Abstract

Tissue scattering and absorption impact the excitation and emission light in different ways for multiphoton imaging. The collected fluorescence includes both ballistic photons and scattered photons whereas multiphoton excited signal within the focal volume is mostly generated by ballistic photons. The impact of excitation wavelengths on multiphoton imaging has been extensively investigated before; however, experimental data is lacking to evaluate the impact of emission wavelengths on fluorescence attenuation in deep imaging. Here we perform three-photon imaging of mouse brain vasculature in vivo using green, red, and near-infrared emission fluorophores, and compare quantitatively the attenuation of the fluorescence signal in the mouse brain at the emission wavelengths of 520 nm, 615 nm and 711 nm. Our results show that the emission wavelengths do not significantly influence the fluorescence collection efficiency. For the green, red and near-infrared fluorophores investigated, the difference in fluorescence collection efficiency is less than a factor of 2 at imaging depths between 0.6 and 1 mm. The advantage of long wavelength dyes for multiphoton deep imaging is almost entirely due to the long excitation wavelengths.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Comparing the effective attenuation lengths for long wavelength in vivo imaging of the mouse brain

Mengran Wang, Chunyan Wu, David Sinefeld, Bo Li, Fei Xia, and Chris Xu
Biomed. Opt. Express 9(8) 3534-3543 (2018)

Deep tissue multiphoton microscopy using longer wavelength excitation

Demirhan Kobat, Michael E. Durst, Nozomi Nishimura, Angela W. Wong, Chris B. Schaffer, and Chris Xu
Opt. Express 17(16) 13354-13364 (2009)

In vivo multiphoton imaging of a diverse array of fluorophores to investigate deep neurovascular structure

David R. Miller, Ahmed M. Hassan, Jeremy W. Jarrett, Flor A. Medina, Evan P. Perillo, Kristen Hagan, S. M. Shams Kazmi, Taylor A. Clark, Colin T. Sullender, Theresa A. Jones, Boris V. Zemelman, and Andrew K. Dunn
Biomed. Opt. Express 8(7) 3470-3481 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  2. W. Denk and K. Svoboda, “Photon Upmanship: Why Multiphoton Imaging Is More than a Gimmick,” Neuron 18(3), 351–357 (1997).
    [Crossref] [PubMed]
  3. K. Svoboda and R. Yasuda, “Principles of Two-Photon Excitation Microscopy and Its Applications to Neuroscience,” Neuron 50(6), 823–839 (2006).
    [Crossref] [PubMed]
  4. P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-Photon Excitation Fluorescence Microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
    [Crossref] [PubMed]
  5. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
    [Crossref] [PubMed]
  6. D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y.-T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
    [Crossref] [PubMed]
  7. B. R. Masters and P. So, Handbook of Biomedical Nonlinear Optical Microscopy (Oxford University Press, 2008).
  8. E. Beaurepaire and J. Mertz, “Epifluorescence collection in two-photon microscopy,” Appl. Opt. 41(25), 5376–5382 (2002).
    [Crossref] [PubMed]
  9. A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” Appl. Opt. 39(7), 1194–1201 (2000).
    [Crossref] [PubMed]
  10. M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14(1), 010508 (2009).
    [Crossref] [PubMed]
  11. D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
    [Crossref] [PubMed]
  12. D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).
    [Crossref] [PubMed]
  13. M. Wang, C. Wu, D. Sinefeld, B. Li, F. Xia, and C. Xu, “Comparing the effective attenuation lengths for long wavelength in vivo imaging of the mouse brain,” Biomed. Opt. Express 9(8), 3534–3543 (2018).
    [Crossref] [PubMed]
  14. J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding Two-Photon Intravital Microscopy to the Infrared by Means of Optical Parametric Oscillator,” Biophys. J. 98(4), 715–723 (2010).
    [Crossref] [PubMed]
  15. V. Andresen, S. Alexander, W.-M. Heupel, M. Hirschberg, R. M. Hoffman, and P. Friedl, “Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging,” Curr. Opin. Biotechnol. 20(1), 54–62 (2009).
    [Crossref] [PubMed]
  16. M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111(1), 29–37 (2001).
    [Crossref] [PubMed]
  17. P. Theer and W. Denk, “On the fundamental imaging-depth limit in two-photon microscopy,” J. Opt. Soc. Am. A 23(12), 3139–3149 (2006).
    [Crossref] [PubMed]
  18. A. Leray, C. Odin, E. Huguet, F. Amblard, and Y. L. Grand, “Spatially distributed two-photon excitation fluorescence in scattering media: Experiments and time-resolved Monte Carlo simulations,” Opt. Commun. 272(1), 269–278 (2007).
    [Crossref]
  19. C. Xu and W. W. Webb, “Multiphoton excitation of molecular fluorophores and nonlinear laser microscopy,” in Topics in Fluorescence Spectroscopy (Springer, 1997), 5, pp. 471–540.
  20. “Optical Absorption of Hemoglobin,” http://omlc.org/spectra/hemoglobin/ .
  21. X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11(2), 024015 (2006).
    [Crossref] [PubMed]
  22. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
    [Crossref] [PubMed]
  23. H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
    [Crossref]
  24. S. Hu, K. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14(4), 040503 (2009).
    [Crossref] [PubMed]
  25. Z. Guo, S. Hu, and L. V. Wang, “Calibration-free absolute quantification of optical absorption coefficients using acoustic spectra in 3D photoacoustic microscopy of biological tissue,” Opt. Lett. 35(12), 2067–2069 (2010).
    [Crossref] [PubMed]
  26. J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt. 16(7), 076003 (2011).
    [Crossref] [PubMed]
  27. J. Xia, A. Danielli, Y. Liu, L. Wang, K. Maslov, and L. V. Wang, “Calibration-free quantification of absolute oxygen saturation based on the dynamics of photoacoustic signals,” Opt. Lett. 38(15), 2800–2803 (2013).
    [Crossref] [PubMed]
  28. W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4(1), 6525 (2015).
    [Crossref] [PubMed]
  29. J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
    [Crossref] [PubMed]
  30. H. Jeong, S. Jeong, H. J. Lim, J. Lee, and K. Y. Yoo, “Cerebral Oxygen Saturation Measured by Near-Infrared Spectroscopy and Jugular Venous Bulb Oxygen Saturation during Arthroscopic Shoulder Surgery in Beach Chair Position under Sevoflurane-Nitrous Oxide or Propofol-Remifentanil Anesthesia,” Anesthesiology 116(5), 1047–1056 (2012).
    [Crossref] [PubMed]
  31. B. Xiong, A. Li, Y. Lou, S. Chen, B. Long, J. Peng, Z. Yang, T. Xu, X. Yang, X. Li, T. Jiang, Q. Luo, and H. Gong, “Precise Cerebral Vascular Atlas in Stereotaxic Coordinates of Whole Mouse Brain,” Front. Neuroanat. 11, 128 (2017).
    [Crossref] [PubMed]
  32. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
    [Crossref]
  33. C. Mätzler, “MATLAB Functions for Mie Scattering and Absorption,” Res. Rep. (2002).
  34. P. Theer, M. T. Hasan, and W. Denk, “Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier,” Opt. Lett. 28(12), 1022–1024 (2003).
    [Crossref] [PubMed]
  35. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
    [Crossref] [PubMed]
  36. A. Leray, C. Odin, and Y. Le Grand, “Out-of-focus fluorescence collection in two-photon microscopy of scattering media,” Opt. Commun. 281(24), 6139–6144 (2008).
    [Crossref]
  37. “Radiative Transfer Equation and Diffusion Theory,” in Biomedical Optics (Wiley-Blackwell, 2012), pp. 83–118.
  38. R. Aronson and N. Corngold, “Photon diffusion coefficient in an absorbing medium,” J. Opt. Soc. Am. A 16(5), 1066–1071 (1999).
    [Crossref] [PubMed]
  39. J. Ripoll, D. Yessayan, G. Zacharakis, and V. Ntziachristos, “Experimental determination of photon propagation in highly absorbing and scattering media,” J. Opt. Soc. Am. A 22(3), 546–551 (2005).
    [Crossref] [PubMed]
  40. G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, “Volumetric tomography of fluorescent proteins through small animals in vivo,” Proc. Natl. Acad. Sci. U.S.A. 102(51), 18252–18257 (2005).
    [Crossref] [PubMed]

2018 (1)

2017 (2)

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y.-T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

B. Xiong, A. Li, Y. Lou, S. Chen, B. Long, J. Peng, Z. Yang, T. Xu, X. Yang, X. Li, T. Jiang, Q. Luo, and H. Gong, “Precise Cerebral Vascular Atlas in Stereotaxic Coordinates of Whole Mouse Brain,” Front. Neuroanat. 11, 128 (2017).
[Crossref] [PubMed]

2015 (2)

W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4(1), 6525 (2015).
[Crossref] [PubMed]

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

2013 (2)

J. Xia, A. Danielli, Y. Liu, L. Wang, K. Maslov, and L. V. Wang, “Calibration-free quantification of absolute oxygen saturation based on the dynamics of photoacoustic signals,” Opt. Lett. 38(15), 2800–2803 (2013).
[Crossref] [PubMed]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

2012 (1)

H. Jeong, S. Jeong, H. J. Lim, J. Lee, and K. Y. Yoo, “Cerebral Oxygen Saturation Measured by Near-Infrared Spectroscopy and Jugular Venous Bulb Oxygen Saturation during Arthroscopic Shoulder Surgery in Beach Chair Position under Sevoflurane-Nitrous Oxide or Propofol-Remifentanil Anesthesia,” Anesthesiology 116(5), 1047–1056 (2012).
[Crossref] [PubMed]

2011 (2)

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt. 16(7), 076003 (2011).
[Crossref] [PubMed]

D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).
[Crossref] [PubMed]

2010 (2)

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding Two-Photon Intravital Microscopy to the Infrared by Means of Optical Parametric Oscillator,” Biophys. J. 98(4), 715–723 (2010).
[Crossref] [PubMed]

Z. Guo, S. Hu, and L. V. Wang, “Calibration-free absolute quantification of optical absorption coefficients using acoustic spectra in 3D photoacoustic microscopy of biological tissue,” Opt. Lett. 35(12), 2067–2069 (2010).
[Crossref] [PubMed]

2009 (4)

S. Hu, K. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14(4), 040503 (2009).
[Crossref] [PubMed]

V. Andresen, S. Alexander, W.-M. Heupel, M. Hirschberg, R. M. Hoffman, and P. Friedl, “Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging,” Curr. Opin. Biotechnol. 20(1), 54–62 (2009).
[Crossref] [PubMed]

M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14(1), 010508 (2009).
[Crossref] [PubMed]

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
[Crossref] [PubMed]

2008 (1)

A. Leray, C. Odin, and Y. Le Grand, “Out-of-focus fluorescence collection in two-photon microscopy of scattering media,” Opt. Commun. 281(24), 6139–6144 (2008).
[Crossref]

2007 (2)

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[Crossref]

A. Leray, C. Odin, E. Huguet, F. Amblard, and Y. L. Grand, “Spatially distributed two-photon excitation fluorescence in scattering media: Experiments and time-resolved Monte Carlo simulations,” Opt. Commun. 272(1), 269–278 (2007).
[Crossref]

2006 (4)

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11(2), 024015 (2006).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

K. Svoboda and R. Yasuda, “Principles of Two-Photon Excitation Microscopy and Its Applications to Neuroscience,” Neuron 50(6), 823–839 (2006).
[Crossref] [PubMed]

P. Theer and W. Denk, “On the fundamental imaging-depth limit in two-photon microscopy,” J. Opt. Soc. Am. A 23(12), 3139–3149 (2006).
[Crossref] [PubMed]

2005 (3)

J. Ripoll, D. Yessayan, G. Zacharakis, and V. Ntziachristos, “Experimental determination of photon propagation in highly absorbing and scattering media,” J. Opt. Soc. Am. A 22(3), 546–551 (2005).
[Crossref] [PubMed]

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, “Volumetric tomography of fluorescent proteins through small animals in vivo,” Proc. Natl. Acad. Sci. U.S.A. 102(51), 18252–18257 (2005).
[Crossref] [PubMed]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

2003 (1)

2002 (1)

2001 (1)

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111(1), 29–37 (2001).
[Crossref] [PubMed]

2000 (2)

A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” Appl. Opt. 39(7), 1194–1201 (2000).
[Crossref] [PubMed]

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-Photon Excitation Fluorescence Microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref] [PubMed]

1999 (1)

1997 (1)

W. Denk and K. Svoboda, “Photon Upmanship: Why Multiphoton Imaging Is More than a Gimmick,” Neuron 18(3), 351–357 (1997).
[Crossref] [PubMed]

1990 (2)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Alexander, S.

V. Andresen, S. Alexander, W.-M. Heupel, M. Hirschberg, R. M. Hoffman, and P. Friedl, “Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging,” Curr. Opin. Biotechnol. 20(1), 54–62 (2009).
[Crossref] [PubMed]

Amblard, F.

A. Leray, C. Odin, E. Huguet, F. Amblard, and Y. L. Grand, “Spatially distributed two-photon excitation fluorescence in scattering media: Experiments and time-resolved Monte Carlo simulations,” Opt. Commun. 272(1), 269–278 (2007).
[Crossref]

Andresen, V.

V. Andresen, S. Alexander, W.-M. Heupel, M. Hirschberg, R. M. Hoffman, and P. Friedl, “Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging,” Curr. Opin. Biotechnol. 20(1), 54–62 (2009).
[Crossref] [PubMed]

Aronson, R.

Baldacchini, T.

M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14(1), 010508 (2009).
[Crossref] [PubMed]

Balu, M.

M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14(1), 010508 (2009).
[Crossref] [PubMed]

Beaurepaire, E.

E. Beaurepaire and J. Mertz, “Epifluorescence collection in two-photon microscopy,” Appl. Opt. 41(25), 5376–5382 (2002).
[Crossref] [PubMed]

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111(1), 29–37 (2001).
[Crossref] [PubMed]

Berland, K. M.

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-Photon Excitation Fluorescence Microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref] [PubMed]

Berns, M. W.

Brandt, A. U.

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding Two-Photon Intravital Microscopy to the Infrared by Means of Optical Parametric Oscillator,” Biophys. J. 98(4), 715–723 (2010).
[Crossref] [PubMed]

Carter, J.

M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14(1), 010508 (2009).
[Crossref] [PubMed]

Chaigneau, E.

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111(1), 29–37 (2001).
[Crossref] [PubMed]

Charpak, S.

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111(1), 29–37 (2001).
[Crossref] [PubMed]

Chen, S.

B. Xiong, A. Li, Y. Lou, S. Chen, B. Long, J. Peng, Z. Yang, T. Xu, X. Yang, X. Li, T. Jiang, Q. Luo, and H. Gong, “Precise Cerebral Vascular Atlas in Stereotaxic Coordinates of Whole Mouse Brain,” Front. Neuroanat. 11, 128 (2017).
[Crossref] [PubMed]

Cheng, Y.-T.

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y.-T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

Cheong, W. F.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Clark, C. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Coleno, M.

Corngold, N.

Cruz-Hernández, J. C.

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y.-T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

Danielli, A.

Denk, W.

P. Theer and W. Denk, “On the fundamental imaging-depth limit in two-photon microscopy,” J. Opt. Soc. Am. A 23(12), 3139–3149 (2006).
[Crossref] [PubMed]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

P. Theer, M. T. Hasan, and W. Denk, “Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier,” Opt. Lett. 28(12), 1022–1024 (2003).
[Crossref] [PubMed]

W. Denk and K. Svoboda, “Photon Upmanship: Why Multiphoton Imaging Is More than a Gimmick,” Neuron 18(3), 351–357 (1997).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Dong, C. Y.

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-Photon Excitation Fluorescence Microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref] [PubMed]

Dunn, A. K.

Durst, M. E.

Fawzi, A. A.

W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4(1), 6525 (2015).
[Crossref] [PubMed]

Feng, D. D.

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y.-T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

Friedl, P.

V. Andresen, S. Alexander, W.-M. Heupel, M. Hirschberg, R. M. Hoffman, and P. Friedl, “Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging,” Curr. Opin. Biotechnol. 20(1), 54–62 (2009).
[Crossref] [PubMed]

Gong, H.

B. Xiong, A. Li, Y. Lou, S. Chen, B. Long, J. Peng, Z. Yang, T. Xu, X. Yang, X. Li, T. Jiang, Q. Luo, and H. Gong, “Precise Cerebral Vascular Atlas in Stereotaxic Coordinates of Whole Mouse Brain,” Front. Neuroanat. 11, 128 (2017).
[Crossref] [PubMed]

Grand, Y. L.

A. Leray, C. Odin, E. Huguet, F. Amblard, and Y. L. Grand, “Spatially distributed two-photon excitation fluorescence in scattering media: Experiments and time-resolved Monte Carlo simulations,” Opt. Commun. 272(1), 269–278 (2007).
[Crossref]

Grimm, J.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, “Volumetric tomography of fluorescent proteins through small animals in vivo,” Proc. Natl. Acad. Sci. U.S.A. 102(51), 18252–18257 (2005).
[Crossref] [PubMed]

Guo, Z.

Hasan, M. T.

Hauser, A. E.

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding Two-Photon Intravital Microscopy to the Infrared by Means of Optical Parametric Oscillator,” Biophys. J. 98(4), 715–723 (2010).
[Crossref] [PubMed]

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Herz, J.

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding Two-Photon Intravital Microscopy to the Infrared by Means of Optical Parametric Oscillator,” Biophys. J. 98(4), 715–723 (2010).
[Crossref] [PubMed]

Heupel, W.-M.

V. Andresen, S. Alexander, W.-M. Heupel, M. Hirschberg, R. M. Hoffman, and P. Friedl, “Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging,” Curr. Opin. Biotechnol. 20(1), 54–62 (2009).
[Crossref] [PubMed]

Hirschberg, M.

V. Andresen, S. Alexander, W.-M. Heupel, M. Hirschberg, R. M. Hoffman, and P. Friedl, “Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging,” Curr. Opin. Biotechnol. 20(1), 54–62 (2009).
[Crossref] [PubMed]

Hoffman, R. M.

V. Andresen, S. Alexander, W.-M. Heupel, M. Hirschberg, R. M. Hoffman, and P. Friedl, “Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging,” Curr. Opin. Biotechnol. 20(1), 54–62 (2009).
[Crossref] [PubMed]

Horton, N. G.

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y.-T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).
[Crossref] [PubMed]

Hu, S.

Z. Guo, S. Hu, and L. V. Wang, “Calibration-free absolute quantification of optical absorption coefficients using acoustic spectra in 3D photoacoustic microscopy of biological tissue,” Opt. Lett. 35(12), 2067–2069 (2010).
[Crossref] [PubMed]

S. Hu, K. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14(4), 040503 (2009).
[Crossref] [PubMed]

Huang, C.-H.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Huguet, E.

A. Leray, C. Odin, E. Huguet, F. Amblard, and Y. L. Grand, “Spatially distributed two-photon excitation fluorescence in scattering media: Experiments and time-resolved Monte Carlo simulations,” Opt. Commun. 272(1), 269–278 (2007).
[Crossref]

Jeong, H.

H. Jeong, S. Jeong, H. J. Lim, J. Lee, and K. Y. Yoo, “Cerebral Oxygen Saturation Measured by Near-Infrared Spectroscopy and Jugular Venous Bulb Oxygen Saturation during Arthroscopic Shoulder Surgery in Beach Chair Position under Sevoflurane-Nitrous Oxide or Propofol-Remifentanil Anesthesia,” Anesthesiology 116(5), 1047–1056 (2012).
[Crossref] [PubMed]

Jeong, S.

H. Jeong, S. Jeong, H. J. Lim, J. Lee, and K. Y. Yoo, “Cerebral Oxygen Saturation Measured by Near-Infrared Spectroscopy and Jugular Venous Bulb Oxygen Saturation during Arthroscopic Shoulder Surgery in Beach Chair Position under Sevoflurane-Nitrous Oxide or Propofol-Remifentanil Anesthesia,” Anesthesiology 116(5), 1047–1056 (2012).
[Crossref] [PubMed]

Jiang, T.

B. Xiong, A. Li, Y. Lou, S. Chen, B. Long, J. Peng, Z. Yang, T. Xu, X. Yang, X. Li, T. Jiang, Q. Luo, and H. Gong, “Precise Cerebral Vascular Atlas in Stereotaxic Coordinates of Whole Mouse Brain,” Front. Neuroanat. 11, 128 (2017).
[Crossref] [PubMed]

Jiao, S.

W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4(1), 6525 (2015).
[Crossref] [PubMed]

Kambara, H.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, “Volumetric tomography of fluorescent proteins through small animals in vivo,” Proc. Natl. Acad. Sci. U.S.A. 102(51), 18252–18257 (2005).
[Crossref] [PubMed]

Kobat, D.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).
[Crossref] [PubMed]

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
[Crossref] [PubMed]

Krasieva, T. B.

M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14(1), 010508 (2009).
[Crossref] [PubMed]

Ku, G.

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11(2), 024015 (2006).
[Crossref] [PubMed]

Le Grand, Y.

A. Leray, C. Odin, and Y. Le Grand, “Out-of-focus fluorescence collection in two-photon microscopy of scattering media,” Opt. Commun. 281(24), 6139–6144 (2008).
[Crossref]

Lee, J.

H. Jeong, S. Jeong, H. J. Lim, J. Lee, and K. Y. Yoo, “Cerebral Oxygen Saturation Measured by Near-Infrared Spectroscopy and Jugular Venous Bulb Oxygen Saturation during Arthroscopic Shoulder Surgery in Beach Chair Position under Sevoflurane-Nitrous Oxide or Propofol-Remifentanil Anesthesia,” Anesthesiology 116(5), 1047–1056 (2012).
[Crossref] [PubMed]

Leray, A.

A. Leray, C. Odin, and Y. Le Grand, “Out-of-focus fluorescence collection in two-photon microscopy of scattering media,” Opt. Commun. 281(24), 6139–6144 (2008).
[Crossref]

A. Leray, C. Odin, E. Huguet, F. Amblard, and Y. L. Grand, “Spatially distributed two-photon excitation fluorescence in scattering media: Experiments and time-resolved Monte Carlo simulations,” Opt. Commun. 272(1), 269–278 (2007).
[Crossref]

Leuenberger, T.

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding Two-Photon Intravital Microscopy to the Infrared by Means of Optical Parametric Oscillator,” Biophys. J. 98(4), 715–723 (2010).
[Crossref] [PubMed]

Li, A.

B. Xiong, A. Li, Y. Lou, S. Chen, B. Long, J. Peng, Z. Yang, T. Xu, X. Yang, X. Li, T. Jiang, Q. Luo, and H. Gong, “Precise Cerebral Vascular Atlas in Stereotaxic Coordinates of Whole Mouse Brain,” Front. Neuroanat. 11, 128 (2017).
[Crossref] [PubMed]

Li, B.

Li, L.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Li, X.

B. Xiong, A. Li, Y. Lou, S. Chen, B. Long, J. Peng, Z. Yang, T. Xu, X. Yang, X. Li, T. Jiang, Q. Luo, and H. Gong, “Precise Cerebral Vascular Atlas in Stereotaxic Coordinates of Whole Mouse Brain,” Front. Neuroanat. 11, 128 (2017).
[Crossref] [PubMed]

Lim, H. J.

H. Jeong, S. Jeong, H. J. Lim, J. Lee, and K. Y. Yoo, “Cerebral Oxygen Saturation Measured by Near-Infrared Spectroscopy and Jugular Venous Bulb Oxygen Saturation during Arthroscopic Shoulder Surgery in Beach Chair Position under Sevoflurane-Nitrous Oxide or Propofol-Remifentanil Anesthesia,” Anesthesiology 116(5), 1047–1056 (2012).
[Crossref] [PubMed]

Linsenmeier, R. A.

W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4(1), 6525 (2015).
[Crossref] [PubMed]

Liu, T.

W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4(1), 6525 (2015).
[Crossref] [PubMed]

Liu, W.

W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4(1), 6525 (2015).
[Crossref] [PubMed]

Liu, Y.

Long, B.

B. Xiong, A. Li, Y. Lou, S. Chen, B. Long, J. Peng, Z. Yang, T. Xu, X. Yang, X. Li, T. Jiang, Q. Luo, and H. Gong, “Precise Cerebral Vascular Atlas in Stereotaxic Coordinates of Whole Mouse Brain,” Front. Neuroanat. 11, 128 (2017).
[Crossref] [PubMed]

Lou, Y.

B. Xiong, A. Li, Y. Lou, S. Chen, B. Long, J. Peng, Z. Yang, T. Xu, X. Yang, X. Li, T. Jiang, Q. Luo, and H. Gong, “Precise Cerebral Vascular Atlas in Stereotaxic Coordinates of Whole Mouse Brain,” Front. Neuroanat. 11, 128 (2017).
[Crossref] [PubMed]

Luo, Q.

B. Xiong, A. Li, Y. Lou, S. Chen, B. Long, J. Peng, Z. Yang, T. Xu, X. Yang, X. Li, T. Jiang, Q. Luo, and H. Gong, “Precise Cerebral Vascular Atlas in Stereotaxic Coordinates of Whole Mouse Brain,” Front. Neuroanat. 11, 128 (2017).
[Crossref] [PubMed]

Maslov, K.

J. Xia, A. Danielli, Y. Liu, L. Wang, K. Maslov, and L. V. Wang, “Calibration-free quantification of absolute oxygen saturation based on the dynamics of photoacoustic signals,” Opt. Lett. 38(15), 2800–2803 (2013).
[Crossref] [PubMed]

S. Hu, K. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14(4), 040503 (2009).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[Crossref]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Maslov, K. I.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt. 16(7), 076003 (2011).
[Crossref] [PubMed]

Masters, B. R.

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-Photon Excitation Fluorescence Microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref] [PubMed]

Mätzler, C.

C. Mätzler, “MATLAB Functions for Mie Scattering and Absorption,” Res. Rep. (2002).

Mertz, J.

E. Beaurepaire and J. Mertz, “Epifluorescence collection in two-photon microscopy,” Appl. Opt. 41(25), 5376–5382 (2002).
[Crossref] [PubMed]

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111(1), 29–37 (2001).
[Crossref] [PubMed]

Niesner, R. A.

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding Two-Photon Intravital Microscopy to the Infrared by Means of Optical Parametric Oscillator,” Biophys. J. 98(4), 715–723 (2010).
[Crossref] [PubMed]

Nishimura, N.

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y.-T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
[Crossref] [PubMed]

Ntziachristos, V.

J. Ripoll, D. Yessayan, G. Zacharakis, and V. Ntziachristos, “Experimental determination of photon propagation in highly absorbing and scattering media,” J. Opt. Soc. Am. A 22(3), 546–551 (2005).
[Crossref] [PubMed]

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, “Volumetric tomography of fluorescent proteins through small animals in vivo,” Proc. Natl. Acad. Sci. U.S.A. 102(51), 18252–18257 (2005).
[Crossref] [PubMed]

Odin, C.

A. Leray, C. Odin, and Y. Le Grand, “Out-of-focus fluorescence collection in two-photon microscopy of scattering media,” Opt. Commun. 281(24), 6139–6144 (2008).
[Crossref]

A. Leray, C. Odin, E. Huguet, F. Amblard, and Y. L. Grand, “Spatially distributed two-photon excitation fluorescence in scattering media: Experiments and time-resolved Monte Carlo simulations,” Opt. Commun. 272(1), 269–278 (2007).
[Crossref]

Oheim, M.

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111(1), 29–37 (2001).
[Crossref] [PubMed]

Ouzounov, D. G.

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y.-T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

Peng, J.

B. Xiong, A. Li, Y. Lou, S. Chen, B. Long, J. Peng, Z. Yang, T. Xu, X. Yang, X. Li, T. Jiang, Q. Luo, and H. Gong, “Precise Cerebral Vascular Atlas in Stereotaxic Coordinates of Whole Mouse Brain,” Front. Neuroanat. 11, 128 (2017).
[Crossref] [PubMed]

Prahl, S. A.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Radbruch, H.

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding Two-Photon Intravital Microscopy to the Infrared by Means of Optical Parametric Oscillator,” Biophys. J. 98(4), 715–723 (2010).
[Crossref] [PubMed]

Reimer, J.

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y.-T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

Ripoll, J.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, “Volumetric tomography of fluorescent proteins through small animals in vivo,” Proc. Natl. Acad. Sci. U.S.A. 102(51), 18252–18257 (2005).
[Crossref] [PubMed]

J. Ripoll, D. Yessayan, G. Zacharakis, and V. Ntziachristos, “Experimental determination of photon propagation in highly absorbing and scattering media,” J. Opt. Soc. Am. A 22(3), 546–551 (2005).
[Crossref] [PubMed]

Saeki, Y.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, “Volumetric tomography of fluorescent proteins through small animals in vivo,” Proc. Natl. Acad. Sci. U.S.A. 102(51), 18252–18257 (2005).
[Crossref] [PubMed]

Schaffer, C. B.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
[Crossref] [PubMed]

Sheibani, N.

W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4(1), 6525 (2015).
[Crossref] [PubMed]

Shih, H.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, “Volumetric tomography of fluorescent proteins through small animals in vivo,” Proc. Natl. Acad. Sci. U.S.A. 102(51), 18252–18257 (2005).
[Crossref] [PubMed]

Siffrin, V.

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding Two-Photon Intravital Microscopy to the Infrared by Means of Optical Parametric Oscillator,” Biophys. J. 98(4), 715–723 (2010).
[Crossref] [PubMed]

Sinefeld, D.

Sivaramakrishnan, M.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[Crossref]

So, P. T. C.

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-Photon Excitation Fluorescence Microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref] [PubMed]

Song, W.

W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4(1), 6525 (2015).
[Crossref] [PubMed]

Stoica, G.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[Crossref]

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11(2), 024015 (2006).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Svoboda, K.

K. Svoboda and R. Yasuda, “Principles of Two-Photon Excitation Microscopy and Its Applications to Neuroscience,” Neuron 50(6), 823–839 (2006).
[Crossref] [PubMed]

W. Denk and K. Svoboda, “Photon Upmanship: Why Multiphoton Imaging Is More than a Gimmick,” Neuron 18(3), 351–357 (1997).
[Crossref] [PubMed]

Theer, P.

Tolias, A. S.

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y.-T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

Tromberg, B. J.

M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14(1), 010508 (2009).
[Crossref] [PubMed]

A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” Appl. Opt. 39(7), 1194–1201 (2000).
[Crossref] [PubMed]

Tsytsarev, V.

S. Hu, K. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14(4), 040503 (2009).
[Crossref] [PubMed]

Wallace, V. P.

Wang, K.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Wang, L.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

J. Xia, A. Danielli, Y. Liu, L. Wang, K. Maslov, and L. V. Wang, “Calibration-free quantification of absolute oxygen saturation based on the dynamics of photoacoustic signals,” Opt. Lett. 38(15), 2800–2803 (2013).
[Crossref] [PubMed]

Wang, L. V.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

J. Xia, A. Danielli, Y. Liu, L. Wang, K. Maslov, and L. V. Wang, “Calibration-free quantification of absolute oxygen saturation based on the dynamics of photoacoustic signals,” Opt. Lett. 38(15), 2800–2803 (2013).
[Crossref] [PubMed]

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt. 16(7), 076003 (2011).
[Crossref] [PubMed]

Z. Guo, S. Hu, and L. V. Wang, “Calibration-free absolute quantification of optical absorption coefficients using acoustic spectra in 3D photoacoustic microscopy of biological tissue,” Opt. Lett. 35(12), 2067–2069 (2010).
[Crossref] [PubMed]

S. Hu, K. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14(4), 040503 (2009).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[Crossref]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11(2), 024015 (2006).
[Crossref] [PubMed]

Wang, M.

M. Wang, C. Wu, D. Sinefeld, B. Li, F. Xia, and C. Xu, “Comparing the effective attenuation lengths for long wavelength in vivo imaging of the mouse brain,” Biomed. Opt. Express 9(8), 3534–3543 (2018).
[Crossref] [PubMed]

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y.-T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

Wang, T.

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y.-T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

Wang, X.

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11(2), 024015 (2006).
[Crossref] [PubMed]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Wei, Q.

W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4(1), 6525 (2015).
[Crossref] [PubMed]

Weissleder, R.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, “Volumetric tomography of fluorescent proteins through small animals in vivo,” Proc. Natl. Acad. Sci. U.S.A. 102(51), 18252–18257 (2005).
[Crossref] [PubMed]

Welch, A. J.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Wise, F. W.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Wong, A. W.

Wong, T. T. W.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Wu, C.

Xia, F.

Xia, J.

Xia, Y.

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt. 16(7), 076003 (2011).
[Crossref] [PubMed]

Xie, X.

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11(2), 024015 (2006).
[Crossref] [PubMed]

Xiong, B.

B. Xiong, A. Li, Y. Lou, S. Chen, B. Long, J. Peng, Z. Yang, T. Xu, X. Yang, X. Li, T. Jiang, Q. Luo, and H. Gong, “Precise Cerebral Vascular Atlas in Stereotaxic Coordinates of Whole Mouse Brain,” Front. Neuroanat. 11, 128 (2017).
[Crossref] [PubMed]

Xu, C.

M. Wang, C. Wu, D. Sinefeld, B. Li, F. Xia, and C. Xu, “Comparing the effective attenuation lengths for long wavelength in vivo imaging of the mouse brain,” Biomed. Opt. Express 9(8), 3534–3543 (2018).
[Crossref] [PubMed]

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y.-T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).
[Crossref] [PubMed]

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
[Crossref] [PubMed]

Xu, T.

B. Xiong, A. Li, Y. Lou, S. Chen, B. Long, J. Peng, Z. Yang, T. Xu, X. Yang, X. Li, T. Jiang, Q. Luo, and H. Gong, “Precise Cerebral Vascular Atlas in Stereotaxic Coordinates of Whole Mouse Brain,” Front. Neuroanat. 11, 128 (2017).
[Crossref] [PubMed]

Yang, J.-M.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Yang, X.

B. Xiong, A. Li, Y. Lou, S. Chen, B. Long, J. Peng, Z. Yang, T. Xu, X. Yang, X. Li, T. Jiang, Q. Luo, and H. Gong, “Precise Cerebral Vascular Atlas in Stereotaxic Coordinates of Whole Mouse Brain,” Front. Neuroanat. 11, 128 (2017).
[Crossref] [PubMed]

Yang, Z.

B. Xiong, A. Li, Y. Lou, S. Chen, B. Long, J. Peng, Z. Yang, T. Xu, X. Yang, X. Li, T. Jiang, Q. Luo, and H. Gong, “Precise Cerebral Vascular Atlas in Stereotaxic Coordinates of Whole Mouse Brain,” Front. Neuroanat. 11, 128 (2017).
[Crossref] [PubMed]

Yao, J.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt. 16(7), 076003 (2011).
[Crossref] [PubMed]

Yasuda, R.

K. Svoboda and R. Yasuda, “Principles of Two-Photon Excitation Microscopy and Its Applications to Neuroscience,” Neuron 50(6), 823–839 (2006).
[Crossref] [PubMed]

Yessayan, D.

Yi, J.

W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4(1), 6525 (2015).
[Crossref] [PubMed]

Yoo, K. Y.

H. Jeong, S. Jeong, H. J. Lim, J. Lee, and K. Y. Yoo, “Cerebral Oxygen Saturation Measured by Near-Infrared Spectroscopy and Jugular Venous Bulb Oxygen Saturation during Arthroscopic Shoulder Surgery in Beach Chair Position under Sevoflurane-Nitrous Oxide or Propofol-Remifentanil Anesthesia,” Anesthesiology 116(5), 1047–1056 (2012).
[Crossref] [PubMed]

Zacharakis, G.

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, “Volumetric tomography of fluorescent proteins through small animals in vivo,” Proc. Natl. Acad. Sci. U.S.A. 102(51), 18252–18257 (2005).
[Crossref] [PubMed]

J. Ripoll, D. Yessayan, G. Zacharakis, and V. Ntziachristos, “Experimental determination of photon propagation in highly absorbing and scattering media,” J. Opt. Soc. Am. A 22(3), 546–551 (2005).
[Crossref] [PubMed]

Zadoyan, R.

M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14(1), 010508 (2009).
[Crossref] [PubMed]

Zhang, H. F.

W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4(1), 6525 (2015).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[Crossref]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Zhang, Y.

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt. 16(7), 076003 (2011).
[Crossref] [PubMed]

Zipp, F.

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding Two-Photon Intravital Microscopy to the Infrared by Means of Optical Parametric Oscillator,” Biophys. J. 98(4), 715–723 (2010).
[Crossref] [PubMed]

Zou, J.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Anesthesiology (1)

H. Jeong, S. Jeong, H. J. Lim, J. Lee, and K. Y. Yoo, “Cerebral Oxygen Saturation Measured by Near-Infrared Spectroscopy and Jugular Venous Bulb Oxygen Saturation during Arthroscopic Shoulder Surgery in Beach Chair Position under Sevoflurane-Nitrous Oxide or Propofol-Remifentanil Anesthesia,” Anesthesiology 116(5), 1047–1056 (2012).
[Crossref] [PubMed]

Annu. Rev. Biomed. Eng. (1)

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-Photon Excitation Fluorescence Microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[Crossref]

Biomed. Opt. Express (1)

Biophys. J. (1)

J. Herz, V. Siffrin, A. E. Hauser, A. U. Brandt, T. Leuenberger, H. Radbruch, F. Zipp, and R. A. Niesner, “Expanding Two-Photon Intravital Microscopy to the Infrared by Means of Optical Parametric Oscillator,” Biophys. J. 98(4), 715–723 (2010).
[Crossref] [PubMed]

Curr. Opin. Biotechnol. (1)

V. Andresen, S. Alexander, W.-M. Heupel, M. Hirschberg, R. M. Hoffman, and P. Friedl, “Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging,” Curr. Opin. Biotechnol. 20(1), 54–62 (2009).
[Crossref] [PubMed]

Front. Neuroanat. (1)

B. Xiong, A. Li, Y. Lou, S. Chen, B. Long, J. Peng, Z. Yang, T. Xu, X. Yang, X. Li, T. Jiang, Q. Luo, and H. Gong, “Precise Cerebral Vascular Atlas in Stereotaxic Coordinates of Whole Mouse Brain,” Front. Neuroanat. 11, 128 (2017).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

J. Biomed. Opt. (5)

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt. 16(7), 076003 (2011).
[Crossref] [PubMed]

S. Hu, K. Maslov, V. Tsytsarev, and L. V. Wang, “Functional transcranial brain imaging by optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 14(4), 040503 (2009).
[Crossref] [PubMed]

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11(2), 024015 (2006).
[Crossref] [PubMed]

M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14(1), 010508 (2009).
[Crossref] [PubMed]

D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).
[Crossref] [PubMed]

J. Neurosci. Methods (1)

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, “Two-photon microscopy in brain tissue: parameters influencing the imaging depth,” J. Neurosci. Methods 111(1), 29–37 (2001).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (3)

Nat. Biotechnol. (1)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Nat. Methods (3)

D. G. Ouzounov, T. Wang, M. Wang, D. D. Feng, N. G. Horton, J. C. Cruz-Hernández, Y.-T. Cheng, J. Reimer, A. S. Tolias, N. Nishimura, and C. Xu, “In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain,” Nat. Methods 14(4), 388–390 (2017).
[Crossref] [PubMed]

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Nat. Photonics (1)

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Neuron (2)

W. Denk and K. Svoboda, “Photon Upmanship: Why Multiphoton Imaging Is More than a Gimmick,” Neuron 18(3), 351–357 (1997).
[Crossref] [PubMed]

K. Svoboda and R. Yasuda, “Principles of Two-Photon Excitation Microscopy and Its Applications to Neuroscience,” Neuron 50(6), 823–839 (2006).
[Crossref] [PubMed]

Opt. Commun. (2)

A. Leray, C. Odin, E. Huguet, F. Amblard, and Y. L. Grand, “Spatially distributed two-photon excitation fluorescence in scattering media: Experiments and time-resolved Monte Carlo simulations,” Opt. Commun. 272(1), 269–278 (2007).
[Crossref]

A. Leray, C. Odin, and Y. Le Grand, “Out-of-focus fluorescence collection in two-photon microscopy of scattering media,” Opt. Commun. 281(24), 6139–6144 (2008).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Proc. Natl. Acad. Sci. U.S.A. (1)

G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, “Volumetric tomography of fluorescent proteins through small animals in vivo,” Proc. Natl. Acad. Sci. U.S.A. 102(51), 18252–18257 (2005).
[Crossref] [PubMed]

Sci. Rep. (1)

W. Song, Q. Wei, W. Liu, T. Liu, J. Yi, N. Sheibani, A. A. Fawzi, R. A. Linsenmeier, S. Jiao, and H. F. Zhang, “A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography,” Sci. Rep. 4(1), 6525 (2015).
[Crossref] [PubMed]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Other (5)

“Radiative Transfer Equation and Diffusion Theory,” in Biomedical Optics (Wiley-Blackwell, 2012), pp. 83–118.

C. Mätzler, “MATLAB Functions for Mie Scattering and Absorption,” Res. Rep. (2002).

C. Xu and W. W. Webb, “Multiphoton excitation of molecular fluorophores and nonlinear laser microscopy,” in Topics in Fluorescence Spectroscopy (Springer, 1997), 5, pp. 471–540.

“Optical Absorption of Hemoglobin,” http://omlc.org/spectra/hemoglobin/ .

B. R. Masters and P. So, Handbook of Biomedical Nonlinear Optical Microscopy (Oxford University Press, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Measured spectra of the laser source operating at 1450 nm and 1700 nm. (b) Transmission data for the three emission filters used for fluorescein (520/15 nm), Texas Red (615/20 nm) and Alexa Fluor 647 (711/25 nm).
Fig. 2
Fig. 2 Dependence of three-photon-excited fluorescence on excitation power for (a) fluorescein excited at 1450 nm, (b) Texas Red excited at 1450 nm, (c) Texas Red excited at 1700 nm, and (d) Alexa Fluor 647 excited at 1700 nm. The blue diamonds are the measured data, and the red lines are linear fits to the experimental results. The slope is indicated in each figure.
Fig. 3
Fig. 3 Three-photon fluorescence images of the brain vasculature labeled by fluorescein in (a) and (c), and by Texas Red in (b) and (d). Images in (a) to (d) were acquired by using 1450 nm excitation. Three-photon fluorescence images of the brain vasculature labeled by Texas Red in (e) and (g), and by Alexa Fluor 647 in (f) and (h). Images in (e) to (h) were acquired by using 1700 nm excitation. The depths are indicated in the images. All the images are shown with the same contrast setting. Scale bars, 50 µm.
Fig. 4
Fig. 4 Simultaneous imaging of fluorescein and Texas Red using 1450 nm excitation. (a) Normalized fluorescence signal of fluorescein and Texas Red as a function of depth. (b) Ratio of the normalized Texas Red signal and the normalized fluorescein signal at each depth.
Fig. 5
Fig. 5 Simultaneous imaging of Texas Red and Alexa Fluor 647 using 1700 nm excitation. (a) Normalized fluorescence signal of Texas Red and Alexa Fluor 647 as a function of depth. (b) Ratio of the normalized Alexa Fluor 647 signal and the normalized Texas Red signal at each depth.
Fig. 6
Fig. 6 (a) Ratio of the normalized fluorescence of Texas Red and fluorescein averaged every 100 μm depth interval in 10 different mice. Each color/marker represents a different mouse. (b) Ratio of the normalized fluorescence of Alexa Fluor 647 and Texas Red averaged every 100 μm depth interval in 7 different mice. Each color/marker represents a different mouse.
Fig. 7
Fig. 7 Variations between sequential imaging sessions. (a) Normalized fluorescein signal excited at 1450 nm as a function of depth. (b) Normalized Texas Red signal excited at 1450 nm as a function of depth. (c) Normalized Texas Red signal excited at 1700 nm as a function of depth. (d) Normalized Alexa Fluor 647 signal excited at 1700 nm as a function of depth.
Fig. 8
Fig. 8 Investigation of the interaction between the dyes in simultaneous imaging. (a) Normalized fluorescein signal with and without the existence of Texas Red. The average difference for the fluorescein signal is 23% (b) Normalized Texas Red signal with and without the existence of fluorescein. The average difference for the Texas Red signal is 17%. (c) Normalized Texas Red signal with and without the existence of Alexa Fluor 647. The average difference for the Texas Red signal is 20% (d) Normalized Alexa Fluor 647 signal with and without the existence of Texas Red. The average difference for the Alexa Fluor 647 signal is 24%
Fig. 9
Fig. 9 Simultaneous imaging before and after channel swapping. (a) Normalized fluorescence signal of fluorescein and Texas Red as a function of depth for the two simultaneous imaging sessions before and after channel swapping. (b) Normalized fluorescence signal of Texas Red and Alexa Fluor 647 as a function of depth for the two simultaneous imaging sessions before and after channel swapping.
Fig. 10
Fig. 10 Diffusion theory of emission light transport at different wavelengths for mouse brain in vivo. (a) Effective attenuation length of emission light calculated by the modified solution of diffusion theory, Eq. (2). (b) The collected fluorescence at the brain surface from a depth of 600 μm, 800 μm, 1 mm, and 1.6 mm based on the calculated effective attenuation length. The transmission data for the three emission filters used in imaging are also shown.
Fig. 11
Fig. 11 Beer’s law calculations of emission light transmission from a depth of 600 μm, 800 μm, 1 mm, and 1.6 mm as well as the emission light transmission through a 50-μm-diameter vessel.

Tables (4)

Tables Icon

Table 1 Ratio of the normalized fluorescence of Texas Red and fluorescein for all 10 mice at 100 μm depth interval.

Tables Icon

Table 2 Ratio of the normalized fluorescence of Alexa Fluor 647 and Texas Red for all 7 mice at 100 μm depth interval.

Tables Icon

Table 3 Summary of the experimental results and theoretical calculations with different blood concentrations.

Tables Icon

Table 4 Summary of the fluorescence transmission ratios for fluorescein (FL), Texas Red (TR) and Alexa Fluor 647 (AF647) with 40-nm bandwidth filters and with no filters at all (full emission spectrum). The blood volume concentration is assumed to be 3%.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

μ eff = (3 μ a [ μ a + μ s (1g)])
μ eff = (3 μ a [α μ a + μ s (1g)])
Ratio(z)= e z l e λ 2 e z l e λ 1

Metrics