Abstract

Visible light optical coherence tomography (OCT) theoretically provides finer axial resolution than near-infrared OCT for a given wavelength bandwidth. To realize this potential in the human retina in vivo, the unique technical challenges of visible light OCT must be addressed. We introduce three advances to further the performance of visible light OCT in the human retina. First, we incorporate a grating light valve spatial light modulator (GLV-SLM) spectral shaping stage to modify the source spectrum. This enables comfortable subject alignment with a red light spectrum, and image acquisition with a broad “white light” spectrum, shaped to minimize sidelobes. Second, we develop a novel, Fourier transform-free, software axial motion tracking algorithm with fast, magnetically actuated stage to maintain near-optimal axial resolution and sensitivity in the presence of eye motion. Third, we implement spatially dependent numerical dispersion compensation for the first time in the human eye in vivo. In vivo human retinal OCT images clearly show that the inner plexiform layer consists of 3 hyper-reflective bands and 2 hypo-reflective bands, corresponding with the standard anatomical division of the IPL. Wavelength-dependent images of the outer retina suggest that, beyond merely improving the axial resolution, shorter wavelength visible light may also provide unique advantages for visualizing Bruch’s membrane.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultrahigh resolution retinal imaging by visible light OCT with longitudinal achromatization

Shau Poh Chong, Tingwei Zhang, Aaron Kho, Marcel T. Bernucci, Alfredo Dubra, and Vivek J. Srinivasan
Biomed. Opt. Express 9(4) 1477-1491 (2018)

Limiting factors to the OCT axial resolution for in-vivo imaging of human and rodent retina in the 1060nm wavelength range

Sepideh Hariri, Alireza A. Moayed, Aphrodite Dracopoulos, Chulho Hyun, Shelley Boyd, and Kostadinka Bizheva
Opt. Express 17(26) 24304-24316 (2009)

In Vivo Functional Imaging of Intrinsic Scattering Changes in the Human Retina with High-speed Ultrahigh Resolution OCT

V. J. Srinivasan, Y. Chen, J. S. Duker, and J. G. Fujimoto
Opt. Express 17(5) 3861-3877 (2009)

References

  • View by:
  • |
  • |
  • |

  1. D. S. Friedman, R. C. Wolfs, B. J. O’Colmain, B. E. Klein, H. R. Taylor, S. West, M. C. Leske, P. Mitchell, N. Congdon, J. Kempen, and Eye Diseases Prevalence Research Group, “Prevalence of open-angle glaucoma among adults in the United States,” Arch. Ophthalmol. 122(4), 532–538 (2004).
    [Crossref] [PubMed]
  2. S. F. Mohammadi, G. Saeedi-Anari, C. Alinia, E. Ashrafi, R. Daneshvar, and A. Sommer, “Is screening for glaucoma necessary? A policy guide and analysis,” J. Ophthalmic Vis. Res. 9(1), 3–6 (2014).
    [PubMed]
  3. I. I. Bussel, G. Wollstein, and J. S. Schuman, “OCT for glaucoma diagnosis, screening and detection of glaucoma progression,” Br. J. Ophthalmol. 98(Suppl 2), ii15–ii19 (2014).
    [Crossref] [PubMed]
  4. M. E. Nongpiur, J. Y. Ku, and T. Aung, “Angle closure glaucoma: a mechanistic review,” Curr. Opin. Ophthalmol. 22(2), 96–101 (2011).
    [Crossref] [PubMed]
  5. M. A. Koontz and A. E. Hendrickson, “Stratified distribution of synapses in the inner plexiform layer of primate retina,” J. Comp. Neurol. 263(4), 581–592 (1987).
    [Crossref] [PubMed]
  6. H. Wässle, “Parallel processing in the mammalian retina,” Nat. Rev. Neurosci. 5(10), 747–757 (2004).
    [Crossref] [PubMed]
  7. S. Haverkamp, F. Haeseleer, and A. Hendrickson, “A comparison of immunocytochemical markers to identify bipolar cell types in human and monkey retina,” Vis. Neurosci. 20(6), 589–600 (2003).
    [Crossref] [PubMed]
  8. W. Wei and M. B. Feller, “Organization and development of direction-selective circuits in the retina,” Trends Neurosci. 34(12), 638–645 (2011).
    [Crossref] [PubMed]
  9. R. N. El-Danaf and A. D. Huberman, “Characteristic patterns of dendritic remodeling in early-stage glaucoma: evidence from genetically identified retinal ganglion cell types,” J. Neurosci. 35(6), 2329–2343 (2015).
    [Crossref] [PubMed]
  10. L. Della Santina, D. M. Inman, C. B. Lupien, P. J. Horner, and R. O. Wong, “Differential progression of structural and functional alterations in distinct retinal ganglion cell types in a mouse model of glaucoma,” J. Neurosci. 33(44), 17444–17457 (2013).
    [Crossref] [PubMed]
  11. Y. Ou, R. E. Jo, E. M. Ullian, R. O. Wong, and L. Della Santina, “Selective Vulnerability of Specific Retinal Ganglion Cell Types and Synapses after Transient Ocular Hypertension,” J. Neurosci. 36(35), 9240–9252 (2016).
    [Crossref] [PubMed]
  12. Z. Puyang, H. Q. Gong, S. G. He, J. B. Troy, X. Liu, and P. J. Liang, “Different functional susceptibilities of mouse retinal ganglion cell subtypes to optic nerve crush injury,” Exp. Eye Res. 162, 97–103 (2017).
    [Crossref] [PubMed]
  13. R. M. Sappington, B. J. Carlson, S. D. Crish, and D. J. Calkins, “The microbead occlusion model: a paradigm for induced ocular hypertension in rats and mice,” Invest. Ophthalmol. Vis. Sci. 51(1), 207–216 (2010).
    [Crossref] [PubMed]
  14. M. Szkulmowski, I. Gorczynska, D. Szlag, M. Sylwestrzak, A. Kowalczyk, and M. Wojtkowski, “Efficient reduction of speckle noise in Optical Coherence Tomography,” Opt. Express 20(2), 1337–1359 (2012).
    [Crossref] [PubMed]
  15. H. Tanna, A. M. Dubis, N. Ayub, D. M. Tait, J. Rha, K. E. Stepien, and J. Carroll, “Retinal imaging using commercial broadband optical coherence tomography,” Br. J. Ophthalmol. 94(3), 372–376 (2010).
    [Crossref] [PubMed]
  16. W. L. Wong, X. Su, X. Li, C. M. Cheung, R. Klein, C. Y. Cheng, and T. Y. Wong, “Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis,” Lancet Glob. Health 2(2), e106–e116 (2014).
    [Crossref] [PubMed]
  17. J. C. Booij, D. C. Baas, J. Beisekeeva, T. G. M. F. Gorgels, and A. A. B. Bergen, “The dynamic nature of Bruch’s membrane,” Prog. Retin. Eye Res. 29(1), 1–18 (2010).
    [Crossref] [PubMed]
  18. R. S. Ramrattan, T. L. van der Schaft, C. M. Mooy, W. C. de Bruijn, P. G. Mulder, and P. T. de Jong, “Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging,” Invest. Ophthalmol. Vis. Sci. 35(6), 2857–2864 (1994).
    [PubMed]
  19. A. Okubo, R. H. Rosa, C. V. Bunce, R. A. Alexander, J. T. Fan, A. C. Bird, and P. J. Luthert, “The relationships of age changes in retinal pigment epithelium and Bruch’s membrane,” Invest. Ophthalmol. Vis. Sci. 40(2), 443–449 (1999).
    [PubMed]
  20. W. R. Green, “Histopathology of age-related macular degeneration,” Mol. Vis. 5, 27 (1999).
    [PubMed]
  21. M. J. Hogan, J. A. Alvarado, and J. E. Weddell, Histology of the Human Eye: An Atlas and Textbook (Saunders, 1971).
  22. C. A. Curcio, J. D. Messinger, K. R. Sloan, G. McGwin, N. E. Medeiros, and R. F. Spaide, “Subretinal drusenoid deposits in non-neovascular age-related macular degeneration: morphology, prevalence, topography, and biogenesis model,” Retina 33(2), 265–276 (2013).
    [Crossref] [PubMed]
  23. J. Hanus, F. Zhao, and S. Wang, “Current therapeutic developments in atrophic age-related macular degeneration,” Br. J. Ophthalmol. 100(1), 122–127 (2016).
    [Crossref] [PubMed]
  24. M. Fleckenstein, P. Mitchell, K. B. Freund, S. Sadda, F. G. Holz, C. Brittain, E. C. Henry, and D. Ferrara, “The Progression of Geographic Atrophy Secondary to Age-Related Macular Degeneration,” Ophthalmology 125(3), 369–390 (2018).
    [Crossref] [PubMed]
  25. V. J. Srinivasan, B. K. Monson, M. Wojtkowski, R. A. Bilonick, I. Gorczynska, R. Chen, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Characterization of outer retinal morphology with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 49(4), 1571–1579 (2008).
    [Crossref] [PubMed]
  26. S. H. Lee, J. S. Werner, and R. J. Zawadzki, “Improved visualization of outer retinal morphology with aberration cancelling reflective optical design for adaptive optics - optical coherence tomography,” Biomed. Opt. Express 4(11), 2508–2517 (2013).
    [Crossref] [PubMed]
  27. Z. Liu, O. P. Kocaoglu, and D. T. Miller, “3D Imaging of Retinal Pigment Epithelial Cells in the Living Human Retina,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT533 (2016).
    [Crossref] [PubMed]
  28. C. Dai, X. Liu, and S. Jiao, “Simultaneous optical coherence tomography and autofluorescence microscopy with a single light source,” J. Biomed. Opt. 17(8), 080502 (2012).
    [Crossref] [PubMed]
  29. J. Yi, Q. Wei, W. Liu, V. Backman, and H. F. Zhang, “Visible-light optical coherence tomography for retinal oximetry,” Opt. Lett. 38(11), 1796–1798 (2013).
    [Crossref] [PubMed]
  30. S. P. Chong, C. W. Merkle, C. Leahy, H. Radhakrishnan, and V. J. Srinivasan, “Quantitative microvascular hemoglobin mapping using visible light spectroscopic Optical Coherence Tomography,” Biomed. Opt. Express 6(4), 1429–1450 (2015).
    [Crossref] [PubMed]
  31. T. Liu, R. Wen, B. L. Lam, C. A. Puliafito, and S. Jiao, “Depth-resolved rhodopsin molecular contrast imaging for functional assessment of photoreceptors,” Sci. Rep. 5(1), 13992 (2015).
    [Crossref] [PubMed]
  32. J. Yi, S. Chen, X. Shu, A. A. Fawzi, and H. F. Zhang, “Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy,” Biomed. Opt. Express 6(10), 3701–3713 (2015).
    [Crossref] [PubMed]
  33. S. P. Chong, T. Zhang, A. Kho, M. T. Bernucci, A. Dubra, and V. J. Srinivasan, “Ultrahigh resolution retinal imaging by visible light OCT with longitudinal achromatization,” Biomed. Opt. Express 9(4), 1477–1491 (2018).
    [Crossref] [PubMed]
  34. S. Pi, A. Camino, W. Cepurna, X. Wei, M. Zhang, D. Huang, J. Morrison, and Y. Jia, “Automated spectroscopic retinal oximetry with visible-light optical coherence tomography,” Biomed. Opt. Express 9(5), 2056–2067 (2018).
    [Crossref] [PubMed]
  35. S. Pi, A. Camino, X. Wei, J. Simonett, W. Cepurna, D. Huang, J. C. Morrison, and Y. Jia, “Rodent retinal circulation organization and oxygen metabolism revealed by visible-light optical coherence tomography,” Biomed. Opt. Express 9(11), 5851–5862 (2018).
    [Crossref] [PubMed]
  36. D. J. Harper, M. Augustin, A. Lichtenegger, P. Eugui, C. Reyes, M. Glösmann, C. K. Hitzenberger, and B. Baumann, “White light polarization sensitive optical coherence tomography for sub-micron axial resolution and spectroscopic contrast in the murine retina,” Biomed. Opt. Express 9(5), 2115–2129 (2018).
    [Crossref] [PubMed]
  37. X. Shu, L. Beckmann, and H. Zhang, “Visible-light optical coherence tomography: a review,” J. Biomed. Opt. 22(12), 1–14 (2017).
    [Crossref] [PubMed]
  38. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27(20), 1800–1802 (2002).
    [Crossref] [PubMed]
  39. G. Maguluri, M. Mujat, B. H. Park, K. H. Kim, W. Sun, N. V. Iftimia, R. D. Ferguson, D. X. Hammer, T. C. Chen, and J. F. de Boer, “Three dimensional tracking for volumetric spectral-domain optical coherence tomography,” Opt. Express 15(25), 16808–16817 (2007).
    [Crossref] [PubMed]
  40. M. Cua, S. Lee, D. Miao, M. J. Ju, P. J. Mackenzie, Y. Jian, and M. V. Sarunic, “Retinal optical coherence tomography at 1 μm with dynamic focus control and axial motion tracking,” J. Biomed. Opt. 21(2), 026007 (2016).
    [Crossref] [PubMed]
  41. K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).
    [Crossref] [PubMed]
  42. A. Kho and V. J. Srinivasan, “Compensating spatially dependent dispersion in visible light OCT,” Opt. Lett. 44(4), 775–778 (2019).
    [Crossref] [PubMed]
  43. S. P. Chong, M. Bernucci, H. Radhakrishnan, and V. J. Srinivasan, “Structural and functional human retinal imaging with a fiber-based visible light OCT ophthalmoscope,” Biomed. Opt. Express 8(1), 323–337 (2017).
    [Crossref] [PubMed]
  44. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [Crossref] [PubMed]
  45. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
    [Crossref] [PubMed]
  46. S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express 13(2), 444–452 (2005).
    [Crossref] [PubMed]

2019 (1)

2018 (5)

2017 (3)

X. Shu, L. Beckmann, and H. Zhang, “Visible-light optical coherence tomography: a review,” J. Biomed. Opt. 22(12), 1–14 (2017).
[Crossref] [PubMed]

Z. Puyang, H. Q. Gong, S. G. He, J. B. Troy, X. Liu, and P. J. Liang, “Different functional susceptibilities of mouse retinal ganglion cell subtypes to optic nerve crush injury,” Exp. Eye Res. 162, 97–103 (2017).
[Crossref] [PubMed]

S. P. Chong, M. Bernucci, H. Radhakrishnan, and V. J. Srinivasan, “Structural and functional human retinal imaging with a fiber-based visible light OCT ophthalmoscope,” Biomed. Opt. Express 8(1), 323–337 (2017).
[Crossref] [PubMed]

2016 (4)

M. Cua, S. Lee, D. Miao, M. J. Ju, P. J. Mackenzie, Y. Jian, and M. V. Sarunic, “Retinal optical coherence tomography at 1 μm with dynamic focus control and axial motion tracking,” J. Biomed. Opt. 21(2), 026007 (2016).
[Crossref] [PubMed]

Z. Liu, O. P. Kocaoglu, and D. T. Miller, “3D Imaging of Retinal Pigment Epithelial Cells in the Living Human Retina,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT533 (2016).
[Crossref] [PubMed]

J. Hanus, F. Zhao, and S. Wang, “Current therapeutic developments in atrophic age-related macular degeneration,” Br. J. Ophthalmol. 100(1), 122–127 (2016).
[Crossref] [PubMed]

Y. Ou, R. E. Jo, E. M. Ullian, R. O. Wong, and L. Della Santina, “Selective Vulnerability of Specific Retinal Ganglion Cell Types and Synapses after Transient Ocular Hypertension,” J. Neurosci. 36(35), 9240–9252 (2016).
[Crossref] [PubMed]

2015 (4)

S. P. Chong, C. W. Merkle, C. Leahy, H. Radhakrishnan, and V. J. Srinivasan, “Quantitative microvascular hemoglobin mapping using visible light spectroscopic Optical Coherence Tomography,” Biomed. Opt. Express 6(4), 1429–1450 (2015).
[Crossref] [PubMed]

T. Liu, R. Wen, B. L. Lam, C. A. Puliafito, and S. Jiao, “Depth-resolved rhodopsin molecular contrast imaging for functional assessment of photoreceptors,” Sci. Rep. 5(1), 13992 (2015).
[Crossref] [PubMed]

J. Yi, S. Chen, X. Shu, A. A. Fawzi, and H. F. Zhang, “Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy,” Biomed. Opt. Express 6(10), 3701–3713 (2015).
[Crossref] [PubMed]

R. N. El-Danaf and A. D. Huberman, “Characteristic patterns of dendritic remodeling in early-stage glaucoma: evidence from genetically identified retinal ganglion cell types,” J. Neurosci. 35(6), 2329–2343 (2015).
[Crossref] [PubMed]

2014 (3)

W. L. Wong, X. Su, X. Li, C. M. Cheung, R. Klein, C. Y. Cheng, and T. Y. Wong, “Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis,” Lancet Glob. Health 2(2), e106–e116 (2014).
[Crossref] [PubMed]

S. F. Mohammadi, G. Saeedi-Anari, C. Alinia, E. Ashrafi, R. Daneshvar, and A. Sommer, “Is screening for glaucoma necessary? A policy guide and analysis,” J. Ophthalmic Vis. Res. 9(1), 3–6 (2014).
[PubMed]

I. I. Bussel, G. Wollstein, and J. S. Schuman, “OCT for glaucoma diagnosis, screening and detection of glaucoma progression,” Br. J. Ophthalmol. 98(Suppl 2), ii15–ii19 (2014).
[Crossref] [PubMed]

2013 (4)

L. Della Santina, D. M. Inman, C. B. Lupien, P. J. Horner, and R. O. Wong, “Differential progression of structural and functional alterations in distinct retinal ganglion cell types in a mouse model of glaucoma,” J. Neurosci. 33(44), 17444–17457 (2013).
[Crossref] [PubMed]

C. A. Curcio, J. D. Messinger, K. R. Sloan, G. McGwin, N. E. Medeiros, and R. F. Spaide, “Subretinal drusenoid deposits in non-neovascular age-related macular degeneration: morphology, prevalence, topography, and biogenesis model,” Retina 33(2), 265–276 (2013).
[Crossref] [PubMed]

S. H. Lee, J. S. Werner, and R. J. Zawadzki, “Improved visualization of outer retinal morphology with aberration cancelling reflective optical design for adaptive optics - optical coherence tomography,” Biomed. Opt. Express 4(11), 2508–2517 (2013).
[Crossref] [PubMed]

J. Yi, Q. Wei, W. Liu, V. Backman, and H. F. Zhang, “Visible-light optical coherence tomography for retinal oximetry,” Opt. Lett. 38(11), 1796–1798 (2013).
[Crossref] [PubMed]

2012 (2)

C. Dai, X. Liu, and S. Jiao, “Simultaneous optical coherence tomography and autofluorescence microscopy with a single light source,” J. Biomed. Opt. 17(8), 080502 (2012).
[Crossref] [PubMed]

M. Szkulmowski, I. Gorczynska, D. Szlag, M. Sylwestrzak, A. Kowalczyk, and M. Wojtkowski, “Efficient reduction of speckle noise in Optical Coherence Tomography,” Opt. Express 20(2), 1337–1359 (2012).
[Crossref] [PubMed]

2011 (2)

M. E. Nongpiur, J. Y. Ku, and T. Aung, “Angle closure glaucoma: a mechanistic review,” Curr. Opin. Ophthalmol. 22(2), 96–101 (2011).
[Crossref] [PubMed]

W. Wei and M. B. Feller, “Organization and development of direction-selective circuits in the retina,” Trends Neurosci. 34(12), 638–645 (2011).
[Crossref] [PubMed]

2010 (3)

H. Tanna, A. M. Dubis, N. Ayub, D. M. Tait, J. Rha, K. E. Stepien, and J. Carroll, “Retinal imaging using commercial broadband optical coherence tomography,” Br. J. Ophthalmol. 94(3), 372–376 (2010).
[Crossref] [PubMed]

J. C. Booij, D. C. Baas, J. Beisekeeva, T. G. M. F. Gorgels, and A. A. B. Bergen, “The dynamic nature of Bruch’s membrane,” Prog. Retin. Eye Res. 29(1), 1–18 (2010).
[Crossref] [PubMed]

R. M. Sappington, B. J. Carlson, S. D. Crish, and D. J. Calkins, “The microbead occlusion model: a paradigm for induced ocular hypertension in rats and mice,” Invest. Ophthalmol. Vis. Sci. 51(1), 207–216 (2010).
[Crossref] [PubMed]

2009 (1)

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).
[Crossref] [PubMed]

2008 (1)

V. J. Srinivasan, B. K. Monson, M. Wojtkowski, R. A. Bilonick, I. Gorczynska, R. Chen, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Characterization of outer retinal morphology with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 49(4), 1571–1579 (2008).
[Crossref] [PubMed]

2007 (1)

2005 (1)

2004 (3)

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
[Crossref] [PubMed]

D. S. Friedman, R. C. Wolfs, B. J. O’Colmain, B. E. Klein, H. R. Taylor, S. West, M. C. Leske, P. Mitchell, N. Congdon, J. Kempen, and Eye Diseases Prevalence Research Group, “Prevalence of open-angle glaucoma among adults in the United States,” Arch. Ophthalmol. 122(4), 532–538 (2004).
[Crossref] [PubMed]

H. Wässle, “Parallel processing in the mammalian retina,” Nat. Rev. Neurosci. 5(10), 747–757 (2004).
[Crossref] [PubMed]

2003 (2)

S. Haverkamp, F. Haeseleer, and A. Hendrickson, “A comparison of immunocytochemical markers to identify bipolar cell types in human and monkey retina,” Vis. Neurosci. 20(6), 589–600 (2003).
[Crossref] [PubMed]

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[Crossref] [PubMed]

2002 (1)

1999 (2)

A. Okubo, R. H. Rosa, C. V. Bunce, R. A. Alexander, J. T. Fan, A. C. Bird, and P. J. Luthert, “The relationships of age changes in retinal pigment epithelium and Bruch’s membrane,” Invest. Ophthalmol. Vis. Sci. 40(2), 443–449 (1999).
[PubMed]

W. R. Green, “Histopathology of age-related macular degeneration,” Mol. Vis. 5, 27 (1999).
[PubMed]

1994 (1)

R. S. Ramrattan, T. L. van der Schaft, C. M. Mooy, W. C. de Bruijn, P. G. Mulder, and P. T. de Jong, “Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging,” Invest. Ophthalmol. Vis. Sci. 35(6), 2857–2864 (1994).
[PubMed]

1987 (1)

M. A. Koontz and A. E. Hendrickson, “Stratified distribution of synapses in the inner plexiform layer of primate retina,” J. Comp. Neurol. 263(4), 581–592 (1987).
[Crossref] [PubMed]

Alexander, R. A.

A. Okubo, R. H. Rosa, C. V. Bunce, R. A. Alexander, J. T. Fan, A. C. Bird, and P. J. Luthert, “The relationships of age changes in retinal pigment epithelium and Bruch’s membrane,” Invest. Ophthalmol. Vis. Sci. 40(2), 443–449 (1999).
[PubMed]

Alinia, C.

S. F. Mohammadi, G. Saeedi-Anari, C. Alinia, E. Ashrafi, R. Daneshvar, and A. Sommer, “Is screening for glaucoma necessary? A policy guide and analysis,” J. Ophthalmic Vis. Res. 9(1), 3–6 (2014).
[PubMed]

Apolonski, A.

Ashrafi, E.

S. F. Mohammadi, G. Saeedi-Anari, C. Alinia, E. Ashrafi, R. Daneshvar, and A. Sommer, “Is screening for glaucoma necessary? A policy guide and analysis,” J. Ophthalmic Vis. Res. 9(1), 3–6 (2014).
[PubMed]

Augustin, M.

Aung, T.

M. E. Nongpiur, J. Y. Ku, and T. Aung, “Angle closure glaucoma: a mechanistic review,” Curr. Opin. Ophthalmol. 22(2), 96–101 (2011).
[Crossref] [PubMed]

Ayub, N.

H. Tanna, A. M. Dubis, N. Ayub, D. M. Tait, J. Rha, K. E. Stepien, and J. Carroll, “Retinal imaging using commercial broadband optical coherence tomography,” Br. J. Ophthalmol. 94(3), 372–376 (2010).
[Crossref] [PubMed]

Baas, D. C.

J. C. Booij, D. C. Baas, J. Beisekeeva, T. G. M. F. Gorgels, and A. A. B. Bergen, “The dynamic nature of Bruch’s membrane,” Prog. Retin. Eye Res. 29(1), 1–18 (2010).
[Crossref] [PubMed]

Backman, V.

Baumann, B.

Beckmann, L.

X. Shu, L. Beckmann, and H. Zhang, “Visible-light optical coherence tomography: a review,” J. Biomed. Opt. 22(12), 1–14 (2017).
[Crossref] [PubMed]

Beisekeeva, J.

J. C. Booij, D. C. Baas, J. Beisekeeva, T. G. M. F. Gorgels, and A. A. B. Bergen, “The dynamic nature of Bruch’s membrane,” Prog. Retin. Eye Res. 29(1), 1–18 (2010).
[Crossref] [PubMed]

Bergen, A. A. B.

J. C. Booij, D. C. Baas, J. Beisekeeva, T. G. M. F. Gorgels, and A. A. B. Bergen, “The dynamic nature of Bruch’s membrane,” Prog. Retin. Eye Res. 29(1), 1–18 (2010).
[Crossref] [PubMed]

Bernucci, M.

Bernucci, M. T.

Bilonick, R. A.

V. J. Srinivasan, B. K. Monson, M. Wojtkowski, R. A. Bilonick, I. Gorczynska, R. Chen, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Characterization of outer retinal morphology with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 49(4), 1571–1579 (2008).
[Crossref] [PubMed]

Bird, A. C.

A. Okubo, R. H. Rosa, C. V. Bunce, R. A. Alexander, J. T. Fan, A. C. Bird, and P. J. Luthert, “The relationships of age changes in retinal pigment epithelium and Bruch’s membrane,” Invest. Ophthalmol. Vis. Sci. 40(2), 443–449 (1999).
[PubMed]

Bizheva, K.

Booij, J. C.

J. C. Booij, D. C. Baas, J. Beisekeeva, T. G. M. F. Gorgels, and A. A. B. Bergen, “The dynamic nature of Bruch’s membrane,” Prog. Retin. Eye Res. 29(1), 1–18 (2010).
[Crossref] [PubMed]

Brittain, C.

M. Fleckenstein, P. Mitchell, K. B. Freund, S. Sadda, F. G. Holz, C. Brittain, E. C. Henry, and D. Ferrara, “The Progression of Geographic Atrophy Secondary to Age-Related Macular Degeneration,” Ophthalmology 125(3), 369–390 (2018).
[Crossref] [PubMed]

Bunce, C. V.

A. Okubo, R. H. Rosa, C. V. Bunce, R. A. Alexander, J. T. Fan, A. C. Bird, and P. J. Luthert, “The relationships of age changes in retinal pigment epithelium and Bruch’s membrane,” Invest. Ophthalmol. Vis. Sci. 40(2), 443–449 (1999).
[PubMed]

Bussel, I. I.

I. I. Bussel, G. Wollstein, and J. S. Schuman, “OCT for glaucoma diagnosis, screening and detection of glaucoma progression,” Br. J. Ophthalmol. 98(Suppl 2), ii15–ii19 (2014).
[Crossref] [PubMed]

Calkins, D. J.

R. M. Sappington, B. J. Carlson, S. D. Crish, and D. J. Calkins, “The microbead occlusion model: a paradigm for induced ocular hypertension in rats and mice,” Invest. Ophthalmol. Vis. Sci. 51(1), 207–216 (2010).
[Crossref] [PubMed]

Camino, A.

Carlson, B. J.

R. M. Sappington, B. J. Carlson, S. D. Crish, and D. J. Calkins, “The microbead occlusion model: a paradigm for induced ocular hypertension in rats and mice,” Invest. Ophthalmol. Vis. Sci. 51(1), 207–216 (2010).
[Crossref] [PubMed]

Carroll, J.

H. Tanna, A. M. Dubis, N. Ayub, D. M. Tait, J. Rha, K. E. Stepien, and J. Carroll, “Retinal imaging using commercial broadband optical coherence tomography,” Br. J. Ophthalmol. 94(3), 372–376 (2010).
[Crossref] [PubMed]

Cepurna, W.

Chen, R.

V. J. Srinivasan, B. K. Monson, M. Wojtkowski, R. A. Bilonick, I. Gorczynska, R. Chen, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Characterization of outer retinal morphology with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 49(4), 1571–1579 (2008).
[Crossref] [PubMed]

Chen, S.

Chen, T. C.

Cheng, C. Y.

W. L. Wong, X. Su, X. Li, C. M. Cheung, R. Klein, C. Y. Cheng, and T. Y. Wong, “Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis,” Lancet Glob. Health 2(2), e106–e116 (2014).
[Crossref] [PubMed]

Cheung, C. M.

W. L. Wong, X. Su, X. Li, C. M. Cheung, R. Klein, C. Y. Cheng, and T. Y. Wong, “Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis,” Lancet Glob. Health 2(2), e106–e116 (2014).
[Crossref] [PubMed]

Chong, S. P.

Congdon, N.

D. S. Friedman, R. C. Wolfs, B. J. O’Colmain, B. E. Klein, H. R. Taylor, S. West, M. C. Leske, P. Mitchell, N. Congdon, J. Kempen, and Eye Diseases Prevalence Research Group, “Prevalence of open-angle glaucoma among adults in the United States,” Arch. Ophthalmol. 122(4), 532–538 (2004).
[Crossref] [PubMed]

Crish, S. D.

R. M. Sappington, B. J. Carlson, S. D. Crish, and D. J. Calkins, “The microbead occlusion model: a paradigm for induced ocular hypertension in rats and mice,” Invest. Ophthalmol. Vis. Sci. 51(1), 207–216 (2010).
[Crossref] [PubMed]

Cua, M.

M. Cua, S. Lee, D. Miao, M. J. Ju, P. J. Mackenzie, Y. Jian, and M. V. Sarunic, “Retinal optical coherence tomography at 1 μm with dynamic focus control and axial motion tracking,” J. Biomed. Opt. 21(2), 026007 (2016).
[Crossref] [PubMed]

Curcio, C. A.

C. A. Curcio, J. D. Messinger, K. R. Sloan, G. McGwin, N. E. Medeiros, and R. F. Spaide, “Subretinal drusenoid deposits in non-neovascular age-related macular degeneration: morphology, prevalence, topography, and biogenesis model,” Retina 33(2), 265–276 (2013).
[Crossref] [PubMed]

Dai, C.

C. Dai, X. Liu, and S. Jiao, “Simultaneous optical coherence tomography and autofluorescence microscopy with a single light source,” J. Biomed. Opt. 17(8), 080502 (2012).
[Crossref] [PubMed]

Daneshvar, R.

S. F. Mohammadi, G. Saeedi-Anari, C. Alinia, E. Ashrafi, R. Daneshvar, and A. Sommer, “Is screening for glaucoma necessary? A policy guide and analysis,” J. Ophthalmic Vis. Res. 9(1), 3–6 (2014).
[PubMed]

de Boer, J. F.

de Bruijn, W. C.

R. S. Ramrattan, T. L. van der Schaft, C. M. Mooy, W. C. de Bruijn, P. G. Mulder, and P. T. de Jong, “Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging,” Invest. Ophthalmol. Vis. Sci. 35(6), 2857–2864 (1994).
[PubMed]

de Jong, P. T.

R. S. Ramrattan, T. L. van der Schaft, C. M. Mooy, W. C. de Bruijn, P. G. Mulder, and P. T. de Jong, “Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging,” Invest. Ophthalmol. Vis. Sci. 35(6), 2857–2864 (1994).
[PubMed]

Della Santina, L.

Y. Ou, R. E. Jo, E. M. Ullian, R. O. Wong, and L. Della Santina, “Selective Vulnerability of Specific Retinal Ganglion Cell Types and Synapses after Transient Ocular Hypertension,” J. Neurosci. 36(35), 9240–9252 (2016).
[Crossref] [PubMed]

L. Della Santina, D. M. Inman, C. B. Lupien, P. J. Horner, and R. O. Wong, “Differential progression of structural and functional alterations in distinct retinal ganglion cell types in a mouse model of glaucoma,” J. Neurosci. 33(44), 17444–17457 (2013).
[Crossref] [PubMed]

Drexler, W.

Dubis, A. M.

H. Tanna, A. M. Dubis, N. Ayub, D. M. Tait, J. Rha, K. E. Stepien, and J. Carroll, “Retinal imaging using commercial broadband optical coherence tomography,” Br. J. Ophthalmol. 94(3), 372–376 (2010).
[Crossref] [PubMed]

Dubra, A.

Duker, J.

Duker, J. S.

V. J. Srinivasan, B. K. Monson, M. Wojtkowski, R. A. Bilonick, I. Gorczynska, R. Chen, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Characterization of outer retinal morphology with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 49(4), 1571–1579 (2008).
[Crossref] [PubMed]

El-Danaf, R. N.

R. N. El-Danaf and A. D. Huberman, “Characteristic patterns of dendritic remodeling in early-stage glaucoma: evidence from genetically identified retinal ganglion cell types,” J. Neurosci. 35(6), 2329–2343 (2015).
[Crossref] [PubMed]

Eugui, P.

Fan, J. T.

A. Okubo, R. H. Rosa, C. V. Bunce, R. A. Alexander, J. T. Fan, A. C. Bird, and P. J. Luthert, “The relationships of age changes in retinal pigment epithelium and Bruch’s membrane,” Invest. Ophthalmol. Vis. Sci. 40(2), 443–449 (1999).
[PubMed]

Fawzi, A. A.

Feller, M. B.

W. Wei and M. B. Feller, “Organization and development of direction-selective circuits in the retina,” Trends Neurosci. 34(12), 638–645 (2011).
[Crossref] [PubMed]

Fercher, A.

Fercher, A. F.

Ferguson, R. D.

Ferrara, D.

M. Fleckenstein, P. Mitchell, K. B. Freund, S. Sadda, F. G. Holz, C. Brittain, E. C. Henry, and D. Ferrara, “The Progression of Geographic Atrophy Secondary to Age-Related Macular Degeneration,” Ophthalmology 125(3), 369–390 (2018).
[Crossref] [PubMed]

Fleckenstein, M.

M. Fleckenstein, P. Mitchell, K. B. Freund, S. Sadda, F. G. Holz, C. Brittain, E. C. Henry, and D. Ferrara, “The Progression of Geographic Atrophy Secondary to Age-Related Macular Degeneration,” Ophthalmology 125(3), 369–390 (2018).
[Crossref] [PubMed]

Freund, K. B.

M. Fleckenstein, P. Mitchell, K. B. Freund, S. Sadda, F. G. Holz, C. Brittain, E. C. Henry, and D. Ferrara, “The Progression of Geographic Atrophy Secondary to Age-Related Macular Degeneration,” Ophthalmology 125(3), 369–390 (2018).
[Crossref] [PubMed]

Friedman, D. S.

D. S. Friedman, R. C. Wolfs, B. J. O’Colmain, B. E. Klein, H. R. Taylor, S. West, M. C. Leske, P. Mitchell, N. Congdon, J. Kempen, and Eye Diseases Prevalence Research Group, “Prevalence of open-angle glaucoma among adults in the United States,” Arch. Ophthalmol. 122(4), 532–538 (2004).
[Crossref] [PubMed]

Fujimoto, J.

Fujimoto, J. G.

V. J. Srinivasan, B. K. Monson, M. Wojtkowski, R. A. Bilonick, I. Gorczynska, R. Chen, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Characterization of outer retinal morphology with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 49(4), 1571–1579 (2008).
[Crossref] [PubMed]

Glösmann, M.

Gong, H. Q.

Z. Puyang, H. Q. Gong, S. G. He, J. B. Troy, X. Liu, and P. J. Liang, “Different functional susceptibilities of mouse retinal ganglion cell subtypes to optic nerve crush injury,” Exp. Eye Res. 162, 97–103 (2017).
[Crossref] [PubMed]

Gorczynska, I.

M. Szkulmowski, I. Gorczynska, D. Szlag, M. Sylwestrzak, A. Kowalczyk, and M. Wojtkowski, “Efficient reduction of speckle noise in Optical Coherence Tomography,” Opt. Express 20(2), 1337–1359 (2012).
[Crossref] [PubMed]

V. J. Srinivasan, B. K. Monson, M. Wojtkowski, R. A. Bilonick, I. Gorczynska, R. Chen, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Characterization of outer retinal morphology with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 49(4), 1571–1579 (2008).
[Crossref] [PubMed]

Gorgels, T. G. M. F.

J. C. Booij, D. C. Baas, J. Beisekeeva, T. G. M. F. Gorgels, and A. A. B. Bergen, “The dynamic nature of Bruch’s membrane,” Prog. Retin. Eye Res. 29(1), 1–18 (2010).
[Crossref] [PubMed]

Green, W. R.

W. R. Green, “Histopathology of age-related macular degeneration,” Mol. Vis. 5, 27 (1999).
[PubMed]

Gregori, G.

Haeseleer, F.

S. Haverkamp, F. Haeseleer, and A. Hendrickson, “A comparison of immunocytochemical markers to identify bipolar cell types in human and monkey retina,” Vis. Neurosci. 20(6), 589–600 (2003).
[Crossref] [PubMed]

Hammer, D. X.

Han, J.

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).
[Crossref] [PubMed]

Hanus, J.

J. Hanus, F. Zhao, and S. Wang, “Current therapeutic developments in atrophic age-related macular degeneration,” Br. J. Ophthalmol. 100(1), 122–127 (2016).
[Crossref] [PubMed]

Harper, D. J.

Haverkamp, S.

S. Haverkamp, F. Haeseleer, and A. Hendrickson, “A comparison of immunocytochemical markers to identify bipolar cell types in human and monkey retina,” Vis. Neurosci. 20(6), 589–600 (2003).
[Crossref] [PubMed]

He, S. G.

Z. Puyang, H. Q. Gong, S. G. He, J. B. Troy, X. Liu, and P. J. Liang, “Different functional susceptibilities of mouse retinal ganglion cell subtypes to optic nerve crush injury,” Exp. Eye Res. 162, 97–103 (2017).
[Crossref] [PubMed]

Hendrickson, A.

S. Haverkamp, F. Haeseleer, and A. Hendrickson, “A comparison of immunocytochemical markers to identify bipolar cell types in human and monkey retina,” Vis. Neurosci. 20(6), 589–600 (2003).
[Crossref] [PubMed]

Hendrickson, A. E.

M. A. Koontz and A. E. Hendrickson, “Stratified distribution of synapses in the inner plexiform layer of primate retina,” J. Comp. Neurol. 263(4), 581–592 (1987).
[Crossref] [PubMed]

Henry, E. C.

M. Fleckenstein, P. Mitchell, K. B. Freund, S. Sadda, F. G. Holz, C. Brittain, E. C. Henry, and D. Ferrara, “The Progression of Geographic Atrophy Secondary to Age-Related Macular Degeneration,” Ophthalmology 125(3), 369–390 (2018).
[Crossref] [PubMed]

Hermann, B.

Hitzenberger, C.

Hitzenberger, C. K.

Holz, F. G.

M. Fleckenstein, P. Mitchell, K. B. Freund, S. Sadda, F. G. Holz, C. Brittain, E. C. Henry, and D. Ferrara, “The Progression of Geographic Atrophy Secondary to Age-Related Macular Degeneration,” Ophthalmology 125(3), 369–390 (2018).
[Crossref] [PubMed]

Horner, P. J.

L. Della Santina, D. M. Inman, C. B. Lupien, P. J. Horner, and R. O. Wong, “Differential progression of structural and functional alterations in distinct retinal ganglion cell types in a mouse model of glaucoma,” J. Neurosci. 33(44), 17444–17457 (2013).
[Crossref] [PubMed]

Huang, D.

Huang, X.

Huberman, A. D.

R. N. El-Danaf and A. D. Huberman, “Characteristic patterns of dendritic remodeling in early-stage glaucoma: evidence from genetically identified retinal ganglion cell types,” J. Neurosci. 35(6), 2329–2343 (2015).
[Crossref] [PubMed]

Iftimia, N. V.

Inman, D. M.

L. Della Santina, D. M. Inman, C. B. Lupien, P. J. Horner, and R. O. Wong, “Differential progression of structural and functional alterations in distinct retinal ganglion cell types in a mouse model of glaucoma,” J. Neurosci. 33(44), 17444–17457 (2013).
[Crossref] [PubMed]

Jia, Y.

Jian, Y.

M. Cua, S. Lee, D. Miao, M. J. Ju, P. J. Mackenzie, Y. Jian, and M. V. Sarunic, “Retinal optical coherence tomography at 1 μm with dynamic focus control and axial motion tracking,” J. Biomed. Opt. 21(2), 026007 (2016).
[Crossref] [PubMed]

Jiao, S.

T. Liu, R. Wen, B. L. Lam, C. A. Puliafito, and S. Jiao, “Depth-resolved rhodopsin molecular contrast imaging for functional assessment of photoreceptors,” Sci. Rep. 5(1), 13992 (2015).
[Crossref] [PubMed]

C. Dai, X. Liu, and S. Jiao, “Simultaneous optical coherence tomography and autofluorescence microscopy with a single light source,” J. Biomed. Opt. 17(8), 080502 (2012).
[Crossref] [PubMed]

S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express 13(2), 444–452 (2005).
[Crossref] [PubMed]

Jo, R. E.

Y. Ou, R. E. Jo, E. M. Ullian, R. O. Wong, and L. Della Santina, “Selective Vulnerability of Specific Retinal Ganglion Cell Types and Synapses after Transient Ocular Hypertension,” J. Neurosci. 36(35), 9240–9252 (2016).
[Crossref] [PubMed]

Ju, M. J.

M. Cua, S. Lee, D. Miao, M. J. Ju, P. J. Mackenzie, Y. Jian, and M. V. Sarunic, “Retinal optical coherence tomography at 1 μm with dynamic focus control and axial motion tracking,” J. Biomed. Opt. 21(2), 026007 (2016).
[Crossref] [PubMed]

Kang, J. U.

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).
[Crossref] [PubMed]

Kempen, J.

D. S. Friedman, R. C. Wolfs, B. J. O’Colmain, B. E. Klein, H. R. Taylor, S. West, M. C. Leske, P. Mitchell, N. Congdon, J. Kempen, and Eye Diseases Prevalence Research Group, “Prevalence of open-angle glaucoma among adults in the United States,” Arch. Ophthalmol. 122(4), 532–538 (2004).
[Crossref] [PubMed]

Kho, A.

Kim, K. H.

Klein, B. E.

D. S. Friedman, R. C. Wolfs, B. J. O’Colmain, B. E. Klein, H. R. Taylor, S. West, M. C. Leske, P. Mitchell, N. Congdon, J. Kempen, and Eye Diseases Prevalence Research Group, “Prevalence of open-angle glaucoma among adults in the United States,” Arch. Ophthalmol. 122(4), 532–538 (2004).
[Crossref] [PubMed]

Klein, R.

W. L. Wong, X. Su, X. Li, C. M. Cheung, R. Klein, C. Y. Cheng, and T. Y. Wong, “Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis,” Lancet Glob. Health 2(2), e106–e116 (2014).
[Crossref] [PubMed]

Knight, J. C.

Knighton, R.

Ko, T.

Kocaoglu, O. P.

Z. Liu, O. P. Kocaoglu, and D. T. Miller, “3D Imaging of Retinal Pigment Epithelial Cells in the Living Human Retina,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT533 (2016).
[Crossref] [PubMed]

Koontz, M. A.

M. A. Koontz and A. E. Hendrickson, “Stratified distribution of synapses in the inner plexiform layer of primate retina,” J. Comp. Neurol. 263(4), 581–592 (1987).
[Crossref] [PubMed]

Kowalczyk, A.

Ku, J. Y.

M. E. Nongpiur, J. Y. Ku, and T. Aung, “Angle closure glaucoma: a mechanistic review,” Curr. Opin. Ophthalmol. 22(2), 96–101 (2011).
[Crossref] [PubMed]

Lam, B. L.

T. Liu, R. Wen, B. L. Lam, C. A. Puliafito, and S. Jiao, “Depth-resolved rhodopsin molecular contrast imaging for functional assessment of photoreceptors,” Sci. Rep. 5(1), 13992 (2015).
[Crossref] [PubMed]

Leahy, C.

Lee, S.

M. Cua, S. Lee, D. Miao, M. J. Ju, P. J. Mackenzie, Y. Jian, and M. V. Sarunic, “Retinal optical coherence tomography at 1 μm with dynamic focus control and axial motion tracking,” J. Biomed. Opt. 21(2), 026007 (2016).
[Crossref] [PubMed]

Lee, S. H.

Leitgeb, R.

Leske, M. C.

D. S. Friedman, R. C. Wolfs, B. J. O’Colmain, B. E. Klein, H. R. Taylor, S. West, M. C. Leske, P. Mitchell, N. Congdon, J. Kempen, and Eye Diseases Prevalence Research Group, “Prevalence of open-angle glaucoma among adults in the United States,” Arch. Ophthalmol. 122(4), 532–538 (2004).
[Crossref] [PubMed]

Li, X.

W. L. Wong, X. Su, X. Li, C. M. Cheung, R. Klein, C. Y. Cheng, and T. Y. Wong, “Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis,” Lancet Glob. Health 2(2), e106–e116 (2014).
[Crossref] [PubMed]

Liang, P. J.

Z. Puyang, H. Q. Gong, S. G. He, J. B. Troy, X. Liu, and P. J. Liang, “Different functional susceptibilities of mouse retinal ganglion cell subtypes to optic nerve crush injury,” Exp. Eye Res. 162, 97–103 (2017).
[Crossref] [PubMed]

Lichtenegger, A.

Liu, T.

T. Liu, R. Wen, B. L. Lam, C. A. Puliafito, and S. Jiao, “Depth-resolved rhodopsin molecular contrast imaging for functional assessment of photoreceptors,” Sci. Rep. 5(1), 13992 (2015).
[Crossref] [PubMed]

Liu, W.

Liu, X.

Z. Puyang, H. Q. Gong, S. G. He, J. B. Troy, X. Liu, and P. J. Liang, “Different functional susceptibilities of mouse retinal ganglion cell subtypes to optic nerve crush injury,” Exp. Eye Res. 162, 97–103 (2017).
[Crossref] [PubMed]

C. Dai, X. Liu, and S. Jiao, “Simultaneous optical coherence tomography and autofluorescence microscopy with a single light source,” J. Biomed. Opt. 17(8), 080502 (2012).
[Crossref] [PubMed]

Liu, Z.

Z. Liu, O. P. Kocaoglu, and D. T. Miller, “3D Imaging of Retinal Pigment Epithelial Cells in the Living Human Retina,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT533 (2016).
[Crossref] [PubMed]

Lupien, C. B.

L. Della Santina, D. M. Inman, C. B. Lupien, P. J. Horner, and R. O. Wong, “Differential progression of structural and functional alterations in distinct retinal ganglion cell types in a mouse model of glaucoma,” J. Neurosci. 33(44), 17444–17457 (2013).
[Crossref] [PubMed]

Luthert, P. J.

A. Okubo, R. H. Rosa, C. V. Bunce, R. A. Alexander, J. T. Fan, A. C. Bird, and P. J. Luthert, “The relationships of age changes in retinal pigment epithelium and Bruch’s membrane,” Invest. Ophthalmol. Vis. Sci. 40(2), 443–449 (1999).
[PubMed]

Mackenzie, P. J.

M. Cua, S. Lee, D. Miao, M. J. Ju, P. J. Mackenzie, Y. Jian, and M. V. Sarunic, “Retinal optical coherence tomography at 1 μm with dynamic focus control and axial motion tracking,” J. Biomed. Opt. 21(2), 026007 (2016).
[Crossref] [PubMed]

Maguluri, G.

McGwin, G.

C. A. Curcio, J. D. Messinger, K. R. Sloan, G. McGwin, N. E. Medeiros, and R. F. Spaide, “Subretinal drusenoid deposits in non-neovascular age-related macular degeneration: morphology, prevalence, topography, and biogenesis model,” Retina 33(2), 265–276 (2013).
[Crossref] [PubMed]

Medeiros, N. E.

C. A. Curcio, J. D. Messinger, K. R. Sloan, G. McGwin, N. E. Medeiros, and R. F. Spaide, “Subretinal drusenoid deposits in non-neovascular age-related macular degeneration: morphology, prevalence, topography, and biogenesis model,” Retina 33(2), 265–276 (2013).
[Crossref] [PubMed]

Merkle, C. W.

Messinger, J. D.

C. A. Curcio, J. D. Messinger, K. R. Sloan, G. McGwin, N. E. Medeiros, and R. F. Spaide, “Subretinal drusenoid deposits in non-neovascular age-related macular degeneration: morphology, prevalence, topography, and biogenesis model,” Retina 33(2), 265–276 (2013).
[Crossref] [PubMed]

Miao, D.

M. Cua, S. Lee, D. Miao, M. J. Ju, P. J. Mackenzie, Y. Jian, and M. V. Sarunic, “Retinal optical coherence tomography at 1 μm with dynamic focus control and axial motion tracking,” J. Biomed. Opt. 21(2), 026007 (2016).
[Crossref] [PubMed]

Miller, D. T.

Z. Liu, O. P. Kocaoglu, and D. T. Miller, “3D Imaging of Retinal Pigment Epithelial Cells in the Living Human Retina,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT533 (2016).
[Crossref] [PubMed]

Mitchell, P.

M. Fleckenstein, P. Mitchell, K. B. Freund, S. Sadda, F. G. Holz, C. Brittain, E. C. Henry, and D. Ferrara, “The Progression of Geographic Atrophy Secondary to Age-Related Macular Degeneration,” Ophthalmology 125(3), 369–390 (2018).
[Crossref] [PubMed]

D. S. Friedman, R. C. Wolfs, B. J. O’Colmain, B. E. Klein, H. R. Taylor, S. West, M. C. Leske, P. Mitchell, N. Congdon, J. Kempen, and Eye Diseases Prevalence Research Group, “Prevalence of open-angle glaucoma among adults in the United States,” Arch. Ophthalmol. 122(4), 532–538 (2004).
[Crossref] [PubMed]

Mohammadi, S. F.

S. F. Mohammadi, G. Saeedi-Anari, C. Alinia, E. Ashrafi, R. Daneshvar, and A. Sommer, “Is screening for glaucoma necessary? A policy guide and analysis,” J. Ophthalmic Vis. Res. 9(1), 3–6 (2014).
[PubMed]

Monson, B. K.

V. J. Srinivasan, B. K. Monson, M. Wojtkowski, R. A. Bilonick, I. Gorczynska, R. Chen, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Characterization of outer retinal morphology with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 49(4), 1571–1579 (2008).
[Crossref] [PubMed]

Mooy, C. M.

R. S. Ramrattan, T. L. van der Schaft, C. M. Mooy, W. C. de Bruijn, P. G. Mulder, and P. T. de Jong, “Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging,” Invest. Ophthalmol. Vis. Sci. 35(6), 2857–2864 (1994).
[PubMed]

Morrison, J.

Morrison, J. C.

Mujat, M.

Mulder, P. G.

R. S. Ramrattan, T. L. van der Schaft, C. M. Mooy, W. C. de Bruijn, P. G. Mulder, and P. T. de Jong, “Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging,” Invest. Ophthalmol. Vis. Sci. 35(6), 2857–2864 (1994).
[PubMed]

Nongpiur, M. E.

M. E. Nongpiur, J. Y. Ku, and T. Aung, “Angle closure glaucoma: a mechanistic review,” Curr. Opin. Ophthalmol. 22(2), 96–101 (2011).
[Crossref] [PubMed]

O’Colmain, B. J.

D. S. Friedman, R. C. Wolfs, B. J. O’Colmain, B. E. Klein, H. R. Taylor, S. West, M. C. Leske, P. Mitchell, N. Congdon, J. Kempen, and Eye Diseases Prevalence Research Group, “Prevalence of open-angle glaucoma among adults in the United States,” Arch. Ophthalmol. 122(4), 532–538 (2004).
[Crossref] [PubMed]

Okubo, A.

A. Okubo, R. H. Rosa, C. V. Bunce, R. A. Alexander, J. T. Fan, A. C. Bird, and P. J. Luthert, “The relationships of age changes in retinal pigment epithelium and Bruch’s membrane,” Invest. Ophthalmol. Vis. Sci. 40(2), 443–449 (1999).
[PubMed]

Ou, Y.

Y. Ou, R. E. Jo, E. M. Ullian, R. O. Wong, and L. Della Santina, “Selective Vulnerability of Specific Retinal Ganglion Cell Types and Synapses after Transient Ocular Hypertension,” J. Neurosci. 36(35), 9240–9252 (2016).
[Crossref] [PubMed]

Park, B. H.

Pi, S.

Povazay, B.

Puliafito, C.

Puliafito, C. A.

T. Liu, R. Wen, B. L. Lam, C. A. Puliafito, and S. Jiao, “Depth-resolved rhodopsin molecular contrast imaging for functional assessment of photoreceptors,” Sci. Rep. 5(1), 13992 (2015).
[Crossref] [PubMed]

Puyang, Z.

Z. Puyang, H. Q. Gong, S. G. He, J. B. Troy, X. Liu, and P. J. Liang, “Different functional susceptibilities of mouse retinal ganglion cell subtypes to optic nerve crush injury,” Exp. Eye Res. 162, 97–103 (2017).
[Crossref] [PubMed]

Radhakrishnan, H.

Ramrattan, R. S.

R. S. Ramrattan, T. L. van der Schaft, C. M. Mooy, W. C. de Bruijn, P. G. Mulder, and P. T. de Jong, “Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging,” Invest. Ophthalmol. Vis. Sci. 35(6), 2857–2864 (1994).
[PubMed]

Reyes, C.

Rha, J.

H. Tanna, A. M. Dubis, N. Ayub, D. M. Tait, J. Rha, K. E. Stepien, and J. Carroll, “Retinal imaging using commercial broadband optical coherence tomography,” Br. J. Ophthalmol. 94(3), 372–376 (2010).
[Crossref] [PubMed]

Rosa, R. H.

A. Okubo, R. H. Rosa, C. V. Bunce, R. A. Alexander, J. T. Fan, A. C. Bird, and P. J. Luthert, “The relationships of age changes in retinal pigment epithelium and Bruch’s membrane,” Invest. Ophthalmol. Vis. Sci. 40(2), 443–449 (1999).
[PubMed]

Russell, P. S.

Sadda, S.

M. Fleckenstein, P. Mitchell, K. B. Freund, S. Sadda, F. G. Holz, C. Brittain, E. C. Henry, and D. Ferrara, “The Progression of Geographic Atrophy Secondary to Age-Related Macular Degeneration,” Ophthalmology 125(3), 369–390 (2018).
[Crossref] [PubMed]

Saeedi-Anari, G.

S. F. Mohammadi, G. Saeedi-Anari, C. Alinia, E. Ashrafi, R. Daneshvar, and A. Sommer, “Is screening for glaucoma necessary? A policy guide and analysis,” J. Ophthalmic Vis. Res. 9(1), 3–6 (2014).
[PubMed]

Sappington, R. M.

R. M. Sappington, B. J. Carlson, S. D. Crish, and D. J. Calkins, “The microbead occlusion model: a paradigm for induced ocular hypertension in rats and mice,” Invest. Ophthalmol. Vis. Sci. 51(1), 207–216 (2010).
[Crossref] [PubMed]

Sarunic, M. V.

M. Cua, S. Lee, D. Miao, M. J. Ju, P. J. Mackenzie, Y. Jian, and M. V. Sarunic, “Retinal optical coherence tomography at 1 μm with dynamic focus control and axial motion tracking,” J. Biomed. Opt. 21(2), 026007 (2016).
[Crossref] [PubMed]

Sattmann, H.

Scherzer, E.

Schuman, J. S.

I. I. Bussel, G. Wollstein, and J. S. Schuman, “OCT for glaucoma diagnosis, screening and detection of glaucoma progression,” Br. J. Ophthalmol. 98(Suppl 2), ii15–ii19 (2014).
[Crossref] [PubMed]

V. J. Srinivasan, B. K. Monson, M. Wojtkowski, R. A. Bilonick, I. Gorczynska, R. Chen, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Characterization of outer retinal morphology with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 49(4), 1571–1579 (2008).
[Crossref] [PubMed]

Shu, X.

Simonett, J.

Sloan, K. R.

C. A. Curcio, J. D. Messinger, K. R. Sloan, G. McGwin, N. E. Medeiros, and R. F. Spaide, “Subretinal drusenoid deposits in non-neovascular age-related macular degeneration: morphology, prevalence, topography, and biogenesis model,” Retina 33(2), 265–276 (2013).
[Crossref] [PubMed]

Sommer, A.

S. F. Mohammadi, G. Saeedi-Anari, C. Alinia, E. Ashrafi, R. Daneshvar, and A. Sommer, “Is screening for glaucoma necessary? A policy guide and analysis,” J. Ophthalmic Vis. Res. 9(1), 3–6 (2014).
[PubMed]

Spaide, R. F.

C. A. Curcio, J. D. Messinger, K. R. Sloan, G. McGwin, N. E. Medeiros, and R. F. Spaide, “Subretinal drusenoid deposits in non-neovascular age-related macular degeneration: morphology, prevalence, topography, and biogenesis model,” Retina 33(2), 265–276 (2013).
[Crossref] [PubMed]

Srinivasan, V.

Srinivasan, V. J.

Stepien, K. E.

H. Tanna, A. M. Dubis, N. Ayub, D. M. Tait, J. Rha, K. E. Stepien, and J. Carroll, “Retinal imaging using commercial broadband optical coherence tomography,” Br. J. Ophthalmol. 94(3), 372–376 (2010).
[Crossref] [PubMed]

Su, X.

W. L. Wong, X. Su, X. Li, C. M. Cheung, R. Klein, C. Y. Cheng, and T. Y. Wong, “Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis,” Lancet Glob. Health 2(2), e106–e116 (2014).
[Crossref] [PubMed]

Sun, W.

Sylwestrzak, M.

Szkulmowski, M.

Szlag, D.

Tait, D. M.

H. Tanna, A. M. Dubis, N. Ayub, D. M. Tait, J. Rha, K. E. Stepien, and J. Carroll, “Retinal imaging using commercial broadband optical coherence tomography,” Br. J. Ophthalmol. 94(3), 372–376 (2010).
[Crossref] [PubMed]

Tanna, H.

H. Tanna, A. M. Dubis, N. Ayub, D. M. Tait, J. Rha, K. E. Stepien, and J. Carroll, “Retinal imaging using commercial broadband optical coherence tomography,” Br. J. Ophthalmol. 94(3), 372–376 (2010).
[Crossref] [PubMed]

Taylor, H. R.

D. S. Friedman, R. C. Wolfs, B. J. O’Colmain, B. E. Klein, H. R. Taylor, S. West, M. C. Leske, P. Mitchell, N. Congdon, J. Kempen, and Eye Diseases Prevalence Research Group, “Prevalence of open-angle glaucoma among adults in the United States,” Arch. Ophthalmol. 122(4), 532–538 (2004).
[Crossref] [PubMed]

Troy, J. B.

Z. Puyang, H. Q. Gong, S. G. He, J. B. Troy, X. Liu, and P. J. Liang, “Different functional susceptibilities of mouse retinal ganglion cell subtypes to optic nerve crush injury,” Exp. Eye Res. 162, 97–103 (2017).
[Crossref] [PubMed]

Ullian, E. M.

Y. Ou, R. E. Jo, E. M. Ullian, R. O. Wong, and L. Della Santina, “Selective Vulnerability of Specific Retinal Ganglion Cell Types and Synapses after Transient Ocular Hypertension,” J. Neurosci. 36(35), 9240–9252 (2016).
[Crossref] [PubMed]

Unterhuber, A.

van der Schaft, T. L.

R. S. Ramrattan, T. L. van der Schaft, C. M. Mooy, W. C. de Bruijn, P. G. Mulder, and P. T. de Jong, “Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging,” Invest. Ophthalmol. Vis. Sci. 35(6), 2857–2864 (1994).
[PubMed]

Vetterlein, M.

Wadsworth, W. J.

Wang, S.

J. Hanus, F. Zhao, and S. Wang, “Current therapeutic developments in atrophic age-related macular degeneration,” Br. J. Ophthalmol. 100(1), 122–127 (2016).
[Crossref] [PubMed]

Wang, W.

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).
[Crossref] [PubMed]

Wässle, H.

H. Wässle, “Parallel processing in the mammalian retina,” Nat. Rev. Neurosci. 5(10), 747–757 (2004).
[Crossref] [PubMed]

Wei, Q.

Wei, W.

W. Wei and M. B. Feller, “Organization and development of direction-selective circuits in the retina,” Trends Neurosci. 34(12), 638–645 (2011).
[Crossref] [PubMed]

Wei, X.

Wen, R.

T. Liu, R. Wen, B. L. Lam, C. A. Puliafito, and S. Jiao, “Depth-resolved rhodopsin molecular contrast imaging for functional assessment of photoreceptors,” Sci. Rep. 5(1), 13992 (2015).
[Crossref] [PubMed]

Werner, J. S.

West, S.

D. S. Friedman, R. C. Wolfs, B. J. O’Colmain, B. E. Klein, H. R. Taylor, S. West, M. C. Leske, P. Mitchell, N. Congdon, J. Kempen, and Eye Diseases Prevalence Research Group, “Prevalence of open-angle glaucoma among adults in the United States,” Arch. Ophthalmol. 122(4), 532–538 (2004).
[Crossref] [PubMed]

Wojtkowski, M.

Wolfs, R. C.

D. S. Friedman, R. C. Wolfs, B. J. O’Colmain, B. E. Klein, H. R. Taylor, S. West, M. C. Leske, P. Mitchell, N. Congdon, J. Kempen, and Eye Diseases Prevalence Research Group, “Prevalence of open-angle glaucoma among adults in the United States,” Arch. Ophthalmol. 122(4), 532–538 (2004).
[Crossref] [PubMed]

Wollstein, G.

I. I. Bussel, G. Wollstein, and J. S. Schuman, “OCT for glaucoma diagnosis, screening and detection of glaucoma progression,” Br. J. Ophthalmol. 98(Suppl 2), ii15–ii19 (2014).
[Crossref] [PubMed]

Wong, R. O.

Y. Ou, R. E. Jo, E. M. Ullian, R. O. Wong, and L. Della Santina, “Selective Vulnerability of Specific Retinal Ganglion Cell Types and Synapses after Transient Ocular Hypertension,” J. Neurosci. 36(35), 9240–9252 (2016).
[Crossref] [PubMed]

L. Della Santina, D. M. Inman, C. B. Lupien, P. J. Horner, and R. O. Wong, “Differential progression of structural and functional alterations in distinct retinal ganglion cell types in a mouse model of glaucoma,” J. Neurosci. 33(44), 17444–17457 (2013).
[Crossref] [PubMed]

Wong, T. Y.

W. L. Wong, X. Su, X. Li, C. M. Cheung, R. Klein, C. Y. Cheng, and T. Y. Wong, “Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis,” Lancet Glob. Health 2(2), e106–e116 (2014).
[Crossref] [PubMed]

Wong, W. L.

W. L. Wong, X. Su, X. Li, C. M. Cheung, R. Klein, C. Y. Cheng, and T. Y. Wong, “Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis,” Lancet Glob. Health 2(2), e106–e116 (2014).
[Crossref] [PubMed]

Yi, J.

Zawadzki, R. J.

Zhang, H.

X. Shu, L. Beckmann, and H. Zhang, “Visible-light optical coherence tomography: a review,” J. Biomed. Opt. 22(12), 1–14 (2017).
[Crossref] [PubMed]

Zhang, H. F.

Zhang, K.

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).
[Crossref] [PubMed]

Zhang, M.

Zhang, T.

Zhao, F.

J. Hanus, F. Zhao, and S. Wang, “Current therapeutic developments in atrophic age-related macular degeneration,” Br. J. Ophthalmol. 100(1), 122–127 (2016).
[Crossref] [PubMed]

Arch. Ophthalmol. (1)

D. S. Friedman, R. C. Wolfs, B. J. O’Colmain, B. E. Klein, H. R. Taylor, S. West, M. C. Leske, P. Mitchell, N. Congdon, J. Kempen, and Eye Diseases Prevalence Research Group, “Prevalence of open-angle glaucoma among adults in the United States,” Arch. Ophthalmol. 122(4), 532–538 (2004).
[Crossref] [PubMed]

Biomed. Opt. Express (8)

S. H. Lee, J. S. Werner, and R. J. Zawadzki, “Improved visualization of outer retinal morphology with aberration cancelling reflective optical design for adaptive optics - optical coherence tomography,” Biomed. Opt. Express 4(11), 2508–2517 (2013).
[Crossref] [PubMed]

J. Yi, S. Chen, X. Shu, A. A. Fawzi, and H. F. Zhang, “Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy,” Biomed. Opt. Express 6(10), 3701–3713 (2015).
[Crossref] [PubMed]

S. P. Chong, T. Zhang, A. Kho, M. T. Bernucci, A. Dubra, and V. J. Srinivasan, “Ultrahigh resolution retinal imaging by visible light OCT with longitudinal achromatization,” Biomed. Opt. Express 9(4), 1477–1491 (2018).
[Crossref] [PubMed]

S. Pi, A. Camino, W. Cepurna, X. Wei, M. Zhang, D. Huang, J. Morrison, and Y. Jia, “Automated spectroscopic retinal oximetry with visible-light optical coherence tomography,” Biomed. Opt. Express 9(5), 2056–2067 (2018).
[Crossref] [PubMed]

S. Pi, A. Camino, X. Wei, J. Simonett, W. Cepurna, D. Huang, J. C. Morrison, and Y. Jia, “Rodent retinal circulation organization and oxygen metabolism revealed by visible-light optical coherence tomography,” Biomed. Opt. Express 9(11), 5851–5862 (2018).
[Crossref] [PubMed]

D. J. Harper, M. Augustin, A. Lichtenegger, P. Eugui, C. Reyes, M. Glösmann, C. K. Hitzenberger, and B. Baumann, “White light polarization sensitive optical coherence tomography for sub-micron axial resolution and spectroscopic contrast in the murine retina,” Biomed. Opt. Express 9(5), 2115–2129 (2018).
[Crossref] [PubMed]

S. P. Chong, C. W. Merkle, C. Leahy, H. Radhakrishnan, and V. J. Srinivasan, “Quantitative microvascular hemoglobin mapping using visible light spectroscopic Optical Coherence Tomography,” Biomed. Opt. Express 6(4), 1429–1450 (2015).
[Crossref] [PubMed]

S. P. Chong, M. Bernucci, H. Radhakrishnan, and V. J. Srinivasan, “Structural and functional human retinal imaging with a fiber-based visible light OCT ophthalmoscope,” Biomed. Opt. Express 8(1), 323–337 (2017).
[Crossref] [PubMed]

Br. J. Ophthalmol. (3)

J. Hanus, F. Zhao, and S. Wang, “Current therapeutic developments in atrophic age-related macular degeneration,” Br. J. Ophthalmol. 100(1), 122–127 (2016).
[Crossref] [PubMed]

I. I. Bussel, G. Wollstein, and J. S. Schuman, “OCT for glaucoma diagnosis, screening and detection of glaucoma progression,” Br. J. Ophthalmol. 98(Suppl 2), ii15–ii19 (2014).
[Crossref] [PubMed]

H. Tanna, A. M. Dubis, N. Ayub, D. M. Tait, J. Rha, K. E. Stepien, and J. Carroll, “Retinal imaging using commercial broadband optical coherence tomography,” Br. J. Ophthalmol. 94(3), 372–376 (2010).
[Crossref] [PubMed]

Curr. Opin. Ophthalmol. (1)

M. E. Nongpiur, J. Y. Ku, and T. Aung, “Angle closure glaucoma: a mechanistic review,” Curr. Opin. Ophthalmol. 22(2), 96–101 (2011).
[Crossref] [PubMed]

Exp. Eye Res. (1)

Z. Puyang, H. Q. Gong, S. G. He, J. B. Troy, X. Liu, and P. J. Liang, “Different functional susceptibilities of mouse retinal ganglion cell subtypes to optic nerve crush injury,” Exp. Eye Res. 162, 97–103 (2017).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (5)

R. M. Sappington, B. J. Carlson, S. D. Crish, and D. J. Calkins, “The microbead occlusion model: a paradigm for induced ocular hypertension in rats and mice,” Invest. Ophthalmol. Vis. Sci. 51(1), 207–216 (2010).
[Crossref] [PubMed]

R. S. Ramrattan, T. L. van der Schaft, C. M. Mooy, W. C. de Bruijn, P. G. Mulder, and P. T. de Jong, “Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging,” Invest. Ophthalmol. Vis. Sci. 35(6), 2857–2864 (1994).
[PubMed]

A. Okubo, R. H. Rosa, C. V. Bunce, R. A. Alexander, J. T. Fan, A. C. Bird, and P. J. Luthert, “The relationships of age changes in retinal pigment epithelium and Bruch’s membrane,” Invest. Ophthalmol. Vis. Sci. 40(2), 443–449 (1999).
[PubMed]

Z. Liu, O. P. Kocaoglu, and D. T. Miller, “3D Imaging of Retinal Pigment Epithelial Cells in the Living Human Retina,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT533 (2016).
[Crossref] [PubMed]

V. J. Srinivasan, B. K. Monson, M. Wojtkowski, R. A. Bilonick, I. Gorczynska, R. Chen, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Characterization of outer retinal morphology with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 49(4), 1571–1579 (2008).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

X. Shu, L. Beckmann, and H. Zhang, “Visible-light optical coherence tomography: a review,” J. Biomed. Opt. 22(12), 1–14 (2017).
[Crossref] [PubMed]

C. Dai, X. Liu, and S. Jiao, “Simultaneous optical coherence tomography and autofluorescence microscopy with a single light source,” J. Biomed. Opt. 17(8), 080502 (2012).
[Crossref] [PubMed]

M. Cua, S. Lee, D. Miao, M. J. Ju, P. J. Mackenzie, Y. Jian, and M. V. Sarunic, “Retinal optical coherence tomography at 1 μm with dynamic focus control and axial motion tracking,” J. Biomed. Opt. 21(2), 026007 (2016).
[Crossref] [PubMed]

J. Comp. Neurol. (1)

M. A. Koontz and A. E. Hendrickson, “Stratified distribution of synapses in the inner plexiform layer of primate retina,” J. Comp. Neurol. 263(4), 581–592 (1987).
[Crossref] [PubMed]

J. Neurosci. (3)

R. N. El-Danaf and A. D. Huberman, “Characteristic patterns of dendritic remodeling in early-stage glaucoma: evidence from genetically identified retinal ganglion cell types,” J. Neurosci. 35(6), 2329–2343 (2015).
[Crossref] [PubMed]

L. Della Santina, D. M. Inman, C. B. Lupien, P. J. Horner, and R. O. Wong, “Differential progression of structural and functional alterations in distinct retinal ganglion cell types in a mouse model of glaucoma,” J. Neurosci. 33(44), 17444–17457 (2013).
[Crossref] [PubMed]

Y. Ou, R. E. Jo, E. M. Ullian, R. O. Wong, and L. Della Santina, “Selective Vulnerability of Specific Retinal Ganglion Cell Types and Synapses after Transient Ocular Hypertension,” J. Neurosci. 36(35), 9240–9252 (2016).
[Crossref] [PubMed]

J. Ophthalmic Vis. Res. (1)

S. F. Mohammadi, G. Saeedi-Anari, C. Alinia, E. Ashrafi, R. Daneshvar, and A. Sommer, “Is screening for glaucoma necessary? A policy guide and analysis,” J. Ophthalmic Vis. Res. 9(1), 3–6 (2014).
[PubMed]

Lancet Glob. Health (1)

W. L. Wong, X. Su, X. Li, C. M. Cheung, R. Klein, C. Y. Cheng, and T. Y. Wong, “Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis,” Lancet Glob. Health 2(2), e106–e116 (2014).
[Crossref] [PubMed]

Mol. Vis. (1)

W. R. Green, “Histopathology of age-related macular degeneration,” Mol. Vis. 5, 27 (1999).
[PubMed]

Nat. Rev. Neurosci. (1)

H. Wässle, “Parallel processing in the mammalian retina,” Nat. Rev. Neurosci. 5(10), 747–757 (2004).
[Crossref] [PubMed]

Ophthalmology (1)

M. Fleckenstein, P. Mitchell, K. B. Freund, S. Sadda, F. G. Holz, C. Brittain, E. C. Henry, and D. Ferrara, “The Progression of Geographic Atrophy Secondary to Age-Related Macular Degeneration,” Ophthalmology 125(3), 369–390 (2018).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (3)

Prog. Retin. Eye Res. (1)

J. C. Booij, D. C. Baas, J. Beisekeeva, T. G. M. F. Gorgels, and A. A. B. Bergen, “The dynamic nature of Bruch’s membrane,” Prog. Retin. Eye Res. 29(1), 1–18 (2010).
[Crossref] [PubMed]

Retina (1)

C. A. Curcio, J. D. Messinger, K. R. Sloan, G. McGwin, N. E. Medeiros, and R. F. Spaide, “Subretinal drusenoid deposits in non-neovascular age-related macular degeneration: morphology, prevalence, topography, and biogenesis model,” Retina 33(2), 265–276 (2013).
[Crossref] [PubMed]

Sci. Rep. (1)

T. Liu, R. Wen, B. L. Lam, C. A. Puliafito, and S. Jiao, “Depth-resolved rhodopsin molecular contrast imaging for functional assessment of photoreceptors,” Sci. Rep. 5(1), 13992 (2015).
[Crossref] [PubMed]

Trends Neurosci. (1)

W. Wei and M. B. Feller, “Organization and development of direction-selective circuits in the retina,” Trends Neurosci. 34(12), 638–645 (2011).
[Crossref] [PubMed]

Vis. Neurosci. (1)

S. Haverkamp, F. Haeseleer, and A. Hendrickson, “A comparison of immunocytochemical markers to identify bipolar cell types in human and monkey retina,” Vis. Neurosci. 20(6), 589–600 (2003).
[Crossref] [PubMed]

Other (1)

M. J. Hogan, J. A. Alvarado, and J. E. Weddell, Histology of the Human Eye: An Atlas and Textbook (Saunders, 1971).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (A) Fiber-based visible light spectral / Fourier domain OCT system with spectral shaping (red box) and axial tracking (blue box) for imaging the human retina. SPF: short pass filter, LPF: long pass filter, BS: beam splitter, DG: diffraction grating, L: lens, GLV-SLM: grating light valve spatial light modulator, M: mirror, FL: focusing lens, PC: polarization controller, RC: reflective collimator, LSC: line-scan camera, AL: achromatizing lens, DM: dichroic mirror, NDF: neutral density filter, MTS: motorized translational stage, FG: frame grabber, AO: analog output. (B) The sensitivity roll-off (left) and the measured axial resolution (right) of the system versus depth. The sensitivity roll-off was ~5 dB and the measured axial resolution was < 2.8 µm in air over the first half of the axial imaging range.
Fig. 2
Fig. 2 Computationally simple axial tracking algorithm based on analysis of the interference spectrum. (A) Interference spectrum captured by the spectrometer at different path length mismatches. (B) The normalized autocorrelation, g1, of the interference spectrum as a function of lag, in units of Δλ, representing the wavelength shift corresponding to one spectrometer pixel. Note that the smaller path difference has a slower decay rate, and the decay rate can be determined from the normalized autocorrelation at a single lag. (C) The workflow of axial motion tracking, based on the background noise-corrected, normalized autocorrelation. Note that this algorithm does not require a Fourier transform.
Fig. 3
Fig. 3 Performance of spectral shaping. (A) Original spectrum (black) and shaped spectra, for UHR imaging (orange) and subject alignment (yellow). The spectral shaping setup was also used to neutrally attenuate the original spectrum (dotted blue) to the same exposure level as the shaped imaging spectrum, to provide a fair point spread function (PSF) comparison. (B) UHR PSFs for both the original (dotted blue) and the shaped (orange) spectrum with suppressed sidelobes. (C) In vivo UHR human retinal images demonstrate the benefits of shaping. The images are from consecutive frames in the same data set, where the spectrum was rapidly switched between frames to minimize motion artifacts and provide a fair comparison.
Fig. 4
Fig. 4 Characterization of axial motion tracking for a model eye with induced motion during repeated imaging at a 48 Hz frame rate. (A). Axial scans from a single location in the frame in the model eye with induced reference movement (0.1 mm/s periodic triangle with 0.5 mm amplitude). Images represent different scenarios: with induced movement and without tracking (On-Off); with induced movement and with tracking (On-On); without induced movement and with tracking (Off-On); without induced movement and without tracking (Off-Off). (B-C) The displacements (determined by analysis of the OCT image time series) demonstrate that the motion can be tracked over a period of time with a standard deviation of 3.5 microns. (D) The root mean squared (RMS) errors of the sample positions relative to the mean position for different induced linear movement speeds with tracking.
Fig. 5
Fig. 5 Visible light OCT image with spatially dependent (A) and spatially independent (B) dispersion compensation. While the spatially independent method can perform comparably to the spatially dependent method at a particular image location (C,F), the spatially dependent method optimizes image sharpness at all locations (D,E), whereas the spatially independent method does not (G,H), enabling more consistent and clear visualization of lamination across the inner plexiform layer (IPL) and outer plexiform layer (OPL). A depth-dependent grayscale, transitioning in the outer nuclear layer (ONL), simultaneously highlights relevant contrast in both the inner and outer retina.
Fig. 6
Fig. 6 Inner retinal morphometry and lamination in the inner plexiform layer (IPL) with visible light OCT. (A) The average linear signal intensity profile of the inner retina. The solid black line is the mean value over a 1.5 mm field-of-view, while the gray shaded region indicates the standard deviation over ~0.15 mm transverse regions. (B) IPL lamination is clearly visualized, with statistically significant differences in reflectivity between bands (ANOVA with Tukey’s Honest Significant Difference). (C) To account for IPL thickness changes over the 2.6 mm field-of-view, the normalized intensity is plotted versus IPL thickness percentage. The on sublamina (green) exhibits deeper troughs in band 4 than the off sublamina (red) does in band 2. (D) As the IPL thickness changes, the outer 2 bands (off sublamina) and inner 3 bands (on sublamina) appear to change in proportion.
Fig. 7
Fig. 7 True color subband images of the outer retina with identical axial resolutions, obtained via digital spectral shaping. Axial line profiles were generated from flattened images with background correction and normalization proximal to the RPE. Note that the separation between the hyper-reflective Bruch’s membrane (BM) band and the hyper-reflective retinal pigment epithelium (RPE) band improves markedly at shorter wavelengths.
Fig. 8
Fig. 8 True color subband images of the inner plexiform layer (IPL) with identical axial resolutions, obtained via digital spectral shaping. Axial line profiles were generated from flattened images with background correction and normalization proximal to the IPL. Note that the IPL lamination contrast remains roughly the same across wavelengths, particularly in the on sublamina.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

g 1 (Δλ)= G ^ 1 ( Δλ ) G ^ 1 ( 0 ) G ^ 1,noise (0) .