Abstract

In vivo physiological assessments are typically done by either imaging techniques or by sensing changes in the attenuation coefficient. Using visible or near-infrared (NIR), imaging is mainly possible for thin tissues. On the other hand, clinical information can also be detected by examining changes in tissue optical properties. The most challenging aspect in sensing techniques is the spectral dependent scattering, which varies with the physiological state and tissue type. We have previously published our novel noninvasive nanophotonics technique for detecting tissue scattering based on reflectance measurements: the iterative multi-plane optical property extraction (IMOPE). The IMOPE reconstructs the reemitted light phase using an iterative algorithm and extracts the scattering properties based on a theoretical model. This paper presents the in vivo application of distinguishing between different mouse tissue areas. The reconstructed phase images reveal different areas in the inner thigh of a mouse, which are related to the muscle, bone, and skin. The IMOPE uses the reconstructed phases for sensing and detecting unseen components beneath the skin surface. This technique could be further applied to the diagnosis of various physiological states.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Experimental results of revised Misell algorithm for imaging through weakly scattering biological tissue

Maya Aviv, Eran Gur, and Zeev Zalevsky
Appl. Opt. 52(11) 2300-2305 (2013)

Optical method to extract the reduced scattering coefficient from tissue: theory and experiments

Inbar Yariv, Hamootal Duadi, and Dror Fixler
Opt. Lett. 43(21) 5299-5302 (2018)

Time-resolved diffuse optical tomographic imaging for the provision of both anatomical and functional information about biological tissue

Huijuan Zhao, Feng Gao, Yukari Tanikawa, Kazuhiro Homma, and Yukio Yamada
Appl. Opt. 44(10) 1905-1916 (2005)

References

  • View by:
  • |
  • |
  • |

  1. M. G. Amin, Through-the-Wall Radar Imaging (CRC press, 2017).
  2. S. Sinha and H. C. Ferreira, “Through-the-Wall Radar Imaging: A Review AU - Nkwari, P. K. M,” IETE Tech. Rev. 35(6), 631–639 (2018).
    [Crossref]
  3. S. Depatla, L. Buckland, and Y. Mostofi, “X-Ray Vision With Only WiFi Power Measurements Using Rytov Wave Models,” IEEE Trans. Vehicular Technol. 64(4), 1376–1387 (2015).
    [Crossref]
  4. D. Mery, E. Svec, M. Arias, V. Riffo, J. M. Saavedra, and S. Banerjee, “Modern Computer Vision Techniques for X-Ray Testing in Baggage Inspection,” IEEE Trans. Syst. Man Cybern. Syst. 47(4), 682–692 (2017).
    [Crossref]
  5. K.-D. Kim, A. Ruprecht, G. Wang, J. B. Lee, D. V. Dawson, and M. W. Vannier, “Accuracy of facial soft tissue thickness measurements in personal computer-based multiplanar reconstructed computed tomographic images,” Forensic Sci. Int. 155(1), 28–34 (2005).
    [Crossref] [PubMed]
  6. E. Pauwels, D. Van Loo, P. Cornillie, L. Brabant, and L. Van Hoorebeke, “An exploratory study of contrast agents for soft tissue visualization by means of high resolution X-ray computed tomography imaging,” J. Microsc. 250(1), 21–31 (2013).
    [Crossref] [PubMed]
  7. O. T. von Ramm and S. W. Smith, “Real time volumetric ultrasound imaging system,” J. Digit. Imaging 3(4), 261–266 (1990).
    [Crossref] [PubMed]
  8. K. K. Shung, Diagnostic Ultrasound: Imaging and Blood Flow Measurements (CRC press, 2015).
  9. J. Stefanowska, D. Zakowiecki, and K. Cal, “Magnetic resonance imaging of the skin,” J. Eur. Acad. Dermatol. Venereol. 24(8), 875–880 (2010).
    [Crossref] [PubMed]
  10. R. Di Corato, F. Gazeau, C. Le Visage, D. Fayol, P. Levitz, F. Lux, D. Letourneur, N. Luciani, O. Tillement, and C. Wilhelm, “High-Resolution Cellular MRI: Gadolinium and Iron Oxide Nanoparticles for in-Depth Dual-Cell Imaging of Engineered Tissue Constructs,” ACS Nano 7(9), 7500–7512 (2013).
    [Crossref] [PubMed]
  11. A. G. Podoleanu, “Optical coherence tomography,” Br. J. Radiol. 78(935), 976–988 (2005).
    [Crossref] [PubMed]
  12. M. A. Fox, D. G. Diven, K. Sra, A. Boretsky, T. Poonawalla, A. Readinger, M. Motamedi, and R. J. McNichols, “Dermal scatter reduction in human skin: A method using controlled application of glycerol,” Lasers Surg. Med. 41(4), 251–255 (2009).
    [Crossref] [PubMed]
  13. I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
    [Crossref]
  14. Y. Liu, C. Ma, Y. Shen, J. Shi, and L. V. Wang, “Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation,” Optica 4(2), 280–288 (2017).
    [Crossref] [PubMed]
  15. D. Fixler, J. Garcia, Z. Zalevsky, A. Weiss, and M. Deutsch, “Speckle random coding for 2D super resolving fluorescent microscopic imaging,” Micron 38(2), 121–128 (2007).
    [Crossref] [PubMed]
  16. J. A. Newman, Q. Luo, and K. J. Webb, “Imaging Hidden Objects with Spatial Speckle Intensity Correlations over Object Position,” Phys. Rev. Lett. 116(7), 073902 (2016).
    [Crossref] [PubMed]
  17. Y. Li, Y. Xue, and L. Tian, “Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media,” Optica 5(10), 1181–1190 (2018).
    [Crossref]
  18. I. Yariv, G. Rahamim, E. Shliselberg, H. Duadi, A. Lipovsky, R. Lubart, and D. Fixler, “Detecting nanoparticles in tissue using an optical iterative technique,” Biomed. Opt. Express 5(11), 3871–3881 (2014).
    [Crossref] [PubMed]
  19. I. Yariv, Y. Kapp-Barnea, E. Genzel, H. Duadi, and D. Fixler, “Detecting concentrations of milk components by an iterative optical technique,” J. Biophotonics 8(11-12), 979–984 (2015).
    [Crossref] [PubMed]
  20. I. Yariv, M. Haddad, H. Duadi, M. Motiei, and D. Fixler, “New optical sensing technique of tissue viability and blood flow based on nanophotonic iterative multi-plane reflectance measurements,” Int. J. Nanomedicine 11, 5237–5244 (2016).
    [Crossref] [PubMed]
  21. I. Yariv, H. Duadi, and D. Fixler, “Optical method to extract the reduced scattering coefficient from tissue: theory and experiments,” Opt. Lett. 43(21), 5299–5302 (2018).
    [Crossref] [PubMed]
  22. I. Yariv, H. Duadi, and D. Fixler, An Optical Method to Detect Tissue Scattering: Theory, Experiments and Biomedical Applications, SPIE BiOS (SPIE, 2019), Vol. 10891.
  23. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).
  24. Z. Zalevsky, D. Mendlovic, and R. G. Dorsch, “Gerchberg-Saxton algorithm applied in the fractional Fourier or the Fresnel domain,” Opt. Lett. 21(12), 842–844 (1996).
    [Crossref] [PubMed]
  25. D. Ferber, “Livestock Feed Ban Preserves Drugs’ Power,” Science 295(5552), 27–28 (2002).
    [Crossref] [PubMed]
  26. D. Fixler, H. Duadi, R. Ankri, and Z. Zalevsky, “Determination of coherence length in biological tissues,” Lasers Surg. Med. 43(4), 339–343 (2011).
    [Crossref] [PubMed]
  27. W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
    [Crossref]
  28. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11(10), 2727–2741 (1994).
    [Crossref] [PubMed]
  29. T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R. Arridge, and J. P. Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol. 50(20), 4913–4930 (2005).
    [Crossref] [PubMed]
  30. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
    [Crossref] [PubMed]
  31. P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
    [Crossref] [PubMed]
  32. D. Piao, R. L. Barbour, H. L. Graber, and D. C. Lee, “On the geometry dependence of differential pathlength factor for near-infrared spectroscopy. I. Steady-state with homogeneous medium,” J. Biomed. Opt. 20(10), 105005 (2015).
    [Crossref] [PubMed]
  33. R. Ankri, H. Taitelbaum, and D. Fixler, “On Phantom experiments of the photon migration model in tissues,” The Open Optics Journal 5(1), 28–32 (2011).
    [Crossref]
  34. D. Piao and S. Patel, “Simple empirical master–slave dual-source configuration within the diffusion approximation enhances modeling of spatially resolved diffuse reflectance at short-path and with low scattering from a semi-infinite homogeneous medium,” Appl. Opt. 56(5), 1447–1452 (2017).
    [Crossref] [PubMed]
  35. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
    [Crossref] [PubMed]
  36. D. Mendlovic, Z. Zalevsky, and N. Konforti, “Computation considerations and fast algorithms for calculating the diffraction integral,” J. Mod. Opt. 44(2), 407–414 (1997).
    [Crossref]
  37. V. V. Tuchin, L. Wang, and D. A. Zimnyakov, Optical Polarization in Biomedical Applications (Springer Science & Business Media, 2006).
  38. N. Alon, T. Havdala, H. Skaat, K. Baranes, M. Marcus, I. Levy, S. Margel, A. Sharoni, and O. Shefi, “Magnetic micro-device for manipulating PC12 cell migration and organization,” Lab Chip 15(9), 2030–2036 (2015).
    [Crossref] [PubMed]
  39. M. Motiei, T. Dreifuss, O. Betzer, H. Panet, A. Popovtzer, J. Santana, G. Abourbeh, E. Mishani, and R. Popovtzer, “Differentiating Between Cancer and Inflammation: A Metabolic-Based Method for Functional Computed Tomography Imaging,” ACS Nano 10(3), 3469–3477 (2016).
    [Crossref] [PubMed]
  40. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005).
    [Crossref] [PubMed]

2018 (3)

2017 (3)

2016 (3)

J. A. Newman, Q. Luo, and K. J. Webb, “Imaging Hidden Objects with Spatial Speckle Intensity Correlations over Object Position,” Phys. Rev. Lett. 116(7), 073902 (2016).
[Crossref] [PubMed]

I. Yariv, M. Haddad, H. Duadi, M. Motiei, and D. Fixler, “New optical sensing technique of tissue viability and blood flow based on nanophotonic iterative multi-plane reflectance measurements,” Int. J. Nanomedicine 11, 5237–5244 (2016).
[Crossref] [PubMed]

M. Motiei, T. Dreifuss, O. Betzer, H. Panet, A. Popovtzer, J. Santana, G. Abourbeh, E. Mishani, and R. Popovtzer, “Differentiating Between Cancer and Inflammation: A Metabolic-Based Method for Functional Computed Tomography Imaging,” ACS Nano 10(3), 3469–3477 (2016).
[Crossref] [PubMed]

2015 (4)

N. Alon, T. Havdala, H. Skaat, K. Baranes, M. Marcus, I. Levy, S. Margel, A. Sharoni, and O. Shefi, “Magnetic micro-device for manipulating PC12 cell migration and organization,” Lab Chip 15(9), 2030–2036 (2015).
[Crossref] [PubMed]

I. Yariv, Y. Kapp-Barnea, E. Genzel, H. Duadi, and D. Fixler, “Detecting concentrations of milk components by an iterative optical technique,” J. Biophotonics 8(11-12), 979–984 (2015).
[Crossref] [PubMed]

D. Piao, R. L. Barbour, H. L. Graber, and D. C. Lee, “On the geometry dependence of differential pathlength factor for near-infrared spectroscopy. I. Steady-state with homogeneous medium,” J. Biomed. Opt. 20(10), 105005 (2015).
[Crossref] [PubMed]

S. Depatla, L. Buckland, and Y. Mostofi, “X-Ray Vision With Only WiFi Power Measurements Using Rytov Wave Models,” IEEE Trans. Vehicular Technol. 64(4), 1376–1387 (2015).
[Crossref]

2014 (1)

2013 (2)

E. Pauwels, D. Van Loo, P. Cornillie, L. Brabant, and L. Van Hoorebeke, “An exploratory study of contrast agents for soft tissue visualization by means of high resolution X-ray computed tomography imaging,” J. Microsc. 250(1), 21–31 (2013).
[Crossref] [PubMed]

R. Di Corato, F. Gazeau, C. Le Visage, D. Fayol, P. Levitz, F. Lux, D. Letourneur, N. Luciani, O. Tillement, and C. Wilhelm, “High-Resolution Cellular MRI: Gadolinium and Iron Oxide Nanoparticles for in-Depth Dual-Cell Imaging of Engineered Tissue Constructs,” ACS Nano 7(9), 7500–7512 (2013).
[Crossref] [PubMed]

2011 (2)

R. Ankri, H. Taitelbaum, and D. Fixler, “On Phantom experiments of the photon migration model in tissues,” The Open Optics Journal 5(1), 28–32 (2011).
[Crossref]

D. Fixler, H. Duadi, R. Ankri, and Z. Zalevsky, “Determination of coherence length in biological tissues,” Lasers Surg. Med. 43(4), 339–343 (2011).
[Crossref] [PubMed]

2010 (2)

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

J. Stefanowska, D. Zakowiecki, and K. Cal, “Magnetic resonance imaging of the skin,” J. Eur. Acad. Dermatol. Venereol. 24(8), 875–880 (2010).
[Crossref] [PubMed]

2009 (1)

M. A. Fox, D. G. Diven, K. Sra, A. Boretsky, T. Poonawalla, A. Readinger, M. Motamedi, and R. J. McNichols, “Dermal scatter reduction in human skin: A method using controlled application of glycerol,” Lasers Surg. Med. 41(4), 251–255 (2009).
[Crossref] [PubMed]

2007 (1)

D. Fixler, J. Garcia, Z. Zalevsky, A. Weiss, and M. Deutsch, “Speckle random coding for 2D super resolving fluorescent microscopic imaging,” Micron 38(2), 121–128 (2007).
[Crossref] [PubMed]

2005 (5)

A. G. Podoleanu, “Optical coherence tomography,” Br. J. Radiol. 78(935), 976–988 (2005).
[Crossref] [PubMed]

K.-D. Kim, A. Ruprecht, G. Wang, J. B. Lee, D. V. Dawson, and M. W. Vannier, “Accuracy of facial soft tissue thickness measurements in personal computer-based multiplanar reconstructed computed tomographic images,” Forensic Sci. Int. 155(1), 28–34 (2005).
[Crossref] [PubMed]

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R. Arridge, and J. P. Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol. 50(20), 4913–4930 (2005).
[Crossref] [PubMed]

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[Crossref] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005).
[Crossref] [PubMed]

2002 (1)

D. Ferber, “Livestock Feed Ban Preserves Drugs’ Power,” Science 295(5552), 27–28 (2002).
[Crossref] [PubMed]

1997 (1)

D. Mendlovic, Z. Zalevsky, and N. Konforti, “Computation considerations and fast algorithms for calculating the diffraction integral,” J. Mod. Opt. 44(2), 407–414 (1997).
[Crossref]

1996 (1)

1994 (1)

1992 (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

1990 (2)

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

O. T. von Ramm and S. W. Smith, “Real time volumetric ultrasound imaging system,” J. Digit. Imaging 3(4), 261–266 (1990).
[Crossref] [PubMed]

1988 (1)

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[Crossref] [PubMed]

1972 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).

Abourbeh, G.

M. Motiei, T. Dreifuss, O. Betzer, H. Panet, A. Popovtzer, J. Santana, G. Abourbeh, E. Mishani, and R. Popovtzer, “Differentiating Between Cancer and Inflammation: A Metabolic-Based Method for Functional Computed Tomography Imaging,” ACS Nano 10(3), 3469–3477 (2016).
[Crossref] [PubMed]

Alexandrakis, G.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005).
[Crossref] [PubMed]

Alon, N.

N. Alon, T. Havdala, H. Skaat, K. Baranes, M. Marcus, I. Levy, S. Margel, A. Sharoni, and O. Shefi, “Magnetic micro-device for manipulating PC12 cell migration and organization,” Lab Chip 15(9), 2030–2036 (2015).
[Crossref] [PubMed]

Ankri, R.

R. Ankri, H. Taitelbaum, and D. Fixler, “On Phantom experiments of the photon migration model in tissues,” The Open Optics Journal 5(1), 28–32 (2011).
[Crossref]

D. Fixler, H. Duadi, R. Ankri, and Z. Zalevsky, “Determination of coherence length in biological tissues,” Lasers Surg. Med. 43(4), 339–343 (2011).
[Crossref] [PubMed]

Arias, M.

D. Mery, E. Svec, M. Arias, V. Riffo, J. M. Saavedra, and S. Banerjee, “Modern Computer Vision Techniques for X-Ray Testing in Baggage Inspection,” IEEE Trans. Syst. Man Cybern. Syst. 47(4), 682–692 (2017).
[Crossref]

Arridge, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[Crossref] [PubMed]

Arridge, S. R.

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R. Arridge, and J. P. Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol. 50(20), 4913–4930 (2005).
[Crossref] [PubMed]

Banerjee, S.

D. Mery, E. Svec, M. Arias, V. Riffo, J. M. Saavedra, and S. Banerjee, “Modern Computer Vision Techniques for X-Ray Testing in Baggage Inspection,” IEEE Trans. Syst. Man Cybern. Syst. 47(4), 682–692 (2017).
[Crossref]

Baranes, K.

N. Alon, T. Havdala, H. Skaat, K. Baranes, M. Marcus, I. Levy, S. Margel, A. Sharoni, and O. Shefi, “Magnetic micro-device for manipulating PC12 cell migration and organization,” Lab Chip 15(9), 2030–2036 (2015).
[Crossref] [PubMed]

Barbour, R. L.

D. Piao, R. L. Barbour, H. L. Graber, and D. C. Lee, “On the geometry dependence of differential pathlength factor for near-infrared spectroscopy. I. Steady-state with homogeneous medium,” J. Biomed. Opt. 20(10), 105005 (2015).
[Crossref] [PubMed]

Bargo, P. R.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[Crossref] [PubMed]

Betzer, O.

M. Motiei, T. Dreifuss, O. Betzer, H. Panet, A. Popovtzer, J. Santana, G. Abourbeh, E. Mishani, and R. Popovtzer, “Differentiating Between Cancer and Inflammation: A Metabolic-Based Method for Functional Computed Tomography Imaging,” ACS Nano 10(3), 3469–3477 (2016).
[Crossref] [PubMed]

Blair, G.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[Crossref] [PubMed]

Boretsky, A.

M. A. Fox, D. G. Diven, K. Sra, A. Boretsky, T. Poonawalla, A. Readinger, M. Motamedi, and R. J. McNichols, “Dermal scatter reduction in human skin: A method using controlled application of glycerol,” Lasers Surg. Med. 41(4), 251–255 (2009).
[Crossref] [PubMed]

Brabant, L.

E. Pauwels, D. Van Loo, P. Cornillie, L. Brabant, and L. Van Hoorebeke, “An exploratory study of contrast agents for soft tissue visualization by means of high resolution X-ray computed tomography imaging,” J. Microsc. 250(1), 21–31 (2013).
[Crossref] [PubMed]

Buckland, L.

S. Depatla, L. Buckland, and Y. Mostofi, “X-Ray Vision With Only WiFi Power Measurements Using Rytov Wave Models,” IEEE Trans. Vehicular Technol. 64(4), 1376–1387 (2015).
[Crossref]

Cal, K.

J. Stefanowska, D. Zakowiecki, and K. Cal, “Magnetic resonance imaging of the skin,” J. Eur. Acad. Dermatol. Venereol. 24(8), 875–880 (2010).
[Crossref] [PubMed]

Chatziioannou, A. F.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005).
[Crossref] [PubMed]

Cheong, W.-F.

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Cope, M.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[Crossref] [PubMed]

Cornillie, P.

E. Pauwels, D. Van Loo, P. Cornillie, L. Brabant, and L. Van Hoorebeke, “An exploratory study of contrast agents for soft tissue visualization by means of high resolution X-ray computed tomography imaging,” J. Microsc. 250(1), 21–31 (2013).
[Crossref] [PubMed]

Dawson, D. V.

K.-D. Kim, A. Ruprecht, G. Wang, J. B. Lee, D. V. Dawson, and M. W. Vannier, “Accuracy of facial soft tissue thickness measurements in personal computer-based multiplanar reconstructed computed tomographic images,” Forensic Sci. Int. 155(1), 28–34 (2005).
[Crossref] [PubMed]

Delpy, D. T.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[Crossref] [PubMed]

Depatla, S.

S. Depatla, L. Buckland, and Y. Mostofi, “X-Ray Vision With Only WiFi Power Measurements Using Rytov Wave Models,” IEEE Trans. Vehicular Technol. 64(4), 1376–1387 (2015).
[Crossref]

Deutsch, M.

D. Fixler, J. Garcia, Z. Zalevsky, A. Weiss, and M. Deutsch, “Speckle random coding for 2D super resolving fluorescent microscopic imaging,” Micron 38(2), 121–128 (2007).
[Crossref] [PubMed]

Di Corato, R.

R. Di Corato, F. Gazeau, C. Le Visage, D. Fayol, P. Levitz, F. Lux, D. Letourneur, N. Luciani, O. Tillement, and C. Wilhelm, “High-Resolution Cellular MRI: Gadolinium and Iron Oxide Nanoparticles for in-Depth Dual-Cell Imaging of Engineered Tissue Constructs,” ACS Nano 7(9), 7500–7512 (2013).
[Crossref] [PubMed]

Diven, D. G.

M. A. Fox, D. G. Diven, K. Sra, A. Boretsky, T. Poonawalla, A. Readinger, M. Motamedi, and R. J. McNichols, “Dermal scatter reduction in human skin: A method using controlled application of glycerol,” Lasers Surg. Med. 41(4), 251–255 (2009).
[Crossref] [PubMed]

Dorsch, R. G.

Dreifuss, T.

M. Motiei, T. Dreifuss, O. Betzer, H. Panet, A. Popovtzer, J. Santana, G. Abourbeh, E. Mishani, and R. Popovtzer, “Differentiating Between Cancer and Inflammation: A Metabolic-Based Method for Functional Computed Tomography Imaging,” ACS Nano 10(3), 3469–3477 (2016).
[Crossref] [PubMed]

Duadi, H.

I. Yariv, H. Duadi, and D. Fixler, “Optical method to extract the reduced scattering coefficient from tissue: theory and experiments,” Opt. Lett. 43(21), 5299–5302 (2018).
[Crossref] [PubMed]

I. Yariv, M. Haddad, H. Duadi, M. Motiei, and D. Fixler, “New optical sensing technique of tissue viability and blood flow based on nanophotonic iterative multi-plane reflectance measurements,” Int. J. Nanomedicine 11, 5237–5244 (2016).
[Crossref] [PubMed]

I. Yariv, Y. Kapp-Barnea, E. Genzel, H. Duadi, and D. Fixler, “Detecting concentrations of milk components by an iterative optical technique,” J. Biophotonics 8(11-12), 979–984 (2015).
[Crossref] [PubMed]

I. Yariv, G. Rahamim, E. Shliselberg, H. Duadi, A. Lipovsky, R. Lubart, and D. Fixler, “Detecting nanoparticles in tissue using an optical iterative technique,” Biomed. Opt. Express 5(11), 3871–3881 (2014).
[Crossref] [PubMed]

D. Fixler, H. Duadi, R. Ankri, and Z. Zalevsky, “Determination of coherence length in biological tissues,” Lasers Surg. Med. 43(4), 339–343 (2011).
[Crossref] [PubMed]

Farrell, T. J.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Fayol, D.

R. Di Corato, F. Gazeau, C. Le Visage, D. Fayol, P. Levitz, F. Lux, D. Letourneur, N. Luciani, O. Tillement, and C. Wilhelm, “High-Resolution Cellular MRI: Gadolinium and Iron Oxide Nanoparticles for in-Depth Dual-Cell Imaging of Engineered Tissue Constructs,” ACS Nano 7(9), 7500–7512 (2013).
[Crossref] [PubMed]

Feng, T.-C.

Ferber, D.

D. Ferber, “Livestock Feed Ban Preserves Drugs’ Power,” Science 295(5552), 27–28 (2002).
[Crossref] [PubMed]

Ferreira, H. C.

S. Sinha and H. C. Ferreira, “Through-the-Wall Radar Imaging: A Review AU - Nkwari, P. K. M,” IETE Tech. Rev. 35(6), 631–639 (2018).
[Crossref]

Fixler, D.

I. Yariv, H. Duadi, and D. Fixler, “Optical method to extract the reduced scattering coefficient from tissue: theory and experiments,” Opt. Lett. 43(21), 5299–5302 (2018).
[Crossref] [PubMed]

I. Yariv, M. Haddad, H. Duadi, M. Motiei, and D. Fixler, “New optical sensing technique of tissue viability and blood flow based on nanophotonic iterative multi-plane reflectance measurements,” Int. J. Nanomedicine 11, 5237–5244 (2016).
[Crossref] [PubMed]

I. Yariv, Y. Kapp-Barnea, E. Genzel, H. Duadi, and D. Fixler, “Detecting concentrations of milk components by an iterative optical technique,” J. Biophotonics 8(11-12), 979–984 (2015).
[Crossref] [PubMed]

I. Yariv, G. Rahamim, E. Shliselberg, H. Duadi, A. Lipovsky, R. Lubart, and D. Fixler, “Detecting nanoparticles in tissue using an optical iterative technique,” Biomed. Opt. Express 5(11), 3871–3881 (2014).
[Crossref] [PubMed]

R. Ankri, H. Taitelbaum, and D. Fixler, “On Phantom experiments of the photon migration model in tissues,” The Open Optics Journal 5(1), 28–32 (2011).
[Crossref]

D. Fixler, H. Duadi, R. Ankri, and Z. Zalevsky, “Determination of coherence length in biological tissues,” Lasers Surg. Med. 43(4), 339–343 (2011).
[Crossref] [PubMed]

D. Fixler, J. Garcia, Z. Zalevsky, A. Weiss, and M. Deutsch, “Speckle random coding for 2D super resolving fluorescent microscopic imaging,” Micron 38(2), 121–128 (2007).
[Crossref] [PubMed]

Fox, M. A.

M. A. Fox, D. G. Diven, K. Sra, A. Boretsky, T. Poonawalla, A. Readinger, M. Motamedi, and R. J. McNichols, “Dermal scatter reduction in human skin: A method using controlled application of glycerol,” Lasers Surg. Med. 41(4), 251–255 (2009).
[Crossref] [PubMed]

Garcia, J.

D. Fixler, J. Garcia, Z. Zalevsky, A. Weiss, and M. Deutsch, “Speckle random coding for 2D super resolving fluorescent microscopic imaging,” Micron 38(2), 121–128 (2007).
[Crossref] [PubMed]

Gazeau, F.

R. Di Corato, F. Gazeau, C. Le Visage, D. Fayol, P. Levitz, F. Lux, D. Letourneur, N. Luciani, O. Tillement, and C. Wilhelm, “High-Resolution Cellular MRI: Gadolinium and Iron Oxide Nanoparticles for in-Depth Dual-Cell Imaging of Engineered Tissue Constructs,” ACS Nano 7(9), 7500–7512 (2013).
[Crossref] [PubMed]

Genzel, E.

I. Yariv, Y. Kapp-Barnea, E. Genzel, H. Duadi, and D. Fixler, “Detecting concentrations of milk components by an iterative optical technique,” J. Biophotonics 8(11-12), 979–984 (2015).
[Crossref] [PubMed]

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).

Goodell, T. T.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[Crossref] [PubMed]

Graber, H. L.

D. Piao, R. L. Barbour, H. L. Graber, and D. C. Lee, “On the geometry dependence of differential pathlength factor for near-infrared spectroscopy. I. Steady-state with homogeneous medium,” J. Biomed. Opt. 20(10), 105005 (2015).
[Crossref] [PubMed]

Haddad, M.

I. Yariv, M. Haddad, H. Duadi, M. Motiei, and D. Fixler, “New optical sensing technique of tissue viability and blood flow based on nanophotonic iterative multi-plane reflectance measurements,” Int. J. Nanomedicine 11, 5237–5244 (2016).
[Crossref] [PubMed]

Haskell, R. C.

Havdala, T.

N. Alon, T. Havdala, H. Skaat, K. Baranes, M. Marcus, I. Levy, S. Margel, A. Sharoni, and O. Shefi, “Magnetic micro-device for manipulating PC12 cell migration and organization,” Lab Chip 15(9), 2030–2036 (2015).
[Crossref] [PubMed]

Jacques, S. L.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[Crossref] [PubMed]

Kaipio, J. P.

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R. Arridge, and J. P. Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol. 50(20), 4913–4930 (2005).
[Crossref] [PubMed]

Kapp-Barnea, Y.

I. Yariv, Y. Kapp-Barnea, E. Genzel, H. Duadi, and D. Fixler, “Detecting concentrations of milk components by an iterative optical technique,” J. Biophotonics 8(11-12), 979–984 (2015).
[Crossref] [PubMed]

Kim, K.-D.

K.-D. Kim, A. Ruprecht, G. Wang, J. B. Lee, D. V. Dawson, and M. W. Vannier, “Accuracy of facial soft tissue thickness measurements in personal computer-based multiplanar reconstructed computed tomographic images,” Forensic Sci. Int. 155(1), 28–34 (2005).
[Crossref] [PubMed]

Kolehmainen, V.

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R. Arridge, and J. P. Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol. 50(20), 4913–4930 (2005).
[Crossref] [PubMed]

Konforti, N.

D. Mendlovic, Z. Zalevsky, and N. Konforti, “Computation considerations and fast algorithms for calculating the diffraction integral,” J. Mod. Opt. 44(2), 407–414 (1997).
[Crossref]

Koval, G.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[Crossref] [PubMed]

Lagendijk, A.

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

Le Visage, C.

R. Di Corato, F. Gazeau, C. Le Visage, D. Fayol, P. Levitz, F. Lux, D. Letourneur, N. Luciani, O. Tillement, and C. Wilhelm, “High-Resolution Cellular MRI: Gadolinium and Iron Oxide Nanoparticles for in-Depth Dual-Cell Imaging of Engineered Tissue Constructs,” ACS Nano 7(9), 7500–7512 (2013).
[Crossref] [PubMed]

Lee, D. C.

D. Piao, R. L. Barbour, H. L. Graber, and D. C. Lee, “On the geometry dependence of differential pathlength factor for near-infrared spectroscopy. I. Steady-state with homogeneous medium,” J. Biomed. Opt. 20(10), 105005 (2015).
[Crossref] [PubMed]

Lee, J. B.

K.-D. Kim, A. Ruprecht, G. Wang, J. B. Lee, D. V. Dawson, and M. W. Vannier, “Accuracy of facial soft tissue thickness measurements in personal computer-based multiplanar reconstructed computed tomographic images,” Forensic Sci. Int. 155(1), 28–34 (2005).
[Crossref] [PubMed]

Letourneur, D.

R. Di Corato, F. Gazeau, C. Le Visage, D. Fayol, P. Levitz, F. Lux, D. Letourneur, N. Luciani, O. Tillement, and C. Wilhelm, “High-Resolution Cellular MRI: Gadolinium and Iron Oxide Nanoparticles for in-Depth Dual-Cell Imaging of Engineered Tissue Constructs,” ACS Nano 7(9), 7500–7512 (2013).
[Crossref] [PubMed]

Levitz, P.

R. Di Corato, F. Gazeau, C. Le Visage, D. Fayol, P. Levitz, F. Lux, D. Letourneur, N. Luciani, O. Tillement, and C. Wilhelm, “High-Resolution Cellular MRI: Gadolinium and Iron Oxide Nanoparticles for in-Depth Dual-Cell Imaging of Engineered Tissue Constructs,” ACS Nano 7(9), 7500–7512 (2013).
[Crossref] [PubMed]

Levy, I.

N. Alon, T. Havdala, H. Skaat, K. Baranes, M. Marcus, I. Levy, S. Margel, A. Sharoni, and O. Shefi, “Magnetic micro-device for manipulating PC12 cell migration and organization,” Lab Chip 15(9), 2030–2036 (2015).
[Crossref] [PubMed]

Li, Y.

Lipovsky, A.

Liu, Y.

Lubart, R.

Luciani, N.

R. Di Corato, F. Gazeau, C. Le Visage, D. Fayol, P. Levitz, F. Lux, D. Letourneur, N. Luciani, O. Tillement, and C. Wilhelm, “High-Resolution Cellular MRI: Gadolinium and Iron Oxide Nanoparticles for in-Depth Dual-Cell Imaging of Engineered Tissue Constructs,” ACS Nano 7(9), 7500–7512 (2013).
[Crossref] [PubMed]

Luo, Q.

J. A. Newman, Q. Luo, and K. J. Webb, “Imaging Hidden Objects with Spatial Speckle Intensity Correlations over Object Position,” Phys. Rev. Lett. 116(7), 073902 (2016).
[Crossref] [PubMed]

Lux, F.

R. Di Corato, F. Gazeau, C. Le Visage, D. Fayol, P. Levitz, F. Lux, D. Letourneur, N. Luciani, O. Tillement, and C. Wilhelm, “High-Resolution Cellular MRI: Gadolinium and Iron Oxide Nanoparticles for in-Depth Dual-Cell Imaging of Engineered Tissue Constructs,” ACS Nano 7(9), 7500–7512 (2013).
[Crossref] [PubMed]

Ma, C.

Marcus, M.

N. Alon, T. Havdala, H. Skaat, K. Baranes, M. Marcus, I. Levy, S. Margel, A. Sharoni, and O. Shefi, “Magnetic micro-device for manipulating PC12 cell migration and organization,” Lab Chip 15(9), 2030–2036 (2015).
[Crossref] [PubMed]

Margel, S.

N. Alon, T. Havdala, H. Skaat, K. Baranes, M. Marcus, I. Levy, S. Margel, A. Sharoni, and O. Shefi, “Magnetic micro-device for manipulating PC12 cell migration and organization,” Lab Chip 15(9), 2030–2036 (2015).
[Crossref] [PubMed]

McAdams, M. S.

McNichols, R. J.

M. A. Fox, D. G. Diven, K. Sra, A. Boretsky, T. Poonawalla, A. Readinger, M. Motamedi, and R. J. McNichols, “Dermal scatter reduction in human skin: A method using controlled application of glycerol,” Lasers Surg. Med. 41(4), 251–255 (2009).
[Crossref] [PubMed]

Mendlovic, D.

D. Mendlovic, Z. Zalevsky, and N. Konforti, “Computation considerations and fast algorithms for calculating the diffraction integral,” J. Mod. Opt. 44(2), 407–414 (1997).
[Crossref]

Z. Zalevsky, D. Mendlovic, and R. G. Dorsch, “Gerchberg-Saxton algorithm applied in the fractional Fourier or the Fresnel domain,” Opt. Lett. 21(12), 842–844 (1996).
[Crossref] [PubMed]

Mery, D.

D. Mery, E. Svec, M. Arias, V. Riffo, J. M. Saavedra, and S. Banerjee, “Modern Computer Vision Techniques for X-Ray Testing in Baggage Inspection,” IEEE Trans. Syst. Man Cybern. Syst. 47(4), 682–692 (2017).
[Crossref]

Mishani, E.

M. Motiei, T. Dreifuss, O. Betzer, H. Panet, A. Popovtzer, J. Santana, G. Abourbeh, E. Mishani, and R. Popovtzer, “Differentiating Between Cancer and Inflammation: A Metabolic-Based Method for Functional Computed Tomography Imaging,” ACS Nano 10(3), 3469–3477 (2016).
[Crossref] [PubMed]

Mosk, A. P.

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

Mostofi, Y.

S. Depatla, L. Buckland, and Y. Mostofi, “X-Ray Vision With Only WiFi Power Measurements Using Rytov Wave Models,” IEEE Trans. Vehicular Technol. 64(4), 1376–1387 (2015).
[Crossref]

Motamedi, M.

M. A. Fox, D. G. Diven, K. Sra, A. Boretsky, T. Poonawalla, A. Readinger, M. Motamedi, and R. J. McNichols, “Dermal scatter reduction in human skin: A method using controlled application of glycerol,” Lasers Surg. Med. 41(4), 251–255 (2009).
[Crossref] [PubMed]

Motiei, M.

I. Yariv, M. Haddad, H. Duadi, M. Motiei, and D. Fixler, “New optical sensing technique of tissue viability and blood flow based on nanophotonic iterative multi-plane reflectance measurements,” Int. J. Nanomedicine 11, 5237–5244 (2016).
[Crossref] [PubMed]

M. Motiei, T. Dreifuss, O. Betzer, H. Panet, A. Popovtzer, J. Santana, G. Abourbeh, E. Mishani, and R. Popovtzer, “Differentiating Between Cancer and Inflammation: A Metabolic-Based Method for Functional Computed Tomography Imaging,” ACS Nano 10(3), 3469–3477 (2016).
[Crossref] [PubMed]

Newman, J. A.

J. A. Newman, Q. Luo, and K. J. Webb, “Imaging Hidden Objects with Spatial Speckle Intensity Correlations over Object Position,” Phys. Rev. Lett. 116(7), 073902 (2016).
[Crossref] [PubMed]

Panet, H.

M. Motiei, T. Dreifuss, O. Betzer, H. Panet, A. Popovtzer, J. Santana, G. Abourbeh, E. Mishani, and R. Popovtzer, “Differentiating Between Cancer and Inflammation: A Metabolic-Based Method for Functional Computed Tomography Imaging,” ACS Nano 10(3), 3469–3477 (2016).
[Crossref] [PubMed]

Patel, S.

Patterson, M. S.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Pauwels, E.

E. Pauwels, D. Van Loo, P. Cornillie, L. Brabant, and L. Van Hoorebeke, “An exploratory study of contrast agents for soft tissue visualization by means of high resolution X-ray computed tomography imaging,” J. Microsc. 250(1), 21–31 (2013).
[Crossref] [PubMed]

Piao, D.

D. Piao and S. Patel, “Simple empirical master–slave dual-source configuration within the diffusion approximation enhances modeling of spatially resolved diffuse reflectance at short-path and with low scattering from a semi-infinite homogeneous medium,” Appl. Opt. 56(5), 1447–1452 (2017).
[Crossref] [PubMed]

D. Piao, R. L. Barbour, H. L. Graber, and D. C. Lee, “On the geometry dependence of differential pathlength factor for near-infrared spectroscopy. I. Steady-state with homogeneous medium,” J. Biomed. Opt. 20(10), 105005 (2015).
[Crossref] [PubMed]

Podoleanu, A. G.

A. G. Podoleanu, “Optical coherence tomography,” Br. J. Radiol. 78(935), 976–988 (2005).
[Crossref] [PubMed]

Poonawalla, T.

M. A. Fox, D. G. Diven, K. Sra, A. Boretsky, T. Poonawalla, A. Readinger, M. Motamedi, and R. J. McNichols, “Dermal scatter reduction in human skin: A method using controlled application of glycerol,” Lasers Surg. Med. 41(4), 251–255 (2009).
[Crossref] [PubMed]

Popovtzer, A.

M. Motiei, T. Dreifuss, O. Betzer, H. Panet, A. Popovtzer, J. Santana, G. Abourbeh, E. Mishani, and R. Popovtzer, “Differentiating Between Cancer and Inflammation: A Metabolic-Based Method for Functional Computed Tomography Imaging,” ACS Nano 10(3), 3469–3477 (2016).
[Crossref] [PubMed]

Popovtzer, R.

M. Motiei, T. Dreifuss, O. Betzer, H. Panet, A. Popovtzer, J. Santana, G. Abourbeh, E. Mishani, and R. Popovtzer, “Differentiating Between Cancer and Inflammation: A Metabolic-Based Method for Functional Computed Tomography Imaging,” ACS Nano 10(3), 3469–3477 (2016).
[Crossref] [PubMed]

Prahl, S. A.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[Crossref] [PubMed]

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Rahamim, G.

Rannou, F. R.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005).
[Crossref] [PubMed]

Readinger, A.

M. A. Fox, D. G. Diven, K. Sra, A. Boretsky, T. Poonawalla, A. Readinger, M. Motamedi, and R. J. McNichols, “Dermal scatter reduction in human skin: A method using controlled application of glycerol,” Lasers Surg. Med. 41(4), 251–255 (2009).
[Crossref] [PubMed]

Riffo, V.

D. Mery, E. Svec, M. Arias, V. Riffo, J. M. Saavedra, and S. Banerjee, “Modern Computer Vision Techniques for X-Ray Testing in Baggage Inspection,” IEEE Trans. Syst. Man Cybern. Syst. 47(4), 682–692 (2017).
[Crossref]

Ruprecht, A.

K.-D. Kim, A. Ruprecht, G. Wang, J. B. Lee, D. V. Dawson, and M. W. Vannier, “Accuracy of facial soft tissue thickness measurements in personal computer-based multiplanar reconstructed computed tomographic images,” Forensic Sci. Int. 155(1), 28–34 (2005).
[Crossref] [PubMed]

Saavedra, J. M.

D. Mery, E. Svec, M. Arias, V. Riffo, J. M. Saavedra, and S. Banerjee, “Modern Computer Vision Techniques for X-Ray Testing in Baggage Inspection,” IEEE Trans. Syst. Man Cybern. Syst. 47(4), 682–692 (2017).
[Crossref]

Santana, J.

M. Motiei, T. Dreifuss, O. Betzer, H. Panet, A. Popovtzer, J. Santana, G. Abourbeh, E. Mishani, and R. Popovtzer, “Differentiating Between Cancer and Inflammation: A Metabolic-Based Method for Functional Computed Tomography Imaging,” ACS Nano 10(3), 3469–3477 (2016).
[Crossref] [PubMed]

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).

Sharoni, A.

N. Alon, T. Havdala, H. Skaat, K. Baranes, M. Marcus, I. Levy, S. Margel, A. Sharoni, and O. Shefi, “Magnetic micro-device for manipulating PC12 cell migration and organization,” Lab Chip 15(9), 2030–2036 (2015).
[Crossref] [PubMed]

Shefi, O.

N. Alon, T. Havdala, H. Skaat, K. Baranes, M. Marcus, I. Levy, S. Margel, A. Sharoni, and O. Shefi, “Magnetic micro-device for manipulating PC12 cell migration and organization,” Lab Chip 15(9), 2030–2036 (2015).
[Crossref] [PubMed]

Shen, Y.

Shi, J.

Shliselberg, E.

Sinha, S.

S. Sinha and H. C. Ferreira, “Through-the-Wall Radar Imaging: A Review AU - Nkwari, P. K. M,” IETE Tech. Rev. 35(6), 631–639 (2018).
[Crossref]

Skaat, H.

N. Alon, T. Havdala, H. Skaat, K. Baranes, M. Marcus, I. Levy, S. Margel, A. Sharoni, and O. Shefi, “Magnetic micro-device for manipulating PC12 cell migration and organization,” Lab Chip 15(9), 2030–2036 (2015).
[Crossref] [PubMed]

Sleven, R. A.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[Crossref] [PubMed]

Smith, S. W.

O. T. von Ramm and S. W. Smith, “Real time volumetric ultrasound imaging system,” J. Digit. Imaging 3(4), 261–266 (1990).
[Crossref] [PubMed]

Sra, K.

M. A. Fox, D. G. Diven, K. Sra, A. Boretsky, T. Poonawalla, A. Readinger, M. Motamedi, and R. J. McNichols, “Dermal scatter reduction in human skin: A method using controlled application of glycerol,” Lasers Surg. Med. 41(4), 251–255 (2009).
[Crossref] [PubMed]

Stefanowska, J.

J. Stefanowska, D. Zakowiecki, and K. Cal, “Magnetic resonance imaging of the skin,” J. Eur. Acad. Dermatol. Venereol. 24(8), 875–880 (2010).
[Crossref] [PubMed]

Svaasand, L. O.

Svec, E.

D. Mery, E. Svec, M. Arias, V. Riffo, J. M. Saavedra, and S. Banerjee, “Modern Computer Vision Techniques for X-Ray Testing in Baggage Inspection,” IEEE Trans. Syst. Man Cybern. Syst. 47(4), 682–692 (2017).
[Crossref]

Taitelbaum, H.

R. Ankri, H. Taitelbaum, and D. Fixler, “On Phantom experiments of the photon migration model in tissues,” The Open Optics Journal 5(1), 28–32 (2011).
[Crossref]

Tarvainen, T.

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R. Arridge, and J. P. Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol. 50(20), 4913–4930 (2005).
[Crossref] [PubMed]

Tian, L.

Tillement, O.

R. Di Corato, F. Gazeau, C. Le Visage, D. Fayol, P. Levitz, F. Lux, D. Letourneur, N. Luciani, O. Tillement, and C. Wilhelm, “High-Resolution Cellular MRI: Gadolinium and Iron Oxide Nanoparticles for in-Depth Dual-Cell Imaging of Engineered Tissue Constructs,” ACS Nano 7(9), 7500–7512 (2013).
[Crossref] [PubMed]

Tromberg, B. J.

Tsay, T.-T.

van der Zee, P.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[Crossref] [PubMed]

Van Hoorebeke, L.

E. Pauwels, D. Van Loo, P. Cornillie, L. Brabant, and L. Van Hoorebeke, “An exploratory study of contrast agents for soft tissue visualization by means of high resolution X-ray computed tomography imaging,” J. Microsc. 250(1), 21–31 (2013).
[Crossref] [PubMed]

Van Loo, D.

E. Pauwels, D. Van Loo, P. Cornillie, L. Brabant, and L. Van Hoorebeke, “An exploratory study of contrast agents for soft tissue visualization by means of high resolution X-ray computed tomography imaging,” J. Microsc. 250(1), 21–31 (2013).
[Crossref] [PubMed]

Vannier, M. W.

K.-D. Kim, A. Ruprecht, G. Wang, J. B. Lee, D. V. Dawson, and M. W. Vannier, “Accuracy of facial soft tissue thickness measurements in personal computer-based multiplanar reconstructed computed tomographic images,” Forensic Sci. Int. 155(1), 28–34 (2005).
[Crossref] [PubMed]

Vauhkonen, M.

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R. Arridge, and J. P. Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol. 50(20), 4913–4930 (2005).
[Crossref] [PubMed]

Vellekoop, I. M.

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

von Ramm, O. T.

O. T. von Ramm and S. W. Smith, “Real time volumetric ultrasound imaging system,” J. Digit. Imaging 3(4), 261–266 (1990).
[Crossref] [PubMed]

Wang, G.

K.-D. Kim, A. Ruprecht, G. Wang, J. B. Lee, D. V. Dawson, and M. W. Vannier, “Accuracy of facial soft tissue thickness measurements in personal computer-based multiplanar reconstructed computed tomographic images,” Forensic Sci. Int. 155(1), 28–34 (2005).
[Crossref] [PubMed]

Wang, L. V.

Webb, K. J.

J. A. Newman, Q. Luo, and K. J. Webb, “Imaging Hidden Objects with Spatial Speckle Intensity Correlations over Object Position,” Phys. Rev. Lett. 116(7), 073902 (2016).
[Crossref] [PubMed]

Weiss, A.

D. Fixler, J. Garcia, Z. Zalevsky, A. Weiss, and M. Deutsch, “Speckle random coding for 2D super resolving fluorescent microscopic imaging,” Micron 38(2), 121–128 (2007).
[Crossref] [PubMed]

Welch, A. J.

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Wilhelm, C.

R. Di Corato, F. Gazeau, C. Le Visage, D. Fayol, P. Levitz, F. Lux, D. Letourneur, N. Luciani, O. Tillement, and C. Wilhelm, “High-Resolution Cellular MRI: Gadolinium and Iron Oxide Nanoparticles for in-Depth Dual-Cell Imaging of Engineered Tissue Constructs,” ACS Nano 7(9), 7500–7512 (2013).
[Crossref] [PubMed]

Wilson, B.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Wray, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[Crossref] [PubMed]

Wyatt, J.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[Crossref] [PubMed]

Xue, Y.

Yariv, I.

I. Yariv, H. Duadi, and D. Fixler, “Optical method to extract the reduced scattering coefficient from tissue: theory and experiments,” Opt. Lett. 43(21), 5299–5302 (2018).
[Crossref] [PubMed]

I. Yariv, M. Haddad, H. Duadi, M. Motiei, and D. Fixler, “New optical sensing technique of tissue viability and blood flow based on nanophotonic iterative multi-plane reflectance measurements,” Int. J. Nanomedicine 11, 5237–5244 (2016).
[Crossref] [PubMed]

I. Yariv, Y. Kapp-Barnea, E. Genzel, H. Duadi, and D. Fixler, “Detecting concentrations of milk components by an iterative optical technique,” J. Biophotonics 8(11-12), 979–984 (2015).
[Crossref] [PubMed]

I. Yariv, G. Rahamim, E. Shliselberg, H. Duadi, A. Lipovsky, R. Lubart, and D. Fixler, “Detecting nanoparticles in tissue using an optical iterative technique,” Biomed. Opt. Express 5(11), 3871–3881 (2014).
[Crossref] [PubMed]

Zakowiecki, D.

J. Stefanowska, D. Zakowiecki, and K. Cal, “Magnetic resonance imaging of the skin,” J. Eur. Acad. Dermatol. Venereol. 24(8), 875–880 (2010).
[Crossref] [PubMed]

Zalevsky, Z.

D. Fixler, H. Duadi, R. Ankri, and Z. Zalevsky, “Determination of coherence length in biological tissues,” Lasers Surg. Med. 43(4), 339–343 (2011).
[Crossref] [PubMed]

D. Fixler, J. Garcia, Z. Zalevsky, A. Weiss, and M. Deutsch, “Speckle random coding for 2D super resolving fluorescent microscopic imaging,” Micron 38(2), 121–128 (2007).
[Crossref] [PubMed]

D. Mendlovic, Z. Zalevsky, and N. Konforti, “Computation considerations and fast algorithms for calculating the diffraction integral,” J. Mod. Opt. 44(2), 407–414 (1997).
[Crossref]

Z. Zalevsky, D. Mendlovic, and R. G. Dorsch, “Gerchberg-Saxton algorithm applied in the fractional Fourier or the Fresnel domain,” Opt. Lett. 21(12), 842–844 (1996).
[Crossref] [PubMed]

ACS Nano (2)

R. Di Corato, F. Gazeau, C. Le Visage, D. Fayol, P. Levitz, F. Lux, D. Letourneur, N. Luciani, O. Tillement, and C. Wilhelm, “High-Resolution Cellular MRI: Gadolinium and Iron Oxide Nanoparticles for in-Depth Dual-Cell Imaging of Engineered Tissue Constructs,” ACS Nano 7(9), 7500–7512 (2013).
[Crossref] [PubMed]

M. Motiei, T. Dreifuss, O. Betzer, H. Panet, A. Popovtzer, J. Santana, G. Abourbeh, E. Mishani, and R. Popovtzer, “Differentiating Between Cancer and Inflammation: A Metabolic-Based Method for Functional Computed Tomography Imaging,” ACS Nano 10(3), 3469–3477 (2016).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (1)

Br. J. Radiol. (1)

A. G. Podoleanu, “Optical coherence tomography,” Br. J. Radiol. 78(935), 976–988 (2005).
[Crossref] [PubMed]

Forensic Sci. Int. (1)

K.-D. Kim, A. Ruprecht, G. Wang, J. B. Lee, D. V. Dawson, and M. W. Vannier, “Accuracy of facial soft tissue thickness measurements in personal computer-based multiplanar reconstructed computed tomographic images,” Forensic Sci. Int. 155(1), 28–34 (2005).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

IEEE Trans. Syst. Man Cybern. Syst. (1)

D. Mery, E. Svec, M. Arias, V. Riffo, J. M. Saavedra, and S. Banerjee, “Modern Computer Vision Techniques for X-Ray Testing in Baggage Inspection,” IEEE Trans. Syst. Man Cybern. Syst. 47(4), 682–692 (2017).
[Crossref]

IEEE Trans. Vehicular Technol. (1)

S. Depatla, L. Buckland, and Y. Mostofi, “X-Ray Vision With Only WiFi Power Measurements Using Rytov Wave Models,” IEEE Trans. Vehicular Technol. 64(4), 1376–1387 (2015).
[Crossref]

IETE Tech. Rev. (1)

S. Sinha and H. C. Ferreira, “Through-the-Wall Radar Imaging: A Review AU - Nkwari, P. K. M,” IETE Tech. Rev. 35(6), 631–639 (2018).
[Crossref]

Int. J. Nanomedicine (1)

I. Yariv, M. Haddad, H. Duadi, M. Motiei, and D. Fixler, “New optical sensing technique of tissue viability and blood flow based on nanophotonic iterative multi-plane reflectance measurements,” Int. J. Nanomedicine 11, 5237–5244 (2016).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt. 10(3), 034018 (2005).
[Crossref] [PubMed]

D. Piao, R. L. Barbour, H. L. Graber, and D. C. Lee, “On the geometry dependence of differential pathlength factor for near-infrared spectroscopy. I. Steady-state with homogeneous medium,” J. Biomed. Opt. 20(10), 105005 (2015).
[Crossref] [PubMed]

J. Biophotonics (1)

I. Yariv, Y. Kapp-Barnea, E. Genzel, H. Duadi, and D. Fixler, “Detecting concentrations of milk components by an iterative optical technique,” J. Biophotonics 8(11-12), 979–984 (2015).
[Crossref] [PubMed]

J. Digit. Imaging (1)

O. T. von Ramm and S. W. Smith, “Real time volumetric ultrasound imaging system,” J. Digit. Imaging 3(4), 261–266 (1990).
[Crossref] [PubMed]

J. Eur. Acad. Dermatol. Venereol. (1)

J. Stefanowska, D. Zakowiecki, and K. Cal, “Magnetic resonance imaging of the skin,” J. Eur. Acad. Dermatol. Venereol. 24(8), 875–880 (2010).
[Crossref] [PubMed]

J. Microsc. (1)

E. Pauwels, D. Van Loo, P. Cornillie, L. Brabant, and L. Van Hoorebeke, “An exploratory study of contrast agents for soft tissue visualization by means of high resolution X-ray computed tomography imaging,” J. Microsc. 250(1), 21–31 (2013).
[Crossref] [PubMed]

J. Mod. Opt. (1)

D. Mendlovic, Z. Zalevsky, and N. Konforti, “Computation considerations and fast algorithms for calculating the diffraction integral,” J. Mod. Opt. 44(2), 407–414 (1997).
[Crossref]

J. Opt. Soc. Am. A (1)

Lab Chip (1)

N. Alon, T. Havdala, H. Skaat, K. Baranes, M. Marcus, I. Levy, S. Margel, A. Sharoni, and O. Shefi, “Magnetic micro-device for manipulating PC12 cell migration and organization,” Lab Chip 15(9), 2030–2036 (2015).
[Crossref] [PubMed]

Lasers Surg. Med. (2)

D. Fixler, H. Duadi, R. Ankri, and Z. Zalevsky, “Determination of coherence length in biological tissues,” Lasers Surg. Med. 43(4), 339–343 (2011).
[Crossref] [PubMed]

M. A. Fox, D. G. Diven, K. Sra, A. Boretsky, T. Poonawalla, A. Readinger, M. Motamedi, and R. J. McNichols, “Dermal scatter reduction in human skin: A method using controlled application of glycerol,” Lasers Surg. Med. 41(4), 251–255 (2009).
[Crossref] [PubMed]

Med. Phys. (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Micron (1)

D. Fixler, J. Garcia, Z. Zalevsky, A. Weiss, and M. Deutsch, “Speckle random coding for 2D super resolving fluorescent microscopic imaging,” Micron 38(2), 121–128 (2007).
[Crossref] [PubMed]

Nat. Photonics (1)

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

Opt. Lett. (2)

Optica (2)

Optik (Stuttg.) (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).

Phys. Med. Biol. (3)

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R. Arridge, and J. P. Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol. 50(20), 4913–4930 (2005).
[Crossref] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[Crossref] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

J. A. Newman, Q. Luo, and K. J. Webb, “Imaging Hidden Objects with Spatial Speckle Intensity Correlations over Object Position,” Phys. Rev. Lett. 116(7), 073902 (2016).
[Crossref] [PubMed]

Science (1)

D. Ferber, “Livestock Feed Ban Preserves Drugs’ Power,” Science 295(5552), 27–28 (2002).
[Crossref] [PubMed]

The Open Optics Journal (1)

R. Ankri, H. Taitelbaum, and D. Fixler, “On Phantom experiments of the photon migration model in tissues,” The Open Optics Journal 5(1), 28–32 (2011).
[Crossref]

Other (4)

V. V. Tuchin, L. Wang, and D. A. Zimnyakov, Optical Polarization in Biomedical Applications (Springer Science & Business Media, 2006).

I. Yariv, H. Duadi, and D. Fixler, An Optical Method to Detect Tissue Scattering: Theory, Experiments and Biomedical Applications, SPIE BiOS (SPIE, 2019), Vol. 10891.

K. K. Shung, Diagnostic Ultrasound: Imaging and Blood Flow Measurements (CRC press, 2015).

M. G. Amin, Through-the-Wall Radar Imaging (CRC press, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Light intensity images of M planes for the multiplane GS algorithm. (b) A schematic sketch of the GS algorithm with two planes. The algorithm operates between every two planes iteratively until it stops according to the threshold (Eq. (1)) and continues to the next two planes with the computed phase φ j+1 .
Fig. 2
Fig. 2 The experimental setup for recording light intensity images. An image of the setup and its components. The camera records images at multiple planes with equal intervals between them. The experimental setup was designed for reflection measurements. The light source is a He-Ne gas laser with λ = 632.8nm, the focal length of the lens is 75mm; polarizers were added for optical clearing purposes. The sample is set on three axis micrometer plates and can be adjusted in the x-y-z directions.
Fig. 3
Fig. 3 (a) A schematic description of the IMOPE algorithm for reconstructing µs'. After running the multi-plane GS algorithm with the threshold conditions between every two planes, the estimated phase φ ^ j is retrieved. The RMS is calculated and produces an estimation for µs' compared to the theory (as described in Eq. (2)). (b) Reconstructed absolute light phase images from tissue-like phantom with µs' = 0.9mm−1 and 1.3mm−1 (top and bottom respectively).
Fig. 4
Fig. 4 Theoretically computed phase RMS for the multiple scattering regime.
Fig. 5
Fig. 5 Phase images of different areas in a mouse inner thigh. (a) The mouse placed on the IMOPE sample stage with the laser radiating its inner thigh. (b)-(d) the reconstructed absolute phase images of three different positions at the inner thigh of the mouse. The phase reconstructed using the multi-plane GS algorithm as mention in section ‎2.1.1 with M = 7 intensity planes, dz = 0.635mm, and images of 2mmX2mm.

Tables (1)

Tables Icon

Table 1 Differentiation between different tissue types according to the RMS values based on the reconstructed phase images.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε= 1 N 2 x,yγ | A ˜ M (x,y) A M (x,y) | 2
RM S φ M = x,yγ | A M (x,y) e i φ ^ M (x,y) A M (x,y) e i φ M (x,y) | 2 x,yγ | A M (x,y) | 2
φ(x,y)= 2πn λ DPF x 2 + y 2