeneration in mammals,” Mol. Vis. 19, 1614–1625 (2013).
[PubMed]

J. P. M. Wood, O. Shibeeb, M. Plunkett, R. J. Casson, and G. Chidlow, “Retinal damage profiles and neuronal effects of laser treatment: comparison of a conventional photocoagulator and a novel 3-nanosecond pulse laser,” Invest. Ophthalmol. Vis. Sci. 54(3), 2305–2318 (2013).
[Crossref] [PubMed]

2011 (1)

R. D. Glickman, “Ultraviolet phototoxicity to the retina,” Eye Contact Lens 37(4), 196–205 (2011).
[Crossref] [PubMed]

2010 (3)

G. Palczewska, T. Maeda, Y. Imanishi, W. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, and K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med. 16(12), 1444–1449 (2010).
[Crossref] [PubMed]

D. T. Organisciak and D. K. Vaughan, “Retinal light damage: mechanisms and protection,” Prog. Retin. Eye Res. 29(2), 113–134 (2010).
[Crossref] [PubMed]

J. T. Henriksson, J. P. G. Bergmanson, and J. E. Walsh, “Ultraviolet radiation transmittance of the mouse eye and its individual media components,” Exp. Eye Res. 90(3), 382–387 (2010).
[Crossref] [PubMed]

2009 (1)

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In Vivo Imaging of Microscopic Structures in the Rat Retina,” Invest. Ophthalmol. Vis. Sci. 50(12), 5872–5879 (2009).
[Crossref] [PubMed]

2008 (3)

S. Schmitz-Valckenberg, L. Guo, A. Maass, W. Cheung, A. Vugler, S. E. Moss, P. M. Munro, F. W. Fitzke, and M. F. Cordeiro, “Real-time in vivo imaging of retinal cell apoptosis after laser exposure,” Invest. Ophthalmol. Vis. Sci. 49(6), 2773–2780 (2008).
[Crossref] [PubMed]

J. F. Bille, M. Agopov, C. Alvarez-Diez, M. Han, N. Korablinova, O. La Schiazza, H. Zhang, and F. Muller, “Compact Adaptive Optics System for Multiphoton Fundus Imaging,” J. Mod. Opt. 55(4–5), 749–758 (2008).
[Crossref]

J. I. W. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, and D. R. Williams, “Light-Induced Retinal Changes Observed with High-Resolution Autofluorescence Imaging of the Retinal Pigment Epithelium,” Invest. Ophthalmol. Vis. Sci. 49(8), 3715–3729 (2008).
[Crossref] [PubMed]

2007 (1)

D. J. Lund, P. Edsall, B. E. Stuck, and K. Schulmeister, “Variation of laser-induced retinal injury thresholds with retinal irradiated area: 0.1-s duration, 514-nm exposures,” J. Biomed. Opt. 12(2), 024023 (2007).
[Crossref] [PubMed]

2005 (1)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

2002 (3)

S. Huang, A. A. Heikal, and W. W. Webb, “Two-Photon Fluorescence Spectroscopy and Microscopy of NAD(P)H and Flavoprotein,” Biophys. J. 82(5), 2811–2825 (2002).
[Crossref] [PubMed]

C. P. Cain, C. A. Toth, G. D. Noojin, D. J. Stolarski, R. J. Thomas, and B. A. Rockwell, “Thresholds for retinal injury from multiple near-infrared ultrashort laser pulses,” Health Phys. 82(6), 855–862 (2002).
[Crossref] [PubMed]

R. J. Thomas, G. D. Noojin, D. J. Stolarski, R. T. Hall, C. P. Cain, C. A. Toth, and B. A. Rockwell, “A comparative study of retinal effects from continuous wave and femtosecond mode-locked lasers,” Lasers Surg. Med. 31(1), 9–17 (2002).
[Crossref] [PubMed]

1999 (1)

B. A. Rockwell, D. X. Hammer, R. A. Hopkins, D. J. Payne, C. A. Toth, W. P. Roach, J. J. Druessel, P. K. Kennedy, R. E. Amnotte, B. Eilert, S. Phillips, G. D. Noojin, D. J. Stolarski, and C. Cain, “Ultrashort laser pulse bioeffects and safety,” J. Laser Appl. 11(1), 42–44 (1999).
[Crossref] [PubMed]

1996 (1)

C. P. Cain, C. D. DiCarlo, B. A. Rockwell, P. K. Kennedy, G. D. Noojin, D. J. Stolarski, D. X. Hammer, C. A. Toth, and W. P. Roach, “Retinal damage and laser-induced breakdown produced by ultrashort-pulse lasers,” Graefes Arch. Clin. Exp. Ophthalmol. 234(8), S28–S37 (1996).
[Crossref] [PubMed]

1995 (1)

D. McHugh, C. England, E. van der Zypen, J. Marshall, F. Fankhauser, and S. Fankhauser-Kwasnieska, “Irradiation of rabbit retina with diode and Nd:YAG lasers,” Br. J. Ophthalmol. 79(7), 672–677 (1995).
[Crossref] [PubMed]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

1988 (1)

W. T. Ham, H. A. Mueller, M. L. Wolbarsht, and D. H. Sliney, “Evaluation of retinal exposures from repetitively pulsed and scanning lasers,” Health Phys. 54(3), 337–344 (1988).
[Crossref] [PubMed]

Agopov, M.

J. F. Bille, M. Agopov, C. Alvarez-Diez, M. Han, N. Korablinova, O. La Schiazza, H. Zhang, and F. Muller, “Compact Adaptive Optics System for Multiphoton Fundus Imaging,” J. Mod. Opt. 55(4–5), 749–758 (2008).
[Crossref]

Alexander, N. S.

G. Palczewska, Z. Dong, M. Golczak, J. J. Hunter, D. R. Williams, N. S. Alexander, and K. Palczewski, “Noninvasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium through the pupil of the eye,” Nat. Med. 20(7), 785–789 (2014).
[Crossref] [PubMed]

Alvarez-Diez, C.

J. F. Bille, M. Agopov, C. Alvarez-Diez, M. Han, N. Korablinova, O. La Schiazza, H. Zhang, and F. Muller, “Compact Adaptive Optics System for Multiphoton Fundus Imaging,” J. Mod. Opt. 55(4–5), 749–758 (2008).
[Crossref]

Amnotte, R. E.

B. A. Rockwell, D. X. Hammer, R. A. Hopkins, D. J. Payne, C. A. Toth, W. P. Roach, J. J. Druessel, P. K. Kennedy, R. E. Amnotte, B. Eilert, S. Phillips, G. D. Noojin, D. J. Stolarski, and C. Cain, “Ultrashort laser pulse bioeffects and safety,” J. Laser Appl. 11(1), 42–44 (1999).
[Crossref] [PubMed]

Arietti, M. M.

M. A. Contín, M. M. Arietti, M. M. Benedetto, C. Bussi, and M. E. Guido, “Photoreceptor damage induced by low-intensity light: model of retinal degeneration in mammals,” Mol. Vis. 19, 1614–1625 (2013).
[PubMed]

Artal, P.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Atchison, D. A.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Baldridge, W. H.

T. Kamali, J. Fischer, S. Farrell, W. H. Baldridge, G. Zinser, and B. C. Chauhan, “Simultaneous in vivo confocal reflectance and two-photon retinal ganglion cell imaging based on a hollow core fiber platform,” J. Biomed. Opt. 23(9), 1–4 (2018).
[Crossref] [PubMed]

Bar-Noam, A. S.

A. S. Bar-Noam, N. Farah, and S. Shoham, “Correction-free remotely scanned two-photon in vivo mouse retinal imaging,” Light Sci. Appl. 5(1), e16007 (2016).
[Crossref] [PubMed]

Benedetto, M. M.

M. A. Contín, M. M. Arietti, M. M. Benedetto, C. Bussi, and M. E. Guido, “Photoreceptor damage induced by low-intensity light: model of retinal degeneration in mammals,” Mol. Vis. 19, 1614–1625 (2013).
[PubMed]

Bergmanson, J. P. G.

J. T. Henriksson, J. P. G. Bergmanson, and J. E. Walsh, “Ultraviolet radiation transmittance of the mouse eye and its individual media components,” Exp. Eye Res. 90(3), 382–387 (2010).
[Crossref] [PubMed]

Bille, J. F.

G. S. Jayabalan, Y. K. Wu, J. F. Bille, S. Kim, X. W. Mao, H. V. Gimbel, M. E. Rauser, and J. T. Fan, “In vivo two-photon imaging of retina in rabbits and rats,” Exp. Eye Res. 166, 40–48 (2018).
[Crossref] [PubMed]

J. F. Bille, M. Agopov, C. Alvarez-Diez, M. Han, N. Korablinova, O. La Schiazza, H. Zhang, and F. Muller, “Compact Adaptive Optics System for Multiphoton Fundus Imaging,” J. Mod. Opt. 55(4–5), 749–758 (2008).
[Crossref]

Burns, S. A.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Bussi, C.

M. A. Contín, M. M. Arietti, M. M. Benedetto, C. Bussi, and M. E. Guido, “Photoreceptor damage induced by low-intensity light: model of retinal degeneration in mammals,” Mol. Vis. 19, 1614–1625 (2013).
[PubMed]

Cain, C.

B. A. Rockwell, D. X. Hammer, R. A. Hopkins, D. J. Payne, C. A. Toth, W. P. Roach, J. J. Druessel, P. K. Kennedy, R. E. Amnotte, B. Eilert, S. Phillips, G. D. Noojin, D. J. Stolarski, and C. Cain, “Ultrashort laser pulse bioeffects and safety,” J. Laser Appl. 11(1), 42–44 (1999).
[Crossref] [PubMed]

Cain, C. P.

C. P. Cain, C. A. Toth, G. D. Noojin, D. J. Stolarski, R. J. Thomas, and B. A. Rockwell, “Thresholds for retinal injury from multiple near-infrared ultrashort laser pulses,” Health Phys. 82(6), 855–862 (2002).
[Crossref] [PubMed]

R. J. Thomas, G. D. Noojin, D. J. Stolarski, R. T. Hall, C. P. Cain, C. A. Toth, and B. A. Rockwell, “A comparative study of retinal effects from continuous wave and femtosecond mode-locked lasers,” Lasers Surg. Med. 31(1), 9–17 (2002).
[Crossref] [PubMed]

C. P. Cain, C. D. DiCarlo, B. A. Rockwell, P. K. Kennedy, G. D. Noojin, D. J. Stolarski, D. X. Hammer, C. A. Toth, and W. P. Roach, “Retinal damage and laser-induced breakdown produced by ultrashort-pulse lasers,” Graefes Arch. Clin. Exp. Ophthalmol. 234(8), S28–S37 (1996).
[Crossref] [PubMed]

Campbell, M.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Carroll, J.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Casson, R. J.

J. P. M. Wood, O. Shibeeb, M. Plunkett, R. J. Casson, and G. Chidlow, “Retinal damage profiles and neuronal effects of laser treatment: comparison of a conventional photocoagulator and a novel 3-nanosecond pulse laser,” Invest. Ophthalmol. Vis. Sci. 54(3), 2305–2318 (2013).
[Crossref] [PubMed]

Chauhan, B. C.

T. Kamali, J. Fischer, S. Farrell, W. H. Baldridge, G. Zinser, and B. C. Chauhan, “Simultaneous in vivo confocal reflectance and two-photon retinal ganglion cell imaging based on a hollow core fiber platform,” J. Biomed. Opt. 23(9), 1–4 (2018).
[Crossref] [PubMed]

Chen, Y.

G. Palczewska, T. Maeda, Y. Imanishi, W. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, and K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med. 16(12), 1444–1449 (2010).
[Crossref] [PubMed]

Cheong, S. K.

C. Schwarz, R. Sharma, S. K. Cheong, M. Keller, D. R. Williams, and J. J. Hunter, “Selective S Cone Damage and Retinal Remodeling Following Intense Ultrashort Pulse Laser Exposures in the Near-Infrared,” Invest. Ophthalmol. Vis. Sci. 59(15), 5973–5984 (2018).
[Crossref] [PubMed]

Cheung, W.

S. Schmitz-Valckenberg, L. Guo, A. Maass, W. Cheung, A. Vugler, S. E. Moss, P. M. Munro, F. W. Fitzke, and M. F. Cordeiro, “Real-time in vivo imaging of retinal cell apoptosis after laser exposure,” Invest. Ophthalmol. Vis. Sci. 49(6), 2773–2780 (2008).
[Crossref] [PubMed]

Chidlow, G.

J. P. M. Wood, O. Shibeeb, M. Plunkett, R. J. Casson, and G. Chidlow, “Retinal damage profiles and neuronal effects of laser treatment: comparison of a conventional photocoagulator and a novel 3-nanosecond pulse laser,” Invest. Ophthalmol. Vis. Sci. 54(3), 2305–2318 (2013).
[Crossref] [PubMed]

Choi, S. S.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Chung, M.

Contín, M. A.

M. A. Contín, M. M. Arietti, M. M. Benedetto, C. Bussi, and M. E. Guido, “Photoreceptor damage induced by low-intensity light: model of retinal degeneration in mammals,” Mol. Vis. 19, 1614–1625 (2013).
[PubMed]

Cordeiro, M. F.

S. Schmitz-Valckenberg, L. Guo, A. Maass, W. Cheung, A. Vugler, S. E. Moss, P. M. Munro, F. W. Fitzke, and M. F. Cordeiro, “Real-time in vivo imaging of retinal cell apoptosis after laser exposure,” Invest. Ophthalmol. Vis. Sci. 49(6), 2773–2780 (2008).
[Crossref] [PubMed]

Delori, F. C.

J. I. W. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, and D. R. Williams, “Light-Induced Retinal Changes Observed with High-Resolution Autofluorescence Imaging of the Retinal Pigment Epithelium,” Invest. Ophthalmol. Vis. Sci. 49(8), 3715–3729 (2008).
[Crossref] [PubMed]

Denk, W.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

DiCarlo, C. D.

C. P. Cain, C. D. DiCarlo, B. A. Rockwell, P. K. Kennedy, G. D. Noojin, D. J. Stolarski, D. X. Hammer, C. A. Toth, and W. P. Roach, “Retinal damage and laser-induced breakdown produced by ultrashort-pulse lasers,” Graefes Arch. Clin. Exp. Ophthalmol. 234(8), S28–S37 (1996).
[Crossref] [PubMed]

Doble, N.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Dong, Z.

G. Palczewska, Z. Dong, M. Golczak, J. J. Hunter, D. R. Williams, N. S. Alexander, and K. Palczewski, “Noninvasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium through the pupil of the eye,” Nat. Med. 20(7), 785–789 (2014).
[Crossref] [PubMed]

Druessel, J. J.

B. A. Rockwell, D. X. Hammer, R. A. Hopkins, D. J. Payne, C. A. Toth, W. P. Roach, J. J. Druessel, P. K. Kennedy, R. E. Amnotte, B. Eilert, S. Phillips, G. D. Noojin, D. J. Stolarski, and C. Cain, “Ultrashort laser pulse bioeffects and safety,” J. Laser Appl. 11(1), 42–44 (1999).
[Crossref] [PubMed]

Dubis, A. M.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Dubra, A.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In Vivo Imaging of Microscopic Structures in the Rat Retina,” Invest. Ophthalmol. Vis. Sci. 50(12), 5872–5879 (2009).
[Crossref] [PubMed]

Edsall, P.

D. J. Lund, P. Edsall, B. E. Stuck, and K. Schulmeister, “Variation of laser-induced retinal injury thresholds with retinal irradiated area: 0.1-s duration, 514-nm exposures,” J. Biomed. Opt. 12(2), 024023 (2007).
[Crossref] [PubMed]

Eilert, B.

B. A. Rockwell, D. X. Hammer, R. A. Hopkins, D. J. Payne, C. A. Toth, W. P. Roach, J. J. Druessel, P. K. Kennedy, R. E. Amnotte, B. Eilert, S. Phillips, G. D. Noojin, D. J. Stolarski, and C. Cain, “Ultrashort laser pulse bioeffects and safety,” J. Laser Appl. 11(1), 42–44 (1999).
[Crossref] [PubMed]

Elsner, A.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

England, C.

D. McHugh, C. England, E. van der Zypen, J. Marshall, F. Fankhauser, and S. Fankhauser-Kwasnieska, “Irradiation of rabbit retina with diode and Nd:YAG lasers,” Br. J. Ophthalmol. 79(7), 672–677 (1995).
[Crossref] [PubMed]

Fan, J. T.

G. S. Jayabalan, Y. K. Wu, J. F. Bille, S. Kim, X. W. Mao, H. V. Gimbel, M. E. Rauser, and J. T. Fan, “In vivo two-photon imaging of retina in rabbits and rats,” Exp. Eye Res. 166, 40–48 (2018).
[Crossref] [PubMed]

Fankhauser, F.

D. McHugh, C. England, E. van der Zypen, J. Marshall, F. Fankhauser, and S. Fankhauser-Kwasnieska, “Irradiation of rabbit retina with diode and Nd:YAG lasers,” Br. J. Ophthalmol. 79(7), 672–677 (1995).
[Crossref] [PubMed]

Fankhauser-Kwasnieska, S.

D. McHugh, C. England, E. van der Zypen, J. Marshall, F. Fankhauser, and S. Fankhauser-Kwasnieska, “Irradiation of rabbit retina with diode and Nd:YAG lasers,” Br. J. Ophthalmol. 79(7), 672–677 (1995).
[Crossref] [PubMed]

Farah, N.

A. S. Bar-Noam, N. Farah, and S. Shoham, “Correction-free remotely scanned two-photon in vivo mouse retinal imaging,” Light Sci. Appl. 5(1), e16007 (2016).
[Crossref] [PubMed]

Farrell, S.

T. Kamali, J. Fischer, S. Farrell, W. H. Baldridge, G. Zinser, and B. C. Chauhan, “Simultaneous in vivo confocal reflectance and two-photon retinal ganglion cell imaging based on a hollow core fiber platform,” J. Biomed. Opt. 23(9), 1–4 (2018).
[Crossref] [PubMed]

Fischer, J.

T. Kamali, J. Fischer, S. Farrell, W. H. Baldridge, G. Zinser, and B. C. Chauhan, “Simultaneous in vivo confocal reflectance and two-photon retinal ganglion cell imaging based on a hollow core fiber platform,” J. Biomed. Opt. 23(9), 1–4 (2018).
[Crossref] [PubMed]

Fischer, W. S.

Fitzke, F. W.

S. Schmitz-Valckenberg, L. Guo, A. Maass, W. Cheung, A. Vugler, S. E. Moss, P. M. Munro, F. W. Fitzke, and M. F. Cordeiro, “Real-time in vivo imaging of retinal cell apoptosis after laser exposure,” Invest. Ophthalmol. Vis. Sci. 49(6), 2773–2780 (2008).
[Crossref] [PubMed]

Flannery, J. G.

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In Vivo Imaging of Microscopic Structures in the Rat Retina,” Invest. Ophthalmol. Vis. Sci. 50(12), 5872–5879 (2009).
[Crossref] [PubMed]

Geng, Y.

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In Vivo Imaging of Microscopic Structures in the Rat Retina,” Invest. Ophthalmol. Vis. Sci. 50(12), 5872–5879 (2009).
[Crossref] [PubMed]

Gimbel, H. V.

G. S. Jayabalan, Y. K. Wu, J. F. Bille, S. Kim, X. W. Mao, H. V. Gimbel, M. E. Rauser, and J. T. Fan, “In vivo two-photon imaging of retina in rabbits and rats,” Exp. Eye Res. 166, 40–48 (2018).
[Crossref] [PubMed]

Glickman, R. D.

R. D. Glickman, “Ultraviolet phototoxicity to the retina,” Eye Contact Lens 37(4), 196–205 (2011).
[Crossref] [PubMed]

Golczak, M.

G. Palczewska, Z. Dong, M. Golczak, J. J. Hunter, D. R. Williams, N. S. Alexander, and K. Palczewski, “Noninvasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium through the pupil of the eye,” Nat. Med. 20(7), 785–789 (2014).
[Crossref] [PubMed]

Gray, D. C.

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In Vivo Imaging of Microscopic Structures in the Rat Retina,” Invest. Ophthalmol. Vis. Sci. 50(12), 5872–5879 (2009).
[Crossref] [PubMed]

J. I. W. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, and D. R. Williams, “Light-Induced Retinal Changes Observed with High-Resolution Autofluorescence Imaging of the Retinal Pigment Epithelium,” Invest. Ophthalmol. Vis. Sci. 49(8), 3715–3729 (2008).
[Crossref] [PubMed]

Greenberg, K. P.

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In Vivo Imaging of Microscopic Structures in the Rat Retina,” Invest. Ophthalmol. Vis. Sci. 50(12), 5872–5879 (2009).
[Crossref] [PubMed]

Guido, M. E.

M. A. Contín, M. M. Arietti, M. M. Benedetto, C. Bussi, and M. E. Guido, “Photoreceptor damage induced by low-intensity light: model of retinal degeneration in mammals,” Mol. Vis. 19, 1614–1625 (2013).
[PubMed]

Guo, L.

S. Schmitz-Valckenberg, L. Guo, A. Maass, W. Cheung, A. Vugler, S. E. Moss, P. M. Munro, F. W. Fitzke, and M. F. Cordeiro, “Real-time in vivo imaging of retinal cell apoptosis after laser exposure,” Invest. Ophthalmol. Vis. Sci. 49(6), 2773–2780 (2008).
[Crossref] [PubMed]

Hall, R. T.

R. J. Thomas, G. D. Noojin, D. J. Stolarski, R. T. Hall, C. P. Cain, C. A. Toth, and B. A. Rockwell, “A comparative study of retinal effects from continuous wave and femtosecond mode-locked lasers,” Lasers Surg. Med. 31(1), 9–17 (2002).
[Crossref] [PubMed]

Ham, W. T.

W. T. Ham, H. A. Mueller, M. L. Wolbarsht, and D. H. Sliney, “Evaluation of retinal exposures from repetitively pulsed and scanning lasers,” Health Phys. 54(3), 337–344 (1988).
[Crossref] [PubMed]

Hammer, D. X.

B. A. Rockwell, D. X. Hammer, R. A. Hopkins, D. J. Payne, C. A. Toth, W. P. Roach, J. J. Druessel, P. K. Kennedy, R. E. Amnotte, B. Eilert, S. Phillips, G. D. Noojin, D. J. Stolarski, and C. Cain, “Ultrashort laser pulse bioeffects and safety,” J. Laser Appl. 11(1), 42–44 (1999).
[Crossref] [PubMed]

C. P. Cain, C. D. DiCarlo, B. A. Rockwell, P. K. Kennedy, G. D. Noojin, D. J. Stolarski, D. X. Hammer, C. A. Toth, and W. P. Roach, “Retinal damage and laser-induced breakdown produced by ultrashort-pulse lasers,” Graefes Arch. Clin. Exp. Ophthalmol. 234(8), S28–S37 (1996).
[Crossref] [PubMed]

Hampson, K. M.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Han, M.

J. F. Bille, M. Agopov, C. Alvarez-Diez, M. Han, N. Korablinova, O. La Schiazza, H. Zhang, and F. Muller, “Compact Adaptive Optics System for Multiphoton Fundus Imaging,” J. Mod. Opt. 55(4–5), 749–758 (2008).
[Crossref]

Heikal, A. A.

S. Huang, A. A. Heikal, and W. W. Webb, “Two-Photon Fluorescence Spectroscopy and Microscopy of NAD(P)H and Flavoprotein,” Biophys. J. 82(5), 2811–2825 (2002).
[Crossref] [PubMed]

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Henriksson, J. T.

J. T. Henriksson, J. P. G. Bergmanson, and J. E. Walsh, “Ultraviolet radiation transmittance of the mouse eye and its individual media components,” Exp. Eye Res. 90(3), 382–387 (2010).
[Crossref] [PubMed]

Hopkins, R. A.

B. A. Rockwell, D. X. Hammer, R. A. Hopkins, D. J. Payne, C. A. Toth, W. P. Roach, J. J. Druessel, P. K. Kennedy, R. E. Amnotte, B. Eilert, S. Phillips, G. D. Noojin, D. J. Stolarski, and C. Cain, “Ultrashort laser pulse bioeffects and safety,” J. Laser Appl. 11(1), 42–44 (1999).
[Crossref] [PubMed]

Huang, S.

S. Huang, A. A. Heikal, and W. W. Webb, “Two-Photon Fluorescence Spectroscopy and Microscopy of NAD(P)H and Flavoprotein,” Biophys. J. 82(5), 2811–2825 (2002).
[Crossref] [PubMed]

Hunter, J.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Hunter, J. J.

C. Schwarz, R. Sharma, S. K. Cheong, M. Keller, D. R. Williams, and J. J. Hunter, “Selective S Cone Damage and Retinal Remodeling Following Intense Ultrashort Pulse Laser Exposures in the Near-Infrared,” Invest. Ophthalmol. Vis. Sci. 59(15), 5973–5984 (2018).
[Crossref] [PubMed]

R. Sharma, D. R. Williams, G. Palczewska, K. Palczewski, and J. J. Hunter, “Two-photon autofluorescence imaging reveals cellular structures throughout the retina of the living primate eye,” Invest. Ophthalmol. Vis. Sci. 57(2), 632–646 (2016).
[Crossref] [PubMed]

C. Schwarz, R. Sharma, W. S. Fischer, M. Chung, G. Palczewska, K. Palczewski, D. R. Williams, and J. J. Hunter, “Safety assessment in macaques of light exposures for functional two-photon ophthalmoscopy in humans,” Biomed. Opt. Express 7(12), 5148–5169 (2016).
[Crossref] [PubMed]

G. Palczewska, Z. Dong, M. Golczak, J. J. Hunter, D. R. Williams, N. S. Alexander, and K. Palczewski, “Noninvasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium through the pupil of the eye,” Nat. Med. 20(7), 785–789 (2014).
[Crossref] [PubMed]

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In Vivo Imaging of Microscopic Structures in the Rat Retina,” Invest. Ophthalmol. Vis. Sci. 50(12), 5872–5879 (2009).
[Crossref] [PubMed]

J. I. W. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, and D. R. Williams, “Light-Induced Retinal Changes Observed with High-Resolution Autofluorescence Imaging of the Retinal Pigment Epithelium,” Invest. Ophthalmol. Vis. Sci. 49(8), 3715–3729 (2008).
[Crossref] [PubMed]

Imanishi, Y.

G. Palczewska, T. Maeda, Y. Imanishi, W. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, and K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med. 16(12), 1444–1449 (2010).
[Crossref] [PubMed]

Jayabalan, G. S.

G. S. Jayabalan, Y. K. Wu, J. F. Bille, S. Kim, X. W. Mao, H. V. Gimbel, M. E. Rauser, and J. T. Fan, “In vivo two-photon imaging of retina in rabbits and rats,” Exp. Eye Res. 166, 40–48 (2018).
[Crossref] [PubMed]

Jonnal, R.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Kamali, T.

T. Kamali, J. Fischer, S. Farrell, W. H. Baldridge, G. Zinser, and B. C. Chauhan, “Simultaneous in vivo confocal reflectance and two-photon retinal ganglion cell imaging based on a hollow core fiber platform,” J. Biomed. Opt. 23(9), 1–4 (2018).
[Crossref] [PubMed]

Keller, M.

C. Schwarz, R. Sharma, S. K. Cheong, M. Keller, D. R. Williams, and J. J. Hunter, “Selective S Cone Damage and Retinal Remodeling Following Intense Ultrashort Pulse Laser Exposures in the Near-Infrared,” Invest. Ophthalmol. Vis. Sci. 59(15), 5973–5984 (2018).
[Crossref] [PubMed]

Kennedy, P. K.

B. A. Rockwell, D. X. Hammer, R. A. Hopkins, D. J. Payne, C. A. Toth, W. P. Roach, J. J. Druessel, P. K. Kennedy, R. E. Amnotte, B. Eilert, S. Phillips, G. D. Noojin, D. J. Stolarski, and C. Cain, “Ultrashort laser pulse bioeffects and safety,” J. Laser Appl. 11(1), 42–44 (1999).
[Crossref] [PubMed]

C. P. Cain, C. D. DiCarlo, B. A. Rockwell, P. K. Kennedy, G. D. Noojin, D. J. Stolarski, D. X. Hammer, C. A. Toth, and W. P. Roach, “Retinal damage and laser-induced breakdown produced by ultrashort-pulse lasers,” Graefes Arch. Clin. Exp. Ophthalmol. 234(8), S28–S37 (1996).
[Crossref] [PubMed]

Kim, S.

G. S. Jayabalan, Y. K. Wu, J. F. Bille, S. Kim, X. W. Mao, H. V. Gimbel, M. E. Rauser, and J. T. Fan, “In vivo two-photon imaging of retina in rabbits and rats,” Exp. Eye Res. 166, 40–48 (2018).
[Crossref] [PubMed]

Komar, K.

Korablinova, N.

J. F. Bille, M. Agopov, C. Alvarez-Diez, M. Han, N. Korablinova, O. La Schiazza, H. Zhang, and F. Muller, “Compact Adaptive Optics System for Multiphoton Fundus Imaging,” J. Mod. Opt. 55(4–5), 749–758 (2008).
[Crossref]

La Schiazza, O.

J. F. Bille, M. Agopov, C. Alvarez-Diez, M. Han, N. Korablinova, O. La Schiazza, H. Zhang, and F. Muller, “Compact Adaptive Optics System for Multiphoton Fundus Imaging,” J. Mod. Opt. 55(4–5), 749–758 (2008).
[Crossref]

Legras, R.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Lund, D. J.

D. J. Lund, P. Edsall, B. E. Stuck, and K. Schulmeister, “Variation of laser-induced retinal injury thresholds with retinal irradiated area: 0.1-s duration, 514-nm exposures,” J. Biomed. Opt. 12(2), 024023 (2007).
[Crossref] [PubMed]

Lundstrom, L.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Maass, A.

S. Schmitz-Valckenberg, L. Guo, A. Maass, W. Cheung, A. Vugler, S. E. Moss, P. M. Munro, F. W. Fitzke, and M. F. Cordeiro, “Real-time in vivo imaging of retinal cell apoptosis after laser exposure,” Invest. Ophthalmol. Vis. Sci. 49(6), 2773–2780 (2008).
[Crossref] [PubMed]

Maeda, A.

G. Palczewska, T. Maeda, Y. Imanishi, W. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, and K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med. 16(12), 1444–1449 (2010).
[Crossref] [PubMed]

Maeda, T.

G. Palczewska, T. Maeda, Y. Imanishi, W. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, and K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med. 16(12), 1444–1449 (2010).
[Crossref] [PubMed]

Mao, X. W.

G. S. Jayabalan, Y. K. Wu, J. F. Bille, S. Kim, X. W. Mao, H. V. Gimbel, M. E. Rauser, and J. T. Fan, “In vivo two-photon imaging of retina in rabbits and rats,” Exp. Eye Res. 166, 40–48 (2018).
[Crossref] [PubMed]

Marcos, S.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Marshall, J.

D. McHugh, C. England, E. van der Zypen, J. Marshall, F. Fankhauser, and S. Fankhauser-Kwasnieska, “Irradiation of rabbit retina with diode and Nd:YAG lasers,” Br. J. Ophthalmol. 79(7), 672–677 (1995).
[Crossref] [PubMed]

Masella, B.

J. I. W. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, and D. R. Williams, “Light-Induced Retinal Changes Observed with High-Resolution Autofluorescence Imaging of the Retinal Pigment Epithelium,” Invest. Ophthalmol. Vis. Sci. 49(8), 3715–3729 (2008).
[Crossref] [PubMed]

McHugh, D.

D. McHugh, C. England, E. van der Zypen, J. Marshall, F. Fankhauser, and S. Fankhauser-Kwasnieska, “Irradiation of rabbit retina with diode and Nd:YAG lasers,” Br. J. Ophthalmol. 79(7), 672–677 (1995).
[Crossref] [PubMed]

Merigan, W. H.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

J. I. W. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, and D. R. Williams, “Light-Induced Retinal Changes Observed with High-Resolution Autofluorescence Imaging of the Retinal Pigment Epithelium,” Invest. Ophthalmol. Vis. Sci. 49(8), 3715–3729 (2008).
[Crossref] [PubMed]

Metha, A.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Miller, D. T.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Morgan, J. I. W.

J. I. W. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, and D. R. Williams, “Light-Induced Retinal Changes Observed with High-Resolution Autofluorescence Imaging of the Retinal Pigment Epithelium,” Invest. Ophthalmol. Vis. Sci. 49(8), 3715–3729 (2008).
[Crossref] [PubMed]

Moss, S. E.

S. Schmitz-Valckenberg, L. Guo, A. Maass, W. Cheung, A. Vugler, S. E. Moss, P. M. Munro, F. W. Fitzke, and M. F. Cordeiro, “Real-time in vivo imaging of retinal cell apoptosis after laser exposure,” Invest. Ophthalmol. Vis. Sci. 49(6), 2773–2780 (2008).
[Crossref] [PubMed]

Mueller, H. A.

W. T. Ham, H. A. Mueller, M. L. Wolbarsht, and D. H. Sliney, “Evaluation of retinal exposures from repetitively pulsed and scanning lasers,” Health Phys. 54(3), 337–344 (1988).
[Crossref] [PubMed]

Muller, F.

J. F. Bille, M. Agopov, C. Alvarez-Diez, M. Han, N. Korablinova, O. La Schiazza, H. Zhang, and F. Muller, “Compact Adaptive Optics System for Multiphoton Fundus Imaging,” J. Mod. Opt. 55(4–5), 749–758 (2008).
[Crossref]

Munro, P. M.

S. Schmitz-Valckenberg, L. Guo, A. Maass, W. Cheung, A. Vugler, S. E. Moss, P. M. Munro, F. W. Fitzke, and M. F. Cordeiro, “Real-time in vivo imaging of retinal cell apoptosis after laser exposure,” Invest. Ophthalmol. Vis. Sci. 49(6), 2773–2780 (2008).
[Crossref] [PubMed]

Noojin, G. D.

R. J. Thomas, G. D. Noojin, D. J. Stolarski, R. T. Hall, C. P. Cain, C. A. Toth, and B. A. Rockwell, “A comparative study of retinal effects from continuous wave and femtosecond mode-locked lasers,” Lasers Surg. Med. 31(1), 9–17 (2002).
[Crossref] [PubMed]

C. P. Cain, C. A. Toth, G. D. Noojin, D. J. Stolarski, R. J. Thomas, and B. A. Rockwell, “Thresholds for retinal injury from multiple near-infrared ultrashort laser pulses,” Health Phys. 82(6), 855–862 (2002).
[Crossref] [PubMed]

B. A. Rockwell, D. X. Hammer, R. A. Hopkins, D. J. Payne, C. A. Toth, W. P. Roach, J. J. Druessel, P. K. Kennedy, R. E. Amnotte, B. Eilert, S. Phillips, G. D. Noojin, D. J. Stolarski, and C. Cain, “Ultrashort laser pulse bioeffects and safety,” J. Laser Appl. 11(1), 42–44 (1999).
[Crossref] [PubMed]

C. P. Cain, C. D. DiCarlo, B. A. Rockwell, P. K. Kennedy, G. D. Noojin, D. J. Stolarski, D. X. Hammer, C. A. Toth, and W. P. Roach, “Retinal damage and laser-induced breakdown produced by ultrashort-pulse lasers,” Graefes Arch. Clin. Exp. Ophthalmol. 234(8), S28–S37 (1996).
[Crossref] [PubMed]

Organisciak, D. T.

D. T. Organisciak and D. K. Vaughan, “Retinal light damage: mechanisms and protection,” Prog. Retin. Eye Res. 29(2), 113–134 (2010).
[Crossref] [PubMed]

Palczewska, G.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

C. Schwarz, R. Sharma, W. S. Fischer, M. Chung, G. Palczewska, K. Palczewski, D. R. Williams, and J. J. Hunter, “Safety assessment in macaques of light exposures for functional two-photon ophthalmoscopy in humans,” Biomed. Opt. Express 7(12), 5148–5169 (2016).
[Crossref] [PubMed]

R. Sharma, D. R. Williams, G. Palczewska, K. Palczewski, and J. J. Hunter, “Two-photon autofluorescence imaging reveals cellular structures throughout the retina of the living primate eye,” Invest. Ophthalmol. Vis. Sci. 57(2), 632–646 (2016).
[Crossref] [PubMed]

P. Stremplewski, K. Komar, K. Palczewski, M. Wojtkowski, and G. Palczewska, “Periscope for noninvasive two-photon imaging of murine retina in vivo,” Biomed. Opt. Express 6(9), 3352–3361 (2015).
[Crossref] [PubMed]

G. Palczewska, Z. Dong, M. Golczak, J. J. Hunter, D. R. Williams, N. S. Alexander, and K. Palczewski, “Noninvasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium through the pupil of the eye,” Nat. Med. 20(7), 785–789 (2014).
[Crossref] [PubMed]

G. Palczewska, T. Maeda, Y. Imanishi, W. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, and K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med. 16(12), 1444–1449 (2010).
[Crossref] [PubMed]

Palczewski, K.

R. Sharma, D. R. Williams, G. Palczewska, K. Palczewski, and J. J. Hunter, “Two-photon autofluorescence imaging reveals cellular structures throughout the retina of the living primate eye,” Invest. Ophthalmol. Vis. Sci. 57(2), 632–646 (2016).
[Crossref] [PubMed]

C. Schwarz, R. Sharma, W. S. Fischer, M. Chung, G. Palczewska, K. Palczewski, D. R. Williams, and J. J. Hunter, “Safety assessment in macaques of light exposures for functional two-photon ophthalmoscopy in humans,” Biomed. Opt. Express 7(12), 5148–5169 (2016).
[Crossref] [PubMed]

P. Stremplewski, K. Komar, K. Palczewski, M. Wojtkowski, and G. Palczewska, “Periscope for noninvasive two-photon imaging of murine retina in vivo,” Biomed. Opt. Express 6(9), 3352–3361 (2015).
[Crossref] [PubMed]

G. Palczewska, Z. Dong, M. Golczak, J. J. Hunter, D. R. Williams, N. S. Alexander, and K. Palczewski, “Noninvasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium through the pupil of the eye,” Nat. Med. 20(7), 785–789 (2014).
[Crossref] [PubMed]

G. Palczewska, T. Maeda, Y. Imanishi, W. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, and K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med. 16(12), 1444–1449 (2010).
[Crossref] [PubMed]

Paques, M.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Payne, D. J.

B. A. Rockwell, D. X. Hammer, R. A. Hopkins, D. J. Payne, C. A. Toth, W. P. Roach, J. J. Druessel, P. K. Kennedy, R. E. Amnotte, B. Eilert, S. Phillips, G. D. Noojin, D. J. Stolarski, and C. Cain, “Ultrashort laser pulse bioeffects and safety,” J. Laser Appl. 11(1), 42–44 (1999).
[Crossref] [PubMed]

Phillips, S.

B. A. Rockwell, D. X. Hammer, R. A. Hopkins, D. J. Payne, C. A. Toth, W. P. Roach, J. J. Druessel, P. K. Kennedy, R. E. Amnotte, B. Eilert, S. Phillips, G. D. Noojin, D. J. Stolarski, and C. Cain, “Ultrashort laser pulse bioeffects and safety,” J. Laser Appl. 11(1), 42–44 (1999).
[Crossref] [PubMed]

Piston, D. W.

G. Palczewska, T. Maeda, Y. Imanishi, W. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, and K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med. 16(12), 1444–1449 (2010).
[Crossref] [PubMed]

Plunkett, M.

J. P. M. Wood, O. Shibeeb, M. Plunkett, R. J. Casson, and G. Chidlow, “Retinal damage profiles and neuronal effects of laser treatment: comparison of a conventional photocoagulator and a novel 3-nanosecond pulse laser,” Invest. Ophthalmol. Vis. Sci. 54(3), 2305–2318 (2013).
[Crossref] [PubMed]

Porter, J.

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In Vivo Imaging of Microscopic Structures in the Rat Retina,” Invest. Ophthalmol. Vis. Sci. 50(12), 5872–5879 (2009).
[Crossref] [PubMed]

Rauser, M. E.

G. S. Jayabalan, Y. K. Wu, J. F. Bille, S. Kim, X. W. Mao, H. V. Gimbel, M. E. Rauser, and J. T. Fan, “In vivo two-photon imaging of retina in rabbits and rats,” Exp. Eye Res. 166, 40–48 (2018).
[Crossref] [PubMed]

Roach, W. P.

B. A. Rockwell, D. X. Hammer, R. A. Hopkins, D. J. Payne, C. A. Toth, W. P. Roach, J. J. Druessel, P. K. Kennedy, R. E. Amnotte, B. Eilert, S. Phillips, G. D. Noojin, D. J. Stolarski, and C. Cain, “Ultrashort laser pulse bioeffects and safety,” J. Laser Appl. 11(1), 42–44 (1999).
[Crossref] [PubMed]

C. P. Cain, C. D. DiCarlo, B. A. Rockwell, P. K. Kennedy, G. D. Noojin, D. J. Stolarski, D. X. Hammer, C. A. Toth, and W. P. Roach, “Retinal damage and laser-induced breakdown produced by ultrashort-pulse lasers,” Graefes Arch. Clin. Exp. Ophthalmol. 234(8), S28–S37 (1996).
[Crossref] [PubMed]

Rockwell, B. A.

C. P. Cain, C. A. Toth, G. D. Noojin, D. J. Stolarski, R. J. Thomas, and B. A. Rockwell, “Thresholds for retinal injury from multiple near-infrared ultrashort laser pulses,” Health Phys. 82(6), 855–862 (2002).
[Crossref] [PubMed]

R. J. Thomas, G. D. Noojin, D. J. Stolarski, R. T. Hall, C. P. Cain, C. A. Toth, and B. A. Rockwell, “A comparative study of retinal effects from continuous wave and femtosecond mode-locked lasers,” Lasers Surg. Med. 31(1), 9–17 (2002).
[Crossref] [PubMed]

B. A. Rockwell, D. X. Hammer, R. A. Hopkins, D. J. Payne, C. A. Toth, W. P. Roach, J. J. Druessel, P. K. Kennedy, R. E. Amnotte, B. Eilert, S. Phillips, G. D. Noojin, D. J. Stolarski, and C. Cain, “Ultrashort laser pulse bioeffects and safety,” J. Laser Appl. 11(1), 42–44 (1999).
[Crossref] [PubMed]

C. P. Cain, C. D. DiCarlo, B. A. Rockwell, P. K. Kennedy, G. D. Noojin, D. J. Stolarski, D. X. Hammer, C. A. Toth, and W. P. Roach, “Retinal damage and laser-induced breakdown produced by ultrashort-pulse lasers,” Graefes Arch. Clin. Exp. Ophthalmol. 234(8), S28–S37 (1996).
[Crossref] [PubMed]

Schallek, J.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Schmitz-Valckenberg, S.

S. Schmitz-Valckenberg, L. Guo, A. Maass, W. Cheung, A. Vugler, S. E. Moss, P. M. Munro, F. W. Fitzke, and M. F. Cordeiro, “Real-time in vivo imaging of retinal cell apoptosis after laser exposure,” Invest. Ophthalmol. Vis. Sci. 49(6), 2773–2780 (2008).
[Crossref] [PubMed]

Schulmeister, K.

D. J. Lund, P. Edsall, B. E. Stuck, and K. Schulmeister, “Variation of laser-induced retinal injury thresholds with retinal irradiated area: 0.1-s duration, 514-nm exposures,” J. Biomed. Opt. 12(2), 024023 (2007).
[Crossref] [PubMed]

Schwarz, C.

C. Schwarz, R. Sharma, S. K. Cheong, M. Keller, D. R. Williams, and J. J. Hunter, “Selective S Cone Damage and Retinal Remodeling Following Intense Ultrashort Pulse Laser Exposures in the Near-Infrared,” Invest. Ophthalmol. Vis. Sci. 59(15), 5973–5984 (2018).
[Crossref] [PubMed]

C. Schwarz, R. Sharma, W. S. Fischer, M. Chung, G. Palczewska, K. Palczewski, D. R. Williams, and J. J. Hunter, “Safety assessment in macaques of light exposures for functional two-photon ophthalmoscopy in humans,” Biomed. Opt. Express 7(12), 5148–5169 (2016).
[Crossref] [PubMed]

Sharma, R.

C. Schwarz, R. Sharma, S. K. Cheong, M. Keller, D. R. Williams, and J. J. Hunter, “Selective S Cone Damage and Retinal Remodeling Following Intense Ultrashort Pulse Laser Exposures in the Near-Infrared,” Invest. Ophthalmol. Vis. Sci. 59(15), 5973–5984 (2018).
[Crossref] [PubMed]

R. Sharma, D. R. Williams, G. Palczewska, K. Palczewski, and J. J. Hunter, “Two-photon autofluorescence imaging reveals cellular structures throughout the retina of the living primate eye,” Invest. Ophthalmol. Vis. Sci. 57(2), 632–646 (2016).
[Crossref] [PubMed]

C. Schwarz, R. Sharma, W. S. Fischer, M. Chung, G. Palczewska, K. Palczewski, D. R. Williams, and J. J. Hunter, “Safety assessment in macaques of light exposures for functional two-photon ophthalmoscopy in humans,” Biomed. Opt. Express 7(12), 5148–5169 (2016).
[Crossref] [PubMed]

Shibeeb, O.

J. P. M. Wood, O. Shibeeb, M. Plunkett, R. J. Casson, and G. Chidlow, “Retinal damage profiles and neuronal effects of laser treatment: comparison of a conventional photocoagulator and a novel 3-nanosecond pulse laser,” Invest. Ophthalmol. Vis. Sci. 54(3), 2305–2318 (2013).
[Crossref] [PubMed]

Shoham, S.

A. S. Bar-Noam, N. Farah, and S. Shoham, “Correction-free remotely scanned two-photon in vivo mouse retinal imaging,” Light Sci. Appl. 5(1), e16007 (2016).
[Crossref] [PubMed]

Sincich, L. C.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Sliney, D. H.

W. T. Ham, H. A. Mueller, M. L. Wolbarsht, and D. H. Sliney, “Evaluation of retinal exposures from repetitively pulsed and scanning lasers,” Health Phys. 54(3), 337–344 (1988).
[Crossref] [PubMed]

Smithson, H. E.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Stolarski, D. J.

C. P. Cain, C. A. Toth, G. D. Noojin, D. J. Stolarski, R. J. Thomas, and B. A. Rockwell, “Thresholds for retinal injury from multiple near-infrared ultrashort laser pulses,” Health Phys. 82(6), 855–862 (2002).
[Crossref] [PubMed]

R. J. Thomas, G. D. Noojin, D. J. Stolarski, R. T. Hall, C. P. Cain, C. A. Toth, and B. A. Rockwell, “A comparative study of retinal effects from continuous wave and femtosecond mode-locked lasers,” Lasers Surg. Med. 31(1), 9–17 (2002).
[Crossref] [PubMed]

B. A. Rockwell, D. X. Hammer, R. A. Hopkins, D. J. Payne, C. A. Toth, W. P. Roach, J. J. Druessel, P. K. Kennedy, R. E. Amnotte, B. Eilert, S. Phillips, G. D. Noojin, D. J. Stolarski, and C. Cain, “Ultrashort laser pulse bioeffects and safety,” J. Laser Appl. 11(1), 42–44 (1999).
[Crossref] [PubMed]

C. P. Cain, C. D. DiCarlo, B. A. Rockwell, P. K. Kennedy, G. D. Noojin, D. J. Stolarski, D. X. Hammer, C. A. Toth, and W. P. Roach, “Retinal damage and laser-induced breakdown produced by ultrashort-pulse lasers,” Graefes Arch. Clin. Exp. Ophthalmol. 234(8), S28–S37 (1996).
[Crossref] [PubMed]

Stremplewski, P.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Stuck, B. E.

D. J. Lund, P. Edsall, B. E. Stuck, and K. Schulmeister, “Variation of laser-induced retinal injury thresholds with retinal irradiated area: 0.1-s duration, 514-nm exposures,” J. Biomed. Opt. 12(2), 024023 (2007).
[Crossref] [PubMed]

Sun, W.

G. Palczewska, T. Maeda, Y. Imanishi, W. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, and K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med. 16(12), 1444–1449 (2010).
[Crossref] [PubMed]

Thomas, R. J.

C. P. Cain, C. A. Toth, G. D. Noojin, D. J. Stolarski, R. J. Thomas, and B. A. Rockwell, “Thresholds for retinal injury from multiple near-infrared ultrashort laser pulses,” Health Phys. 82(6), 855–862 (2002).
[Crossref] [PubMed]

R. J. Thomas, G. D. Noojin, D. J. Stolarski, R. T. Hall, C. P. Cain, C. A. Toth, and B. A. Rockwell, “A comparative study of retinal effects from continuous wave and femtosecond mode-locked lasers,” Lasers Surg. Med. 31(1), 9–17 (2002).
[Crossref] [PubMed]

Toth, C. A.

R. J. Thomas, G. D. Noojin, D. J. Stolarski, R. T. Hall, C. P. Cain, C. A. Toth, and B. A. Rockwell, “A comparative study of retinal effects from continuous wave and femtosecond mode-locked lasers,” Lasers Surg. Med. 31(1), 9–17 (2002).
[Crossref] [PubMed]

C. P. Cain, C. A. Toth, G. D. Noojin, D. J. Stolarski, R. J. Thomas, and B. A. Rockwell, “Thresholds for retinal injury from multiple near-infrared ultrashort laser pulses,” Health Phys. 82(6), 855–862 (2002).
[Crossref] [PubMed]

B. A. Rockwell, D. X. Hammer, R. A. Hopkins, D. J. Payne, C. A. Toth, W. P. Roach, J. J. Druessel, P. K. Kennedy, R. E. Amnotte, B. Eilert, S. Phillips, G. D. Noojin, D. J. Stolarski, and C. Cain, “Ultrashort laser pulse bioeffects and safety,” J. Laser Appl. 11(1), 42–44 (1999).
[Crossref] [PubMed]

C. P. Cain, C. D. DiCarlo, B. A. Rockwell, P. K. Kennedy, G. D. Noojin, D. J. Stolarski, D. X. Hammer, C. A. Toth, and W. P. Roach, “Retinal damage and laser-induced breakdown produced by ultrashort-pulse lasers,” Graefes Arch. Clin. Exp. Ophthalmol. 234(8), S28–S37 (1996).
[Crossref] [PubMed]

van der Zypen, E.

D. McHugh, C. England, E. van der Zypen, J. Marshall, F. Fankhauser, and S. Fankhauser-Kwasnieska, “Irradiation of rabbit retina with diode and Nd:YAG lasers,” Br. J. Ophthalmol. 79(7), 672–677 (1995).
[Crossref] [PubMed]

Vaughan, D. K.

D. T. Organisciak and D. K. Vaughan, “Retinal light damage: mechanisms and protection,” Prog. Retin. Eye Res. 29(2), 113–134 (2010).
[Crossref] [PubMed]

Vugler, A.

S. Schmitz-Valckenberg, L. Guo, A. Maass, W. Cheung, A. Vugler, S. E. Moss, P. M. Munro, F. W. Fitzke, and M. F. Cordeiro, “Real-time in vivo imaging of retinal cell apoptosis after laser exposure,” Invest. Ophthalmol. Vis. Sci. 49(6), 2773–2780 (2008).
[Crossref] [PubMed]

Walsh, J. E.

J. T. Henriksson, J. P. G. Bergmanson, and J. E. Walsh, “Ultraviolet radiation transmittance of the mouse eye and its individual media components,” Exp. Eye Res. 90(3), 382–387 (2010).
[Crossref] [PubMed]

Webb, W. W.

S. Huang, A. A. Heikal, and W. W. Webb, “Two-Photon Fluorescence Spectroscopy and Microscopy of NAD(P)H and Flavoprotein,” Biophys. J. 82(5), 2811–2825 (2002).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Werner, J. S.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Williams, D. R.

C. Schwarz, R. Sharma, S. K. Cheong, M. Keller, D. R. Williams, and J. J. Hunter, “Selective S Cone Damage and Retinal Remodeling Following Intense Ultrashort Pulse Laser Exposures in the Near-Infrared,” Invest. Ophthalmol. Vis. Sci. 59(15), 5973–5984 (2018).
[Crossref] [PubMed]

R. Sharma, D. R. Williams, G. Palczewska, K. Palczewski, and J. J. Hunter, “Two-photon autofluorescence imaging reveals cellular structures throughout the retina of the living primate eye,” Invest. Ophthalmol. Vis. Sci. 57(2), 632–646 (2016).
[Crossref] [PubMed]

C. Schwarz, R. Sharma, W. S. Fischer, M. Chung, G. Palczewska, K. Palczewski, D. R. Williams, and J. J. Hunter, “Safety assessment in macaques of light exposures for functional two-photon ophthalmoscopy in humans,” Biomed. Opt. Express 7(12), 5148–5169 (2016).
[Crossref] [PubMed]

G. Palczewska, Z. Dong, M. Golczak, J. J. Hunter, D. R. Williams, N. S. Alexander, and K. Palczewski, “Noninvasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium through the pupil of the eye,” Nat. Med. 20(7), 785–789 (2014).
[Crossref] [PubMed]

G. Palczewska, T. Maeda, Y. Imanishi, W. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, and K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med. 16(12), 1444–1449 (2010).
[Crossref] [PubMed]

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In Vivo Imaging of Microscopic Structures in the Rat Retina,” Invest. Ophthalmol. Vis. Sci. 50(12), 5872–5879 (2009).
[Crossref] [PubMed]

J. I. W. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, and D. R. Williams, “Light-Induced Retinal Changes Observed with High-Resolution Autofluorescence Imaging of the Retinal Pigment Epithelium,” Invest. Ophthalmol. Vis. Sci. 49(8), 3715–3729 (2008).
[Crossref] [PubMed]

Wojtkowski, M.

Wolbarsht, M. L.

W. T. Ham, H. A. Mueller, M. L. Wolbarsht, and D. H. Sliney, “Evaluation of retinal exposures from repetitively pulsed and scanning lasers,” Health Phys. 54(3), 337–344 (1988).
[Crossref] [PubMed]

Wolfe, R.

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In Vivo Imaging of Microscopic Structures in the Rat Retina,” Invest. Ophthalmol. Vis. Sci. 50(12), 5872–5879 (2009).
[Crossref] [PubMed]

J. I. W. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, and D. R. Williams, “Light-Induced Retinal Changes Observed with High-Resolution Autofluorescence Imaging of the Retinal Pigment Epithelium,” Invest. Ophthalmol. Vis. Sci. 49(8), 3715–3729 (2008).
[Crossref] [PubMed]

Wood, J. P. M.

J. P. M. Wood, O. Shibeeb, M. Plunkett, R. J. Casson, and G. Chidlow, “Retinal damage profiles and neuronal effects of laser treatment: comparison of a conventional photocoagulator and a novel 3-nanosecond pulse laser,” Invest. Ophthalmol. Vis. Sci. 54(3), 2305–2318 (2013).
[Crossref] [PubMed]

Wu, Y. K.

G. S. Jayabalan, Y. K. Wu, J. F. Bille, S. Kim, X. W. Mao, H. V. Gimbel, M. E. Rauser, and J. T. Fan, “In vivo two-photon imaging of retina in rabbits and rats,” Exp. Eye Res. 166, 40–48 (2018).
[Crossref] [PubMed]

Yoon, G.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Young, L. K.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Zhang, H.

J. F. Bille, M. Agopov, C. Alvarez-Diez, M. Han, N. Korablinova, O. La Schiazza, H. Zhang, and F. Muller, “Compact Adaptive Optics System for Multiphoton Fundus Imaging,” J. Mod. Opt. 55(4–5), 749–758 (2008).
[Crossref]

Zhang, Y.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Zinser, G.

T. Kamali, J. Fischer, S. Farrell, W. H. Baldridge, G. Zinser, and B. C. Chauhan, “Simultaneous in vivo confocal reflectance and two-photon retinal ganglion cell imaging based on a hollow core fiber platform,” J. Biomed. Opt. 23(9), 1–4 (2018).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Biophys. J. (1)

S. Huang, A. A. Heikal, and W. W. Webb, “Two-Photon Fluorescence Spectroscopy and Microscopy of NAD(P)H and Flavoprotein,” Biophys. J. 82(5), 2811–2825 (2002).
[Crossref] [PubMed]

Br. J. Ophthalmol. (1)

D. McHugh, C. England, E. van der Zypen, J. Marshall, F. Fankhauser, and S. Fankhauser-Kwasnieska, “Irradiation of rabbit retina with diode and Nd:YAG lasers,” Br. J. Ophthalmol. 79(7), 672–677 (1995).
[Crossref] [PubMed]

Exp. Eye Res. (2)

J. T. Henriksson, J. P. G. Bergmanson, and J. E. Walsh, “Ultraviolet radiation transmittance of the mouse eye and its individual media components,” Exp. Eye Res. 90(3), 382–387 (2010).
[Crossref] [PubMed]

G. S. Jayabalan, Y. K. Wu, J. F. Bille, S. Kim, X. W. Mao, H. V. Gimbel, M. E. Rauser, and J. T. Fan, “In vivo two-photon imaging of retina in rabbits and rats,” Exp. Eye Res. 166, 40–48 (2018).
[Crossref] [PubMed]

Eye Contact Lens (1)

R. D. Glickman, “Ultraviolet phototoxicity to the retina,” Eye Contact Lens 37(4), 196–205 (2011).
[Crossref] [PubMed]

Graefes Arch. Clin. Exp. Ophthalmol. (1)

C. P. Cain, C. D. DiCarlo, B. A. Rockwell, P. K. Kennedy, G. D. Noojin, D. J. Stolarski, D. X. Hammer, C. A. Toth, and W. P. Roach, “Retinal damage and laser-induced breakdown produced by ultrashort-pulse lasers,” Graefes Arch. Clin. Exp. Ophthalmol. 234(8), S28–S37 (1996).
[Crossref] [PubMed]

Health Phys. (3)

C. P. Cain, C. A. Toth, G. D. Noojin, D. J. Stolarski, R. J. Thomas, and B. A. Rockwell, “Thresholds for retinal injury from multiple near-infrared ultrashort laser pulses,” Health Phys. 82(6), 855–862 (2002).
[Crossref] [PubMed]

International Commission on Non-Ionizing Radiation Protection, “ICNIRP Guidelines- On limits of exposure to laser radiation of wavelengths between 180 nm and 1000 µm,” Health Phys. 105(3), 271–295 (2013).
[Crossref] [PubMed]

W. T. Ham, H. A. Mueller, M. L. Wolbarsht, and D. H. Sliney, “Evaluation of retinal exposures from repetitively pulsed and scanning lasers,” Health Phys. 54(3), 337–344 (1988).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (6)

R. Sharma, D. R. Williams, G. Palczewska, K. Palczewski, and J. J. Hunter, “Two-photon autofluorescence imaging reveals cellular structures throughout the retina of the living primate eye,” Invest. Ophthalmol. Vis. Sci. 57(2), 632–646 (2016).
[Crossref] [PubMed]

C. Schwarz, R. Sharma, S. K. Cheong, M. Keller, D. R. Williams, and J. J. Hunter, “Selective S Cone Damage and Retinal Remodeling Following Intense Ultrashort Pulse Laser Exposures in the Near-Infrared,” Invest. Ophthalmol. Vis. Sci. 59(15), 5973–5984 (2018).
[Crossref] [PubMed]

S. Schmitz-Valckenberg, L. Guo, A. Maass, W. Cheung, A. Vugler, S. E. Moss, P. M. Munro, F. W. Fitzke, and M. F. Cordeiro, “Real-time in vivo imaging of retinal cell apoptosis after laser exposure,” Invest. Ophthalmol. Vis. Sci. 49(6), 2773–2780 (2008).
[Crossref] [PubMed]

J. P. M. Wood, O. Shibeeb, M. Plunkett, R. J. Casson, and G. Chidlow, “Retinal damage profiles and neuronal effects of laser treatment: comparison of a conventional photocoagulator and a novel 3-nanosecond pulse laser,” Invest. Ophthalmol. Vis. Sci. 54(3), 2305–2318 (2013).
[Crossref] [PubMed]

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In Vivo Imaging of Microscopic Structures in the Rat Retina,” Invest. Ophthalmol. Vis. Sci. 50(12), 5872–5879 (2009).
[Crossref] [PubMed]

J. I. W. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, and D. R. Williams, “Light-Induced Retinal Changes Observed with High-Resolution Autofluorescence Imaging of the Retinal Pigment Epithelium,” Invest. Ophthalmol. Vis. Sci. 49(8), 3715–3729 (2008).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

D. J. Lund, P. Edsall, B. E. Stuck, and K. Schulmeister, “Variation of laser-induced retinal injury thresholds with retinal irradiated area: 0.1-s duration, 514-nm exposures,” J. Biomed. Opt. 12(2), 024023 (2007).
[Crossref] [PubMed]

T. Kamali, J. Fischer, S. Farrell, W. H. Baldridge, G. Zinser, and B. C. Chauhan, “Simultaneous in vivo confocal reflectance and two-photon retinal ganglion cell imaging based on a hollow core fiber platform,” J. Biomed. Opt. 23(9), 1–4 (2018).
[Crossref] [PubMed]

J. Laser Appl. (1)

B. A. Rockwell, D. X. Hammer, R. A. Hopkins, D. J. Payne, C. A. Toth, W. P. Roach, J. J. Druessel, P. K. Kennedy, R. E. Amnotte, B. Eilert, S. Phillips, G. D. Noojin, D. J. Stolarski, and C. Cain, “Ultrashort laser pulse bioeffects and safety,” J. Laser Appl. 11(1), 42–44 (1999).
[Crossref] [PubMed]

J. Mod. Opt. (1)

J. F. Bille, M. Agopov, C. Alvarez-Diez, M. Han, N. Korablinova, O. La Schiazza, H. Zhang, and F. Muller, “Compact Adaptive Optics System for Multiphoton Fundus Imaging,” J. Mod. Opt. 55(4–5), 749–758 (2008).
[Crossref]

Lasers Surg. Med. (1)

R. J. Thomas, G. D. Noojin, D. J. Stolarski, R. T. Hall, C. P. Cain, C. A. Toth, and B. A. Rockwell, “A comparative study of retinal effects from continuous wave and femtosecond mode-locked lasers,” Lasers Surg. Med. 31(1), 9–17 (2002).
[Crossref] [PubMed]

Light Sci. Appl. (1)

A. S. Bar-Noam, N. Farah, and S. Shoham, “Correction-free remotely scanned two-photon in vivo mouse retinal imaging,” Light Sci. Appl. 5(1), e16007 (2016).
[Crossref] [PubMed]

Mol. Vis. (1)

M. A. Contín, M. M. Arietti, M. M. Benedetto, C. Bussi, and M. E. Guido, “Photoreceptor damage induced by low-intensity light: model of retinal degeneration in mammals,” Mol. Vis. 19, 1614–1625 (2013).
[PubMed]

Nat. Med. (2)

G. Palczewska, T. Maeda, Y. Imanishi, W. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, and K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med. 16(12), 1444–1449 (2010).
[Crossref] [PubMed]

G. Palczewska, Z. Dong, M. Golczak, J. J. Hunter, D. R. Williams, N. S. Alexander, and K. Palczewski, “Noninvasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium through the pupil of the eye,” Nat. Med. 20(7), 785–789 (2014).
[Crossref] [PubMed]

Nat. Methods (1)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Prog. Retin. Eye Res. (1)

D. T. Organisciak and D. K. Vaughan, “Retinal light damage: mechanisms and protection,” Prog. Retin. Eye Res. 29(2), 113–134 (2010).
[Crossref] [PubMed]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Vision Res. (1)

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vision Res. 132, 3–33 (2017).
[Crossref] [PubMed]

Other (4)

“SPECTRALIS High Magnification Module | Heidelberg Engineering,” https://business-lounge.heidelbergengineering.com/us/en/products/spectralis/high-magnification-module/ .

DeadEnd™ Fluorometric TUNEL System Technical Bulletin, “Promega corporation- Product G3250,” https://www.promega.de/-/media/files/resources/protocols/technical-bulletins/0/deadend-fluorometric-tunel-system-protocol.pdf .

American National Standards Institute (ANSI), “American National Standard for Safe Use of Lasers: ANSI Z136.1” (2014).

International Electrotechnical Commission (IEC), “Safety of Laser Products-Part 1: Equipment, Classification, Requirements, IEC 60825-1” (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Scanning laser beam exposure for 300 seconds with a 30° scan angle at 160 mW laser power in brown Norway rats (a-c) and albino rats (d-f). The confocal reflectance image (a, d) of the laser-exposed retina. Early phase (b, e - 5 to 15 seconds after injection) and late phase (c, f - 7 to 10 minutes after injection) of two-photon fluorescein angiography of the exposed retina
Fig. 2
Fig. 2 Fluorescence microscopic (TUNEL assay) images of brown Norway and albino retinal sections exposed to the scanning laser beam. The fluorescence image of the control (a, 20 × ) and the experimental eye (b, 10 × ) of the brown Norway rat retina; and the control (c, 10 × ) and the experimental eye (d, 20 × ) of the albino rat retina. The images shown here are the merged images of DAPI and green fluorescence and cropped for better visualization of the retinal cells. GCL - ganglion cell layer; INL - inner nuclear layer; ONL - outer nuclear layer; RPE - retinal pigment epithelium
Fig. 3
Fig. 3 The stationary laser beam exposure in the brown Norway rat at 13 mW laser power. (a) confocal reflectance image before exposure, (b) confocal reflectance image after exposure to the laser at 13 mW for 60 seconds (arrow 1), 100 seconds (arrow 2), 300 seconds (arrow 3) and 600 seconds (arrow 4). The early phase (c) and late phase (d) two-photon fluorescein angiography, the hyperfluorescence (d, arrow) seen in the laser-exposed area. (e) Confocal reflectance image of the laser-exposed retina on day 4. Early phase (f) two-photon fluorescein angiography of the exposed retina on day 4
Fig. 4
Fig. 4 Light microscopic and fluorescence images of the retinal sections of the brown Norway rat exposed to a stationary laser beam at 13 mW laser power. H&E stained retinal sections of the exposed retina at different sections from the periphery to the laser- exposed area. Retinal section (a, 4 × ) at the periphery; retinal section (b, 4 × ) approximately 50 microns from the periphery towards the optic nerve; and the retinal section of the exposed retina (c, 4 × ) close to the optic nerve. Close-up view of the retinal light-induced damages (d, e, f (from a, b, c)) acquired using a 40 × objective lens. Fluorescence microscopic images of retinal sections (g, h, i of d, e, f) acquired using a 20 × objective lens
Fig. 5
Fig. 5 Stationary laser beam exposure in brown Norway rat at 80 mW laser power. (a) Confocal image of the retina immediately after laser exposure. Early-phase (b) and late-phase (c) two-photon fluorescein angiography. H&E stained retinal sections (d, e) from the exposed area (black box). (f) Fluorescence image of the exposed area (yellow box)
Fig. 6
Fig. 6 Stationary laser beam exposure in the albino rat at 160 mW laser power. Confocal reflectance image (a) before laser exposure, (b) confocal reflectance image after laser exposure, (c) the early phase and (d) late phase two-photon fluorescein angiography. The hyperfluorescence (arrow) noticed in the laser-exposed area. (e) Confocal reflectance and early phase (f) two-photon fluorescein angiography of the exposed retina on day 4.
Fig. 7
Fig. 7 The fluorescence image of the control (a) and experimental (b) albino rat’s retinal sections exposed to a stationary laser beam for 300 seconds at 160 mW laser power.
Fig. 8
Fig. 8 The confocal reflectance image (a) of the brown Norway retina exposed to the stationary laser beam of 13 mW for 300 seconds. (b) Confocal reflectance image on day 4 after laser exposure. The fluorescence image (c, 10 × ) of the exposed retina.
Fig. 9
Fig. 9 Fluorescence images of the control (a) and experimental (b) retina of brown Norway rat exposed to the two-photon scanning laser beam. The positive control test on the experimental eye (c). The bright green fluorescent cells are the positive (apoptosis) cells, which is evident in the positive control retinal sections. Blue fluorescence is the DAPI nuclei staining, and the green fluorescence is the TUNEL-positive nuclei staining

Tables (2)

Tables Icon

Table 1 Group 1: Experimental study design for scanning laser beam exposure

Tables Icon

Table 2 Group 2: Experimental study design for stationary laser beam exposure

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

MPE in terms of average power: MPE 1 = MPE single F A p =1.92 W
MPE T =18 t 0.75 C 4 Jm 2 =146.26 Jm 2
In terms of average power: MPE 2 = MPE single-average F A p =562 µW
MPE for a pulse duration T i is MPE single-eff =2 10 3 C 4 Jm 2 = 2.89 10 3 Jm 2
The effective number of pulses in 10 s is: N E =T F E =10(2·1 0 5 )=2 10 6
In terms of average power: MPE 3 = MPE train F A p =2.6 mW
C 6 = α max / α min , where α max =200 t f 0.5 mrad for α> α max
C 6 =58.42 for 30º, and 41.31 for 15º scan angle
MPE single =7 · 10 4 C 4 C 6 t f 0.75 J=17 mJ~89 mW for 30º scan angle
MPE single =7 · 10 4 C 4 C 6 t f 0.75 J=7 mJ~75 mW for 15º scan angle
C 6 = α max / α min , α max =100 mrad since t >0.25 s, therefore, C 6 =66.7
MPE Thermal =7 10 4 C 4 C 6 T 2 0.25 W=21 mW for 100 s
MPE Thermal =7 10 4 C 4 C 6 T 2 0.25 W=16 mW for 300 s
MPE Thermal =7 10 4 C 4 C 6 T 2 0.25 W=5.1 mW for 30000 s ( intentional long-term viewing )