Abstract

Total internal reflection fluorescence microscopy (TIRF microscopy) uses a rapid decay of evanescent waves to excite fluorophores within several hundred nanometers (nm) beneath the plasma membrane, which can effectively suppress excitation of fluorescence signals in the deep layers. From image stacks obtained with a plurality of different incident angles, a three-dimensional spatial structure of the observed sample can be reconstructed by a Multi-Angle-TIRF (MA-TIRF) algorithm that provides an axial resolution of ~50 nm. Taking into account the point spread function (PSF) of the TIRF microscopes, we further increase its lateral resolution by introducing a fast deconvolution algorithm into the reconstruction of MA-TIRF data (DMA-TIRF), which is approached in just one step of minimizing the reconstruction function. We also introduce a TV regularization term in the deconvolution algorithm to suppress artifacts induced by the excessive noise. Therefore, based on the hardware of existing MA-TIRF microscopes, the proposed DMA-TIRF algorithm has achieved lateral and axial resolutions of ~200 and ~50 nm, respectively.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Total variation regularized deconvolution for extended depth of field microscopy

Ramzi N. Zahreddine and Carol J. Cogswell
Appl. Opt. 54(9) 2244-2254 (2015)

Clearer view for TIRF and oblique illumination microscopy

Reto Fiolka
Opt. Express 24(26) 29556-29567 (2016)

Image reconstruction for structured-illumination microscopy with low signal level

Kaiqin Chu, Paul J. McMillan, Zachary J. Smith, Jie Yin, Jeniffer Atkins, Paul Goodwin, Sebastian Wachsmann-Hogiu, and Stephen Lane
Opt. Express 22(7) 8687-8702 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Boulanger, C. Gueudry, D. Münch, B. Cinquin, P. Paul-Gilloteaux, S. Bardin, C. Guérin, F. Senger, L. Blanchoin, and J. Salamero, “Fast high-resolution 3D total internal reflection fluorescence microscopy by incidence angle scanning and azimuthal averaging,” Proc. Natl. Acad. Sci. U.S.A. 111(48), 17164–17169 (2014).
    [Crossref] [PubMed]
  2. S. Pendharker, S. Shende, W. Newman, S. Ogg, N. Nazemifard, and Z. Jacob, “Axial super-resolution evanescent wave tomography,” Opt. Lett. 41(23), 5499–5502 (2016).
    [Crossref] [PubMed]
  3. C. Zheng, G. Zhao, W. Liu, Y. Chen, Z. Zhang, L. Jin, Y. Xu, C. Kuang, and X. Liu, “Three-dimensional super-resolved live cell imaging through polarized multi-angle TIRF,” Opt. Lett. 43(7), 1423–1426 (2018).
    [Crossref] [PubMed]
  4. D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13(1), 247–268 (1984).
    [Crossref] [PubMed]
  5. J. Lim, K. Lee, K. H. Jin, S. Shin, S. Lee, Y. Park, and J. C. Ye, “Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography,” Opt. Express 23(13), 16933–16948 (2015).
    [Crossref] [PubMed]
  6. D. Geman and C. Yang, “Nonlinear image recovery with half-quadratic regularization,” IEEE Trans. Image Process. 4(7), 932–946 (1995).
    [Crossref] [PubMed]
  7. J. F. Abascal, J. Chamorro-Servent, J. Aguirre, S. Arridge, T. Correia, J. Ripoll, J. J. Vaquero, and M. Desco, “Fluorescence diffuse optical tomography using the split Bregman method,” Med. Phys. 38(11), 6275–6284 (2011).
    [Crossref] [PubMed]
  8. S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An iterative regularization method for total variation-based image restoration,” Siam Journal on Multiscale Modeling & Simulation 4(2), 460–489 (2005).
    [Crossref]
  9. T. Goldstein and S. Osher, “The split Bregman method for L1-regularized problems,” SIAM J. Imaging Sci. 2(2), 323–343 (2009).
    [Crossref]
  10. M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
    [Crossref] [PubMed]
  11. P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C. M. Hsieh, C. H. Lee, K. B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
    [Crossref] [PubMed]
  12. T. Yuan, L. Liu, Y. Zhang, L. Wei, S. Zhao, X. Zheng, X. Huang, J. Boulanger, C. Gueudry, J. Lu, L. Xie, W. Du, W. Zong, L. Yang, J. Salamero, Y. Liu, and L. Chen, “Diacylglycerol Guides the Hopping of Clathrin-Coated Pits along Microtubules for Exo-Endocytosis Coupling,” Dev. Cell 35(1), 120–130 (2015).
    [Crossref] [PubMed]
  13. W. Zong, X. Huang, C. Zhang, T. Yuan, L. L. Zhu, M. Fan, and L. Chen, “Shadowless-illuminated variable-angle TIRF (siva-TIRF) microscopy for the observation of spatial-temporal dynamics in live cells,” Biomed. Opt. Express 5(5), 1530–1540 (2014).
    [Crossref] [PubMed]
  14. X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
    [Crossref] [PubMed]
  15. G. Gilboa and S. Osher, “Nonlocal operators with applications to image processing,” Multiscale Model. Simul. 7(3), 1005–1028 (2009).
    [Crossref]
  16. G. Chierchia, N. Pustelnik, B. Pesquet-Popescu, and J. C. Pesquet, “A nonlocal structure tensor-based approach for multicomponent image recovery problems,” IEEE Trans. Image Process. 23(12), 5531–5544 (2014).
    [Crossref] [PubMed]
  17. K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising,” IEEE Trans. Image Process. 26(7), 3142–3155 (2017).
    [Crossref] [PubMed]

2018 (2)

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref] [PubMed]

C. Zheng, G. Zhao, W. Liu, Y. Chen, Z. Zhang, L. Jin, Y. Xu, C. Kuang, and X. Liu, “Three-dimensional super-resolved live cell imaging through polarized multi-angle TIRF,” Opt. Lett. 43(7), 1423–1426 (2018).
[Crossref] [PubMed]

2017 (1)

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising,” IEEE Trans. Image Process. 26(7), 3142–3155 (2017).
[Crossref] [PubMed]

2016 (2)

S. Pendharker, S. Shende, W. Newman, S. Ogg, N. Nazemifard, and Z. Jacob, “Axial super-resolution evanescent wave tomography,” Opt. Lett. 41(23), 5499–5502 (2016).
[Crossref] [PubMed]

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C. M. Hsieh, C. H. Lee, K. B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[Crossref] [PubMed]

2015 (2)

T. Yuan, L. Liu, Y. Zhang, L. Wei, S. Zhao, X. Zheng, X. Huang, J. Boulanger, C. Gueudry, J. Lu, L. Xie, W. Du, W. Zong, L. Yang, J. Salamero, Y. Liu, and L. Chen, “Diacylglycerol Guides the Hopping of Clathrin-Coated Pits along Microtubules for Exo-Endocytosis Coupling,” Dev. Cell 35(1), 120–130 (2015).
[Crossref] [PubMed]

J. Lim, K. Lee, K. H. Jin, S. Shin, S. Lee, Y. Park, and J. C. Ye, “Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography,” Opt. Express 23(13), 16933–16948 (2015).
[Crossref] [PubMed]

2014 (3)

W. Zong, X. Huang, C. Zhang, T. Yuan, L. L. Zhu, M. Fan, and L. Chen, “Shadowless-illuminated variable-angle TIRF (siva-TIRF) microscopy for the observation of spatial-temporal dynamics in live cells,” Biomed. Opt. Express 5(5), 1530–1540 (2014).
[Crossref] [PubMed]

G. Chierchia, N. Pustelnik, B. Pesquet-Popescu, and J. C. Pesquet, “A nonlocal structure tensor-based approach for multicomponent image recovery problems,” IEEE Trans. Image Process. 23(12), 5531–5544 (2014).
[Crossref] [PubMed]

J. Boulanger, C. Gueudry, D. Münch, B. Cinquin, P. Paul-Gilloteaux, S. Bardin, C. Guérin, F. Senger, L. Blanchoin, and J. Salamero, “Fast high-resolution 3D total internal reflection fluorescence microscopy by incidence angle scanning and azimuthal averaging,” Proc. Natl. Acad. Sci. U.S.A. 111(48), 17164–17169 (2014).
[Crossref] [PubMed]

2011 (1)

J. F. Abascal, J. Chamorro-Servent, J. Aguirre, S. Arridge, T. Correia, J. Ripoll, J. J. Vaquero, and M. Desco, “Fluorescence diffuse optical tomography using the split Bregman method,” Med. Phys. 38(11), 6275–6284 (2011).
[Crossref] [PubMed]

2009 (2)

T. Goldstein and S. Osher, “The split Bregman method for L1-regularized problems,” SIAM J. Imaging Sci. 2(2), 323–343 (2009).
[Crossref]

G. Gilboa and S. Osher, “Nonlocal operators with applications to image processing,” Multiscale Model. Simul. 7(3), 1005–1028 (2009).
[Crossref]

2008 (1)

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

2005 (1)

S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An iterative regularization method for total variation-based image restoration,” Siam Journal on Multiscale Modeling & Simulation 4(2), 460–489 (2005).
[Crossref]

1995 (1)

D. Geman and C. Yang, “Nonlinear image recovery with half-quadratic regularization,” IEEE Trans. Image Process. 4(7), 932–946 (1995).
[Crossref] [PubMed]

1984 (1)

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13(1), 247–268 (1984).
[Crossref] [PubMed]

Abascal, J. F.

J. F. Abascal, J. Chamorro-Servent, J. Aguirre, S. Arridge, T. Correia, J. Ripoll, J. J. Vaquero, and M. Desco, “Fluorescence diffuse optical tomography using the split Bregman method,” Med. Phys. 38(11), 6275–6284 (2011).
[Crossref] [PubMed]

Agard, D. A.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Aguirre, J.

J. F. Abascal, J. Chamorro-Servent, J. Aguirre, S. Arridge, T. Correia, J. Ripoll, J. J. Vaquero, and M. Desco, “Fluorescence diffuse optical tomography using the split Bregman method,” Med. Phys. 38(11), 6275–6284 (2011).
[Crossref] [PubMed]

Arridge, S.

J. F. Abascal, J. Chamorro-Servent, J. Aguirre, S. Arridge, T. Correia, J. Ripoll, J. J. Vaquero, and M. Desco, “Fluorescence diffuse optical tomography using the split Bregman method,” Med. Phys. 38(11), 6275–6284 (2011).
[Crossref] [PubMed]

Axelrod, D.

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13(1), 247–268 (1984).
[Crossref] [PubMed]

Ayi, T. C.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C. M. Hsieh, C. H. Lee, K. B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[Crossref] [PubMed]

Bardin, S.

J. Boulanger, C. Gueudry, D. Münch, B. Cinquin, P. Paul-Gilloteaux, S. Bardin, C. Guérin, F. Senger, L. Blanchoin, and J. Salamero, “Fast high-resolution 3D total internal reflection fluorescence microscopy by incidence angle scanning and azimuthal averaging,” Proc. Natl. Acad. Sci. U.S.A. 111(48), 17164–17169 (2014).
[Crossref] [PubMed]

Blanchoin, L.

J. Boulanger, C. Gueudry, D. Münch, B. Cinquin, P. Paul-Gilloteaux, S. Bardin, C. Guérin, F. Senger, L. Blanchoin, and J. Salamero, “Fast high-resolution 3D total internal reflection fluorescence microscopy by incidence angle scanning and azimuthal averaging,” Proc. Natl. Acad. Sci. U.S.A. 111(48), 17164–17169 (2014).
[Crossref] [PubMed]

Boulanger, J.

T. Yuan, L. Liu, Y. Zhang, L. Wei, S. Zhao, X. Zheng, X. Huang, J. Boulanger, C. Gueudry, J. Lu, L. Xie, W. Du, W. Zong, L. Yang, J. Salamero, Y. Liu, and L. Chen, “Diacylglycerol Guides the Hopping of Clathrin-Coated Pits along Microtubules for Exo-Endocytosis Coupling,” Dev. Cell 35(1), 120–130 (2015).
[Crossref] [PubMed]

J. Boulanger, C. Gueudry, D. Münch, B. Cinquin, P. Paul-Gilloteaux, S. Bardin, C. Guérin, F. Senger, L. Blanchoin, and J. Salamero, “Fast high-resolution 3D total internal reflection fluorescence microscopy by incidence angle scanning and azimuthal averaging,” Proc. Natl. Acad. Sci. U.S.A. 111(48), 17164–17169 (2014).
[Crossref] [PubMed]

Bourouina, T.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C. M. Hsieh, C. H. Lee, K. B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[Crossref] [PubMed]

Burger, M.

S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An iterative regularization method for total variation-based image restoration,” Siam Journal on Multiscale Modeling & Simulation 4(2), 460–489 (2005).
[Crossref]

Burghardt, T. P.

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13(1), 247–268 (1984).
[Crossref] [PubMed]

Cande, W. Z.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Carlton, P. M.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Chamorro-Servent, J.

J. F. Abascal, J. Chamorro-Servent, J. Aguirre, S. Arridge, T. Correia, J. Ripoll, J. J. Vaquero, and M. Desco, “Fluorescence diffuse optical tomography using the split Bregman method,” Med. Phys. 38(11), 6275–6284 (2011).
[Crossref] [PubMed]

Chen, H. F.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C. M. Hsieh, C. H. Lee, K. B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[Crossref] [PubMed]

Chen, L.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref] [PubMed]

T. Yuan, L. Liu, Y. Zhang, L. Wei, S. Zhao, X. Zheng, X. Huang, J. Boulanger, C. Gueudry, J. Lu, L. Xie, W. Du, W. Zong, L. Yang, J. Salamero, Y. Liu, and L. Chen, “Diacylglycerol Guides the Hopping of Clathrin-Coated Pits along Microtubules for Exo-Endocytosis Coupling,” Dev. Cell 35(1), 120–130 (2015).
[Crossref] [PubMed]

W. Zong, X. Huang, C. Zhang, T. Yuan, L. L. Zhu, M. Fan, and L. Chen, “Shadowless-illuminated variable-angle TIRF (siva-TIRF) microscopy for the observation of spatial-temporal dynamics in live cells,” Biomed. Opt. Express 5(5), 1530–1540 (2014).
[Crossref] [PubMed]

Chen, Y.

C. Zheng, G. Zhao, W. Liu, Y. Chen, Z. Zhang, L. Jin, Y. Xu, C. Kuang, and X. Liu, “Three-dimensional super-resolved live cell imaging through polarized multi-angle TIRF,” Opt. Lett. 43(7), 1423–1426 (2018).
[Crossref] [PubMed]

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising,” IEEE Trans. Image Process. 26(7), 3142–3155 (2017).
[Crossref] [PubMed]

Chierchia, G.

G. Chierchia, N. Pustelnik, B. Pesquet-Popescu, and J. C. Pesquet, “A nonlocal structure tensor-based approach for multicomponent image recovery problems,” IEEE Trans. Image Process. 23(12), 5531–5544 (2014).
[Crossref] [PubMed]

Chin, L. K.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C. M. Hsieh, C. H. Lee, K. B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[Crossref] [PubMed]

Cinquin, B.

J. Boulanger, C. Gueudry, D. Münch, B. Cinquin, P. Paul-Gilloteaux, S. Bardin, C. Guérin, F. Senger, L. Blanchoin, and J. Salamero, “Fast high-resolution 3D total internal reflection fluorescence microscopy by incidence angle scanning and azimuthal averaging,” Proc. Natl. Acad. Sci. U.S.A. 111(48), 17164–17169 (2014).
[Crossref] [PubMed]

Correia, T.

J. F. Abascal, J. Chamorro-Servent, J. Aguirre, S. Arridge, T. Correia, J. Ripoll, J. J. Vaquero, and M. Desco, “Fluorescence diffuse optical tomography using the split Bregman method,” Med. Phys. 38(11), 6275–6284 (2011).
[Crossref] [PubMed]

Desco, M.

J. F. Abascal, J. Chamorro-Servent, J. Aguirre, S. Arridge, T. Correia, J. Ripoll, J. J. Vaquero, and M. Desco, “Fluorescence diffuse optical tomography using the split Bregman method,” Med. Phys. 38(11), 6275–6284 (2011).
[Crossref] [PubMed]

Du, W.

T. Yuan, L. Liu, Y. Zhang, L. Wei, S. Zhao, X. Zheng, X. Huang, J. Boulanger, C. Gueudry, J. Lu, L. Xie, W. Du, W. Zong, L. Yang, J. Salamero, Y. Liu, and L. Chen, “Diacylglycerol Guides the Hopping of Clathrin-Coated Pits along Microtubules for Exo-Endocytosis Coupling,” Dev. Cell 35(1), 120–130 (2015).
[Crossref] [PubMed]

Fan, J.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref] [PubMed]

Fan, M.

Geman, D.

D. Geman and C. Yang, “Nonlinear image recovery with half-quadratic regularization,” IEEE Trans. Image Process. 4(7), 932–946 (1995).
[Crossref] [PubMed]

Gilboa, G.

G. Gilboa and S. Osher, “Nonlocal operators with applications to image processing,” Multiscale Model. Simul. 7(3), 1005–1028 (2009).
[Crossref]

Goldfarb, D.

S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An iterative regularization method for total variation-based image restoration,” Siam Journal on Multiscale Modeling & Simulation 4(2), 460–489 (2005).
[Crossref]

Goldstein, T.

T. Goldstein and S. Osher, “The split Bregman method for L1-regularized problems,” SIAM J. Imaging Sci. 2(2), 323–343 (2009).
[Crossref]

Golubovskaya, I. N.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Guérin, C.

J. Boulanger, C. Gueudry, D. Münch, B. Cinquin, P. Paul-Gilloteaux, S. Bardin, C. Guérin, F. Senger, L. Blanchoin, and J. Salamero, “Fast high-resolution 3D total internal reflection fluorescence microscopy by incidence angle scanning and azimuthal averaging,” Proc. Natl. Acad. Sci. U.S.A. 111(48), 17164–17169 (2014).
[Crossref] [PubMed]

Gueudry, C.

T. Yuan, L. Liu, Y. Zhang, L. Wei, S. Zhao, X. Zheng, X. Huang, J. Boulanger, C. Gueudry, J. Lu, L. Xie, W. Du, W. Zong, L. Yang, J. Salamero, Y. Liu, and L. Chen, “Diacylglycerol Guides the Hopping of Clathrin-Coated Pits along Microtubules for Exo-Endocytosis Coupling,” Dev. Cell 35(1), 120–130 (2015).
[Crossref] [PubMed]

J. Boulanger, C. Gueudry, D. Münch, B. Cinquin, P. Paul-Gilloteaux, S. Bardin, C. Guérin, F. Senger, L. Blanchoin, and J. Salamero, “Fast high-resolution 3D total internal reflection fluorescence microscopy by incidence angle scanning and azimuthal averaging,” Proc. Natl. Acad. Sci. U.S.A. 111(48), 17164–17169 (2014).
[Crossref] [PubMed]

Gustafsson, M. G.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Hsieh, C. M.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C. M. Hsieh, C. H. Lee, K. B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[Crossref] [PubMed]

Huang, X.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref] [PubMed]

T. Yuan, L. Liu, Y. Zhang, L. Wei, S. Zhao, X. Zheng, X. Huang, J. Boulanger, C. Gueudry, J. Lu, L. Xie, W. Du, W. Zong, L. Yang, J. Salamero, Y. Liu, and L. Chen, “Diacylglycerol Guides the Hopping of Clathrin-Coated Pits along Microtubules for Exo-Endocytosis Coupling,” Dev. Cell 35(1), 120–130 (2015).
[Crossref] [PubMed]

W. Zong, X. Huang, C. Zhang, T. Yuan, L. L. Zhu, M. Fan, and L. Chen, “Shadowless-illuminated variable-angle TIRF (siva-TIRF) microscopy for the observation of spatial-temporal dynamics in live cells,” Biomed. Opt. Express 5(5), 1530–1540 (2014).
[Crossref] [PubMed]

Jacob, Z.

Jin, K. H.

Jin, L.

Kuang, C.

Lal, A.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref] [PubMed]

Lee, C. H.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C. M. Hsieh, C. H. Lee, K. B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[Crossref] [PubMed]

Lee, K.

Lee, S.

Leprince-Wang, Y.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C. M. Hsieh, C. H. Lee, K. B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[Crossref] [PubMed]

Li, L.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref] [PubMed]

Liedberg, B.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C. M. Hsieh, C. H. Lee, K. B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[Crossref] [PubMed]

Lim, J.

Liu, H.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref] [PubMed]

Liu, L.

T. Yuan, L. Liu, Y. Zhang, L. Wei, S. Zhao, X. Zheng, X. Huang, J. Boulanger, C. Gueudry, J. Lu, L. Xie, W. Du, W. Zong, L. Yang, J. Salamero, Y. Liu, and L. Chen, “Diacylglycerol Guides the Hopping of Clathrin-Coated Pits along Microtubules for Exo-Endocytosis Coupling,” Dev. Cell 35(1), 120–130 (2015).
[Crossref] [PubMed]

Liu, P. Y.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C. M. Hsieh, C. H. Lee, K. B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[Crossref] [PubMed]

Liu, W.

Liu, X.

Liu, Y.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref] [PubMed]

T. Yuan, L. Liu, Y. Zhang, L. Wei, S. Zhao, X. Zheng, X. Huang, J. Boulanger, C. Gueudry, J. Lu, L. Xie, W. Du, W. Zong, L. Yang, J. Salamero, Y. Liu, and L. Chen, “Diacylglycerol Guides the Hopping of Clathrin-Coated Pits along Microtubules for Exo-Endocytosis Coupling,” Dev. Cell 35(1), 120–130 (2015).
[Crossref] [PubMed]

Lu, J.

T. Yuan, L. Liu, Y. Zhang, L. Wei, S. Zhao, X. Zheng, X. Huang, J. Boulanger, C. Gueudry, J. Lu, L. Xie, W. Du, W. Zong, L. Yang, J. Salamero, Y. Liu, and L. Chen, “Diacylglycerol Guides the Hopping of Clathrin-Coated Pits along Microtubules for Exo-Endocytosis Coupling,” Dev. Cell 35(1), 120–130 (2015).
[Crossref] [PubMed]

Mao, H.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref] [PubMed]

Meng, D.

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising,” IEEE Trans. Image Process. 26(7), 3142–3155 (2017).
[Crossref] [PubMed]

Münch, D.

J. Boulanger, C. Gueudry, D. Münch, B. Cinquin, P. Paul-Gilloteaux, S. Bardin, C. Guérin, F. Senger, L. Blanchoin, and J. Salamero, “Fast high-resolution 3D total internal reflection fluorescence microscopy by incidence angle scanning and azimuthal averaging,” Proc. Natl. Acad. Sci. U.S.A. 111(48), 17164–17169 (2014).
[Crossref] [PubMed]

Nazemifard, N.

Newman, W.

Ogg, S.

Osher, S.

G. Gilboa and S. Osher, “Nonlocal operators with applications to image processing,” Multiscale Model. Simul. 7(3), 1005–1028 (2009).
[Crossref]

T. Goldstein and S. Osher, “The split Bregman method for L1-regularized problems,” SIAM J. Imaging Sci. 2(2), 323–343 (2009).
[Crossref]

S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An iterative regularization method for total variation-based image restoration,” Siam Journal on Multiscale Modeling & Simulation 4(2), 460–489 (2005).
[Crossref]

Park, Y.

Paul-Gilloteaux, P.

J. Boulanger, C. Gueudry, D. Münch, B. Cinquin, P. Paul-Gilloteaux, S. Bardin, C. Guérin, F. Senger, L. Blanchoin, and J. Salamero, “Fast high-resolution 3D total internal reflection fluorescence microscopy by incidence angle scanning and azimuthal averaging,” Proc. Natl. Acad. Sci. U.S.A. 111(48), 17164–17169 (2014).
[Crossref] [PubMed]

Pendharker, S.

Pesquet, J. C.

G. Chierchia, N. Pustelnik, B. Pesquet-Popescu, and J. C. Pesquet, “A nonlocal structure tensor-based approach for multicomponent image recovery problems,” IEEE Trans. Image Process. 23(12), 5531–5544 (2014).
[Crossref] [PubMed]

Pesquet-Popescu, B.

G. Chierchia, N. Pustelnik, B. Pesquet-Popescu, and J. C. Pesquet, “A nonlocal structure tensor-based approach for multicomponent image recovery problems,” IEEE Trans. Image Process. 23(12), 5531–5544 (2014).
[Crossref] [PubMed]

Pustelnik, N.

G. Chierchia, N. Pustelnik, B. Pesquet-Popescu, and J. C. Pesquet, “A nonlocal structure tensor-based approach for multicomponent image recovery problems,” IEEE Trans. Image Process. 23(12), 5531–5544 (2014).
[Crossref] [PubMed]

Ripoll, J.

J. F. Abascal, J. Chamorro-Servent, J. Aguirre, S. Arridge, T. Correia, J. Ripoll, J. J. Vaquero, and M. Desco, “Fluorescence diffuse optical tomography using the split Bregman method,” Med. Phys. 38(11), 6275–6284 (2011).
[Crossref] [PubMed]

Salamero, J.

T. Yuan, L. Liu, Y. Zhang, L. Wei, S. Zhao, X. Zheng, X. Huang, J. Boulanger, C. Gueudry, J. Lu, L. Xie, W. Du, W. Zong, L. Yang, J. Salamero, Y. Liu, and L. Chen, “Diacylglycerol Guides the Hopping of Clathrin-Coated Pits along Microtubules for Exo-Endocytosis Coupling,” Dev. Cell 35(1), 120–130 (2015).
[Crossref] [PubMed]

J. Boulanger, C. Gueudry, D. Münch, B. Cinquin, P. Paul-Gilloteaux, S. Bardin, C. Guérin, F. Senger, L. Blanchoin, and J. Salamero, “Fast high-resolution 3D total internal reflection fluorescence microscopy by incidence angle scanning and azimuthal averaging,” Proc. Natl. Acad. Sci. U.S.A. 111(48), 17164–17169 (2014).
[Crossref] [PubMed]

Sedat, J. W.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Senger, F.

J. Boulanger, C. Gueudry, D. Münch, B. Cinquin, P. Paul-Gilloteaux, S. Bardin, C. Guérin, F. Senger, L. Blanchoin, and J. Salamero, “Fast high-resolution 3D total internal reflection fluorescence microscopy by incidence angle scanning and azimuthal averaging,” Proc. Natl. Acad. Sci. U.S.A. 111(48), 17164–17169 (2014).
[Crossref] [PubMed]

Ser, W.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C. M. Hsieh, C. H. Lee, K. B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[Crossref] [PubMed]

Shao, L.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Shende, S.

Shin, S.

Sung, K. B.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C. M. Hsieh, C. H. Lee, K. B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[Crossref] [PubMed]

Tan, S.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref] [PubMed]

Tang, L.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref] [PubMed]

Thompson, N. L.

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13(1), 247–268 (1984).
[Crossref] [PubMed]

Vaquero, J. J.

J. F. Abascal, J. Chamorro-Servent, J. Aguirre, S. Arridge, T. Correia, J. Ripoll, J. J. Vaquero, and M. Desco, “Fluorescence diffuse optical tomography using the split Bregman method,” Med. Phys. 38(11), 6275–6284 (2011).
[Crossref] [PubMed]

Wang, C. J.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Wang, K.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C. M. Hsieh, C. H. Lee, K. B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[Crossref] [PubMed]

Wei, L.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref] [PubMed]

T. Yuan, L. Liu, Y. Zhang, L. Wei, S. Zhao, X. Zheng, X. Huang, J. Boulanger, C. Gueudry, J. Lu, L. Xie, W. Du, W. Zong, L. Yang, J. Salamero, Y. Liu, and L. Chen, “Diacylglycerol Guides the Hopping of Clathrin-Coated Pits along Microtubules for Exo-Endocytosis Coupling,” Dev. Cell 35(1), 120–130 (2015).
[Crossref] [PubMed]

Wu, R.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref] [PubMed]

Wu, Y.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref] [PubMed]

Xi, P.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref] [PubMed]

Xie, L.

T. Yuan, L. Liu, Y. Zhang, L. Wei, S. Zhao, X. Zheng, X. Huang, J. Boulanger, C. Gueudry, J. Lu, L. Xie, W. Du, W. Zong, L. Yang, J. Salamero, Y. Liu, and L. Chen, “Diacylglycerol Guides the Hopping of Clathrin-Coated Pits along Microtubules for Exo-Endocytosis Coupling,” Dev. Cell 35(1), 120–130 (2015).
[Crossref] [PubMed]

Xu, J.

S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An iterative regularization method for total variation-based image restoration,” Siam Journal on Multiscale Modeling & Simulation 4(2), 460–489 (2005).
[Crossref]

Xu, Y.

Yang, C.

D. Geman and C. Yang, “Nonlinear image recovery with half-quadratic regularization,” IEEE Trans. Image Process. 4(7), 932–946 (1995).
[Crossref] [PubMed]

Yang, L.

T. Yuan, L. Liu, Y. Zhang, L. Wei, S. Zhao, X. Zheng, X. Huang, J. Boulanger, C. Gueudry, J. Lu, L. Xie, W. Du, W. Zong, L. Yang, J. Salamero, Y. Liu, and L. Chen, “Diacylglycerol Guides the Hopping of Clathrin-Coated Pits along Microtubules for Exo-Endocytosis Coupling,” Dev. Cell 35(1), 120–130 (2015).
[Crossref] [PubMed]

Yap, P. H.

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C. M. Hsieh, C. H. Lee, K. B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[Crossref] [PubMed]

Ye, J. C.

Yin, W.

S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An iterative regularization method for total variation-based image restoration,” Siam Journal on Multiscale Modeling & Simulation 4(2), 460–489 (2005).
[Crossref]

Yuan, T.

T. Yuan, L. Liu, Y. Zhang, L. Wei, S. Zhao, X. Zheng, X. Huang, J. Boulanger, C. Gueudry, J. Lu, L. Xie, W. Du, W. Zong, L. Yang, J. Salamero, Y. Liu, and L. Chen, “Diacylglycerol Guides the Hopping of Clathrin-Coated Pits along Microtubules for Exo-Endocytosis Coupling,” Dev. Cell 35(1), 120–130 (2015).
[Crossref] [PubMed]

W. Zong, X. Huang, C. Zhang, T. Yuan, L. L. Zhu, M. Fan, and L. Chen, “Shadowless-illuminated variable-angle TIRF (siva-TIRF) microscopy for the observation of spatial-temporal dynamics in live cells,” Biomed. Opt. Express 5(5), 1530–1540 (2014).
[Crossref] [PubMed]

Zhang, C.

Zhang, K.

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising,” IEEE Trans. Image Process. 26(7), 3142–3155 (2017).
[Crossref] [PubMed]

Zhang, L.

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising,” IEEE Trans. Image Process. 26(7), 3142–3155 (2017).
[Crossref] [PubMed]

Zhang, Y.

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref] [PubMed]

T. Yuan, L. Liu, Y. Zhang, L. Wei, S. Zhao, X. Zheng, X. Huang, J. Boulanger, C. Gueudry, J. Lu, L. Xie, W. Du, W. Zong, L. Yang, J. Salamero, Y. Liu, and L. Chen, “Diacylglycerol Guides the Hopping of Clathrin-Coated Pits along Microtubules for Exo-Endocytosis Coupling,” Dev. Cell 35(1), 120–130 (2015).
[Crossref] [PubMed]

Zhang, Z.

Zhao, G.

Zhao, S.

T. Yuan, L. Liu, Y. Zhang, L. Wei, S. Zhao, X. Zheng, X. Huang, J. Boulanger, C. Gueudry, J. Lu, L. Xie, W. Du, W. Zong, L. Yang, J. Salamero, Y. Liu, and L. Chen, “Diacylglycerol Guides the Hopping of Clathrin-Coated Pits along Microtubules for Exo-Endocytosis Coupling,” Dev. Cell 35(1), 120–130 (2015).
[Crossref] [PubMed]

Zheng, C.

Zheng, X.

T. Yuan, L. Liu, Y. Zhang, L. Wei, S. Zhao, X. Zheng, X. Huang, J. Boulanger, C. Gueudry, J. Lu, L. Xie, W. Du, W. Zong, L. Yang, J. Salamero, Y. Liu, and L. Chen, “Diacylglycerol Guides the Hopping of Clathrin-Coated Pits along Microtubules for Exo-Endocytosis Coupling,” Dev. Cell 35(1), 120–130 (2015).
[Crossref] [PubMed]

Zhu, L. L.

Zong, W.

T. Yuan, L. Liu, Y. Zhang, L. Wei, S. Zhao, X. Zheng, X. Huang, J. Boulanger, C. Gueudry, J. Lu, L. Xie, W. Du, W. Zong, L. Yang, J. Salamero, Y. Liu, and L. Chen, “Diacylglycerol Guides the Hopping of Clathrin-Coated Pits along Microtubules for Exo-Endocytosis Coupling,” Dev. Cell 35(1), 120–130 (2015).
[Crossref] [PubMed]

W. Zong, X. Huang, C. Zhang, T. Yuan, L. L. Zhu, M. Fan, and L. Chen, “Shadowless-illuminated variable-angle TIRF (siva-TIRF) microscopy for the observation of spatial-temporal dynamics in live cells,” Biomed. Opt. Express 5(5), 1530–1540 (2014).
[Crossref] [PubMed]

Zuo, W.

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising,” IEEE Trans. Image Process. 26(7), 3142–3155 (2017).
[Crossref] [PubMed]

Annu. Rev. Biophys. Bioeng. (1)

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13(1), 247–268 (1984).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Biophys. J. (1)

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Dev. Cell (1)

T. Yuan, L. Liu, Y. Zhang, L. Wei, S. Zhao, X. Zheng, X. Huang, J. Boulanger, C. Gueudry, J. Lu, L. Xie, W. Du, W. Zong, L. Yang, J. Salamero, Y. Liu, and L. Chen, “Diacylglycerol Guides the Hopping of Clathrin-Coated Pits along Microtubules for Exo-Endocytosis Coupling,” Dev. Cell 35(1), 120–130 (2015).
[Crossref] [PubMed]

IEEE Trans. Image Process. (3)

G. Chierchia, N. Pustelnik, B. Pesquet-Popescu, and J. C. Pesquet, “A nonlocal structure tensor-based approach for multicomponent image recovery problems,” IEEE Trans. Image Process. 23(12), 5531–5544 (2014).
[Crossref] [PubMed]

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising,” IEEE Trans. Image Process. 26(7), 3142–3155 (2017).
[Crossref] [PubMed]

D. Geman and C. Yang, “Nonlinear image recovery with half-quadratic regularization,” IEEE Trans. Image Process. 4(7), 932–946 (1995).
[Crossref] [PubMed]

Lab Chip (1)

P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C. M. Hsieh, C. H. Lee, K. B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, “Cell refractive index for cell biology and disease diagnosis: past, present and future,” Lab Chip 16(4), 634–644 (2016).
[Crossref] [PubMed]

Med. Phys. (1)

J. F. Abascal, J. Chamorro-Servent, J. Aguirre, S. Arridge, T. Correia, J. Ripoll, J. J. Vaquero, and M. Desco, “Fluorescence diffuse optical tomography using the split Bregman method,” Med. Phys. 38(11), 6275–6284 (2011).
[Crossref] [PubMed]

Multiscale Model. Simul. (1)

G. Gilboa and S. Osher, “Nonlocal operators with applications to image processing,” Multiscale Model. Simul. 7(3), 1005–1028 (2009).
[Crossref]

Nat. Biotechnol. (1)

X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, and L. Chen, “Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy,” Nat. Biotechnol. 36(5), 451–459 (2018).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Proc. Natl. Acad. Sci. U.S.A. (1)

J. Boulanger, C. Gueudry, D. Münch, B. Cinquin, P. Paul-Gilloteaux, S. Bardin, C. Guérin, F. Senger, L. Blanchoin, and J. Salamero, “Fast high-resolution 3D total internal reflection fluorescence microscopy by incidence angle scanning and azimuthal averaging,” Proc. Natl. Acad. Sci. U.S.A. 111(48), 17164–17169 (2014).
[Crossref] [PubMed]

SIAM J. Imaging Sci. (1)

T. Goldstein and S. Osher, “The split Bregman method for L1-regularized problems,” SIAM J. Imaging Sci. 2(2), 323–343 (2009).
[Crossref]

Siam Journal on Multiscale Modeling & Simulation (1)

S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An iterative regularization method for total variation-based image restoration,” Siam Journal on Multiscale Modeling & Simulation 4(2), 460–489 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic illustration of the MA-TIRF setup. AOTF: acoustic optical tunable filter, M: mirror, L1-L5: Lens 1-Lens 5, MEMS: Microelectromechanical systems, DM: dichroic mirrors, Obj: objective lens.
Fig. 2
Fig. 2 Reconstruction of simulated data with ground-truth known. (a) Simulations of the overlay of vesicles. The 1st column is the TIRF image with the minimum incident angle. The 2nd to 4th columns are ground-truth (the 2nd column), reconstructions by the MA-TIRF method (the 3rd column), and the DMA-TIRF method (the 4th column). Each row in the 2nd~4th columns presented along the axial distribution at 10 nm depth (the 1st row), 30 nm depth (the 2nd row), 50 nm depth (the 3rd row), 70 nm depth (the 4th row), 90 nm depth (the 5th row), and 110 nm depth (the 6th row). Scale bar: 0.5 μm. (b) The ground-truth of point structures and their reconstructions via MA-TIRF and DMA-TIRF methods. (c) The unitary lateral intensities from the ground-truth image and reconstructions from MA-TIRF and DMA-TIRF methods along the yellow line in (b). (d) The ground-truth, MA-TIRF and DMA-TIRF reconstructions of three paralleled bars. (e) The unitary intensities of two ROIs along the axial direction. The max value of ROI encircled within the yellow rectangle box in (d) is normalized to 1 a.u., while the max value of ROI marked with red point in (b) is normalized to 2 a.u..
Fig. 3
Fig. 3 Reconstruction of a simulated curved line structure. (a) The ground-truth of the curved line structure in 3D. (b) Reconstructions of MA-TIRF (left) and DMA-TIRF (right) from images corrupted with Gaussian noise of a standard deviation at 50 a.u.. (c) Lateral distributions of the ground-truth, MA-TIRF, two-step method and Wiener DMA-TIRF reconstructions along the yellow line in (a). (d) Reconstructions of MA-TIRF (i), two-step method (ii), DMA-TIRF (iii) and TV DMA-TIRF (iv) from images corrupted with Gaussian noise of a standard deviation at 500 a.u.. Scale bar: 0.5 μm. (e) SSIMs of five different ROIs reconstructed with MA-TIRF, two-step, DMA-TIRF and TV DMA-TIRF methods as compared with the ground-truth.
Fig. 4
Fig. 4 Reconstructions of filament actin structures labeled by lifeact-EGFP in the HUVEC cell. (a) One example of multiple-angles TIRF raw images, scale bar 2 μm. (b) The zoom-ins of MA-TIRF and DMA-TIRF reconstructions at the square box in (a), scale bar 0.2 μm. (c) Lateral distributions of MA-TIRF and DMA-TIRF reconstructions along the yellow line in (b). The distance of two peaks of double-Gaussian fitting is 204 nm. (d) The color-map of the reconstruction with the MA-TIRF method. (e) A color-map to highlight different axial distributions of filament actin structure obtained with the DMA-TIRF method without TV penalty.
Fig. 5
Fig. 5 Reconstructions of CCPs. (a)-(d) Reconstruction results with different methods. (a) The reconstruction by MA-TIRF method without TV penalty, scale bar: 2 μm. The large square box is the corresponding zoom-in of the small ROI, scale bar: 0.2 μm; (b) The reconstruction by MA-TIRF method with TV penalty; (c) The reconstruction by the DMA-TIRF method without TV penalty; (d) The reconstruction by the DMA-TIRF method with TV penalty. (e) Gaussian fittings to measure lateral resolutions yielded by the DMA-TIRF and the MA-TIRF methods with TV penalty. (f) Gaussian fittings to measure the axial resolution yielded by the DMA-TIRF and the MA-TIRF methods with TV penalty. (g) Lateral and axial resolutions computed from Gaussian fittings.

Tables (1)

Tables Icon

Table 1 The implementation procedure of our DMA-TIRF algorithm is summarized below.

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

I( z,φ,θ )= I 0 ( 0,φ,θ ) e z d
I 0 ( 0,φ,θ )= 1 2 cos 2 φ 4 cos 2 θ( 2 sin 2 θ n r 2 ) n r 4 cos 2 θ+ sin 2 θ n r 2 + 1 2 ( 1+ sin 2 φ ) 4 cos 2 θ 1- n r 2
d= λ 4π 1 n 1 2 sin 2 θ n 2 2 ,
E( x,y,θ )= 0 2π 0 I( z,φ,α )ρ( αθ Ω/cosθ ) f ( x,y,z ) dαdzdφ,
g ( x,y,θ )=psfE( x,y,θ ),
g ( x,y,θ )=psf( x,y ) 0 2π 0 I( z,φ,α )ρ( αθ Ω/cosθ ) f ( x,y,z ) dαdzdφ.
g θ =psf z= z 1 z n h z,θ f z ,
g=psf( Hf ),
min f ζ 2 gpsfHf 2 2 +D( f )+( f ),
( f )={ 0,f0 +,f<0 .
min f,w ζ 2 gpsfw 2 2 + μ 2 wHf 2 2 +D( f )+( f ),
min f,w,v,t ζ 2 gpsfw 2 2 + μ 2 wHf 2 2 +D( t )+ λ 2 ft 2 2 +( v )+ β 2 fv 2 2 .
B Q p ( v, v ( k ) ,t, t ( k ) )=Q( v,t )Q( v ( k ) , t ( k ) ) p v ( k ) ,v v ( k ) p u ( k ) ,u u ( k ) ,
Q( v,t )=D( t )+( v ),
p t ( k+1 ) = p t ( k ) λ( t ( k+1 ) f ( k+1 ) ) p v ( k+1 ) = p v ( k ) λ( v ( k+1 ) f ( k+1 ) ),
min f,w,v,t Q( v,t )+ ζ 2 gpsfw 2 2 + μ 2 wHf 2 2 + λ 2 ft 2 2 + β 2 fv 2 2 ,
min f,w,v,t B Q p + ζ 2 gpsfw 2 2 + μ 2 wHf 2 2 + λ 2 ft 2 2 + β 2 fv 2 2 .
min f,w,v,t ζ 2 gpsfw 2 2 + μ 2 wHf 2 2 +D( t )+( v )+ λ 2 ft+ b t ( k ) 2 2 + β 2 fv+ b v ( k ) 2 2 b t ( k+1 ) = b t ( k ) + f ( k+1 ) t ( k+1 ) b v ( k+1 ) = b v ( k ) + f ( k+1 ) v ( k+1 ) .
min w ζ 2 gpsfw 2 2 + μ 2 wH f ( k ) 2 2 ,
min f μ 2 wHf 2 2 + λ 2 f t ( k ) + b t ( k ) 2 2 + β 2 f v ( k ) + b v ( k ) 2 2 ,
min v ( v )+ β 2 f ( k+1 ) v+ b v ( k ) 2 2 ,
min t D( t )+ λ 2 f ( k+1 ) t+ b t ( k ) 2 2 ,
w ( k+1 ) =ifft( ζOT F fft( Y )+μfft( H f ( k ) ) ζOT F OTF+μ+c ),
f ( k+1 ) = [ μ H T H+( γ+λ )I ] 1 [ μ H T w ( k+1 ) +λ( t ( k ) b t ( k ) )+γ( v ( k ) b v ( k ) ) ].
min v ( v )+ β 2 f ( k+1 ) v+ b v ( k ) 2 2 ,
v ( k+1 ) =max( f ( k+1 ) + b v ( k ) ,0).
min t t x 1 + t y 1 + λ 2 f ( k+1 ) t+ b t ( k ) 2 2 .
min t l x 1 + l y 1 + λ 2 f ( k+1 ) t+ b t ( k ) 2 2 + γ 2 l x t x 2 2 + γ 2 l y t y 2 2 ,
min t l x 1 + l y 1 + λ 2 f ( k+1 ) t+ b t ( k ) 2 2 + γ 2 l x t x b x ( k,i ) 2 2 + γ 2 l y t y b y ( k,i ) 2 2 ,
b x ( k,i+1 ) = b x ( k,i ) +( t x ( k,i+1 ) l x ( k,i+1 ) ) b y ( k,i+1 ) = b y ( k,i ) +( t y ( k,i+1 ) l y ( k,i+1 ) ).
t ( k,i+1 ) =ifft( fft( ( x ) T ( l x ( k,i ) b x ( k,i ) )+ ( y ) T ( l y ( k,i ) b y ( k,i ) ) )+ λ γ ( f ( k+1 ) + b t ( k ) ) | fft( x ) | 2 + | fft( y ) | 2 + λ γ ),
l x ( k,i+1 ) =shrink( t x ( k,i+1 ) + b x ( k,i ) , 1 γ ) :={ ( t x ( k,i+1 ) + b x ( k,i ) ) 1 γ , t x ( k,i+1 ) + b x ( k,i ) ( 1 γ , ) 0, t x ( k,i+1 ) + b x ( k,i ) ( 1 γ , 1 γ ) 1 γ +( t x ( k,i+1 ) + b x ( k,i ) ), t x ( k,i+1 ) + b x ( k,i ) ( , 1 γ ) ,
l y ( k,i+1 ) =shrink( t y ( k,i+1 ) + b y ( k,i ) , 1 γ ),