Abstract

Nowadays, epidural space identification is made by using subjective and manual techniques characterized by failure rates up to 7%. In this work, we propose a fiber optic sensor technology based needle guidance system, that is directly inspired by the most common technique currently used for epidurals; through real-time strain measurements, the fiber Bragg grating integrated inside the needle lumen is able to effectively perceive the typical force drop occurring when the needle enters the epidural space. An in vivo swine study demonstrates the validity of our approach, paving the way for the development of lab-in-a-needle systems.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Epidural needle with embedded optical fibers for spectroscopic differentiation of tissue: ex vivo feasibility study

Adrien E. Desjardins, Benno H.W. Hendriks, Marjolein van der Voort, Rami Nachabé, Walter Bierhoff, Guus Braun, Drazenko Babic, James P. Rathmell, Staffan Holmin, Michael Söderman, and Björn Holmström
Biomed. Opt. Express 2(6) 1452-1461 (2011)

Epidural catheter with integrated light guides for spectroscopic tissue characterization

R. P. Soto-Astorga, S. West, S. Putnis, J. C. Hebden, and A. E. Desjardins
Biomed. Opt. Express 4(11) 2619-2628 (2013)

Technique of fiber optics used to localize epidural space in piglets

Chien-Kun Ting and Yin Chang
Opt. Express 18(11) 11138-11147 (2010)

References

  • View by:
  • |
  • |
  • |

  1. A. H. White, R. Derby, and G. Wynne, “Epidural injections for the diagnosis and treatment of low-back pain,” Spine 5(1), 78–86 (1980).
    [Crossref] [PubMed]
  2. K. Arendt and S. Segal, “Why epidurals do not always work,” Rev. Obstet. Gynecol. 1(2), 49–55 (2008).
    [PubMed]
  3. H. Elsharkawy, A. Sonny, and K. J. Chin, “Localization of epidural space: A review of available technologies,” J. Anaesthesiol. Clin. Pharmacol. 33(1), 16–27 (2017).
    [Crossref] [PubMed]
  4. T. J. M. Lechner, M. G. F. van Wijk, A. A. J. Jongenelis, M. Rybak, J. van Niekerk, and C. J. M. Langenberg, “The use of a sound-enabled device to measure pressure during insertion of an epidural catheter in women in labour,” Anaesthesia 66(7), 568–573 (2011).
    [Crossref] [PubMed]
  5. O. Ghelber, R. E. Gebhard, S. Vora, C. A. Hagberg, and P. Szmuk, “Identification of the Epidural Space Using Pressure Measurement with the Compuflo Injection Pump-A Pilot study,” Reg. Anesth. Pain Med. 33(4), 346–352 (2008).
    [PubMed]
  6. P. Y. Lee, C. C. Huang, and H. K. Chiang, “Implementation of a novel high frequency ultrasound device for guiding epidural anesthesia - in vivo animal study,” in IEEE International Ultrasonics Symposium (IEEE, 2013), 2049–2052.
    [Crossref]
  7. G. Ameri, J. Son, J. Liang, F. S. Foster, S. Ganapathy, and T. M. Peters, “Development of a high frequency single-element ultrasound needle transducer for anesthesia delivery,” Proc. SPIE 10139, 101390S (2017).
    [Crossref]
  8. C. K. Ting, M. Y. Tsou, P. T. Chen, K. Y. Chang, M. S. Mandell, K. H. Chan, and Y. Chang, “A New Technique to Assist Epidural Needle Placement: Fiberoptic-Guided Insertion Using Two Wavelengths,” Anesthesiology 112(5), 1128–1135 (2010).
    [Crossref] [PubMed]
  9. W. C. Kuo, M. C. Kao, K. Y. Chang, W. N. Teng, M. Y. Tsou, Y. Chang, and C. K. Ting, “Fiber-needle Swept-source Optical Coherence Tomography System for the Identification of the Epidural Space in Piglets,” Anesthesiology 122(3), 585–594 (2015).
    [Crossref] [PubMed]
  10. W. C. Kuo, M. C. Kao, M. Y. Tsou, and C. K. Ting, “In vivo images of the epidural space with two- and three-dimensional optical coherence tomography in a porcine model,” PLoS One 12(2), e0172149 (2017).
    [Crossref] [PubMed]
  11. Z. Ding, Q. Tang, C. P. Liang, K. Wu, A. Sandlerc, H. Li, and Y. Chen, “Imaging Spinal Structures With Polarization-Sensitive Optical Coherence Tomography,” IEEE Photonics J. 8(5), 1–8 (2016).
    [Crossref]
  12. P. Roriz, L. Carvalho, O. Frazão, J. L. Santos, and J. A. Simões, “From conventional sensors to fibre optic sensors for strain and force measurements in biomechanics applications: A review,” J. Biomech. 47(6), 1251–1261 (2014).
    [Crossref] [PubMed]
  13. Y. L. Park, K. Chau, R. J. Black, and M. R. Cutkosky, “Force sensing robot fingers using embedded fiber Bragg grating sensors and Shape Deposition Manufacturing,” in Proceedings of the IEEE International Conference on Robotics and Automation (IEEE, 2007) pp. 1510–1516.
    [Crossref]
  14. L. Zhang, J. Qian, Y. Zhang, and L. Shen, “On SDM/WDM FBG sensor net for shape detection of endoscope,” inProceedings of IEEE International Conference on Robotics and Automation (IEEE, 2005) pp. 1986–1991.
  15. R. J. Roesthuis, M. Kemp, J. J. van den Dobbelsteen, and S. Misra, “Three-dimensional needle shape reconstruction using an array of Fiber Bragg Grating sensors,” IEEE/ASME Trans. Mechatron. 19(4), 1115–1126 (2014).
    [Crossref]
  16. J. S. Kim, J. Guo, M. Chatrasingh, S. Kim, and I. Iordachita, “Shape determination during needle insertion with curvature measurements,” inProceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2017), pp. 201–208.
    [Crossref]
  17. R. Seifabadi, E. E. Gomez, F. Aalamifar, G. Fichtinger, and I. Iordachita, “Real-time tracking of a bevel-tip needle with varying insertion depth: Toward teleoperated MRI-guided needle steering,” inProceedings of IEEE International Conference on Intelligent Robots and Systems (IEEE, 2013) pp. 469–476.
    [Crossref]
  18. S. Elayaperumal, J. H. Bae, D. Christensen, M. R. Cutkosky, B. L. Daniel, R. J. Black, J. M. Costa, F. Faridian, and B. Moslehi, “MR-compatible biopsy needle with enhanced tip force sensing,” in World Haptics Conference (IEEE, 2013) pp. 109–114.
    [Crossref]
  19. J. H. Bae, C. J. Ploch, M. A. Lin, B. L. Daniel, and M. R. Cutkosky, “Display of needle tip contact forces for steering guidance,” in Haptics Symposium (IEEE, 2016) pp. 332–337.
    [Crossref]
  20. Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-time estimation of 3-D needle shape and deflection for MRI-guided interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
    [Crossref] [PubMed]
  21. B. Carotenuto, A. Micco, A. Ricciardi, E. Amorizzo, M. Mercieri, A. Cutolo, and A. Cusano, “Optical Guidance Systems for Epidural Space Identification,” IEEE J. Sel. Top. Quantum Electron. 23(2), 1–9 (2017).
    [Crossref]
  22. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
    [Crossref]
  23. D. Johnson, “Novel Optical Fibers-Draw-tower process creates high-quality FBG arrays,” Laser Focus World 48(10), 53 (2012).
  24. S. Fakirov, Handbook of condensation thermoplastic elastomers (John Wiley & Sons, 2006).
  25. B. J. Lambert, F. W. Tang, and W. J. Rogers, Polymers in Medical Applications (iSmithers Rapra Publishing, 2001).
  26. S. M. Kurtz, PEEK Biomaterials Handbook (William Andrew Publishing, 2011).
  27. I. V. Panayotov, V. Orti, F. Cuisinier, and J. Yachouh, “Polyetheretherketone (PEEK) for medical applications,” J. Mater. Sci. Mater. Med. 27(7), 118 (2016).
    [Crossref] [PubMed]
  28. Y. Wang, B. L. Tai, H. Yu, and A. J. Shih, “Silicone-based tissue-mimicking phantom for needle insertion simulation,” J. Med. Device. 8(2), 021001 (2014).
    [Crossref]
  29. J. Hermanides, M. W. Hollmann, M. F. Stevens, and P. Lirk, “Failed epidural: causes and management,” Br. J. Anaesth. 109(2), 144–154 (2012).
    [Crossref] [PubMed]

2017 (4)

H. Elsharkawy, A. Sonny, and K. J. Chin, “Localization of epidural space: A review of available technologies,” J. Anaesthesiol. Clin. Pharmacol. 33(1), 16–27 (2017).
[Crossref] [PubMed]

W. C. Kuo, M. C. Kao, M. Y. Tsou, and C. K. Ting, “In vivo images of the epidural space with two- and three-dimensional optical coherence tomography in a porcine model,” PLoS One 12(2), e0172149 (2017).
[Crossref] [PubMed]

G. Ameri, J. Son, J. Liang, F. S. Foster, S. Ganapathy, and T. M. Peters, “Development of a high frequency single-element ultrasound needle transducer for anesthesia delivery,” Proc. SPIE 10139, 101390S (2017).
[Crossref]

B. Carotenuto, A. Micco, A. Ricciardi, E. Amorizzo, M. Mercieri, A. Cutolo, and A. Cusano, “Optical Guidance Systems for Epidural Space Identification,” IEEE J. Sel. Top. Quantum Electron. 23(2), 1–9 (2017).
[Crossref]

2016 (2)

I. V. Panayotov, V. Orti, F. Cuisinier, and J. Yachouh, “Polyetheretherketone (PEEK) for medical applications,” J. Mater. Sci. Mater. Med. 27(7), 118 (2016).
[Crossref] [PubMed]

Z. Ding, Q. Tang, C. P. Liang, K. Wu, A. Sandlerc, H. Li, and Y. Chen, “Imaging Spinal Structures With Polarization-Sensitive Optical Coherence Tomography,” IEEE Photonics J. 8(5), 1–8 (2016).
[Crossref]

2015 (1)

W. C. Kuo, M. C. Kao, K. Y. Chang, W. N. Teng, M. Y. Tsou, Y. Chang, and C. K. Ting, “Fiber-needle Swept-source Optical Coherence Tomography System for the Identification of the Epidural Space in Piglets,” Anesthesiology 122(3), 585–594 (2015).
[Crossref] [PubMed]

2014 (3)

Y. Wang, B. L. Tai, H. Yu, and A. J. Shih, “Silicone-based tissue-mimicking phantom for needle insertion simulation,” J. Med. Device. 8(2), 021001 (2014).
[Crossref]

P. Roriz, L. Carvalho, O. Frazão, J. L. Santos, and J. A. Simões, “From conventional sensors to fibre optic sensors for strain and force measurements in biomechanics applications: A review,” J. Biomech. 47(6), 1251–1261 (2014).
[Crossref] [PubMed]

R. J. Roesthuis, M. Kemp, J. J. van den Dobbelsteen, and S. Misra, “Three-dimensional needle shape reconstruction using an array of Fiber Bragg Grating sensors,” IEEE/ASME Trans. Mechatron. 19(4), 1115–1126 (2014).
[Crossref]

2012 (2)

J. Hermanides, M. W. Hollmann, M. F. Stevens, and P. Lirk, “Failed epidural: causes and management,” Br. J. Anaesth. 109(2), 144–154 (2012).
[Crossref] [PubMed]

D. Johnson, “Novel Optical Fibers-Draw-tower process creates high-quality FBG arrays,” Laser Focus World 48(10), 53 (2012).

2011 (1)

T. J. M. Lechner, M. G. F. van Wijk, A. A. J. Jongenelis, M. Rybak, J. van Niekerk, and C. J. M. Langenberg, “The use of a sound-enabled device to measure pressure during insertion of an epidural catheter in women in labour,” Anaesthesia 66(7), 568–573 (2011).
[Crossref] [PubMed]

2010 (2)

Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-time estimation of 3-D needle shape and deflection for MRI-guided interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
[Crossref] [PubMed]

C. K. Ting, M. Y. Tsou, P. T. Chen, K. Y. Chang, M. S. Mandell, K. H. Chan, and Y. Chang, “A New Technique to Assist Epidural Needle Placement: Fiberoptic-Guided Insertion Using Two Wavelengths,” Anesthesiology 112(5), 1128–1135 (2010).
[Crossref] [PubMed]

2008 (2)

O. Ghelber, R. E. Gebhard, S. Vora, C. A. Hagberg, and P. Szmuk, “Identification of the Epidural Space Using Pressure Measurement with the Compuflo Injection Pump-A Pilot study,” Reg. Anesth. Pain Med. 33(4), 346–352 (2008).
[PubMed]

K. Arendt and S. Segal, “Why epidurals do not always work,” Rev. Obstet. Gynecol. 1(2), 49–55 (2008).
[PubMed]

1997 (1)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

1980 (1)

A. H. White, R. Derby, and G. Wynne, “Epidural injections for the diagnosis and treatment of low-back pain,” Spine 5(1), 78–86 (1980).
[Crossref] [PubMed]

Aalamifar, F.

R. Seifabadi, E. E. Gomez, F. Aalamifar, G. Fichtinger, and I. Iordachita, “Real-time tracking of a bevel-tip needle with varying insertion depth: Toward teleoperated MRI-guided needle steering,” inProceedings of IEEE International Conference on Intelligent Robots and Systems (IEEE, 2013) pp. 469–476.
[Crossref]

Ameri, G.

G. Ameri, J. Son, J. Liang, F. S. Foster, S. Ganapathy, and T. M. Peters, “Development of a high frequency single-element ultrasound needle transducer for anesthesia delivery,” Proc. SPIE 10139, 101390S (2017).
[Crossref]

Amorizzo, E.

B. Carotenuto, A. Micco, A. Ricciardi, E. Amorizzo, M. Mercieri, A. Cutolo, and A. Cusano, “Optical Guidance Systems for Epidural Space Identification,” IEEE J. Sel. Top. Quantum Electron. 23(2), 1–9 (2017).
[Crossref]

Arendt, K.

K. Arendt and S. Segal, “Why epidurals do not always work,” Rev. Obstet. Gynecol. 1(2), 49–55 (2008).
[PubMed]

Bae, J. H.

S. Elayaperumal, J. H. Bae, D. Christensen, M. R. Cutkosky, B. L. Daniel, R. J. Black, J. M. Costa, F. Faridian, and B. Moslehi, “MR-compatible biopsy needle with enhanced tip force sensing,” in World Haptics Conference (IEEE, 2013) pp. 109–114.
[Crossref]

J. H. Bae, C. J. Ploch, M. A. Lin, B. L. Daniel, and M. R. Cutkosky, “Display of needle tip contact forces for steering guidance,” in Haptics Symposium (IEEE, 2016) pp. 332–337.
[Crossref]

Black, R. J.

Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-time estimation of 3-D needle shape and deflection for MRI-guided interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
[Crossref] [PubMed]

S. Elayaperumal, J. H. Bae, D. Christensen, M. R. Cutkosky, B. L. Daniel, R. J. Black, J. M. Costa, F. Faridian, and B. Moslehi, “MR-compatible biopsy needle with enhanced tip force sensing,” in World Haptics Conference (IEEE, 2013) pp. 109–114.
[Crossref]

Y. L. Park, K. Chau, R. J. Black, and M. R. Cutkosky, “Force sensing robot fingers using embedded fiber Bragg grating sensors and Shape Deposition Manufacturing,” in Proceedings of the IEEE International Conference on Robotics and Automation (IEEE, 2007) pp. 1510–1516.
[Crossref]

Carotenuto, B.

B. Carotenuto, A. Micco, A. Ricciardi, E. Amorizzo, M. Mercieri, A. Cutolo, and A. Cusano, “Optical Guidance Systems for Epidural Space Identification,” IEEE J. Sel. Top. Quantum Electron. 23(2), 1–9 (2017).
[Crossref]

Carvalho, L.

P. Roriz, L. Carvalho, O. Frazão, J. L. Santos, and J. A. Simões, “From conventional sensors to fibre optic sensors for strain and force measurements in biomechanics applications: A review,” J. Biomech. 47(6), 1251–1261 (2014).
[Crossref] [PubMed]

Chan, K. H.

C. K. Ting, M. Y. Tsou, P. T. Chen, K. Y. Chang, M. S. Mandell, K. H. Chan, and Y. Chang, “A New Technique to Assist Epidural Needle Placement: Fiberoptic-Guided Insertion Using Two Wavelengths,” Anesthesiology 112(5), 1128–1135 (2010).
[Crossref] [PubMed]

Chang, K. Y.

W. C. Kuo, M. C. Kao, K. Y. Chang, W. N. Teng, M. Y. Tsou, Y. Chang, and C. K. Ting, “Fiber-needle Swept-source Optical Coherence Tomography System for the Identification of the Epidural Space in Piglets,” Anesthesiology 122(3), 585–594 (2015).
[Crossref] [PubMed]

C. K. Ting, M. Y. Tsou, P. T. Chen, K. Y. Chang, M. S. Mandell, K. H. Chan, and Y. Chang, “A New Technique to Assist Epidural Needle Placement: Fiberoptic-Guided Insertion Using Two Wavelengths,” Anesthesiology 112(5), 1128–1135 (2010).
[Crossref] [PubMed]

Chang, Y.

W. C. Kuo, M. C. Kao, K. Y. Chang, W. N. Teng, M. Y. Tsou, Y. Chang, and C. K. Ting, “Fiber-needle Swept-source Optical Coherence Tomography System for the Identification of the Epidural Space in Piglets,” Anesthesiology 122(3), 585–594 (2015).
[Crossref] [PubMed]

C. K. Ting, M. Y. Tsou, P. T. Chen, K. Y. Chang, M. S. Mandell, K. H. Chan, and Y. Chang, “A New Technique to Assist Epidural Needle Placement: Fiberoptic-Guided Insertion Using Two Wavelengths,” Anesthesiology 112(5), 1128–1135 (2010).
[Crossref] [PubMed]

Chatrasingh, M.

J. S. Kim, J. Guo, M. Chatrasingh, S. Kim, and I. Iordachita, “Shape determination during needle insertion with curvature measurements,” inProceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2017), pp. 201–208.
[Crossref]

Chau, K.

Y. L. Park, K. Chau, R. J. Black, and M. R. Cutkosky, “Force sensing robot fingers using embedded fiber Bragg grating sensors and Shape Deposition Manufacturing,” in Proceedings of the IEEE International Conference on Robotics and Automation (IEEE, 2007) pp. 1510–1516.
[Crossref]

Chen, P. T.

C. K. Ting, M. Y. Tsou, P. T. Chen, K. Y. Chang, M. S. Mandell, K. H. Chan, and Y. Chang, “A New Technique to Assist Epidural Needle Placement: Fiberoptic-Guided Insertion Using Two Wavelengths,” Anesthesiology 112(5), 1128–1135 (2010).
[Crossref] [PubMed]

Chen, Y.

Z. Ding, Q. Tang, C. P. Liang, K. Wu, A. Sandlerc, H. Li, and Y. Chen, “Imaging Spinal Structures With Polarization-Sensitive Optical Coherence Tomography,” IEEE Photonics J. 8(5), 1–8 (2016).
[Crossref]

Chiang, H. K.

P. Y. Lee, C. C. Huang, and H. K. Chiang, “Implementation of a novel high frequency ultrasound device for guiding epidural anesthesia - in vivo animal study,” in IEEE International Ultrasonics Symposium (IEEE, 2013), 2049–2052.
[Crossref]

Chin, K. J.

H. Elsharkawy, A. Sonny, and K. J. Chin, “Localization of epidural space: A review of available technologies,” J. Anaesthesiol. Clin. Pharmacol. 33(1), 16–27 (2017).
[Crossref] [PubMed]

Christensen, D.

S. Elayaperumal, J. H. Bae, D. Christensen, M. R. Cutkosky, B. L. Daniel, R. J. Black, J. M. Costa, F. Faridian, and B. Moslehi, “MR-compatible biopsy needle with enhanced tip force sensing,” in World Haptics Conference (IEEE, 2013) pp. 109–114.
[Crossref]

Costa, J. M.

S. Elayaperumal, J. H. Bae, D. Christensen, M. R. Cutkosky, B. L. Daniel, R. J. Black, J. M. Costa, F. Faridian, and B. Moslehi, “MR-compatible biopsy needle with enhanced tip force sensing,” in World Haptics Conference (IEEE, 2013) pp. 109–114.
[Crossref]

Cuisinier, F.

I. V. Panayotov, V. Orti, F. Cuisinier, and J. Yachouh, “Polyetheretherketone (PEEK) for medical applications,” J. Mater. Sci. Mater. Med. 27(7), 118 (2016).
[Crossref] [PubMed]

Cusano, A.

B. Carotenuto, A. Micco, A. Ricciardi, E. Amorizzo, M. Mercieri, A. Cutolo, and A. Cusano, “Optical Guidance Systems for Epidural Space Identification,” IEEE J. Sel. Top. Quantum Electron. 23(2), 1–9 (2017).
[Crossref]

Cutkosky, M. R.

Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-time estimation of 3-D needle shape and deflection for MRI-guided interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
[Crossref] [PubMed]

S. Elayaperumal, J. H. Bae, D. Christensen, M. R. Cutkosky, B. L. Daniel, R. J. Black, J. M. Costa, F. Faridian, and B. Moslehi, “MR-compatible biopsy needle with enhanced tip force sensing,” in World Haptics Conference (IEEE, 2013) pp. 109–114.
[Crossref]

J. H. Bae, C. J. Ploch, M. A. Lin, B. L. Daniel, and M. R. Cutkosky, “Display of needle tip contact forces for steering guidance,” in Haptics Symposium (IEEE, 2016) pp. 332–337.
[Crossref]

Y. L. Park, K. Chau, R. J. Black, and M. R. Cutkosky, “Force sensing robot fingers using embedded fiber Bragg grating sensors and Shape Deposition Manufacturing,” in Proceedings of the IEEE International Conference on Robotics and Automation (IEEE, 2007) pp. 1510–1516.
[Crossref]

Cutolo, A.

B. Carotenuto, A. Micco, A. Ricciardi, E. Amorizzo, M. Mercieri, A. Cutolo, and A. Cusano, “Optical Guidance Systems for Epidural Space Identification,” IEEE J. Sel. Top. Quantum Electron. 23(2), 1–9 (2017).
[Crossref]

Daniel, B.

Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-time estimation of 3-D needle shape and deflection for MRI-guided interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
[Crossref] [PubMed]

Daniel, B. L.

J. H. Bae, C. J. Ploch, M. A. Lin, B. L. Daniel, and M. R. Cutkosky, “Display of needle tip contact forces for steering guidance,” in Haptics Symposium (IEEE, 2016) pp. 332–337.
[Crossref]

S. Elayaperumal, J. H. Bae, D. Christensen, M. R. Cutkosky, B. L. Daniel, R. J. Black, J. M. Costa, F. Faridian, and B. Moslehi, “MR-compatible biopsy needle with enhanced tip force sensing,” in World Haptics Conference (IEEE, 2013) pp. 109–114.
[Crossref]

Derby, R.

A. H. White, R. Derby, and G. Wynne, “Epidural injections for the diagnosis and treatment of low-back pain,” Spine 5(1), 78–86 (1980).
[Crossref] [PubMed]

Ding, Z.

Z. Ding, Q. Tang, C. P. Liang, K. Wu, A. Sandlerc, H. Li, and Y. Chen, “Imaging Spinal Structures With Polarization-Sensitive Optical Coherence Tomography,” IEEE Photonics J. 8(5), 1–8 (2016).
[Crossref]

Elayaperumal, S.

Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-time estimation of 3-D needle shape and deflection for MRI-guided interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
[Crossref] [PubMed]

S. Elayaperumal, J. H. Bae, D. Christensen, M. R. Cutkosky, B. L. Daniel, R. J. Black, J. M. Costa, F. Faridian, and B. Moslehi, “MR-compatible biopsy needle with enhanced tip force sensing,” in World Haptics Conference (IEEE, 2013) pp. 109–114.
[Crossref]

Elsharkawy, H.

H. Elsharkawy, A. Sonny, and K. J. Chin, “Localization of epidural space: A review of available technologies,” J. Anaesthesiol. Clin. Pharmacol. 33(1), 16–27 (2017).
[Crossref] [PubMed]

Faridian, F.

S. Elayaperumal, J. H. Bae, D. Christensen, M. R. Cutkosky, B. L. Daniel, R. J. Black, J. M. Costa, F. Faridian, and B. Moslehi, “MR-compatible biopsy needle with enhanced tip force sensing,” in World Haptics Conference (IEEE, 2013) pp. 109–114.
[Crossref]

Fichtinger, G.

R. Seifabadi, E. E. Gomez, F. Aalamifar, G. Fichtinger, and I. Iordachita, “Real-time tracking of a bevel-tip needle with varying insertion depth: Toward teleoperated MRI-guided needle steering,” inProceedings of IEEE International Conference on Intelligent Robots and Systems (IEEE, 2013) pp. 469–476.
[Crossref]

Foster, F. S.

G. Ameri, J. Son, J. Liang, F. S. Foster, S. Ganapathy, and T. M. Peters, “Development of a high frequency single-element ultrasound needle transducer for anesthesia delivery,” Proc. SPIE 10139, 101390S (2017).
[Crossref]

Frazão, O.

P. Roriz, L. Carvalho, O. Frazão, J. L. Santos, and J. A. Simões, “From conventional sensors to fibre optic sensors for strain and force measurements in biomechanics applications: A review,” J. Biomech. 47(6), 1251–1261 (2014).
[Crossref] [PubMed]

Ganapathy, S.

G. Ameri, J. Son, J. Liang, F. S. Foster, S. Ganapathy, and T. M. Peters, “Development of a high frequency single-element ultrasound needle transducer for anesthesia delivery,” Proc. SPIE 10139, 101390S (2017).
[Crossref]

Gebhard, R. E.

O. Ghelber, R. E. Gebhard, S. Vora, C. A. Hagberg, and P. Szmuk, “Identification of the Epidural Space Using Pressure Measurement with the Compuflo Injection Pump-A Pilot study,” Reg. Anesth. Pain Med. 33(4), 346–352 (2008).
[PubMed]

Ghelber, O.

O. Ghelber, R. E. Gebhard, S. Vora, C. A. Hagberg, and P. Szmuk, “Identification of the Epidural Space Using Pressure Measurement with the Compuflo Injection Pump-A Pilot study,” Reg. Anesth. Pain Med. 33(4), 346–352 (2008).
[PubMed]

Gomez, E. E.

R. Seifabadi, E. E. Gomez, F. Aalamifar, G. Fichtinger, and I. Iordachita, “Real-time tracking of a bevel-tip needle with varying insertion depth: Toward teleoperated MRI-guided needle steering,” inProceedings of IEEE International Conference on Intelligent Robots and Systems (IEEE, 2013) pp. 469–476.
[Crossref]

Guo, J.

J. S. Kim, J. Guo, M. Chatrasingh, S. Kim, and I. Iordachita, “Shape determination during needle insertion with curvature measurements,” inProceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2017), pp. 201–208.
[Crossref]

Hagberg, C. A.

O. Ghelber, R. E. Gebhard, S. Vora, C. A. Hagberg, and P. Szmuk, “Identification of the Epidural Space Using Pressure Measurement with the Compuflo Injection Pump-A Pilot study,” Reg. Anesth. Pain Med. 33(4), 346–352 (2008).
[PubMed]

Hermanides, J.

J. Hermanides, M. W. Hollmann, M. F. Stevens, and P. Lirk, “Failed epidural: causes and management,” Br. J. Anaesth. 109(2), 144–154 (2012).
[Crossref] [PubMed]

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Hollmann, M. W.

J. Hermanides, M. W. Hollmann, M. F. Stevens, and P. Lirk, “Failed epidural: causes and management,” Br. J. Anaesth. 109(2), 144–154 (2012).
[Crossref] [PubMed]

Huang, C. C.

P. Y. Lee, C. C. Huang, and H. K. Chiang, “Implementation of a novel high frequency ultrasound device for guiding epidural anesthesia - in vivo animal study,” in IEEE International Ultrasonics Symposium (IEEE, 2013), 2049–2052.
[Crossref]

Iordachita, I.

R. Seifabadi, E. E. Gomez, F. Aalamifar, G. Fichtinger, and I. Iordachita, “Real-time tracking of a bevel-tip needle with varying insertion depth: Toward teleoperated MRI-guided needle steering,” inProceedings of IEEE International Conference on Intelligent Robots and Systems (IEEE, 2013) pp. 469–476.
[Crossref]

J. S. Kim, J. Guo, M. Chatrasingh, S. Kim, and I. Iordachita, “Shape determination during needle insertion with curvature measurements,” inProceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2017), pp. 201–208.
[Crossref]

Johnson, D.

D. Johnson, “Novel Optical Fibers-Draw-tower process creates high-quality FBG arrays,” Laser Focus World 48(10), 53 (2012).

Jongenelis, A. A. J.

T. J. M. Lechner, M. G. F. van Wijk, A. A. J. Jongenelis, M. Rybak, J. van Niekerk, and C. J. M. Langenberg, “The use of a sound-enabled device to measure pressure during insertion of an epidural catheter in women in labour,” Anaesthesia 66(7), 568–573 (2011).
[Crossref] [PubMed]

Kao, M. C.

W. C. Kuo, M. C. Kao, M. Y. Tsou, and C. K. Ting, “In vivo images of the epidural space with two- and three-dimensional optical coherence tomography in a porcine model,” PLoS One 12(2), e0172149 (2017).
[Crossref] [PubMed]

W. C. Kuo, M. C. Kao, K. Y. Chang, W. N. Teng, M. Y. Tsou, Y. Chang, and C. K. Ting, “Fiber-needle Swept-source Optical Coherence Tomography System for the Identification of the Epidural Space in Piglets,” Anesthesiology 122(3), 585–594 (2015).
[Crossref] [PubMed]

Kemp, M.

R. J. Roesthuis, M. Kemp, J. J. van den Dobbelsteen, and S. Misra, “Three-dimensional needle shape reconstruction using an array of Fiber Bragg Grating sensors,” IEEE/ASME Trans. Mechatron. 19(4), 1115–1126 (2014).
[Crossref]

Kim, J. S.

J. S. Kim, J. Guo, M. Chatrasingh, S. Kim, and I. Iordachita, “Shape determination during needle insertion with curvature measurements,” inProceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2017), pp. 201–208.
[Crossref]

Kim, S.

J. S. Kim, J. Guo, M. Chatrasingh, S. Kim, and I. Iordachita, “Shape determination during needle insertion with curvature measurements,” inProceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2017), pp. 201–208.
[Crossref]

Kuo, W. C.

W. C. Kuo, M. C. Kao, M. Y. Tsou, and C. K. Ting, “In vivo images of the epidural space with two- and three-dimensional optical coherence tomography in a porcine model,” PLoS One 12(2), e0172149 (2017).
[Crossref] [PubMed]

W. C. Kuo, M. C. Kao, K. Y. Chang, W. N. Teng, M. Y. Tsou, Y. Chang, and C. K. Ting, “Fiber-needle Swept-source Optical Coherence Tomography System for the Identification of the Epidural Space in Piglets,” Anesthesiology 122(3), 585–594 (2015).
[Crossref] [PubMed]

Langenberg, C. J. M.

T. J. M. Lechner, M. G. F. van Wijk, A. A. J. Jongenelis, M. Rybak, J. van Niekerk, and C. J. M. Langenberg, “The use of a sound-enabled device to measure pressure during insertion of an epidural catheter in women in labour,” Anaesthesia 66(7), 568–573 (2011).
[Crossref] [PubMed]

Lechner, T. J. M.

T. J. M. Lechner, M. G. F. van Wijk, A. A. J. Jongenelis, M. Rybak, J. van Niekerk, and C. J. M. Langenberg, “The use of a sound-enabled device to measure pressure during insertion of an epidural catheter in women in labour,” Anaesthesia 66(7), 568–573 (2011).
[Crossref] [PubMed]

Lee, P. Y.

P. Y. Lee, C. C. Huang, and H. K. Chiang, “Implementation of a novel high frequency ultrasound device for guiding epidural anesthesia - in vivo animal study,” in IEEE International Ultrasonics Symposium (IEEE, 2013), 2049–2052.
[Crossref]

Li, H.

Z. Ding, Q. Tang, C. P. Liang, K. Wu, A. Sandlerc, H. Li, and Y. Chen, “Imaging Spinal Structures With Polarization-Sensitive Optical Coherence Tomography,” IEEE Photonics J. 8(5), 1–8 (2016).
[Crossref]

Liang, C. P.

Z. Ding, Q. Tang, C. P. Liang, K. Wu, A. Sandlerc, H. Li, and Y. Chen, “Imaging Spinal Structures With Polarization-Sensitive Optical Coherence Tomography,” IEEE Photonics J. 8(5), 1–8 (2016).
[Crossref]

Liang, J.

G. Ameri, J. Son, J. Liang, F. S. Foster, S. Ganapathy, and T. M. Peters, “Development of a high frequency single-element ultrasound needle transducer for anesthesia delivery,” Proc. SPIE 10139, 101390S (2017).
[Crossref]

Lin, M. A.

J. H. Bae, C. J. Ploch, M. A. Lin, B. L. Daniel, and M. R. Cutkosky, “Display of needle tip contact forces for steering guidance,” in Haptics Symposium (IEEE, 2016) pp. 332–337.
[Crossref]

Lirk, P.

J. Hermanides, M. W. Hollmann, M. F. Stevens, and P. Lirk, “Failed epidural: causes and management,” Br. J. Anaesth. 109(2), 144–154 (2012).
[Crossref] [PubMed]

Mandell, M. S.

C. K. Ting, M. Y. Tsou, P. T. Chen, K. Y. Chang, M. S. Mandell, K. H. Chan, and Y. Chang, “A New Technique to Assist Epidural Needle Placement: Fiberoptic-Guided Insertion Using Two Wavelengths,” Anesthesiology 112(5), 1128–1135 (2010).
[Crossref] [PubMed]

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Mercieri, M.

B. Carotenuto, A. Micco, A. Ricciardi, E. Amorizzo, M. Mercieri, A. Cutolo, and A. Cusano, “Optical Guidance Systems for Epidural Space Identification,” IEEE J. Sel. Top. Quantum Electron. 23(2), 1–9 (2017).
[Crossref]

Micco, A.

B. Carotenuto, A. Micco, A. Ricciardi, E. Amorizzo, M. Mercieri, A. Cutolo, and A. Cusano, “Optical Guidance Systems for Epidural Space Identification,” IEEE J. Sel. Top. Quantum Electron. 23(2), 1–9 (2017).
[Crossref]

Misra, S.

R. J. Roesthuis, M. Kemp, J. J. van den Dobbelsteen, and S. Misra, “Three-dimensional needle shape reconstruction using an array of Fiber Bragg Grating sensors,” IEEE/ASME Trans. Mechatron. 19(4), 1115–1126 (2014).
[Crossref]

Moslehi, B.

Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-time estimation of 3-D needle shape and deflection for MRI-guided interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
[Crossref] [PubMed]

S. Elayaperumal, J. H. Bae, D. Christensen, M. R. Cutkosky, B. L. Daniel, R. J. Black, J. M. Costa, F. Faridian, and B. Moslehi, “MR-compatible biopsy needle with enhanced tip force sensing,” in World Haptics Conference (IEEE, 2013) pp. 109–114.
[Crossref]

Orti, V.

I. V. Panayotov, V. Orti, F. Cuisinier, and J. Yachouh, “Polyetheretherketone (PEEK) for medical applications,” J. Mater. Sci. Mater. Med. 27(7), 118 (2016).
[Crossref] [PubMed]

Panayotov, I. V.

I. V. Panayotov, V. Orti, F. Cuisinier, and J. Yachouh, “Polyetheretherketone (PEEK) for medical applications,” J. Mater. Sci. Mater. Med. 27(7), 118 (2016).
[Crossref] [PubMed]

Park, Y. L.

Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-time estimation of 3-D needle shape and deflection for MRI-guided interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
[Crossref] [PubMed]

Y. L. Park, K. Chau, R. J. Black, and M. R. Cutkosky, “Force sensing robot fingers using embedded fiber Bragg grating sensors and Shape Deposition Manufacturing,” in Proceedings of the IEEE International Conference on Robotics and Automation (IEEE, 2007) pp. 1510–1516.
[Crossref]

Peters, T. M.

G. Ameri, J. Son, J. Liang, F. S. Foster, S. Ganapathy, and T. M. Peters, “Development of a high frequency single-element ultrasound needle transducer for anesthesia delivery,” Proc. SPIE 10139, 101390S (2017).
[Crossref]

Ploch, C. J.

J. H. Bae, C. J. Ploch, M. A. Lin, B. L. Daniel, and M. R. Cutkosky, “Display of needle tip contact forces for steering guidance,” in Haptics Symposium (IEEE, 2016) pp. 332–337.
[Crossref]

Qian, J.

L. Zhang, J. Qian, Y. Zhang, and L. Shen, “On SDM/WDM FBG sensor net for shape detection of endoscope,” inProceedings of IEEE International Conference on Robotics and Automation (IEEE, 2005) pp. 1986–1991.

Ricciardi, A.

B. Carotenuto, A. Micco, A. Ricciardi, E. Amorizzo, M. Mercieri, A. Cutolo, and A. Cusano, “Optical Guidance Systems for Epidural Space Identification,” IEEE J. Sel. Top. Quantum Electron. 23(2), 1–9 (2017).
[Crossref]

Roesthuis, R. J.

R. J. Roesthuis, M. Kemp, J. J. van den Dobbelsteen, and S. Misra, “Three-dimensional needle shape reconstruction using an array of Fiber Bragg Grating sensors,” IEEE/ASME Trans. Mechatron. 19(4), 1115–1126 (2014).
[Crossref]

Roriz, P.

P. Roriz, L. Carvalho, O. Frazão, J. L. Santos, and J. A. Simões, “From conventional sensors to fibre optic sensors for strain and force measurements in biomechanics applications: A review,” J. Biomech. 47(6), 1251–1261 (2014).
[Crossref] [PubMed]

Rybak, M.

T. J. M. Lechner, M. G. F. van Wijk, A. A. J. Jongenelis, M. Rybak, J. van Niekerk, and C. J. M. Langenberg, “The use of a sound-enabled device to measure pressure during insertion of an epidural catheter in women in labour,” Anaesthesia 66(7), 568–573 (2011).
[Crossref] [PubMed]

Ryu, S. C.

Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-time estimation of 3-D needle shape and deflection for MRI-guided interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
[Crossref] [PubMed]

Sandlerc, A.

Z. Ding, Q. Tang, C. P. Liang, K. Wu, A. Sandlerc, H. Li, and Y. Chen, “Imaging Spinal Structures With Polarization-Sensitive Optical Coherence Tomography,” IEEE Photonics J. 8(5), 1–8 (2016).
[Crossref]

Santos, J. L.

P. Roriz, L. Carvalho, O. Frazão, J. L. Santos, and J. A. Simões, “From conventional sensors to fibre optic sensors for strain and force measurements in biomechanics applications: A review,” J. Biomech. 47(6), 1251–1261 (2014).
[Crossref] [PubMed]

Savall, J.

Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-time estimation of 3-D needle shape and deflection for MRI-guided interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
[Crossref] [PubMed]

Segal, S.

K. Arendt and S. Segal, “Why epidurals do not always work,” Rev. Obstet. Gynecol. 1(2), 49–55 (2008).
[PubMed]

Seifabadi, R.

R. Seifabadi, E. E. Gomez, F. Aalamifar, G. Fichtinger, and I. Iordachita, “Real-time tracking of a bevel-tip needle with varying insertion depth: Toward teleoperated MRI-guided needle steering,” inProceedings of IEEE International Conference on Intelligent Robots and Systems (IEEE, 2013) pp. 469–476.
[Crossref]

Shen, L.

L. Zhang, J. Qian, Y. Zhang, and L. Shen, “On SDM/WDM FBG sensor net for shape detection of endoscope,” inProceedings of IEEE International Conference on Robotics and Automation (IEEE, 2005) pp. 1986–1991.

Shih, A. J.

Y. Wang, B. L. Tai, H. Yu, and A. J. Shih, “Silicone-based tissue-mimicking phantom for needle insertion simulation,” J. Med. Device. 8(2), 021001 (2014).
[Crossref]

Shin, M.

Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-time estimation of 3-D needle shape and deflection for MRI-guided interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
[Crossref] [PubMed]

Simões, J. A.

P. Roriz, L. Carvalho, O. Frazão, J. L. Santos, and J. A. Simões, “From conventional sensors to fibre optic sensors for strain and force measurements in biomechanics applications: A review,” J. Biomech. 47(6), 1251–1261 (2014).
[Crossref] [PubMed]

Son, J.

G. Ameri, J. Son, J. Liang, F. S. Foster, S. Ganapathy, and T. M. Peters, “Development of a high frequency single-element ultrasound needle transducer for anesthesia delivery,” Proc. SPIE 10139, 101390S (2017).
[Crossref]

Sonny, A.

H. Elsharkawy, A. Sonny, and K. J. Chin, “Localization of epidural space: A review of available technologies,” J. Anaesthesiol. Clin. Pharmacol. 33(1), 16–27 (2017).
[Crossref] [PubMed]

Stevens, M. F.

J. Hermanides, M. W. Hollmann, M. F. Stevens, and P. Lirk, “Failed epidural: causes and management,” Br. J. Anaesth. 109(2), 144–154 (2012).
[Crossref] [PubMed]

Szmuk, P.

O. Ghelber, R. E. Gebhard, S. Vora, C. A. Hagberg, and P. Szmuk, “Identification of the Epidural Space Using Pressure Measurement with the Compuflo Injection Pump-A Pilot study,” Reg. Anesth. Pain Med. 33(4), 346–352 (2008).
[PubMed]

Tai, B. L.

Y. Wang, B. L. Tai, H. Yu, and A. J. Shih, “Silicone-based tissue-mimicking phantom for needle insertion simulation,” J. Med. Device. 8(2), 021001 (2014).
[Crossref]

Tang, Q.

Z. Ding, Q. Tang, C. P. Liang, K. Wu, A. Sandlerc, H. Li, and Y. Chen, “Imaging Spinal Structures With Polarization-Sensitive Optical Coherence Tomography,” IEEE Photonics J. 8(5), 1–8 (2016).
[Crossref]

Teng, W. N.

W. C. Kuo, M. C. Kao, K. Y. Chang, W. N. Teng, M. Y. Tsou, Y. Chang, and C. K. Ting, “Fiber-needle Swept-source Optical Coherence Tomography System for the Identification of the Epidural Space in Piglets,” Anesthesiology 122(3), 585–594 (2015).
[Crossref] [PubMed]

Ting, C. K.

W. C. Kuo, M. C. Kao, M. Y. Tsou, and C. K. Ting, “In vivo images of the epidural space with two- and three-dimensional optical coherence tomography in a porcine model,” PLoS One 12(2), e0172149 (2017).
[Crossref] [PubMed]

W. C. Kuo, M. C. Kao, K. Y. Chang, W. N. Teng, M. Y. Tsou, Y. Chang, and C. K. Ting, “Fiber-needle Swept-source Optical Coherence Tomography System for the Identification of the Epidural Space in Piglets,” Anesthesiology 122(3), 585–594 (2015).
[Crossref] [PubMed]

C. K. Ting, M. Y. Tsou, P. T. Chen, K. Y. Chang, M. S. Mandell, K. H. Chan, and Y. Chang, “A New Technique to Assist Epidural Needle Placement: Fiberoptic-Guided Insertion Using Two Wavelengths,” Anesthesiology 112(5), 1128–1135 (2010).
[Crossref] [PubMed]

Tsou, M. Y.

W. C. Kuo, M. C. Kao, M. Y. Tsou, and C. K. Ting, “In vivo images of the epidural space with two- and three-dimensional optical coherence tomography in a porcine model,” PLoS One 12(2), e0172149 (2017).
[Crossref] [PubMed]

W. C. Kuo, M. C. Kao, K. Y. Chang, W. N. Teng, M. Y. Tsou, Y. Chang, and C. K. Ting, “Fiber-needle Swept-source Optical Coherence Tomography System for the Identification of the Epidural Space in Piglets,” Anesthesiology 122(3), 585–594 (2015).
[Crossref] [PubMed]

C. K. Ting, M. Y. Tsou, P. T. Chen, K. Y. Chang, M. S. Mandell, K. H. Chan, and Y. Chang, “A New Technique to Assist Epidural Needle Placement: Fiberoptic-Guided Insertion Using Two Wavelengths,” Anesthesiology 112(5), 1128–1135 (2010).
[Crossref] [PubMed]

van den Dobbelsteen, J. J.

R. J. Roesthuis, M. Kemp, J. J. van den Dobbelsteen, and S. Misra, “Three-dimensional needle shape reconstruction using an array of Fiber Bragg Grating sensors,” IEEE/ASME Trans. Mechatron. 19(4), 1115–1126 (2014).
[Crossref]

van Niekerk, J.

T. J. M. Lechner, M. G. F. van Wijk, A. A. J. Jongenelis, M. Rybak, J. van Niekerk, and C. J. M. Langenberg, “The use of a sound-enabled device to measure pressure during insertion of an epidural catheter in women in labour,” Anaesthesia 66(7), 568–573 (2011).
[Crossref] [PubMed]

van Wijk, M. G. F.

T. J. M. Lechner, M. G. F. van Wijk, A. A. J. Jongenelis, M. Rybak, J. van Niekerk, and C. J. M. Langenberg, “The use of a sound-enabled device to measure pressure during insertion of an epidural catheter in women in labour,” Anaesthesia 66(7), 568–573 (2011).
[Crossref] [PubMed]

Vora, S.

O. Ghelber, R. E. Gebhard, S. Vora, C. A. Hagberg, and P. Szmuk, “Identification of the Epidural Space Using Pressure Measurement with the Compuflo Injection Pump-A Pilot study,” Reg. Anesth. Pain Med. 33(4), 346–352 (2008).
[PubMed]

Wang, Y.

Y. Wang, B. L. Tai, H. Yu, and A. J. Shih, “Silicone-based tissue-mimicking phantom for needle insertion simulation,” J. Med. Device. 8(2), 021001 (2014).
[Crossref]

White, A. H.

A. H. White, R. Derby, and G. Wynne, “Epidural injections for the diagnosis and treatment of low-back pain,” Spine 5(1), 78–86 (1980).
[Crossref] [PubMed]

Wu, K.

Z. Ding, Q. Tang, C. P. Liang, K. Wu, A. Sandlerc, H. Li, and Y. Chen, “Imaging Spinal Structures With Polarization-Sensitive Optical Coherence Tomography,” IEEE Photonics J. 8(5), 1–8 (2016).
[Crossref]

Wynne, G.

A. H. White, R. Derby, and G. Wynne, “Epidural injections for the diagnosis and treatment of low-back pain,” Spine 5(1), 78–86 (1980).
[Crossref] [PubMed]

Yachouh, J.

I. V. Panayotov, V. Orti, F. Cuisinier, and J. Yachouh, “Polyetheretherketone (PEEK) for medical applications,” J. Mater. Sci. Mater. Med. 27(7), 118 (2016).
[Crossref] [PubMed]

Yu, H.

Y. Wang, B. L. Tai, H. Yu, and A. J. Shih, “Silicone-based tissue-mimicking phantom for needle insertion simulation,” J. Med. Device. 8(2), 021001 (2014).
[Crossref]

Zhang, L.

L. Zhang, J. Qian, Y. Zhang, and L. Shen, “On SDM/WDM FBG sensor net for shape detection of endoscope,” inProceedings of IEEE International Conference on Robotics and Automation (IEEE, 2005) pp. 1986–1991.

Zhang, Y.

L. Zhang, J. Qian, Y. Zhang, and L. Shen, “On SDM/WDM FBG sensor net for shape detection of endoscope,” inProceedings of IEEE International Conference on Robotics and Automation (IEEE, 2005) pp. 1986–1991.

Anaesthesia (1)

T. J. M. Lechner, M. G. F. van Wijk, A. A. J. Jongenelis, M. Rybak, J. van Niekerk, and C. J. M. Langenberg, “The use of a sound-enabled device to measure pressure during insertion of an epidural catheter in women in labour,” Anaesthesia 66(7), 568–573 (2011).
[Crossref] [PubMed]

Anesthesiology (2)

C. K. Ting, M. Y. Tsou, P. T. Chen, K. Y. Chang, M. S. Mandell, K. H. Chan, and Y. Chang, “A New Technique to Assist Epidural Needle Placement: Fiberoptic-Guided Insertion Using Two Wavelengths,” Anesthesiology 112(5), 1128–1135 (2010).
[Crossref] [PubMed]

W. C. Kuo, M. C. Kao, K. Y. Chang, W. N. Teng, M. Y. Tsou, Y. Chang, and C. K. Ting, “Fiber-needle Swept-source Optical Coherence Tomography System for the Identification of the Epidural Space in Piglets,” Anesthesiology 122(3), 585–594 (2015).
[Crossref] [PubMed]

Br. J. Anaesth. (1)

J. Hermanides, M. W. Hollmann, M. F. Stevens, and P. Lirk, “Failed epidural: causes and management,” Br. J. Anaesth. 109(2), 144–154 (2012).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

B. Carotenuto, A. Micco, A. Ricciardi, E. Amorizzo, M. Mercieri, A. Cutolo, and A. Cusano, “Optical Guidance Systems for Epidural Space Identification,” IEEE J. Sel. Top. Quantum Electron. 23(2), 1–9 (2017).
[Crossref]

IEEE Photonics J. (1)

Z. Ding, Q. Tang, C. P. Liang, K. Wu, A. Sandlerc, H. Li, and Y. Chen, “Imaging Spinal Structures With Polarization-Sensitive Optical Coherence Tomography,” IEEE Photonics J. 8(5), 1–8 (2016).
[Crossref]

IEEE/ASME Trans. Mechatron. (2)

R. J. Roesthuis, M. Kemp, J. J. van den Dobbelsteen, and S. Misra, “Three-dimensional needle shape reconstruction using an array of Fiber Bragg Grating sensors,” IEEE/ASME Trans. Mechatron. 19(4), 1115–1126 (2014).
[Crossref]

Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-time estimation of 3-D needle shape and deflection for MRI-guided interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
[Crossref] [PubMed]

J. Anaesthesiol. Clin. Pharmacol. (1)

H. Elsharkawy, A. Sonny, and K. J. Chin, “Localization of epidural space: A review of available technologies,” J. Anaesthesiol. Clin. Pharmacol. 33(1), 16–27 (2017).
[Crossref] [PubMed]

J. Biomech. (1)

P. Roriz, L. Carvalho, O. Frazão, J. L. Santos, and J. A. Simões, “From conventional sensors to fibre optic sensors for strain and force measurements in biomechanics applications: A review,” J. Biomech. 47(6), 1251–1261 (2014).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

J. Mater. Sci. Mater. Med. (1)

I. V. Panayotov, V. Orti, F. Cuisinier, and J. Yachouh, “Polyetheretherketone (PEEK) for medical applications,” J. Mater. Sci. Mater. Med. 27(7), 118 (2016).
[Crossref] [PubMed]

J. Med. Device. (1)

Y. Wang, B. L. Tai, H. Yu, and A. J. Shih, “Silicone-based tissue-mimicking phantom for needle insertion simulation,” J. Med. Device. 8(2), 021001 (2014).
[Crossref]

Laser Focus World (1)

D. Johnson, “Novel Optical Fibers-Draw-tower process creates high-quality FBG arrays,” Laser Focus World 48(10), 53 (2012).

PLoS One (1)

W. C. Kuo, M. C. Kao, M. Y. Tsou, and C. K. Ting, “In vivo images of the epidural space with two- and three-dimensional optical coherence tomography in a porcine model,” PLoS One 12(2), e0172149 (2017).
[Crossref] [PubMed]

Proc. SPIE (1)

G. Ameri, J. Son, J. Liang, F. S. Foster, S. Ganapathy, and T. M. Peters, “Development of a high frequency single-element ultrasound needle transducer for anesthesia delivery,” Proc. SPIE 10139, 101390S (2017).
[Crossref]

Reg. Anesth. Pain Med. (1)

O. Ghelber, R. E. Gebhard, S. Vora, C. A. Hagberg, and P. Szmuk, “Identification of the Epidural Space Using Pressure Measurement with the Compuflo Injection Pump-A Pilot study,” Reg. Anesth. Pain Med. 33(4), 346–352 (2008).
[PubMed]

Rev. Obstet. Gynecol. (1)

K. Arendt and S. Segal, “Why epidurals do not always work,” Rev. Obstet. Gynecol. 1(2), 49–55 (2008).
[PubMed]

Spine (1)

A. H. White, R. Derby, and G. Wynne, “Epidural injections for the diagnosis and treatment of low-back pain,” Spine 5(1), 78–86 (1980).
[Crossref] [PubMed]

Other (10)

P. Y. Lee, C. C. Huang, and H. K. Chiang, “Implementation of a novel high frequency ultrasound device for guiding epidural anesthesia - in vivo animal study,” in IEEE International Ultrasonics Symposium (IEEE, 2013), 2049–2052.
[Crossref]

Y. L. Park, K. Chau, R. J. Black, and M. R. Cutkosky, “Force sensing robot fingers using embedded fiber Bragg grating sensors and Shape Deposition Manufacturing,” in Proceedings of the IEEE International Conference on Robotics and Automation (IEEE, 2007) pp. 1510–1516.
[Crossref]

L. Zhang, J. Qian, Y. Zhang, and L. Shen, “On SDM/WDM FBG sensor net for shape detection of endoscope,” inProceedings of IEEE International Conference on Robotics and Automation (IEEE, 2005) pp. 1986–1991.

J. S. Kim, J. Guo, M. Chatrasingh, S. Kim, and I. Iordachita, “Shape determination during needle insertion with curvature measurements,” inProceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2017), pp. 201–208.
[Crossref]

R. Seifabadi, E. E. Gomez, F. Aalamifar, G. Fichtinger, and I. Iordachita, “Real-time tracking of a bevel-tip needle with varying insertion depth: Toward teleoperated MRI-guided needle steering,” inProceedings of IEEE International Conference on Intelligent Robots and Systems (IEEE, 2013) pp. 469–476.
[Crossref]

S. Elayaperumal, J. H. Bae, D. Christensen, M. R. Cutkosky, B. L. Daniel, R. J. Black, J. M. Costa, F. Faridian, and B. Moslehi, “MR-compatible biopsy needle with enhanced tip force sensing,” in World Haptics Conference (IEEE, 2013) pp. 109–114.
[Crossref]

J. H. Bae, C. J. Ploch, M. A. Lin, B. L. Daniel, and M. R. Cutkosky, “Display of needle tip contact forces for steering guidance,” in Haptics Symposium (IEEE, 2016) pp. 332–337.
[Crossref]

S. Fakirov, Handbook of condensation thermoplastic elastomers (John Wiley & Sons, 2006).

B. J. Lambert, F. W. Tang, and W. J. Rogers, Polymers in Medical Applications (iSmithers Rapra Publishing, 2001).

S. M. Kurtz, PEEK Biomaterials Handbook (William Andrew Publishing, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic view of the (a) Hytrel coated- and PEEK coted- probes illustrating the layers thicknesses; (b) Picture of our device where the probe is integrated in the Tuohy needle and locked to it by means of a clamp; (c) close-up of the needle tip integrated with the HCP.
Fig. 2
Fig. 2 (a) The calibration setup; a close-up (figure inset) of the base showing the metallic spindle (b) Calibration curves of HCP (blue) and PCP (red); (c) setup for the tilt test. (d) Bragg wavelength as a function of the bending angle registered with the HCP.
Fig. 3
Fig. 3 (a) Force variations versus time measured by HCP in L7/S1; gray line represents the baseline (details in the text). X-ray images captured for monitoring the needle position during advancement: (b) wrong and (c) correct positioning of the needle.
Fig. 4
Fig. 4 Force variations versus time measured by HCP in (a) L6/L7 and (b) L5/L6; gray line represents the baseline (details in the text). X-ray images captured afterward the correct positioning of the needle in ES in (c) L6/L7 and (d) L5/L6.
Fig. 5
Fig. 5 Force variations measured by the Hytrel coated probes during penetration in L7/S1 (first column), L6/L7 (second column) and L5/L6 (third column) spaces: (a) original data; (b) the same of (a) where positive values are set to zero; (c) derivative of (b) ; (d) processed signal given by the multiplication between (b) and (c). The inset in (d) are the close-up images of (a) and (d) in correspondence of the force drops.
Fig. 6
Fig. 6 Force variations measured by the PEEK coated probe during penetration in L5/L6 space: (a) original data; (b) the same of (a) where positive values are set to zero; (c) derivative of (b) ; (d) processed signal given by the multiplication between (b) and (c).
Fig. 7
Fig. 7 Force variations measured by the Hytrel coated probe during the penetration of the silicone membrane at different penetration speeds: (a) original data; (b) the same of (a) where positive values are set to zero; (c) derivative of (b) ; (d) processed signal given by the multiplication between (b) and (c).
Fig. 8
Fig. 8 Histogram of the distances between the two arrows of Fig. 7 (space identification uncertainty) as a function of the needle insertion speed. For each speed, the value is calculated as mean ± one standard deviation over 5 punctures made with different position of the HCP inside the needle (see the discussion in the text for further details).
Fig. 9
Fig. 9 Comparison between wavelength shifts measured with the Hytrel coated probe in (a) a phantom and (b) porcine model in the space L6/L7.