Abstract

Owing to the high precision and sensitivity of optical systems, there is an increasing demand for optical methods that quantitatively characterize the physical and chemical properties of biological samples. Information extracted from such quantitative methods, through phase and/or amplitude variations of light, can be crucial in the diagnosis, treatment and study of disease. In this work we apply a recently developed quantitative method, called ultraviolet hyperspectral interferometry (UHI), to characterize the dispersion and absorbing properties of various important biomolecules. Our system consists of (1) a broadband light source that spans from the deep-UV to the visible region of the spectrum, and (2) a Mach–Zehnder interferometer to gain access to complex optical properties. We apply this method to characterize (and tabulate) the dispersive and absorptive properties of hemoglobin, beta nicotinamide adenine dinucleotide (NAD), flavin adenine dinucleotide (FAD), elastin, collagen, cytochrome c, tryptophan and DNA. Our results shed new light on the complex properties of important biomolecules.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Two-photon excited hemoglobin fluorescence

Wei Zheng, Dong Li, Yan Zeng, Yi Luo, and Jianan Y. Qu
Biomed. Opt. Express 2(1) 71-79 (2011)

Stokes shift spectroscopy pilot study for cancerous and normal prostate tissues

J. Ebenezar, Yang Pu, W. B. Wang, C. H. Liu, and R. R. Alfano
Appl. Opt. 51(16) 3642-3649 (2012)

Characterization of NAD(P)H and FAD autofluorescence signatures in a Langendorff isolated-perfused rat heart model

João L. Lagarto, Benjamin T. Dyer, Clifford B. Talbot, Nicholas S. Peters, Paul M. W. French, Alexander R. Lyon, and Chris Dunsby
Biomed. Opt. Express 9(10) 4961-4978 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Ojaghi, M. E. Fay, W. A. Lam, and F. E. Robles, “Ultraviolet Hyperspectral Interferometric Microscopy,” Sci. Rep. 8(1), 9913 (2018).
    [Crossref] [PubMed]
  2. F. E. Robles, L. L. Satterwhite, and A. Wax, “Nonlinear phase dispersion spectroscopy,” Opt. Lett. 36(23), 4665–4667 (2011).
    [Crossref] [PubMed]
  3. C. Yang, A. Wax, I. Georgakoudi, E. B. Hanlon, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Interferometric phase-dispersion microscopy,” Opt. Lett. 25(20), 1526–1528 (2000).
    [Crossref] [PubMed]
  4. P. Hlubina, J. Luňáček, D. Ciprian, and R. Chlebus, “Spectral interferometry and reflectometry used to measure thin films,” Appl. Phys. B 92(2), 203–207 (2008).
    [Crossref]
  5. J. Jung, K. Kim, J. Yoon, and Y. Park, “Hyperspectral optical diffraction tomography,” Opt. Express 24(3), 2006–2012 (2016).
    [Crossref] [PubMed]
  6. Y. Park, T. Yamauchi, W. Choi, R. Dasari, and M. S. Feld, “Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells,” Opt. Lett. 34(23), 3668–3670 (2009).
    [Crossref] [PubMed]
  7. K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
    [Crossref] [PubMed]
  8. K. Creath and G. Goldstein, “Dynamic quantitative phase imaging for biological objects using a pixelated phase mask,” Biomed. Opt. Express 3(11), 2866–2880 (2012).
    [Crossref] [PubMed]
  9. K. Lee, Y. Kim, J. Jung, H. Ihee, and Y. Park, “Measurements of complex refractive index change of photoactive yellow protein over a wide wavelength range using hyperspectral quantitative phase imaging,” Sci. Rep. 8(1), 3064 (2018).
    [Crossref] [PubMed]
  10. K. Itoh, T. Inoue, T. Yoshida, and Y. Ichioka, “Interferometric supermultispectral imaging,” Appl. Opt. 29(11), 1625–1630 (1990).
    [Crossref] [PubMed]
  11. I. Kassamakov, S. Lecler, A. Nolvi, A. Leong-Hoï, P. Montgomery, and E. Hæggström, “3D Super-Resolution Optical Profiling Using Microsphere Enhanced Mirau Interferometry,” Sci. Rep. 7(1), 3683 (2017).
    [Crossref] [PubMed]
  12. H. Ooki, Y. Iwasaki, and J. Iwasaki, “Differential interference contrast microscope with differential detection for optimizing image contrast,” Appl. Opt. 35(13), 2230–2234 (1996).
    [Crossref] [PubMed]
  13. M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214(Pt 1), 7–12 (2004).
    [Crossref] [PubMed]
  14. F. E. Robles and A. Wax, “Separating the scattering and absorption coefficients using the real and imaginary parts of the refractive index with low-coherence interferometry,” Opt. Lett. 35(17), 2843–2845 (2010).
    [Crossref] [PubMed]
  15. F. E. Robles, S. Chowdhury, and A. Wax, “Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics,” Biomed. Opt. Express 1(1), 310–317 (2010).
    [Crossref] [PubMed]
  16. F. M. Hoffmann, “Infrared reflection-absorption spectroscopy of adsorbed molecules,” Surf. Sci. Rep. 3(2-3), 107–192 (1983).
    [Crossref]
  17. M. Manley, “Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials,” Chem. Soc. Rev. 43(24), 8200–8214 (2014).
    [Crossref] [PubMed]
  18. A. M. Katzenmeyer, G. Holland, K. Kjoller, and A. Centrone, “Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution,” Anal. Chem. 87(6), 3154–3159 (2015).
    [Crossref] [PubMed]
  19. M. Pilling and P. Gardner, “Fundamental developments in infrared spectroscopic imaging for biomedical applications,” Chem. Soc. Rev. 45(7), 1935–1957 (2016).
    [Crossref] [PubMed]
  20. S. Arora, J. Mauser, D. Chakrabarti, and A. Schulte, “Spatially resolved micro-absorption spectroscopy with a broadband source and confocal detection,” Opt. Commun. 355, 533–537 (2015).
    [Crossref]
  21. F. Siti Sakinah Mohd, N. Suardi, and I. S. Mustafa, “In Vitro UV-Visible Spectroscopy Study of Yellow Laser Irradiation on Human Blood,” J. Phys. Conf. Ser. 995, 012053 (2018).
    [Crossref]
  22. D. A. Proshlyakov, “UV optical absorption by protein radicals in cytochrome c oxidase,” Biochim. Biophys. Acta 1655(1-3), 282–289 (2004).
    [Crossref] [PubMed]
  23. H. R. Thapa, A. J. Lail, N. Garg, and V. Agarwal, “Chapter Ten - Chemoenzymatic Synthesis of Starting Materials and Characterization of Halogenases Requiring Acyl Carrier Protein-Tethered Substrates,” in Methods in Enzymology, B. S. Moore, ed. (Academic Press, 2018), pp. 333–366.
  24. L. G. Whitby, “A new method for preparing flavin-adenine dinucleotide,” Biochem. J. 54(3), 437–442 (1953).
    [Crossref] [PubMed]
  25. X. Ma, L. Li, C. Xu, H. Wei, X. Wang, and X. Yang, “Spectroscopy and speciation studies on the interactions of aluminum (III) with ciprofloxacin and β-nicotinamide adenine dinucleotide phosphate in aqueous solutions,” Molecules 17(8), 9379–9396 (2012).
    [Crossref] [PubMed]
  26. C. S. Thom, C. F. Dickson, D. A. Gell, and M. J. Weiss, “Hemoglobin variants: biochemical properties and clinical correlates,” Cold Spring Harb. Perspect. Med. 3(3), a011858 (2013).
    [Crossref] [PubMed]
  27. P. Belenky, K. L. Bogan, and C. Brenner, “NAD+ metabolism in health and disease,” Trends Biochem. Sci. 32(1), 12–19 (2007).
    [Crossref] [PubMed]
  28. M. Ziegler, “New functions of a long-known molecule. Emerging roles of NAD in cellular signaling,” Eur. J. Biochem. 267(6), 1550–1564 (2000).
    [Crossref] [PubMed]
  29. M. Barile, T. A. Giancaspero, C. Brizio, C. Panebianco, C. Indiveri, M. Galluccio, L. Vergani, I. Eberini, and E. Gianazza, “Biosynthesis of flavin cofactors in man: implications in health and disease,” Curr. Pharm. Des. 19(14), 2649–2675 (2013).
    [Crossref] [PubMed]
  30. G. Kuppuraj, D. Kruise, and K. Yura, “Conformational behavior of flavin adenine dinucleotide: conserved stereochemistry in bound and free states,” J. Phys. Chem. B 118(47), 13486–13497 (2014).
    [Crossref] [PubMed]
  31. J. H. Kristensen and M. A. Karsdal, “Chapter 30 - Elastin,” in Biochemistry of Collagens, Laminins and Elastin, M. A. Karsdal, ed. (Academic Press, 2016), pp. 197–201.
  32. E. Margoliash, “Primary structure and evolution of cytochrome C,” Proc. Natl. Acad. Sci. U.S.A. 50(4), 672–679 (1963).
    [Crossref] [PubMed]
  33. X. Liu, C. N. Kim, J. Yang, R. Jemmerson, and X. Wang, “Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c,” Cell 86(1), 147–157 (1996).
    [Crossref] [PubMed]
  34. R. K. Gupta, R. Pandey, G. Sharma, R. Prasad, B. Koch, S. Srikrishna, P.-Z. Li, Q. Xu, and D. S. Pandey, “DNA binding and anti-cancer activity of redox-active heteroleptic piano-stool Ru(II), Rh(III), and Ir(III) complexes containing 4-(2-methoxypyridyl)phenyldipyrromethene,” Inorg. Chem. 52(7), 3687–3698 (2013).
    [Crossref] [PubMed]
  35. L. Shivakumar, K. Shivaprasad, and H. D. Revanasiddappa, “SODs, DNA binding and cleavage studies of new Mn(III) complexes with 2-((3-(benzyloxy)pyridin-2-ylimino)methyl)phenol,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 107, 203–212 (2013).
    [Crossref] [PubMed]
  36. J. L. García-Giménez, J. Hernández-Gil, A. Martínez-Ruíz, A. Castiñeiras, M. Liu-González, F. V. Pallardó, J. Borrás, and G. Alzuet Piña, “DNA binding, nuclease activity, DNA photocleavage and cytotoxic properties of Cu(II) complexes of N-substituted sulfonamides,” J. Inorg. Biochem. 121, 167–178 (2013).
    [Crossref] [PubMed]
  37. A. Slominski, I. Semak, A. Pisarchik, T. Sweatman, A. Szczesniewski, and J. Wortsman, “Conversion of L-tryptophan to serotonin and melatonin in human melanoma cells,” FEBS Lett. 511(1-3), 102–106 (2002).
    [Crossref] [PubMed]
  38. J. D. Schaechter and R. J. Wurtman, “Serotonin release varies with brain tryptophan levels,” Brain Res. 532(1-2), 203–210 (1990).
    [Crossref] [PubMed]
  39. L. Bozec, G. van der Heijden, and M. Horton, “Collagen fibrils: nanoscale ropes,” Biophys. J. 92(1), 70–75 (2007).
    [Crossref] [PubMed]
  40. L. J. Gould, “Topical collagen-based biomaterials for chronic wounds: rationale and clinical application,” Adv. Wound Care 5(1), 19–31 (2016).
    [Crossref] [PubMed]
  41. A. Daneault, “Hydrolyzed collagen contributes to osteoblast differentiation in vitro and subsequent bone health in vivo,” Osteoarthritis Cartilage 22, S131 (2014).
    [Crossref]
  42. A. Daneault, J. Prawitt, V. Fabien Soulé, V. Coxam, and Y. Wittrant, “Biological effect of hydrolyzed collagen on bone metabolism,” Crit. Rev. Food Sci. Nutr. 57(9), 1922–1937 (2017).
    [PubMed]
  43. S. E. J. Bowman and K. L. Bren, “The chemistry and biochemistry of heme C: functional bases for covalent attachment,” Nat. Prod. Rep. 25(6), 1118–1130 (2008).
    [Crossref] [PubMed]
  44. R. V. Chertkova, N. A. Brazhe, T. V. Bryantseva, A. N. Nekrasov, D. A. Dolgikh, A. I. Yusipovich, O. Sosnovtseva, G. V. Maksimov, A. B. Rubin, and M. P. Kirpichnikov, “New insight into the mechanism of mitochondrial cytochrome c function,” PLoS One 12(5), e0178280 (2017).
    [Crossref] [PubMed]
  45. R. R. R. Sardari, S. R. Zarchi, S. Hajihosseini, Z. Aghili, R. Rasoolzadeh, S. Imani, H. Borna, A. M. Zand, A. Nejadmoghadam, M. Ghalavand, and Y. Panahi, “Identification of an independent measurement method for denaturation studies of cytochrome C,” Int. J. Electrochem. Sci. 8, 11578–11587 (2013).
  46. F. Zhang, A. Wang, Z. Li, S. He, and L. Shao, “Preparation and Characterisation of Collagen from Freshwater Fish Scales,” Food Nutr. Sci. 2(08), 818 (2011).
    [Crossref]
  47. T. Mitra, P. J. Manna, S. T. K. Raja, A. Gnanamani, and P. P. Kundu, “Curcumin loaded nano graphene oxide reinforced fish scale collagen – a 3D scaffold biomaterial for wound healing applications,” RSC Advances 5(119), 98653–98665 (2015).
    [Crossref]
  48. D. Joshi, D. Kumar, A. K. Maini, and R. C. Sharma, “Detection of biological warfare agents using ultra violet-laser induced fluorescence LIDAR,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 112, 446–456 (2013).
    [Crossref] [PubMed]
  49. C. K. Mathews, K. E. Van Holde, D. R. Appling, and S. J. Anthony-Cahill, Biochemistry (Pearson, Toronto, 2013).
  50. G. Javier, S.-V. Isabel, N. Jesús, and M. Susana de, “The intrinsic fluorescence of FAD and its application in analytical chemistry: a review,” Methods Appl. Fluoresc. 4, 042005 (2016).
    [Crossref] [PubMed]
  51. L. Valle, I. Abatedaga, F. E. M. Vieyra, A. Bortolotti, N. Cortez, and C. D. Borsarelli, “Enhancement of photophysical and photosensitizing properties of flavin adenine dinucleotide by mutagenesis of the C-terminal extension of a bacterial flavodoxin reductase,” ChemPhysChem 16(4), 872–883 (2015).
    [Crossref] [PubMed]
  52. K. R. Millington, “Diffuse reflectance spectroscopy of fibrous proteins,” Amino Acids 43(3), 1277–1285 (2012).
    [Crossref] [PubMed]
  53. J. Y. Lo, J. Q. Brown, S. Dhar, B. Yu, G. M. Palmer, N. M. Jokerst, and N. Ramanujam, “Wavelength optimization for quantitative spectral imaging of breast tumor margins,” PLoS One 8(4), e61767 (2013).
    [Crossref] [PubMed]
  54. R. M. C. Dawson, Data for Biochemical Research, 3rd ed. ed. (Clarendon Press, Oxford, 1986).
  55. V. Kumar, A. D. Cadena, A. Perri, F. Preda, N. Coluccelli, G. Cerullo, and D. Polli, “Invited Article: Complex vibrational susceptibility by interferometric Fourier transform stimulated Raman scattering,” APL Photonics 3(9), 092403 (2018).
    [Crossref]
  56. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999).
    [Crossref] [PubMed]
  57. H. Zhu, D. Li, M. Liu, V. Copié, and B. Lei, “Non-heme-binding domains and segments of the Staphylococcus aureus IsdB protein critically contribute to the kinetics and equilibrium of heme acquisition from methemoglobin,” PLoS One 9(6), e100744 (2014).
    [Crossref] [PubMed]
  58. R. Deshmukh and V. Trivedi, “Pro-stimulatory role of methemoglobin in inflammation through hemin oxidation and polymerization,” Inflamm. Allergy Drug Targets 12(1), 68–78 (2013).
    [PubMed]
  59. J. Gienger, H. Groß, J. Neukammer, and M. Bär, “Determining the refractive index of human hemoglobin solutions by Kramers-Kronig relations with an improved absorption model,” Appl. Opt. 55(31), 8951–8961 (2016).
    [Crossref] [PubMed]
  60. M. Friebel and M. Meinke, “Model function to calculate the refractive index of native hemoglobin in the wavelength range of 250-1100 nm dependent on concentration,” Appl. Opt. 45(12), 2838–2842 (2006).
    [Crossref] [PubMed]
  61. E. J. Benz and B. L. Ebert, “Chapter 43 - Hemoglobin Variants Associated With Hemolytic Anemia, Altered Oxygen Affinity, and Methemoglobinemias,” in Hematology (Seventh Edition), R. Hoffman, E. J. Benz, L. E. Silberstein, H. E. Heslop, J. I. Weitz, J. Anastasi, M. E. Salama, and S. A. Abutalib, eds. (Elsevier, 2018), pp. 608–615.
  62. J. D. Belcher, J. D. Beckman, G. Balla, J. Balla, and G. Vercellotti, “Heme degradation and vascular injury,” Antioxid. Redox Signal. 12(2), 233–248 (2010).
    [Crossref] [PubMed]
  63. M. F. Holick, “Biological effects of sunlight, ultraviolet radiation, visible light, infrared radiation and vitamin D for health,” Anticancer Res. 36(3), 1345–1356 (2016).
    [PubMed]
  64. L. Pan, X. Wang, S. Yang, X. Wu, I. Lee, X. Zhang, R. A. Rupp, and J. Xu, “Ultraviolet irradiation-dependent fluorescence enhancement of hemoglobin catalyzed by reactive oxygen species,” PLoS One 7(8), e44142 (2012).
    [Crossref] [PubMed]
  65. A. M. Stadler, I. Digel, G. M. Artmann, J. P. Embs, G. Zaccai, and G. Büldt, “Hemoglobin dynamics in red blood cells: correlation to body temperature,” Biophys. J. 95(11), 5449–5461 (2008).
    [Crossref] [PubMed]
  66. S. Krueger and R. Nossal, “SANS studies of interacting hemoglobin in intact erythrocytes,” Biophys. J. 53(1), 97–105 (1988).
    [Crossref] [PubMed]
  67. Y. Yang and A. A. Sauve, “NAD+ metabolism: Bioenergetics, signaling and manipulation for therapy,” Biochim. Biophys. Acta 1864(12), 1787–1800 (2016).
    [Crossref] [PubMed]
  68. A. T. Lutes, “Intrinsic flavin as a biomarker for monitoring pathologically-induced changes in cellular energy metabolism,” Thesis: The Pennsylvania State University (2008).
  69. S. Comai, A. Bertazzo, N. Carretti, A. Podfigurna-Stopa, S. Luisi, and C. V. L. Costa, “Serum levels of tryptophan, 5-hydroxytryptophan and serotonin in patients affected with different forms of amenorrhea,” Int. J. Tryptophan Res. 3, 69–75 (2010).
    [Crossref] [PubMed]
  70. B. J. van Beek-Harmsen and W. J. van der Laarse, “Immunohistochemical determination of cytosolic cytochrome C concentration in cardiomyocytes,” J. Histochem. Cytochem. 53(7), 803–807 (2005).
    [Crossref] [PubMed]
  71. R. E. Tracy and G. E. Sander, “Histologically measured cardiomyocyte hypertrophy correlates with body height as strongly as with body mass index,” Cardiol. Res. Pract. 2011, 658958 (2011).
    [Crossref] [PubMed]
  72. R. E. Neuman and M. A. Logan, “The determination of collagen and elastin in tissues,” J. Biol. Chem. 186(2), 549–556 (1950).
    [PubMed]
  73. T. Igarashi, K. Nishino, and S. K. Nayar, “The Appearance of Human Skin: A Survey,” Found. Trends Comput. Graph. Vis. 3(1), 1–95 (2007).
    [Crossref]
  74. X. Liang and S. A. Boppart, “Biomechanical properties of in vivo human skin from dynamic optical coherence elastography,” IEEE Trans. Biomed. Eng. 57(4), 953–959 (2010).
    [Crossref] [PubMed]
  75. B. J. Zeskind, “Quantitative imaging of living cells by deep ultraviolet microscopy,” Thesis (Ph. D., Massachusetts Institute of Technology, Biological Engineering Division (2006).
  76. A. Gualberto, R. M. Patrick, and K. Walsh, “Nucleic acid specificity of a vertebrate telomere-binding protein: evidence for G-G base pair recognition at the core-binding site,” Genes Dev. 6(5), 815–824 (1992).
    [Crossref] [PubMed]
  77. E. Shiratsuchi, M. Nakaba, and M. Yamada, “Elastin hydrolysate derived from fish enhances proliferation of human skin fibroblasts and elastin synthesis in human skin fibroblasts and improves the skin conditions,” J. Sci. Food Agric. 96(5), 1672–1677 (2016).
    [Crossref] [PubMed]

2018 (4)

A. Ojaghi, M. E. Fay, W. A. Lam, and F. E. Robles, “Ultraviolet Hyperspectral Interferometric Microscopy,” Sci. Rep. 8(1), 9913 (2018).
[Crossref] [PubMed]

K. Lee, Y. Kim, J. Jung, H. Ihee, and Y. Park, “Measurements of complex refractive index change of photoactive yellow protein over a wide wavelength range using hyperspectral quantitative phase imaging,” Sci. Rep. 8(1), 3064 (2018).
[Crossref] [PubMed]

F. Siti Sakinah Mohd, N. Suardi, and I. S. Mustafa, “In Vitro UV-Visible Spectroscopy Study of Yellow Laser Irradiation on Human Blood,” J. Phys. Conf. Ser. 995, 012053 (2018).
[Crossref]

V. Kumar, A. D. Cadena, A. Perri, F. Preda, N. Coluccelli, G. Cerullo, and D. Polli, “Invited Article: Complex vibrational susceptibility by interferometric Fourier transform stimulated Raman scattering,” APL Photonics 3(9), 092403 (2018).
[Crossref]

2017 (3)

A. Daneault, J. Prawitt, V. Fabien Soulé, V. Coxam, and Y. Wittrant, “Biological effect of hydrolyzed collagen on bone metabolism,” Crit. Rev. Food Sci. Nutr. 57(9), 1922–1937 (2017).
[PubMed]

R. V. Chertkova, N. A. Brazhe, T. V. Bryantseva, A. N. Nekrasov, D. A. Dolgikh, A. I. Yusipovich, O. Sosnovtseva, G. V. Maksimov, A. B. Rubin, and M. P. Kirpichnikov, “New insight into the mechanism of mitochondrial cytochrome c function,” PLoS One 12(5), e0178280 (2017).
[Crossref] [PubMed]

I. Kassamakov, S. Lecler, A. Nolvi, A. Leong-Hoï, P. Montgomery, and E. Hæggström, “3D Super-Resolution Optical Profiling Using Microsphere Enhanced Mirau Interferometry,” Sci. Rep. 7(1), 3683 (2017).
[Crossref] [PubMed]

2016 (8)

J. Jung, K. Kim, J. Yoon, and Y. Park, “Hyperspectral optical diffraction tomography,” Opt. Express 24(3), 2006–2012 (2016).
[Crossref] [PubMed]

M. Pilling and P. Gardner, “Fundamental developments in infrared spectroscopic imaging for biomedical applications,” Chem. Soc. Rev. 45(7), 1935–1957 (2016).
[Crossref] [PubMed]

L. J. Gould, “Topical collagen-based biomaterials for chronic wounds: rationale and clinical application,” Adv. Wound Care 5(1), 19–31 (2016).
[Crossref] [PubMed]

G. Javier, S.-V. Isabel, N. Jesús, and M. Susana de, “The intrinsic fluorescence of FAD and its application in analytical chemistry: a review,” Methods Appl. Fluoresc. 4, 042005 (2016).
[Crossref] [PubMed]

J. Gienger, H. Groß, J. Neukammer, and M. Bär, “Determining the refractive index of human hemoglobin solutions by Kramers-Kronig relations with an improved absorption model,” Appl. Opt. 55(31), 8951–8961 (2016).
[Crossref] [PubMed]

M. F. Holick, “Biological effects of sunlight, ultraviolet radiation, visible light, infrared radiation and vitamin D for health,” Anticancer Res. 36(3), 1345–1356 (2016).
[PubMed]

Y. Yang and A. A. Sauve, “NAD+ metabolism: Bioenergetics, signaling and manipulation for therapy,” Biochim. Biophys. Acta 1864(12), 1787–1800 (2016).
[Crossref] [PubMed]

E. Shiratsuchi, M. Nakaba, and M. Yamada, “Elastin hydrolysate derived from fish enhances proliferation of human skin fibroblasts and elastin synthesis in human skin fibroblasts and improves the skin conditions,” J. Sci. Food Agric. 96(5), 1672–1677 (2016).
[Crossref] [PubMed]

2015 (4)

L. Valle, I. Abatedaga, F. E. M. Vieyra, A. Bortolotti, N. Cortez, and C. D. Borsarelli, “Enhancement of photophysical and photosensitizing properties of flavin adenine dinucleotide by mutagenesis of the C-terminal extension of a bacterial flavodoxin reductase,” ChemPhysChem 16(4), 872–883 (2015).
[Crossref] [PubMed]

T. Mitra, P. J. Manna, S. T. K. Raja, A. Gnanamani, and P. P. Kundu, “Curcumin loaded nano graphene oxide reinforced fish scale collagen – a 3D scaffold biomaterial for wound healing applications,” RSC Advances 5(119), 98653–98665 (2015).
[Crossref]

S. Arora, J. Mauser, D. Chakrabarti, and A. Schulte, “Spatially resolved micro-absorption spectroscopy with a broadband source and confocal detection,” Opt. Commun. 355, 533–537 (2015).
[Crossref]

A. M. Katzenmeyer, G. Holland, K. Kjoller, and A. Centrone, “Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution,” Anal. Chem. 87(6), 3154–3159 (2015).
[Crossref] [PubMed]

2014 (4)

M. Manley, “Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials,” Chem. Soc. Rev. 43(24), 8200–8214 (2014).
[Crossref] [PubMed]

G. Kuppuraj, D. Kruise, and K. Yura, “Conformational behavior of flavin adenine dinucleotide: conserved stereochemistry in bound and free states,” J. Phys. Chem. B 118(47), 13486–13497 (2014).
[Crossref] [PubMed]

A. Daneault, “Hydrolyzed collagen contributes to osteoblast differentiation in vitro and subsequent bone health in vivo,” Osteoarthritis Cartilage 22, S131 (2014).
[Crossref]

H. Zhu, D. Li, M. Liu, V. Copié, and B. Lei, “Non-heme-binding domains and segments of the Staphylococcus aureus IsdB protein critically contribute to the kinetics and equilibrium of heme acquisition from methemoglobin,” PLoS One 9(6), e100744 (2014).
[Crossref] [PubMed]

2013 (10)

R. Deshmukh and V. Trivedi, “Pro-stimulatory role of methemoglobin in inflammation through hemin oxidation and polymerization,” Inflamm. Allergy Drug Targets 12(1), 68–78 (2013).
[PubMed]

D. Joshi, D. Kumar, A. K. Maini, and R. C. Sharma, “Detection of biological warfare agents using ultra violet-laser induced fluorescence LIDAR,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 112, 446–456 (2013).
[Crossref] [PubMed]

R. R. R. Sardari, S. R. Zarchi, S. Hajihosseini, Z. Aghili, R. Rasoolzadeh, S. Imani, H. Borna, A. M. Zand, A. Nejadmoghadam, M. Ghalavand, and Y. Panahi, “Identification of an independent measurement method for denaturation studies of cytochrome C,” Int. J. Electrochem. Sci. 8, 11578–11587 (2013).

J. Y. Lo, J. Q. Brown, S. Dhar, B. Yu, G. M. Palmer, N. M. Jokerst, and N. Ramanujam, “Wavelength optimization for quantitative spectral imaging of breast tumor margins,” PLoS One 8(4), e61767 (2013).
[Crossref] [PubMed]

R. K. Gupta, R. Pandey, G. Sharma, R. Prasad, B. Koch, S. Srikrishna, P.-Z. Li, Q. Xu, and D. S. Pandey, “DNA binding and anti-cancer activity of redox-active heteroleptic piano-stool Ru(II), Rh(III), and Ir(III) complexes containing 4-(2-methoxypyridyl)phenyldipyrromethene,” Inorg. Chem. 52(7), 3687–3698 (2013).
[Crossref] [PubMed]

L. Shivakumar, K. Shivaprasad, and H. D. Revanasiddappa, “SODs, DNA binding and cleavage studies of new Mn(III) complexes with 2-((3-(benzyloxy)pyridin-2-ylimino)methyl)phenol,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 107, 203–212 (2013).
[Crossref] [PubMed]

J. L. García-Giménez, J. Hernández-Gil, A. Martínez-Ruíz, A. Castiñeiras, M. Liu-González, F. V. Pallardó, J. Borrás, and G. Alzuet Piña, “DNA binding, nuclease activity, DNA photocleavage and cytotoxic properties of Cu(II) complexes of N-substituted sulfonamides,” J. Inorg. Biochem. 121, 167–178 (2013).
[Crossref] [PubMed]

C. S. Thom, C. F. Dickson, D. A. Gell, and M. J. Weiss, “Hemoglobin variants: biochemical properties and clinical correlates,” Cold Spring Harb. Perspect. Med. 3(3), a011858 (2013).
[Crossref] [PubMed]

M. Barile, T. A. Giancaspero, C. Brizio, C. Panebianco, C. Indiveri, M. Galluccio, L. Vergani, I. Eberini, and E. Gianazza, “Biosynthesis of flavin cofactors in man: implications in health and disease,” Curr. Pharm. Des. 19(14), 2649–2675 (2013).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

2012 (4)

K. Creath and G. Goldstein, “Dynamic quantitative phase imaging for biological objects using a pixelated phase mask,” Biomed. Opt. Express 3(11), 2866–2880 (2012).
[Crossref] [PubMed]

X. Ma, L. Li, C. Xu, H. Wei, X. Wang, and X. Yang, “Spectroscopy and speciation studies on the interactions of aluminum (III) with ciprofloxacin and β-nicotinamide adenine dinucleotide phosphate in aqueous solutions,” Molecules 17(8), 9379–9396 (2012).
[Crossref] [PubMed]

L. Pan, X. Wang, S. Yang, X. Wu, I. Lee, X. Zhang, R. A. Rupp, and J. Xu, “Ultraviolet irradiation-dependent fluorescence enhancement of hemoglobin catalyzed by reactive oxygen species,” PLoS One 7(8), e44142 (2012).
[Crossref] [PubMed]

K. R. Millington, “Diffuse reflectance spectroscopy of fibrous proteins,” Amino Acids 43(3), 1277–1285 (2012).
[Crossref] [PubMed]

2011 (3)

F. Zhang, A. Wang, Z. Li, S. He, and L. Shao, “Preparation and Characterisation of Collagen from Freshwater Fish Scales,” Food Nutr. Sci. 2(08), 818 (2011).
[Crossref]

R. E. Tracy and G. E. Sander, “Histologically measured cardiomyocyte hypertrophy correlates with body height as strongly as with body mass index,” Cardiol. Res. Pract. 2011, 658958 (2011).
[Crossref] [PubMed]

F. E. Robles, L. L. Satterwhite, and A. Wax, “Nonlinear phase dispersion spectroscopy,” Opt. Lett. 36(23), 4665–4667 (2011).
[Crossref] [PubMed]

2010 (5)

F. E. Robles and A. Wax, “Separating the scattering and absorption coefficients using the real and imaginary parts of the refractive index with low-coherence interferometry,” Opt. Lett. 35(17), 2843–2845 (2010).
[Crossref] [PubMed]

F. E. Robles, S. Chowdhury, and A. Wax, “Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics,” Biomed. Opt. Express 1(1), 310–317 (2010).
[Crossref] [PubMed]

X. Liang and S. A. Boppart, “Biomechanical properties of in vivo human skin from dynamic optical coherence elastography,” IEEE Trans. Biomed. Eng. 57(4), 953–959 (2010).
[Crossref] [PubMed]

J. D. Belcher, J. D. Beckman, G. Balla, J. Balla, and G. Vercellotti, “Heme degradation and vascular injury,” Antioxid. Redox Signal. 12(2), 233–248 (2010).
[Crossref] [PubMed]

S. Comai, A. Bertazzo, N. Carretti, A. Podfigurna-Stopa, S. Luisi, and C. V. L. Costa, “Serum levels of tryptophan, 5-hydroxytryptophan and serotonin in patients affected with different forms of amenorrhea,” Int. J. Tryptophan Res. 3, 69–75 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (3)

P. Hlubina, J. Luňáček, D. Ciprian, and R. Chlebus, “Spectral interferometry and reflectometry used to measure thin films,” Appl. Phys. B 92(2), 203–207 (2008).
[Crossref]

A. M. Stadler, I. Digel, G. M. Artmann, J. P. Embs, G. Zaccai, and G. Büldt, “Hemoglobin dynamics in red blood cells: correlation to body temperature,” Biophys. J. 95(11), 5449–5461 (2008).
[Crossref] [PubMed]

S. E. J. Bowman and K. L. Bren, “The chemistry and biochemistry of heme C: functional bases for covalent attachment,” Nat. Prod. Rep. 25(6), 1118–1130 (2008).
[Crossref] [PubMed]

2007 (3)

T. Igarashi, K. Nishino, and S. K. Nayar, “The Appearance of Human Skin: A Survey,” Found. Trends Comput. Graph. Vis. 3(1), 1–95 (2007).
[Crossref]

P. Belenky, K. L. Bogan, and C. Brenner, “NAD+ metabolism in health and disease,” Trends Biochem. Sci. 32(1), 12–19 (2007).
[Crossref] [PubMed]

L. Bozec, G. van der Heijden, and M. Horton, “Collagen fibrils: nanoscale ropes,” Biophys. J. 92(1), 70–75 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (1)

B. J. van Beek-Harmsen and W. J. van der Laarse, “Immunohistochemical determination of cytosolic cytochrome C concentration in cardiomyocytes,” J. Histochem. Cytochem. 53(7), 803–807 (2005).
[Crossref] [PubMed]

2004 (2)

D. A. Proshlyakov, “UV optical absorption by protein radicals in cytochrome c oxidase,” Biochim. Biophys. Acta 1655(1-3), 282–289 (2004).
[Crossref] [PubMed]

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214(Pt 1), 7–12 (2004).
[Crossref] [PubMed]

2002 (1)

A. Slominski, I. Semak, A. Pisarchik, T. Sweatman, A. Szczesniewski, and J. Wortsman, “Conversion of L-tryptophan to serotonin and melatonin in human melanoma cells,” FEBS Lett. 511(1-3), 102–106 (2002).
[Crossref] [PubMed]

2000 (2)

M. Ziegler, “New functions of a long-known molecule. Emerging roles of NAD in cellular signaling,” Eur. J. Biochem. 267(6), 1550–1564 (2000).
[Crossref] [PubMed]

C. Yang, A. Wax, I. Georgakoudi, E. B. Hanlon, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Interferometric phase-dispersion microscopy,” Opt. Lett. 25(20), 1526–1528 (2000).
[Crossref] [PubMed]

1999 (1)

1996 (2)

H. Ooki, Y. Iwasaki, and J. Iwasaki, “Differential interference contrast microscope with differential detection for optimizing image contrast,” Appl. Opt. 35(13), 2230–2234 (1996).
[Crossref] [PubMed]

X. Liu, C. N. Kim, J. Yang, R. Jemmerson, and X. Wang, “Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c,” Cell 86(1), 147–157 (1996).
[Crossref] [PubMed]

1992 (1)

A. Gualberto, R. M. Patrick, and K. Walsh, “Nucleic acid specificity of a vertebrate telomere-binding protein: evidence for G-G base pair recognition at the core-binding site,” Genes Dev. 6(5), 815–824 (1992).
[Crossref] [PubMed]

1990 (2)

J. D. Schaechter and R. J. Wurtman, “Serotonin release varies with brain tryptophan levels,” Brain Res. 532(1-2), 203–210 (1990).
[Crossref] [PubMed]

K. Itoh, T. Inoue, T. Yoshida, and Y. Ichioka, “Interferometric supermultispectral imaging,” Appl. Opt. 29(11), 1625–1630 (1990).
[Crossref] [PubMed]

1988 (1)

S. Krueger and R. Nossal, “SANS studies of interacting hemoglobin in intact erythrocytes,” Biophys. J. 53(1), 97–105 (1988).
[Crossref] [PubMed]

1983 (1)

F. M. Hoffmann, “Infrared reflection-absorption spectroscopy of adsorbed molecules,” Surf. Sci. Rep. 3(2-3), 107–192 (1983).
[Crossref]

1963 (1)

E. Margoliash, “Primary structure and evolution of cytochrome C,” Proc. Natl. Acad. Sci. U.S.A. 50(4), 672–679 (1963).
[Crossref] [PubMed]

1953 (1)

L. G. Whitby, “A new method for preparing flavin-adenine dinucleotide,” Biochem. J. 54(3), 437–442 (1953).
[Crossref] [PubMed]

1950 (1)

R. E. Neuman and M. A. Logan, “The determination of collagen and elastin in tissues,” J. Biol. Chem. 186(2), 549–556 (1950).
[PubMed]

Abatedaga, I.

L. Valle, I. Abatedaga, F. E. M. Vieyra, A. Bortolotti, N. Cortez, and C. D. Borsarelli, “Enhancement of photophysical and photosensitizing properties of flavin adenine dinucleotide by mutagenesis of the C-terminal extension of a bacterial flavodoxin reductase,” ChemPhysChem 16(4), 872–883 (2015).
[Crossref] [PubMed]

Aghili, Z.

R. R. R. Sardari, S. R. Zarchi, S. Hajihosseini, Z. Aghili, R. Rasoolzadeh, S. Imani, H. Borna, A. M. Zand, A. Nejadmoghadam, M. Ghalavand, and Y. Panahi, “Identification of an independent measurement method for denaturation studies of cytochrome C,” Int. J. Electrochem. Sci. 8, 11578–11587 (2013).

Alzuet Piña, G.

J. L. García-Giménez, J. Hernández-Gil, A. Martínez-Ruíz, A. Castiñeiras, M. Liu-González, F. V. Pallardó, J. Borrás, and G. Alzuet Piña, “DNA binding, nuclease activity, DNA photocleavage and cytotoxic properties of Cu(II) complexes of N-substituted sulfonamides,” J. Inorg. Biochem. 121, 167–178 (2013).
[Crossref] [PubMed]

Arnison, M. R.

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214(Pt 1), 7–12 (2004).
[Crossref] [PubMed]

Arora, S.

S. Arora, J. Mauser, D. Chakrabarti, and A. Schulte, “Spatially resolved micro-absorption spectroscopy with a broadband source and confocal detection,” Opt. Commun. 355, 533–537 (2015).
[Crossref]

Artmann, G. M.

A. M. Stadler, I. Digel, G. M. Artmann, J. P. Embs, G. Zaccai, and G. Büldt, “Hemoglobin dynamics in red blood cells: correlation to body temperature,” Biophys. J. 95(11), 5449–5461 (2008).
[Crossref] [PubMed]

Backman, V.

Badizadegan, K.

Balla, G.

J. D. Belcher, J. D. Beckman, G. Balla, J. Balla, and G. Vercellotti, “Heme degradation and vascular injury,” Antioxid. Redox Signal. 12(2), 233–248 (2010).
[Crossref] [PubMed]

Balla, J.

J. D. Belcher, J. D. Beckman, G. Balla, J. Balla, and G. Vercellotti, “Heme degradation and vascular injury,” Antioxid. Redox Signal. 12(2), 233–248 (2010).
[Crossref] [PubMed]

Bär, M.

Barile, M.

M. Barile, T. A. Giancaspero, C. Brizio, C. Panebianco, C. Indiveri, M. Galluccio, L. Vergani, I. Eberini, and E. Gianazza, “Biosynthesis of flavin cofactors in man: implications in health and disease,” Curr. Pharm. Des. 19(14), 2649–2675 (2013).
[Crossref] [PubMed]

Beckman, J. D.

J. D. Belcher, J. D. Beckman, G. Balla, J. Balla, and G. Vercellotti, “Heme degradation and vascular injury,” Antioxid. Redox Signal. 12(2), 233–248 (2010).
[Crossref] [PubMed]

Belcher, J. D.

J. D. Belcher, J. D. Beckman, G. Balla, J. Balla, and G. Vercellotti, “Heme degradation and vascular injury,” Antioxid. Redox Signal. 12(2), 233–248 (2010).
[Crossref] [PubMed]

Belenky, P.

P. Belenky, K. L. Bogan, and C. Brenner, “NAD+ metabolism in health and disease,” Trends Biochem. Sci. 32(1), 12–19 (2007).
[Crossref] [PubMed]

Bertazzo, A.

S. Comai, A. Bertazzo, N. Carretti, A. Podfigurna-Stopa, S. Luisi, and C. V. L. Costa, “Serum levels of tryptophan, 5-hydroxytryptophan and serotonin in patients affected with different forms of amenorrhea,” Int. J. Tryptophan Res. 3, 69–75 (2010).
[Crossref] [PubMed]

Bogan, K. L.

P. Belenky, K. L. Bogan, and C. Brenner, “NAD+ metabolism in health and disease,” Trends Biochem. Sci. 32(1), 12–19 (2007).
[Crossref] [PubMed]

Boppart, S. A.

X. Liang and S. A. Boppart, “Biomechanical properties of in vivo human skin from dynamic optical coherence elastography,” IEEE Trans. Biomed. Eng. 57(4), 953–959 (2010).
[Crossref] [PubMed]

Borna, H.

R. R. R. Sardari, S. R. Zarchi, S. Hajihosseini, Z. Aghili, R. Rasoolzadeh, S. Imani, H. Borna, A. M. Zand, A. Nejadmoghadam, M. Ghalavand, and Y. Panahi, “Identification of an independent measurement method for denaturation studies of cytochrome C,” Int. J. Electrochem. Sci. 8, 11578–11587 (2013).

Borrás, J.

J. L. García-Giménez, J. Hernández-Gil, A. Martínez-Ruíz, A. Castiñeiras, M. Liu-González, F. V. Pallardó, J. Borrás, and G. Alzuet Piña, “DNA binding, nuclease activity, DNA photocleavage and cytotoxic properties of Cu(II) complexes of N-substituted sulfonamides,” J. Inorg. Biochem. 121, 167–178 (2013).
[Crossref] [PubMed]

Borsarelli, C. D.

L. Valle, I. Abatedaga, F. E. M. Vieyra, A. Bortolotti, N. Cortez, and C. D. Borsarelli, “Enhancement of photophysical and photosensitizing properties of flavin adenine dinucleotide by mutagenesis of the C-terminal extension of a bacterial flavodoxin reductase,” ChemPhysChem 16(4), 872–883 (2015).
[Crossref] [PubMed]

Bortolotti, A.

L. Valle, I. Abatedaga, F. E. M. Vieyra, A. Bortolotti, N. Cortez, and C. D. Borsarelli, “Enhancement of photophysical and photosensitizing properties of flavin adenine dinucleotide by mutagenesis of the C-terminal extension of a bacterial flavodoxin reductase,” ChemPhysChem 16(4), 872–883 (2015).
[Crossref] [PubMed]

Bowman, S. E. J.

S. E. J. Bowman and K. L. Bren, “The chemistry and biochemistry of heme C: functional bases for covalent attachment,” Nat. Prod. Rep. 25(6), 1118–1130 (2008).
[Crossref] [PubMed]

Bozec, L.

L. Bozec, G. van der Heijden, and M. Horton, “Collagen fibrils: nanoscale ropes,” Biophys. J. 92(1), 70–75 (2007).
[Crossref] [PubMed]

Brazhe, N. A.

R. V. Chertkova, N. A. Brazhe, T. V. Bryantseva, A. N. Nekrasov, D. A. Dolgikh, A. I. Yusipovich, O. Sosnovtseva, G. V. Maksimov, A. B. Rubin, and M. P. Kirpichnikov, “New insight into the mechanism of mitochondrial cytochrome c function,” PLoS One 12(5), e0178280 (2017).
[Crossref] [PubMed]

Bren, K. L.

S. E. J. Bowman and K. L. Bren, “The chemistry and biochemistry of heme C: functional bases for covalent attachment,” Nat. Prod. Rep. 25(6), 1118–1130 (2008).
[Crossref] [PubMed]

Brenner, C.

P. Belenky, K. L. Bogan, and C. Brenner, “NAD+ metabolism in health and disease,” Trends Biochem. Sci. 32(1), 12–19 (2007).
[Crossref] [PubMed]

Brizio, C.

M. Barile, T. A. Giancaspero, C. Brizio, C. Panebianco, C. Indiveri, M. Galluccio, L. Vergani, I. Eberini, and E. Gianazza, “Biosynthesis of flavin cofactors in man: implications in health and disease,” Curr. Pharm. Des. 19(14), 2649–2675 (2013).
[Crossref] [PubMed]

Brown, J. Q.

J. Y. Lo, J. Q. Brown, S. Dhar, B. Yu, G. M. Palmer, N. M. Jokerst, and N. Ramanujam, “Wavelength optimization for quantitative spectral imaging of breast tumor margins,” PLoS One 8(4), e61767 (2013).
[Crossref] [PubMed]

Bryantseva, T. V.

R. V. Chertkova, N. A. Brazhe, T. V. Bryantseva, A. N. Nekrasov, D. A. Dolgikh, A. I. Yusipovich, O. Sosnovtseva, G. V. Maksimov, A. B. Rubin, and M. P. Kirpichnikov, “New insight into the mechanism of mitochondrial cytochrome c function,” PLoS One 12(5), e0178280 (2017).
[Crossref] [PubMed]

Büldt, G.

A. M. Stadler, I. Digel, G. M. Artmann, J. P. Embs, G. Zaccai, and G. Büldt, “Hemoglobin dynamics in red blood cells: correlation to body temperature,” Biophys. J. 95(11), 5449–5461 (2008).
[Crossref] [PubMed]

Cadena, A. D.

V. Kumar, A. D. Cadena, A. Perri, F. Preda, N. Coluccelli, G. Cerullo, and D. Polli, “Invited Article: Complex vibrational susceptibility by interferometric Fourier transform stimulated Raman scattering,” APL Photonics 3(9), 092403 (2018).
[Crossref]

Carretti, N.

S. Comai, A. Bertazzo, N. Carretti, A. Podfigurna-Stopa, S. Luisi, and C. V. L. Costa, “Serum levels of tryptophan, 5-hydroxytryptophan and serotonin in patients affected with different forms of amenorrhea,” Int. J. Tryptophan Res. 3, 69–75 (2010).
[Crossref] [PubMed]

Castiñeiras, A.

J. L. García-Giménez, J. Hernández-Gil, A. Martínez-Ruíz, A. Castiñeiras, M. Liu-González, F. V. Pallardó, J. Borrás, and G. Alzuet Piña, “DNA binding, nuclease activity, DNA photocleavage and cytotoxic properties of Cu(II) complexes of N-substituted sulfonamides,” J. Inorg. Biochem. 121, 167–178 (2013).
[Crossref] [PubMed]

Centrone, A.

A. M. Katzenmeyer, G. Holland, K. Kjoller, and A. Centrone, “Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution,” Anal. Chem. 87(6), 3154–3159 (2015).
[Crossref] [PubMed]

Cerullo, G.

V. Kumar, A. D. Cadena, A. Perri, F. Preda, N. Coluccelli, G. Cerullo, and D. Polli, “Invited Article: Complex vibrational susceptibility by interferometric Fourier transform stimulated Raman scattering,” APL Photonics 3(9), 092403 (2018).
[Crossref]

Chakrabarti, D.

S. Arora, J. Mauser, D. Chakrabarti, and A. Schulte, “Spatially resolved micro-absorption spectroscopy with a broadband source and confocal detection,” Opt. Commun. 355, 533–537 (2015).
[Crossref]

Chang, G.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Chertkova, R. V.

R. V. Chertkova, N. A. Brazhe, T. V. Bryantseva, A. N. Nekrasov, D. A. Dolgikh, A. I. Yusipovich, O. Sosnovtseva, G. V. Maksimov, A. B. Rubin, and M. P. Kirpichnikov, “New insight into the mechanism of mitochondrial cytochrome c function,” PLoS One 12(5), e0178280 (2017).
[Crossref] [PubMed]

Chlebus, R.

P. Hlubina, J. Luňáček, D. Ciprian, and R. Chlebus, “Spectral interferometry and reflectometry used to measure thin films,” Appl. Phys. B 92(2), 203–207 (2008).
[Crossref]

Cho, S.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Choi, W.

Chowdhury, S.

Ciprian, D.

P. Hlubina, J. Luňáček, D. Ciprian, and R. Chlebus, “Spectral interferometry and reflectometry used to measure thin films,” Appl. Phys. B 92(2), 203–207 (2008).
[Crossref]

Cogswell, C. J.

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214(Pt 1), 7–12 (2004).
[Crossref] [PubMed]

Coluccelli, N.

V. Kumar, A. D. Cadena, A. Perri, F. Preda, N. Coluccelli, G. Cerullo, and D. Polli, “Invited Article: Complex vibrational susceptibility by interferometric Fourier transform stimulated Raman scattering,” APL Photonics 3(9), 092403 (2018).
[Crossref]

Comai, S.

S. Comai, A. Bertazzo, N. Carretti, A. Podfigurna-Stopa, S. Luisi, and C. V. L. Costa, “Serum levels of tryptophan, 5-hydroxytryptophan and serotonin in patients affected with different forms of amenorrhea,” Int. J. Tryptophan Res. 3, 69–75 (2010).
[Crossref] [PubMed]

Copié, V.

H. Zhu, D. Li, M. Liu, V. Copié, and B. Lei, “Non-heme-binding domains and segments of the Staphylococcus aureus IsdB protein critically contribute to the kinetics and equilibrium of heme acquisition from methemoglobin,” PLoS One 9(6), e100744 (2014).
[Crossref] [PubMed]

Cortez, N.

L. Valle, I. Abatedaga, F. E. M. Vieyra, A. Bortolotti, N. Cortez, and C. D. Borsarelli, “Enhancement of photophysical and photosensitizing properties of flavin adenine dinucleotide by mutagenesis of the C-terminal extension of a bacterial flavodoxin reductase,” ChemPhysChem 16(4), 872–883 (2015).
[Crossref] [PubMed]

Costa, C. V. L.

S. Comai, A. Bertazzo, N. Carretti, A. Podfigurna-Stopa, S. Luisi, and C. V. L. Costa, “Serum levels of tryptophan, 5-hydroxytryptophan and serotonin in patients affected with different forms of amenorrhea,” Int. J. Tryptophan Res. 3, 69–75 (2010).
[Crossref] [PubMed]

Coxam, V.

A. Daneault, J. Prawitt, V. Fabien Soulé, V. Coxam, and Y. Wittrant, “Biological effect of hydrolyzed collagen on bone metabolism,” Crit. Rev. Food Sci. Nutr. 57(9), 1922–1937 (2017).
[PubMed]

Creath, K.

Daneault, A.

A. Daneault, J. Prawitt, V. Fabien Soulé, V. Coxam, and Y. Wittrant, “Biological effect of hydrolyzed collagen on bone metabolism,” Crit. Rev. Food Sci. Nutr. 57(9), 1922–1937 (2017).
[PubMed]

A. Daneault, “Hydrolyzed collagen contributes to osteoblast differentiation in vitro and subsequent bone health in vivo,” Osteoarthritis Cartilage 22, S131 (2014).
[Crossref]

Dasari, R.

Dasari, R. R.

Deshmukh, R.

R. Deshmukh and V. Trivedi, “Pro-stimulatory role of methemoglobin in inflammation through hemin oxidation and polymerization,” Inflamm. Allergy Drug Targets 12(1), 68–78 (2013).
[PubMed]

Dhar, S.

J. Y. Lo, J. Q. Brown, S. Dhar, B. Yu, G. M. Palmer, N. M. Jokerst, and N. Ramanujam, “Wavelength optimization for quantitative spectral imaging of breast tumor margins,” PLoS One 8(4), e61767 (2013).
[Crossref] [PubMed]

Dickson, C. F.

C. S. Thom, C. F. Dickson, D. A. Gell, and M. J. Weiss, “Hemoglobin variants: biochemical properties and clinical correlates,” Cold Spring Harb. Perspect. Med. 3(3), a011858 (2013).
[Crossref] [PubMed]

Digel, I.

A. M. Stadler, I. Digel, G. M. Artmann, J. P. Embs, G. Zaccai, and G. Büldt, “Hemoglobin dynamics in red blood cells: correlation to body temperature,” Biophys. J. 95(11), 5449–5461 (2008).
[Crossref] [PubMed]

Dolgikh, D. A.

R. V. Chertkova, N. A. Brazhe, T. V. Bryantseva, A. N. Nekrasov, D. A. Dolgikh, A. I. Yusipovich, O. Sosnovtseva, G. V. Maksimov, A. B. Rubin, and M. P. Kirpichnikov, “New insight into the mechanism of mitochondrial cytochrome c function,” PLoS One 12(5), e0178280 (2017).
[Crossref] [PubMed]

Eberini, I.

M. Barile, T. A. Giancaspero, C. Brizio, C. Panebianco, C. Indiveri, M. Galluccio, L. Vergani, I. Eberini, and E. Gianazza, “Biosynthesis of flavin cofactors in man: implications in health and disease,” Curr. Pharm. Des. 19(14), 2649–2675 (2013).
[Crossref] [PubMed]

Embs, J. P.

A. M. Stadler, I. Digel, G. M. Artmann, J. P. Embs, G. Zaccai, and G. Büldt, “Hemoglobin dynamics in red blood cells: correlation to body temperature,” Biophys. J. 95(11), 5449–5461 (2008).
[Crossref] [PubMed]

Fabien Soulé, V.

A. Daneault, J. Prawitt, V. Fabien Soulé, V. Coxam, and Y. Wittrant, “Biological effect of hydrolyzed collagen on bone metabolism,” Crit. Rev. Food Sci. Nutr. 57(9), 1922–1937 (2017).
[PubMed]

Fay, M. E.

A. Ojaghi, M. E. Fay, W. A. Lam, and F. E. Robles, “Ultraviolet Hyperspectral Interferometric Microscopy,” Sci. Rep. 8(1), 9913 (2018).
[Crossref] [PubMed]

Feld, M. S.

Fitzmaurice, M.

Friebel, M.

Galluccio, M.

M. Barile, T. A. Giancaspero, C. Brizio, C. Panebianco, C. Indiveri, M. Galluccio, L. Vergani, I. Eberini, and E. Gianazza, “Biosynthesis of flavin cofactors in man: implications in health and disease,” Curr. Pharm. Des. 19(14), 2649–2675 (2013).
[Crossref] [PubMed]

García-Giménez, J. L.

J. L. García-Giménez, J. Hernández-Gil, A. Martínez-Ruíz, A. Castiñeiras, M. Liu-González, F. V. Pallardó, J. Borrás, and G. Alzuet Piña, “DNA binding, nuclease activity, DNA photocleavage and cytotoxic properties of Cu(II) complexes of N-substituted sulfonamides,” J. Inorg. Biochem. 121, 167–178 (2013).
[Crossref] [PubMed]

Gardner, P.

M. Pilling and P. Gardner, “Fundamental developments in infrared spectroscopic imaging for biomedical applications,” Chem. Soc. Rev. 45(7), 1935–1957 (2016).
[Crossref] [PubMed]

Gell, D. A.

C. S. Thom, C. F. Dickson, D. A. Gell, and M. J. Weiss, “Hemoglobin variants: biochemical properties and clinical correlates,” Cold Spring Harb. Perspect. Med. 3(3), a011858 (2013).
[Crossref] [PubMed]

Georgakoudi, I.

Ghalavand, M.

R. R. R. Sardari, S. R. Zarchi, S. Hajihosseini, Z. Aghili, R. Rasoolzadeh, S. Imani, H. Borna, A. M. Zand, A. Nejadmoghadam, M. Ghalavand, and Y. Panahi, “Identification of an independent measurement method for denaturation studies of cytochrome C,” Int. J. Electrochem. Sci. 8, 11578–11587 (2013).

Gianazza, E.

M. Barile, T. A. Giancaspero, C. Brizio, C. Panebianco, C. Indiveri, M. Galluccio, L. Vergani, I. Eberini, and E. Gianazza, “Biosynthesis of flavin cofactors in man: implications in health and disease,” Curr. Pharm. Des. 19(14), 2649–2675 (2013).
[Crossref] [PubMed]

Giancaspero, T. A.

M. Barile, T. A. Giancaspero, C. Brizio, C. Panebianco, C. Indiveri, M. Galluccio, L. Vergani, I. Eberini, and E. Gianazza, “Biosynthesis of flavin cofactors in man: implications in health and disease,” Curr. Pharm. Des. 19(14), 2649–2675 (2013).
[Crossref] [PubMed]

Gienger, J.

Gnanamani, A.

T. Mitra, P. J. Manna, S. T. K. Raja, A. Gnanamani, and P. P. Kundu, “Curcumin loaded nano graphene oxide reinforced fish scale collagen – a 3D scaffold biomaterial for wound healing applications,” RSC Advances 5(119), 98653–98665 (2015).
[Crossref]

Goldstein, G.

Gould, L. J.

L. J. Gould, “Topical collagen-based biomaterials for chronic wounds: rationale and clinical application,” Adv. Wound Care 5(1), 19–31 (2016).
[Crossref] [PubMed]

Groß, H.

Gualberto, A.

A. Gualberto, R. M. Patrick, and K. Walsh, “Nucleic acid specificity of a vertebrate telomere-binding protein: evidence for G-G base pair recognition at the core-binding site,” Genes Dev. 6(5), 815–824 (1992).
[Crossref] [PubMed]

Gupta, R. K.

R. K. Gupta, R. Pandey, G. Sharma, R. Prasad, B. Koch, S. Srikrishna, P.-Z. Li, Q. Xu, and D. S. Pandey, “DNA binding and anti-cancer activity of redox-active heteroleptic piano-stool Ru(II), Rh(III), and Ir(III) complexes containing 4-(2-methoxypyridyl)phenyldipyrromethene,” Inorg. Chem. 52(7), 3687–3698 (2013).
[Crossref] [PubMed]

Hæggström, E.

I. Kassamakov, S. Lecler, A. Nolvi, A. Leong-Hoï, P. Montgomery, and E. Hæggström, “3D Super-Resolution Optical Profiling Using Microsphere Enhanced Mirau Interferometry,” Sci. Rep. 7(1), 3683 (2017).
[Crossref] [PubMed]

Hajihosseini, S.

R. R. R. Sardari, S. R. Zarchi, S. Hajihosseini, Z. Aghili, R. Rasoolzadeh, S. Imani, H. Borna, A. M. Zand, A. Nejadmoghadam, M. Ghalavand, and Y. Panahi, “Identification of an independent measurement method for denaturation studies of cytochrome C,” Int. J. Electrochem. Sci. 8, 11578–11587 (2013).

Hanlon, E. B.

He, S.

F. Zhang, A. Wang, Z. Li, S. He, and L. Shao, “Preparation and Characterisation of Collagen from Freshwater Fish Scales,” Food Nutr. Sci. 2(08), 818 (2011).
[Crossref]

Heo, J.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Hernández-Gil, J.

J. L. García-Giménez, J. Hernández-Gil, A. Martínez-Ruíz, A. Castiñeiras, M. Liu-González, F. V. Pallardó, J. Borrás, and G. Alzuet Piña, “DNA binding, nuclease activity, DNA photocleavage and cytotoxic properties of Cu(II) complexes of N-substituted sulfonamides,” J. Inorg. Biochem. 121, 167–178 (2013).
[Crossref] [PubMed]

Hlubina, P.

P. Hlubina, J. Luňáček, D. Ciprian, and R. Chlebus, “Spectral interferometry and reflectometry used to measure thin films,” Appl. Phys. B 92(2), 203–207 (2008).
[Crossref]

Hoffmann, F. M.

F. M. Hoffmann, “Infrared reflection-absorption spectroscopy of adsorbed molecules,” Surf. Sci. Rep. 3(2-3), 107–192 (1983).
[Crossref]

Holick, M. F.

M. F. Holick, “Biological effects of sunlight, ultraviolet radiation, visible light, infrared radiation and vitamin D for health,” Anticancer Res. 36(3), 1345–1356 (2016).
[PubMed]

Holland, G.

A. M. Katzenmeyer, G. Holland, K. Kjoller, and A. Centrone, “Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution,” Anal. Chem. 87(6), 3154–3159 (2015).
[Crossref] [PubMed]

Horton, M.

L. Bozec, G. van der Heijden, and M. Horton, “Collagen fibrils: nanoscale ropes,” Biophys. J. 92(1), 70–75 (2007).
[Crossref] [PubMed]

Ichioka, Y.

Igarashi, T.

T. Igarashi, K. Nishino, and S. K. Nayar, “The Appearance of Human Skin: A Survey,” Found. Trends Comput. Graph. Vis. 3(1), 1–95 (2007).
[Crossref]

Ihee, H.

K. Lee, Y. Kim, J. Jung, H. Ihee, and Y. Park, “Measurements of complex refractive index change of photoactive yellow protein over a wide wavelength range using hyperspectral quantitative phase imaging,” Sci. Rep. 8(1), 3064 (2018).
[Crossref] [PubMed]

Imani, S.

R. R. R. Sardari, S. R. Zarchi, S. Hajihosseini, Z. Aghili, R. Rasoolzadeh, S. Imani, H. Borna, A. M. Zand, A. Nejadmoghadam, M. Ghalavand, and Y. Panahi, “Identification of an independent measurement method for denaturation studies of cytochrome C,” Int. J. Electrochem. Sci. 8, 11578–11587 (2013).

Indiveri, C.

M. Barile, T. A. Giancaspero, C. Brizio, C. Panebianco, C. Indiveri, M. Galluccio, L. Vergani, I. Eberini, and E. Gianazza, “Biosynthesis of flavin cofactors in man: implications in health and disease,” Curr. Pharm. Des. 19(14), 2649–2675 (2013).
[Crossref] [PubMed]

Inoue, T.

Isabel, S.-V.

G. Javier, S.-V. Isabel, N. Jesús, and M. Susana de, “The intrinsic fluorescence of FAD and its application in analytical chemistry: a review,” Methods Appl. Fluoresc. 4, 042005 (2016).
[Crossref] [PubMed]

Itoh, K.

Iwasaki, J.

Iwasaki, Y.

Javier, G.

G. Javier, S.-V. Isabel, N. Jesús, and M. Susana de, “The intrinsic fluorescence of FAD and its application in analytical chemistry: a review,” Methods Appl. Fluoresc. 4, 042005 (2016).
[Crossref] [PubMed]

Jemmerson, R.

X. Liu, C. N. Kim, J. Yang, R. Jemmerson, and X. Wang, “Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c,” Cell 86(1), 147–157 (1996).
[Crossref] [PubMed]

Jesús, N.

G. Javier, S.-V. Isabel, N. Jesús, and M. Susana de, “The intrinsic fluorescence of FAD and its application in analytical chemistry: a review,” Methods Appl. Fluoresc. 4, 042005 (2016).
[Crossref] [PubMed]

Jo, Y.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Jokerst, N. M.

J. Y. Lo, J. Q. Brown, S. Dhar, B. Yu, G. M. Palmer, N. M. Jokerst, and N. Ramanujam, “Wavelength optimization for quantitative spectral imaging of breast tumor margins,” PLoS One 8(4), e61767 (2013).
[Crossref] [PubMed]

Joshi, D.

D. Joshi, D. Kumar, A. K. Maini, and R. C. Sharma, “Detection of biological warfare agents using ultra violet-laser induced fluorescence LIDAR,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 112, 446–456 (2013).
[Crossref] [PubMed]

Jung, J.

K. Lee, Y. Kim, J. Jung, H. Ihee, and Y. Park, “Measurements of complex refractive index change of photoactive yellow protein over a wide wavelength range using hyperspectral quantitative phase imaging,” Sci. Rep. 8(1), 3064 (2018).
[Crossref] [PubMed]

J. Jung, K. Kim, J. Yoon, and Y. Park, “Hyperspectral optical diffraction tomography,” Opt. Express 24(3), 2006–2012 (2016).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Kassamakov, I.

I. Kassamakov, S. Lecler, A. Nolvi, A. Leong-Hoï, P. Montgomery, and E. Hæggström, “3D Super-Resolution Optical Profiling Using Microsphere Enhanced Mirau Interferometry,” Sci. Rep. 7(1), 3683 (2017).
[Crossref] [PubMed]

Katzenmeyer, A. M.

A. M. Katzenmeyer, G. Holland, K. Kjoller, and A. Centrone, “Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution,” Anal. Chem. 87(6), 3154–3159 (2015).
[Crossref] [PubMed]

Kim, C. N.

X. Liu, C. N. Kim, J. Yang, R. Jemmerson, and X. Wang, “Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c,” Cell 86(1), 147–157 (1996).
[Crossref] [PubMed]

Kim, K.

J. Jung, K. Kim, J. Yoon, and Y. Park, “Hyperspectral optical diffraction tomography,” Opt. Express 24(3), 2006–2012 (2016).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Kim, Y.

K. Lee, Y. Kim, J. Jung, H. Ihee, and Y. Park, “Measurements of complex refractive index change of photoactive yellow protein over a wide wavelength range using hyperspectral quantitative phase imaging,” Sci. Rep. 8(1), 3064 (2018).
[Crossref] [PubMed]

Kirpichnikov, M. P.

R. V. Chertkova, N. A. Brazhe, T. V. Bryantseva, A. N. Nekrasov, D. A. Dolgikh, A. I. Yusipovich, O. Sosnovtseva, G. V. Maksimov, A. B. Rubin, and M. P. Kirpichnikov, “New insight into the mechanism of mitochondrial cytochrome c function,” PLoS One 12(5), e0178280 (2017).
[Crossref] [PubMed]

Kjoller, K.

A. M. Katzenmeyer, G. Holland, K. Kjoller, and A. Centrone, “Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution,” Anal. Chem. 87(6), 3154–3159 (2015).
[Crossref] [PubMed]

Koch, B.

R. K. Gupta, R. Pandey, G. Sharma, R. Prasad, B. Koch, S. Srikrishna, P.-Z. Li, Q. Xu, and D. S. Pandey, “DNA binding and anti-cancer activity of redox-active heteroleptic piano-stool Ru(II), Rh(III), and Ir(III) complexes containing 4-(2-methoxypyridyl)phenyldipyrromethene,” Inorg. Chem. 52(7), 3687–3698 (2013).
[Crossref] [PubMed]

Krueger, S.

S. Krueger and R. Nossal, “SANS studies of interacting hemoglobin in intact erythrocytes,” Biophys. J. 53(1), 97–105 (1988).
[Crossref] [PubMed]

Kruise, D.

G. Kuppuraj, D. Kruise, and K. Yura, “Conformational behavior of flavin adenine dinucleotide: conserved stereochemistry in bound and free states,” J. Phys. Chem. B 118(47), 13486–13497 (2014).
[Crossref] [PubMed]

Kumar, D.

D. Joshi, D. Kumar, A. K. Maini, and R. C. Sharma, “Detection of biological warfare agents using ultra violet-laser induced fluorescence LIDAR,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 112, 446–456 (2013).
[Crossref] [PubMed]

Kumar, V.

V. Kumar, A. D. Cadena, A. Perri, F. Preda, N. Coluccelli, G. Cerullo, and D. Polli, “Invited Article: Complex vibrational susceptibility by interferometric Fourier transform stimulated Raman scattering,” APL Photonics 3(9), 092403 (2018).
[Crossref]

Kundu, P. P.

T. Mitra, P. J. Manna, S. T. K. Raja, A. Gnanamani, and P. P. Kundu, “Curcumin loaded nano graphene oxide reinforced fish scale collagen – a 3D scaffold biomaterial for wound healing applications,” RSC Advances 5(119), 98653–98665 (2015).
[Crossref]

Kuppuraj, G.

G. Kuppuraj, D. Kruise, and K. Yura, “Conformational behavior of flavin adenine dinucleotide: conserved stereochemistry in bound and free states,” J. Phys. Chem. B 118(47), 13486–13497 (2014).
[Crossref] [PubMed]

Lam, W. A.

A. Ojaghi, M. E. Fay, W. A. Lam, and F. E. Robles, “Ultraviolet Hyperspectral Interferometric Microscopy,” Sci. Rep. 8(1), 9913 (2018).
[Crossref] [PubMed]

Larkin, K. G.

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214(Pt 1), 7–12 (2004).
[Crossref] [PubMed]

Lecler, S.

I. Kassamakov, S. Lecler, A. Nolvi, A. Leong-Hoï, P. Montgomery, and E. Hæggström, “3D Super-Resolution Optical Profiling Using Microsphere Enhanced Mirau Interferometry,” Sci. Rep. 7(1), 3683 (2017).
[Crossref] [PubMed]

Lee, I.

L. Pan, X. Wang, S. Yang, X. Wu, I. Lee, X. Zhang, R. A. Rupp, and J. Xu, “Ultraviolet irradiation-dependent fluorescence enhancement of hemoglobin catalyzed by reactive oxygen species,” PLoS One 7(8), e44142 (2012).
[Crossref] [PubMed]

Lee, K.

K. Lee, Y. Kim, J. Jung, H. Ihee, and Y. Park, “Measurements of complex refractive index change of photoactive yellow protein over a wide wavelength range using hyperspectral quantitative phase imaging,” Sci. Rep. 8(1), 3064 (2018).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Lee, S.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Lei, B.

H. Zhu, D. Li, M. Liu, V. Copié, and B. Lei, “Non-heme-binding domains and segments of the Staphylococcus aureus IsdB protein critically contribute to the kinetics and equilibrium of heme acquisition from methemoglobin,” PLoS One 9(6), e100744 (2014).
[Crossref] [PubMed]

Leong-Hoï, A.

I. Kassamakov, S. Lecler, A. Nolvi, A. Leong-Hoï, P. Montgomery, and E. Hæggström, “3D Super-Resolution Optical Profiling Using Microsphere Enhanced Mirau Interferometry,” Sci. Rep. 7(1), 3683 (2017).
[Crossref] [PubMed]

Li, D.

H. Zhu, D. Li, M. Liu, V. Copié, and B. Lei, “Non-heme-binding domains and segments of the Staphylococcus aureus IsdB protein critically contribute to the kinetics and equilibrium of heme acquisition from methemoglobin,” PLoS One 9(6), e100744 (2014).
[Crossref] [PubMed]

Li, L.

X. Ma, L. Li, C. Xu, H. Wei, X. Wang, and X. Yang, “Spectroscopy and speciation studies on the interactions of aluminum (III) with ciprofloxacin and β-nicotinamide adenine dinucleotide phosphate in aqueous solutions,” Molecules 17(8), 9379–9396 (2012).
[Crossref] [PubMed]

Li, P.-Z.

R. K. Gupta, R. Pandey, G. Sharma, R. Prasad, B. Koch, S. Srikrishna, P.-Z. Li, Q. Xu, and D. S. Pandey, “DNA binding and anti-cancer activity of redox-active heteroleptic piano-stool Ru(II), Rh(III), and Ir(III) complexes containing 4-(2-methoxypyridyl)phenyldipyrromethene,” Inorg. Chem. 52(7), 3687–3698 (2013).
[Crossref] [PubMed]

Li, Z.

F. Zhang, A. Wang, Z. Li, S. He, and L. Shao, “Preparation and Characterisation of Collagen from Freshwater Fish Scales,” Food Nutr. Sci. 2(08), 818 (2011).
[Crossref]

Liang, X.

X. Liang and S. A. Boppart, “Biomechanical properties of in vivo human skin from dynamic optical coherence elastography,” IEEE Trans. Biomed. Eng. 57(4), 953–959 (2010).
[Crossref] [PubMed]

Liu, M.

H. Zhu, D. Li, M. Liu, V. Copié, and B. Lei, “Non-heme-binding domains and segments of the Staphylococcus aureus IsdB protein critically contribute to the kinetics and equilibrium of heme acquisition from methemoglobin,” PLoS One 9(6), e100744 (2014).
[Crossref] [PubMed]

Liu, X.

X. Liu, C. N. Kim, J. Yang, R. Jemmerson, and X. Wang, “Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c,” Cell 86(1), 147–157 (1996).
[Crossref] [PubMed]

Liu-González, M.

J. L. García-Giménez, J. Hernández-Gil, A. Martínez-Ruíz, A. Castiñeiras, M. Liu-González, F. V. Pallardó, J. Borrás, and G. Alzuet Piña, “DNA binding, nuclease activity, DNA photocleavage and cytotoxic properties of Cu(II) complexes of N-substituted sulfonamides,” J. Inorg. Biochem. 121, 167–178 (2013).
[Crossref] [PubMed]

Lo, J. Y.

J. Y. Lo, J. Q. Brown, S. Dhar, B. Yu, G. M. Palmer, N. M. Jokerst, and N. Ramanujam, “Wavelength optimization for quantitative spectral imaging of breast tumor margins,” PLoS One 8(4), e61767 (2013).
[Crossref] [PubMed]

Logan, M. A.

R. E. Neuman and M. A. Logan, “The determination of collagen and elastin in tissues,” J. Biol. Chem. 186(2), 549–556 (1950).
[PubMed]

Luisi, S.

S. Comai, A. Bertazzo, N. Carretti, A. Podfigurna-Stopa, S. Luisi, and C. V. L. Costa, “Serum levels of tryptophan, 5-hydroxytryptophan and serotonin in patients affected with different forms of amenorrhea,” Int. J. Tryptophan Res. 3, 69–75 (2010).
[Crossref] [PubMed]

Lunácek, J.

P. Hlubina, J. Luňáček, D. Ciprian, and R. Chlebus, “Spectral interferometry and reflectometry used to measure thin films,” Appl. Phys. B 92(2), 203–207 (2008).
[Crossref]

Ma, X.

X. Ma, L. Li, C. Xu, H. Wei, X. Wang, and X. Yang, “Spectroscopy and speciation studies on the interactions of aluminum (III) with ciprofloxacin and β-nicotinamide adenine dinucleotide phosphate in aqueous solutions,” Molecules 17(8), 9379–9396 (2012).
[Crossref] [PubMed]

Maini, A. K.

D. Joshi, D. Kumar, A. K. Maini, and R. C. Sharma, “Detection of biological warfare agents using ultra violet-laser induced fluorescence LIDAR,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 112, 446–456 (2013).
[Crossref] [PubMed]

Maksimov, G. V.

R. V. Chertkova, N. A. Brazhe, T. V. Bryantseva, A. N. Nekrasov, D. A. Dolgikh, A. I. Yusipovich, O. Sosnovtseva, G. V. Maksimov, A. B. Rubin, and M. P. Kirpichnikov, “New insight into the mechanism of mitochondrial cytochrome c function,” PLoS One 12(5), e0178280 (2017).
[Crossref] [PubMed]

Manley, M.

M. Manley, “Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials,” Chem. Soc. Rev. 43(24), 8200–8214 (2014).
[Crossref] [PubMed]

Manna, P. J.

T. Mitra, P. J. Manna, S. T. K. Raja, A. Gnanamani, and P. P. Kundu, “Curcumin loaded nano graphene oxide reinforced fish scale collagen – a 3D scaffold biomaterial for wound healing applications,” RSC Advances 5(119), 98653–98665 (2015).
[Crossref]

Manoharan, R.

Margoliash, E.

E. Margoliash, “Primary structure and evolution of cytochrome C,” Proc. Natl. Acad. Sci. U.S.A. 50(4), 672–679 (1963).
[Crossref] [PubMed]

Martínez-Ruíz, A.

J. L. García-Giménez, J. Hernández-Gil, A. Martínez-Ruíz, A. Castiñeiras, M. Liu-González, F. V. Pallardó, J. Borrás, and G. Alzuet Piña, “DNA binding, nuclease activity, DNA photocleavage and cytotoxic properties of Cu(II) complexes of N-substituted sulfonamides,” J. Inorg. Biochem. 121, 167–178 (2013).
[Crossref] [PubMed]

Mauser, J.

S. Arora, J. Mauser, D. Chakrabarti, and A. Schulte, “Spatially resolved micro-absorption spectroscopy with a broadband source and confocal detection,” Opt. Commun. 355, 533–537 (2015).
[Crossref]

Meinke, M.

Millington, K. R.

K. R. Millington, “Diffuse reflectance spectroscopy of fibrous proteins,” Amino Acids 43(3), 1277–1285 (2012).
[Crossref] [PubMed]

Mitra, T.

T. Mitra, P. J. Manna, S. T. K. Raja, A. Gnanamani, and P. P. Kundu, “Curcumin loaded nano graphene oxide reinforced fish scale collagen – a 3D scaffold biomaterial for wound healing applications,” RSC Advances 5(119), 98653–98665 (2015).
[Crossref]

Montgomery, P.

I. Kassamakov, S. Lecler, A. Nolvi, A. Leong-Hoï, P. Montgomery, and E. Hæggström, “3D Super-Resolution Optical Profiling Using Microsphere Enhanced Mirau Interferometry,” Sci. Rep. 7(1), 3683 (2017).
[Crossref] [PubMed]

Mustafa, I. S.

F. Siti Sakinah Mohd, N. Suardi, and I. S. Mustafa, “In Vitro UV-Visible Spectroscopy Study of Yellow Laser Irradiation on Human Blood,” J. Phys. Conf. Ser. 995, 012053 (2018).
[Crossref]

Nakaba, M.

E. Shiratsuchi, M. Nakaba, and M. Yamada, “Elastin hydrolysate derived from fish enhances proliferation of human skin fibroblasts and elastin synthesis in human skin fibroblasts and improves the skin conditions,” J. Sci. Food Agric. 96(5), 1672–1677 (2016).
[Crossref] [PubMed]

Nayar, S. K.

T. Igarashi, K. Nishino, and S. K. Nayar, “The Appearance of Human Skin: A Survey,” Found. Trends Comput. Graph. Vis. 3(1), 1–95 (2007).
[Crossref]

Nejadmoghadam, A.

R. R. R. Sardari, S. R. Zarchi, S. Hajihosseini, Z. Aghili, R. Rasoolzadeh, S. Imani, H. Borna, A. M. Zand, A. Nejadmoghadam, M. Ghalavand, and Y. Panahi, “Identification of an independent measurement method for denaturation studies of cytochrome C,” Int. J. Electrochem. Sci. 8, 11578–11587 (2013).

Nekrasov, A. N.

R. V. Chertkova, N. A. Brazhe, T. V. Bryantseva, A. N. Nekrasov, D. A. Dolgikh, A. I. Yusipovich, O. Sosnovtseva, G. V. Maksimov, A. B. Rubin, and M. P. Kirpichnikov, “New insight into the mechanism of mitochondrial cytochrome c function,” PLoS One 12(5), e0178280 (2017).
[Crossref] [PubMed]

Neukammer, J.

Neuman, R. E.

R. E. Neuman and M. A. Logan, “The determination of collagen and elastin in tissues,” J. Biol. Chem. 186(2), 549–556 (1950).
[PubMed]

Nishino, K.

T. Igarashi, K. Nishino, and S. K. Nayar, “The Appearance of Human Skin: A Survey,” Found. Trends Comput. Graph. Vis. 3(1), 1–95 (2007).
[Crossref]

Nolvi, A.

I. Kassamakov, S. Lecler, A. Nolvi, A. Leong-Hoï, P. Montgomery, and E. Hæggström, “3D Super-Resolution Optical Profiling Using Microsphere Enhanced Mirau Interferometry,” Sci. Rep. 7(1), 3683 (2017).
[Crossref] [PubMed]

Nossal, R.

S. Krueger and R. Nossal, “SANS studies of interacting hemoglobin in intact erythrocytes,” Biophys. J. 53(1), 97–105 (1988).
[Crossref] [PubMed]

Ojaghi, A.

A. Ojaghi, M. E. Fay, W. A. Lam, and F. E. Robles, “Ultraviolet Hyperspectral Interferometric Microscopy,” Sci. Rep. 8(1), 9913 (2018).
[Crossref] [PubMed]

Ooki, H.

Pallardó, F. V.

J. L. García-Giménez, J. Hernández-Gil, A. Martínez-Ruíz, A. Castiñeiras, M. Liu-González, F. V. Pallardó, J. Borrás, and G. Alzuet Piña, “DNA binding, nuclease activity, DNA photocleavage and cytotoxic properties of Cu(II) complexes of N-substituted sulfonamides,” J. Inorg. Biochem. 121, 167–178 (2013).
[Crossref] [PubMed]

Palmer, G. M.

J. Y. Lo, J. Q. Brown, S. Dhar, B. Yu, G. M. Palmer, N. M. Jokerst, and N. Ramanujam, “Wavelength optimization for quantitative spectral imaging of breast tumor margins,” PLoS One 8(4), e61767 (2013).
[Crossref] [PubMed]

Pan, L.

L. Pan, X. Wang, S. Yang, X. Wu, I. Lee, X. Zhang, R. A. Rupp, and J. Xu, “Ultraviolet irradiation-dependent fluorescence enhancement of hemoglobin catalyzed by reactive oxygen species,” PLoS One 7(8), e44142 (2012).
[Crossref] [PubMed]

Panahi, Y.

R. R. R. Sardari, S. R. Zarchi, S. Hajihosseini, Z. Aghili, R. Rasoolzadeh, S. Imani, H. Borna, A. M. Zand, A. Nejadmoghadam, M. Ghalavand, and Y. Panahi, “Identification of an independent measurement method for denaturation studies of cytochrome C,” Int. J. Electrochem. Sci. 8, 11578–11587 (2013).

Pandey, D. S.

R. K. Gupta, R. Pandey, G. Sharma, R. Prasad, B. Koch, S. Srikrishna, P.-Z. Li, Q. Xu, and D. S. Pandey, “DNA binding and anti-cancer activity of redox-active heteroleptic piano-stool Ru(II), Rh(III), and Ir(III) complexes containing 4-(2-methoxypyridyl)phenyldipyrromethene,” Inorg. Chem. 52(7), 3687–3698 (2013).
[Crossref] [PubMed]

Pandey, R.

R. K. Gupta, R. Pandey, G. Sharma, R. Prasad, B. Koch, S. Srikrishna, P.-Z. Li, Q. Xu, and D. S. Pandey, “DNA binding and anti-cancer activity of redox-active heteroleptic piano-stool Ru(II), Rh(III), and Ir(III) complexes containing 4-(2-methoxypyridyl)phenyldipyrromethene,” Inorg. Chem. 52(7), 3687–3698 (2013).
[Crossref] [PubMed]

Panebianco, C.

M. Barile, T. A. Giancaspero, C. Brizio, C. Panebianco, C. Indiveri, M. Galluccio, L. Vergani, I. Eberini, and E. Gianazza, “Biosynthesis of flavin cofactors in man: implications in health and disease,” Curr. Pharm. Des. 19(14), 2649–2675 (2013).
[Crossref] [PubMed]

Park, H.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Park, Y.

K. Lee, Y. Kim, J. Jung, H. Ihee, and Y. Park, “Measurements of complex refractive index change of photoactive yellow protein over a wide wavelength range using hyperspectral quantitative phase imaging,” Sci. Rep. 8(1), 3064 (2018).
[Crossref] [PubMed]

J. Jung, K. Kim, J. Yoon, and Y. Park, “Hyperspectral optical diffraction tomography,” Opt. Express 24(3), 2006–2012 (2016).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Y. Park, T. Yamauchi, W. Choi, R. Dasari, and M. S. Feld, “Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells,” Opt. Lett. 34(23), 3668–3670 (2009).
[Crossref] [PubMed]

Patrick, R. M.

A. Gualberto, R. M. Patrick, and K. Walsh, “Nucleic acid specificity of a vertebrate telomere-binding protein: evidence for G-G base pair recognition at the core-binding site,” Genes Dev. 6(5), 815–824 (1992).
[Crossref] [PubMed]

Perelman, L. T.

Perri, A.

V. Kumar, A. D. Cadena, A. Perri, F. Preda, N. Coluccelli, G. Cerullo, and D. Polli, “Invited Article: Complex vibrational susceptibility by interferometric Fourier transform stimulated Raman scattering,” APL Photonics 3(9), 092403 (2018).
[Crossref]

Pilling, M.

M. Pilling and P. Gardner, “Fundamental developments in infrared spectroscopic imaging for biomedical applications,” Chem. Soc. Rev. 45(7), 1935–1957 (2016).
[Crossref] [PubMed]

Pisarchik, A.

A. Slominski, I. Semak, A. Pisarchik, T. Sweatman, A. Szczesniewski, and J. Wortsman, “Conversion of L-tryptophan to serotonin and melatonin in human melanoma cells,” FEBS Lett. 511(1-3), 102–106 (2002).
[Crossref] [PubMed]

Podfigurna-Stopa, A.

S. Comai, A. Bertazzo, N. Carretti, A. Podfigurna-Stopa, S. Luisi, and C. V. L. Costa, “Serum levels of tryptophan, 5-hydroxytryptophan and serotonin in patients affected with different forms of amenorrhea,” Int. J. Tryptophan Res. 3, 69–75 (2010).
[Crossref] [PubMed]

Polli, D.

V. Kumar, A. D. Cadena, A. Perri, F. Preda, N. Coluccelli, G. Cerullo, and D. Polli, “Invited Article: Complex vibrational susceptibility by interferometric Fourier transform stimulated Raman scattering,” APL Photonics 3(9), 092403 (2018).
[Crossref]

Prasad, R.

R. K. Gupta, R. Pandey, G. Sharma, R. Prasad, B. Koch, S. Srikrishna, P.-Z. Li, Q. Xu, and D. S. Pandey, “DNA binding and anti-cancer activity of redox-active heteroleptic piano-stool Ru(II), Rh(III), and Ir(III) complexes containing 4-(2-methoxypyridyl)phenyldipyrromethene,” Inorg. Chem. 52(7), 3687–3698 (2013).
[Crossref] [PubMed]

Prawitt, J.

A. Daneault, J. Prawitt, V. Fabien Soulé, V. Coxam, and Y. Wittrant, “Biological effect of hydrolyzed collagen on bone metabolism,” Crit. Rev. Food Sci. Nutr. 57(9), 1922–1937 (2017).
[PubMed]

Preda, F.

V. Kumar, A. D. Cadena, A. Perri, F. Preda, N. Coluccelli, G. Cerullo, and D. Polli, “Invited Article: Complex vibrational susceptibility by interferometric Fourier transform stimulated Raman scattering,” APL Photonics 3(9), 092403 (2018).
[Crossref]

Proshlyakov, D. A.

D. A. Proshlyakov, “UV optical absorption by protein radicals in cytochrome c oxidase,” Biochim. Biophys. Acta 1655(1-3), 282–289 (2004).
[Crossref] [PubMed]

Raja, S. T. K.

T. Mitra, P. J. Manna, S. T. K. Raja, A. Gnanamani, and P. P. Kundu, “Curcumin loaded nano graphene oxide reinforced fish scale collagen – a 3D scaffold biomaterial for wound healing applications,” RSC Advances 5(119), 98653–98665 (2015).
[Crossref]

Ramanujam, N.

J. Y. Lo, J. Q. Brown, S. Dhar, B. Yu, G. M. Palmer, N. M. Jokerst, and N. Ramanujam, “Wavelength optimization for quantitative spectral imaging of breast tumor margins,” PLoS One 8(4), e61767 (2013).
[Crossref] [PubMed]

Rasoolzadeh, R.

R. R. R. Sardari, S. R. Zarchi, S. Hajihosseini, Z. Aghili, R. Rasoolzadeh, S. Imani, H. Borna, A. M. Zand, A. Nejadmoghadam, M. Ghalavand, and Y. Panahi, “Identification of an independent measurement method for denaturation studies of cytochrome C,” Int. J. Electrochem. Sci. 8, 11578–11587 (2013).

Revanasiddappa, H. D.

L. Shivakumar, K. Shivaprasad, and H. D. Revanasiddappa, “SODs, DNA binding and cleavage studies of new Mn(III) complexes with 2-((3-(benzyloxy)pyridin-2-ylimino)methyl)phenol,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 107, 203–212 (2013).
[Crossref] [PubMed]

Robles, F. E.

Rubin, A. B.

R. V. Chertkova, N. A. Brazhe, T. V. Bryantseva, A. N. Nekrasov, D. A. Dolgikh, A. I. Yusipovich, O. Sosnovtseva, G. V. Maksimov, A. B. Rubin, and M. P. Kirpichnikov, “New insight into the mechanism of mitochondrial cytochrome c function,” PLoS One 12(5), e0178280 (2017).
[Crossref] [PubMed]

Rupp, R. A.

L. Pan, X. Wang, S. Yang, X. Wu, I. Lee, X. Zhang, R. A. Rupp, and J. Xu, “Ultraviolet irradiation-dependent fluorescence enhancement of hemoglobin catalyzed by reactive oxygen species,” PLoS One 7(8), e44142 (2012).
[Crossref] [PubMed]

Sander, G. E.

R. E. Tracy and G. E. Sander, “Histologically measured cardiomyocyte hypertrophy correlates with body height as strongly as with body mass index,” Cardiol. Res. Pract. 2011, 658958 (2011).
[Crossref] [PubMed]

Sardari, R. R. R.

R. R. R. Sardari, S. R. Zarchi, S. Hajihosseini, Z. Aghili, R. Rasoolzadeh, S. Imani, H. Borna, A. M. Zand, A. Nejadmoghadam, M. Ghalavand, and Y. Panahi, “Identification of an independent measurement method for denaturation studies of cytochrome C,” Int. J. Electrochem. Sci. 8, 11578–11587 (2013).

Satterwhite, L. L.

Sauve, A. A.

Y. Yang and A. A. Sauve, “NAD+ metabolism: Bioenergetics, signaling and manipulation for therapy,” Biochim. Biophys. Acta 1864(12), 1787–1800 (2016).
[Crossref] [PubMed]

Schaechter, J. D.

J. D. Schaechter and R. J. Wurtman, “Serotonin release varies with brain tryptophan levels,” Brain Res. 532(1-2), 203–210 (1990).
[Crossref] [PubMed]

Schulte, A.

S. Arora, J. Mauser, D. Chakrabarti, and A. Schulte, “Spatially resolved micro-absorption spectroscopy with a broadband source and confocal detection,” Opt. Commun. 355, 533–537 (2015).
[Crossref]

Semak, I.

A. Slominski, I. Semak, A. Pisarchik, T. Sweatman, A. Szczesniewski, and J. Wortsman, “Conversion of L-tryptophan to serotonin and melatonin in human melanoma cells,” FEBS Lett. 511(1-3), 102–106 (2002).
[Crossref] [PubMed]

Shao, L.

F. Zhang, A. Wang, Z. Li, S. He, and L. Shao, “Preparation and Characterisation of Collagen from Freshwater Fish Scales,” Food Nutr. Sci. 2(08), 818 (2011).
[Crossref]

Sharma, G.

R. K. Gupta, R. Pandey, G. Sharma, R. Prasad, B. Koch, S. Srikrishna, P.-Z. Li, Q. Xu, and D. S. Pandey, “DNA binding and anti-cancer activity of redox-active heteroleptic piano-stool Ru(II), Rh(III), and Ir(III) complexes containing 4-(2-methoxypyridyl)phenyldipyrromethene,” Inorg. Chem. 52(7), 3687–3698 (2013).
[Crossref] [PubMed]

Sharma, R. C.

D. Joshi, D. Kumar, A. K. Maini, and R. C. Sharma, “Detection of biological warfare agents using ultra violet-laser induced fluorescence LIDAR,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 112, 446–456 (2013).
[Crossref] [PubMed]

Sheppard, C. J. R.

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214(Pt 1), 7–12 (2004).
[Crossref] [PubMed]

Shiratsuchi, E.

E. Shiratsuchi, M. Nakaba, and M. Yamada, “Elastin hydrolysate derived from fish enhances proliferation of human skin fibroblasts and elastin synthesis in human skin fibroblasts and improves the skin conditions,” J. Sci. Food Agric. 96(5), 1672–1677 (2016).
[Crossref] [PubMed]

Shivakumar, L.

L. Shivakumar, K. Shivaprasad, and H. D. Revanasiddappa, “SODs, DNA binding and cleavage studies of new Mn(III) complexes with 2-((3-(benzyloxy)pyridin-2-ylimino)methyl)phenol,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 107, 203–212 (2013).
[Crossref] [PubMed]

Shivaprasad, K.

L. Shivakumar, K. Shivaprasad, and H. D. Revanasiddappa, “SODs, DNA binding and cleavage studies of new Mn(III) complexes with 2-((3-(benzyloxy)pyridin-2-ylimino)methyl)phenol,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 107, 203–212 (2013).
[Crossref] [PubMed]

Siti Sakinah Mohd, F.

F. Siti Sakinah Mohd, N. Suardi, and I. S. Mustafa, “In Vitro UV-Visible Spectroscopy Study of Yellow Laser Irradiation on Human Blood,” J. Phys. Conf. Ser. 995, 012053 (2018).
[Crossref]

Slominski, A.

A. Slominski, I. Semak, A. Pisarchik, T. Sweatman, A. Szczesniewski, and J. Wortsman, “Conversion of L-tryptophan to serotonin and melatonin in human melanoma cells,” FEBS Lett. 511(1-3), 102–106 (2002).
[Crossref] [PubMed]

Smith, N. I.

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214(Pt 1), 7–12 (2004).
[Crossref] [PubMed]

Sosnovtseva, O.

R. V. Chertkova, N. A. Brazhe, T. V. Bryantseva, A. N. Nekrasov, D. A. Dolgikh, A. I. Yusipovich, O. Sosnovtseva, G. V. Maksimov, A. B. Rubin, and M. P. Kirpichnikov, “New insight into the mechanism of mitochondrial cytochrome c function,” PLoS One 12(5), e0178280 (2017).
[Crossref] [PubMed]

Srikrishna, S.

R. K. Gupta, R. Pandey, G. Sharma, R. Prasad, B. Koch, S. Srikrishna, P.-Z. Li, Q. Xu, and D. S. Pandey, “DNA binding and anti-cancer activity of redox-active heteroleptic piano-stool Ru(II), Rh(III), and Ir(III) complexes containing 4-(2-methoxypyridyl)phenyldipyrromethene,” Inorg. Chem. 52(7), 3687–3698 (2013).
[Crossref] [PubMed]

Stadler, A. M.

A. M. Stadler, I. Digel, G. M. Artmann, J. P. Embs, G. Zaccai, and G. Büldt, “Hemoglobin dynamics in red blood cells: correlation to body temperature,” Biophys. J. 95(11), 5449–5461 (2008).
[Crossref] [PubMed]

Suardi, N.

F. Siti Sakinah Mohd, N. Suardi, and I. S. Mustafa, “In Vitro UV-Visible Spectroscopy Study of Yellow Laser Irradiation on Human Blood,” J. Phys. Conf. Ser. 995, 012053 (2018).
[Crossref]

Susana de, M.

G. Javier, S.-V. Isabel, N. Jesús, and M. Susana de, “The intrinsic fluorescence of FAD and its application in analytical chemistry: a review,” Methods Appl. Fluoresc. 4, 042005 (2016).
[Crossref] [PubMed]

Sweatman, T.

A. Slominski, I. Semak, A. Pisarchik, T. Sweatman, A. Szczesniewski, and J. Wortsman, “Conversion of L-tryptophan to serotonin and melatonin in human melanoma cells,” FEBS Lett. 511(1-3), 102–106 (2002).
[Crossref] [PubMed]

Szczesniewski, A.

A. Slominski, I. Semak, A. Pisarchik, T. Sweatman, A. Szczesniewski, and J. Wortsman, “Conversion of L-tryptophan to serotonin and melatonin in human melanoma cells,” FEBS Lett. 511(1-3), 102–106 (2002).
[Crossref] [PubMed]

Thom, C. S.

C. S. Thom, C. F. Dickson, D. A. Gell, and M. J. Weiss, “Hemoglobin variants: biochemical properties and clinical correlates,” Cold Spring Harb. Perspect. Med. 3(3), a011858 (2013).
[Crossref] [PubMed]

Tracy, R. E.

R. E. Tracy and G. E. Sander, “Histologically measured cardiomyocyte hypertrophy correlates with body height as strongly as with body mass index,” Cardiol. Res. Pract. 2011, 658958 (2011).
[Crossref] [PubMed]

Trivedi, V.

R. Deshmukh and V. Trivedi, “Pro-stimulatory role of methemoglobin in inflammation through hemin oxidation and polymerization,” Inflamm. Allergy Drug Targets 12(1), 68–78 (2013).
[PubMed]

Valle, L.

L. Valle, I. Abatedaga, F. E. M. Vieyra, A. Bortolotti, N. Cortez, and C. D. Borsarelli, “Enhancement of photophysical and photosensitizing properties of flavin adenine dinucleotide by mutagenesis of the C-terminal extension of a bacterial flavodoxin reductase,” ChemPhysChem 16(4), 872–883 (2015).
[Crossref] [PubMed]

van Beek-Harmsen, B. J.

B. J. van Beek-Harmsen and W. J. van der Laarse, “Immunohistochemical determination of cytosolic cytochrome C concentration in cardiomyocytes,” J. Histochem. Cytochem. 53(7), 803–807 (2005).
[Crossref] [PubMed]

Van Dam, J.

van der Heijden, G.

L. Bozec, G. van der Heijden, and M. Horton, “Collagen fibrils: nanoscale ropes,” Biophys. J. 92(1), 70–75 (2007).
[Crossref] [PubMed]

van der Laarse, W. J.

B. J. van Beek-Harmsen and W. J. van der Laarse, “Immunohistochemical determination of cytosolic cytochrome C concentration in cardiomyocytes,” J. Histochem. Cytochem. 53(7), 803–807 (2005).
[Crossref] [PubMed]

Vercellotti, G.

J. D. Belcher, J. D. Beckman, G. Balla, J. Balla, and G. Vercellotti, “Heme degradation and vascular injury,” Antioxid. Redox Signal. 12(2), 233–248 (2010).
[Crossref] [PubMed]

Vergani, L.

M. Barile, T. A. Giancaspero, C. Brizio, C. Panebianco, C. Indiveri, M. Galluccio, L. Vergani, I. Eberini, and E. Gianazza, “Biosynthesis of flavin cofactors in man: implications in health and disease,” Curr. Pharm. Des. 19(14), 2649–2675 (2013).
[Crossref] [PubMed]

Vieyra, F. E. M.

L. Valle, I. Abatedaga, F. E. M. Vieyra, A. Bortolotti, N. Cortez, and C. D. Borsarelli, “Enhancement of photophysical and photosensitizing properties of flavin adenine dinucleotide by mutagenesis of the C-terminal extension of a bacterial flavodoxin reductase,” ChemPhysChem 16(4), 872–883 (2015).
[Crossref] [PubMed]

Walsh, K.

A. Gualberto, R. M. Patrick, and K. Walsh, “Nucleic acid specificity of a vertebrate telomere-binding protein: evidence for G-G base pair recognition at the core-binding site,” Genes Dev. 6(5), 815–824 (1992).
[Crossref] [PubMed]

Wang, A.

F. Zhang, A. Wang, Z. Li, S. He, and L. Shao, “Preparation and Characterisation of Collagen from Freshwater Fish Scales,” Food Nutr. Sci. 2(08), 818 (2011).
[Crossref]

Wang, X.

X. Ma, L. Li, C. Xu, H. Wei, X. Wang, and X. Yang, “Spectroscopy and speciation studies on the interactions of aluminum (III) with ciprofloxacin and β-nicotinamide adenine dinucleotide phosphate in aqueous solutions,” Molecules 17(8), 9379–9396 (2012).
[Crossref] [PubMed]

L. Pan, X. Wang, S. Yang, X. Wu, I. Lee, X. Zhang, R. A. Rupp, and J. Xu, “Ultraviolet irradiation-dependent fluorescence enhancement of hemoglobin catalyzed by reactive oxygen species,” PLoS One 7(8), e44142 (2012).
[Crossref] [PubMed]

X. Liu, C. N. Kim, J. Yang, R. Jemmerson, and X. Wang, “Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c,” Cell 86(1), 147–157 (1996).
[Crossref] [PubMed]

Wax, A.

Wei, H.

X. Ma, L. Li, C. Xu, H. Wei, X. Wang, and X. Yang, “Spectroscopy and speciation studies on the interactions of aluminum (III) with ciprofloxacin and β-nicotinamide adenine dinucleotide phosphate in aqueous solutions,” Molecules 17(8), 9379–9396 (2012).
[Crossref] [PubMed]

Weiss, M. J.

C. S. Thom, C. F. Dickson, D. A. Gell, and M. J. Weiss, “Hemoglobin variants: biochemical properties and clinical correlates,” Cold Spring Harb. Perspect. Med. 3(3), a011858 (2013).
[Crossref] [PubMed]

Whitby, L. G.

L. G. Whitby, “A new method for preparing flavin-adenine dinucleotide,” Biochem. J. 54(3), 437–442 (1953).
[Crossref] [PubMed]

Wittrant, Y.

A. Daneault, J. Prawitt, V. Fabien Soulé, V. Coxam, and Y. Wittrant, “Biological effect of hydrolyzed collagen on bone metabolism,” Crit. Rev. Food Sci. Nutr. 57(9), 1922–1937 (2017).
[PubMed]

Wortsman, J.

A. Slominski, I. Semak, A. Pisarchik, T. Sweatman, A. Szczesniewski, and J. Wortsman, “Conversion of L-tryptophan to serotonin and melatonin in human melanoma cells,” FEBS Lett. 511(1-3), 102–106 (2002).
[Crossref] [PubMed]

Wu, X.

L. Pan, X. Wang, S. Yang, X. Wu, I. Lee, X. Zhang, R. A. Rupp, and J. Xu, “Ultraviolet irradiation-dependent fluorescence enhancement of hemoglobin catalyzed by reactive oxygen species,” PLoS One 7(8), e44142 (2012).
[Crossref] [PubMed]

Wurtman, R. J.

J. D. Schaechter and R. J. Wurtman, “Serotonin release varies with brain tryptophan levels,” Brain Res. 532(1-2), 203–210 (1990).
[Crossref] [PubMed]

Xu, C.

X. Ma, L. Li, C. Xu, H. Wei, X. Wang, and X. Yang, “Spectroscopy and speciation studies on the interactions of aluminum (III) with ciprofloxacin and β-nicotinamide adenine dinucleotide phosphate in aqueous solutions,” Molecules 17(8), 9379–9396 (2012).
[Crossref] [PubMed]

Xu, J.

L. Pan, X. Wang, S. Yang, X. Wu, I. Lee, X. Zhang, R. A. Rupp, and J. Xu, “Ultraviolet irradiation-dependent fluorescence enhancement of hemoglobin catalyzed by reactive oxygen species,” PLoS One 7(8), e44142 (2012).
[Crossref] [PubMed]

Xu, Q.

R. K. Gupta, R. Pandey, G. Sharma, R. Prasad, B. Koch, S. Srikrishna, P.-Z. Li, Q. Xu, and D. S. Pandey, “DNA binding and anti-cancer activity of redox-active heteroleptic piano-stool Ru(II), Rh(III), and Ir(III) complexes containing 4-(2-methoxypyridyl)phenyldipyrromethene,” Inorg. Chem. 52(7), 3687–3698 (2013).
[Crossref] [PubMed]

Yamada, M.

E. Shiratsuchi, M. Nakaba, and M. Yamada, “Elastin hydrolysate derived from fish enhances proliferation of human skin fibroblasts and elastin synthesis in human skin fibroblasts and improves the skin conditions,” J. Sci. Food Agric. 96(5), 1672–1677 (2016).
[Crossref] [PubMed]

Yamauchi, T.

Yang, C.

Yang, J.

X. Liu, C. N. Kim, J. Yang, R. Jemmerson, and X. Wang, “Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c,” Cell 86(1), 147–157 (1996).
[Crossref] [PubMed]

Yang, S.

L. Pan, X. Wang, S. Yang, X. Wu, I. Lee, X. Zhang, R. A. Rupp, and J. Xu, “Ultraviolet irradiation-dependent fluorescence enhancement of hemoglobin catalyzed by reactive oxygen species,” PLoS One 7(8), e44142 (2012).
[Crossref] [PubMed]

Yang, X.

X. Ma, L. Li, C. Xu, H. Wei, X. Wang, and X. Yang, “Spectroscopy and speciation studies on the interactions of aluminum (III) with ciprofloxacin and β-nicotinamide adenine dinucleotide phosphate in aqueous solutions,” Molecules 17(8), 9379–9396 (2012).
[Crossref] [PubMed]

Yang, Y.

Y. Yang and A. A. Sauve, “NAD+ metabolism: Bioenergetics, signaling and manipulation for therapy,” Biochim. Biophys. Acta 1864(12), 1787–1800 (2016).
[Crossref] [PubMed]

Yoon, J.

Yoshida, T.

Yu, B.

J. Y. Lo, J. Q. Brown, S. Dhar, B. Yu, G. M. Palmer, N. M. Jokerst, and N. Ramanujam, “Wavelength optimization for quantitative spectral imaging of breast tumor margins,” PLoS One 8(4), e61767 (2013).
[Crossref] [PubMed]

Yura, K.

G. Kuppuraj, D. Kruise, and K. Yura, “Conformational behavior of flavin adenine dinucleotide: conserved stereochemistry in bound and free states,” J. Phys. Chem. B 118(47), 13486–13497 (2014).
[Crossref] [PubMed]

Yusipovich, A. I.

R. V. Chertkova, N. A. Brazhe, T. V. Bryantseva, A. N. Nekrasov, D. A. Dolgikh, A. I. Yusipovich, O. Sosnovtseva, G. V. Maksimov, A. B. Rubin, and M. P. Kirpichnikov, “New insight into the mechanism of mitochondrial cytochrome c function,” PLoS One 12(5), e0178280 (2017).
[Crossref] [PubMed]

Zaccai, G.

A. M. Stadler, I. Digel, G. M. Artmann, J. P. Embs, G. Zaccai, and G. Büldt, “Hemoglobin dynamics in red blood cells: correlation to body temperature,” Biophys. J. 95(11), 5449–5461 (2008).
[Crossref] [PubMed]

Zand, A. M.

R. R. R. Sardari, S. R. Zarchi, S. Hajihosseini, Z. Aghili, R. Rasoolzadeh, S. Imani, H. Borna, A. M. Zand, A. Nejadmoghadam, M. Ghalavand, and Y. Panahi, “Identification of an independent measurement method for denaturation studies of cytochrome C,” Int. J. Electrochem. Sci. 8, 11578–11587 (2013).

Zarchi, S. R.

R. R. R. Sardari, S. R. Zarchi, S. Hajihosseini, Z. Aghili, R. Rasoolzadeh, S. Imani, H. Borna, A. M. Zand, A. Nejadmoghadam, M. Ghalavand, and Y. Panahi, “Identification of an independent measurement method for denaturation studies of cytochrome C,” Int. J. Electrochem. Sci. 8, 11578–11587 (2013).

Zhang, F.

F. Zhang, A. Wang, Z. Li, S. He, and L. Shao, “Preparation and Characterisation of Collagen from Freshwater Fish Scales,” Food Nutr. Sci. 2(08), 818 (2011).
[Crossref]

Zhang, X.

L. Pan, X. Wang, S. Yang, X. Wu, I. Lee, X. Zhang, R. A. Rupp, and J. Xu, “Ultraviolet irradiation-dependent fluorescence enhancement of hemoglobin catalyzed by reactive oxygen species,” PLoS One 7(8), e44142 (2012).
[Crossref] [PubMed]

Zhu, H.

H. Zhu, D. Li, M. Liu, V. Copié, and B. Lei, “Non-heme-binding domains and segments of the Staphylococcus aureus IsdB protein critically contribute to the kinetics and equilibrium of heme acquisition from methemoglobin,” PLoS One 9(6), e100744 (2014).
[Crossref] [PubMed]

Ziegler, M.

M. Ziegler, “New functions of a long-known molecule. Emerging roles of NAD in cellular signaling,” Eur. J. Biochem. 267(6), 1550–1564 (2000).
[Crossref] [PubMed]

Zonios, G.

Adv. Wound Care (1)

L. J. Gould, “Topical collagen-based biomaterials for chronic wounds: rationale and clinical application,” Adv. Wound Care 5(1), 19–31 (2016).
[Crossref] [PubMed]

Amino Acids (1)

K. R. Millington, “Diffuse reflectance spectroscopy of fibrous proteins,” Amino Acids 43(3), 1277–1285 (2012).
[Crossref] [PubMed]

Anal. Chem. (1)

A. M. Katzenmeyer, G. Holland, K. Kjoller, and A. Centrone, “Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution,” Anal. Chem. 87(6), 3154–3159 (2015).
[Crossref] [PubMed]

Anticancer Res. (1)

M. F. Holick, “Biological effects of sunlight, ultraviolet radiation, visible light, infrared radiation and vitamin D for health,” Anticancer Res. 36(3), 1345–1356 (2016).
[PubMed]

Antioxid. Redox Signal. (1)

J. D. Belcher, J. D. Beckman, G. Balla, J. Balla, and G. Vercellotti, “Heme degradation and vascular injury,” Antioxid. Redox Signal. 12(2), 233–248 (2010).
[Crossref] [PubMed]

APL Photonics (1)

V. Kumar, A. D. Cadena, A. Perri, F. Preda, N. Coluccelli, G. Cerullo, and D. Polli, “Invited Article: Complex vibrational susceptibility by interferometric Fourier transform stimulated Raman scattering,” APL Photonics 3(9), 092403 (2018).
[Crossref]

Appl. Opt. (5)

Appl. Phys. B (1)

P. Hlubina, J. Luňáček, D. Ciprian, and R. Chlebus, “Spectral interferometry and reflectometry used to measure thin films,” Appl. Phys. B 92(2), 203–207 (2008).
[Crossref]

Biochem. J. (1)

L. G. Whitby, “A new method for preparing flavin-adenine dinucleotide,” Biochem. J. 54(3), 437–442 (1953).
[Crossref] [PubMed]

Biochim. Biophys. Acta (2)

D. A. Proshlyakov, “UV optical absorption by protein radicals in cytochrome c oxidase,” Biochim. Biophys. Acta 1655(1-3), 282–289 (2004).
[Crossref] [PubMed]

Y. Yang and A. A. Sauve, “NAD+ metabolism: Bioenergetics, signaling and manipulation for therapy,” Biochim. Biophys. Acta 1864(12), 1787–1800 (2016).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Biophys. J. (3)

A. M. Stadler, I. Digel, G. M. Artmann, J. P. Embs, G. Zaccai, and G. Büldt, “Hemoglobin dynamics in red blood cells: correlation to body temperature,” Biophys. J. 95(11), 5449–5461 (2008).
[Crossref] [PubMed]

S. Krueger and R. Nossal, “SANS studies of interacting hemoglobin in intact erythrocytes,” Biophys. J. 53(1), 97–105 (1988).
[Crossref] [PubMed]

L. Bozec, G. van der Heijden, and M. Horton, “Collagen fibrils: nanoscale ropes,” Biophys. J. 92(1), 70–75 (2007).
[Crossref] [PubMed]

Brain Res. (1)

J. D. Schaechter and R. J. Wurtman, “Serotonin release varies with brain tryptophan levels,” Brain Res. 532(1-2), 203–210 (1990).
[Crossref] [PubMed]

Cardiol. Res. Pract. (1)

R. E. Tracy and G. E. Sander, “Histologically measured cardiomyocyte hypertrophy correlates with body height as strongly as with body mass index,” Cardiol. Res. Pract. 2011, 658958 (2011).
[Crossref] [PubMed]

Cell (1)

X. Liu, C. N. Kim, J. Yang, R. Jemmerson, and X. Wang, “Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c,” Cell 86(1), 147–157 (1996).
[Crossref] [PubMed]

Chem. Soc. Rev. (2)

M. Pilling and P. Gardner, “Fundamental developments in infrared spectroscopic imaging for biomedical applications,” Chem. Soc. Rev. 45(7), 1935–1957 (2016).
[Crossref] [PubMed]

M. Manley, “Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials,” Chem. Soc. Rev. 43(24), 8200–8214 (2014).
[Crossref] [PubMed]

ChemPhysChem (1)

L. Valle, I. Abatedaga, F. E. M. Vieyra, A. Bortolotti, N. Cortez, and C. D. Borsarelli, “Enhancement of photophysical and photosensitizing properties of flavin adenine dinucleotide by mutagenesis of the C-terminal extension of a bacterial flavodoxin reductase,” ChemPhysChem 16(4), 872–883 (2015).
[Crossref] [PubMed]

Cold Spring Harb. Perspect. Med. (1)

C. S. Thom, C. F. Dickson, D. A. Gell, and M. J. Weiss, “Hemoglobin variants: biochemical properties and clinical correlates,” Cold Spring Harb. Perspect. Med. 3(3), a011858 (2013).
[Crossref] [PubMed]

Crit. Rev. Food Sci. Nutr. (1)

A. Daneault, J. Prawitt, V. Fabien Soulé, V. Coxam, and Y. Wittrant, “Biological effect of hydrolyzed collagen on bone metabolism,” Crit. Rev. Food Sci. Nutr. 57(9), 1922–1937 (2017).
[PubMed]

Curr. Pharm. Des. (1)

M. Barile, T. A. Giancaspero, C. Brizio, C. Panebianco, C. Indiveri, M. Galluccio, L. Vergani, I. Eberini, and E. Gianazza, “Biosynthesis of flavin cofactors in man: implications in health and disease,” Curr. Pharm. Des. 19(14), 2649–2675 (2013).
[Crossref] [PubMed]

Eur. J. Biochem. (1)

M. Ziegler, “New functions of a long-known molecule. Emerging roles of NAD in cellular signaling,” Eur. J. Biochem. 267(6), 1550–1564 (2000).
[Crossref] [PubMed]

FEBS Lett. (1)

A. Slominski, I. Semak, A. Pisarchik, T. Sweatman, A. Szczesniewski, and J. Wortsman, “Conversion of L-tryptophan to serotonin and melatonin in human melanoma cells,” FEBS Lett. 511(1-3), 102–106 (2002).
[Crossref] [PubMed]

Food Nutr. Sci. (1)

F. Zhang, A. Wang, Z. Li, S. He, and L. Shao, “Preparation and Characterisation of Collagen from Freshwater Fish Scales,” Food Nutr. Sci. 2(08), 818 (2011).
[Crossref]

Found. Trends Comput. Graph. Vis. (1)

T. Igarashi, K. Nishino, and S. K. Nayar, “The Appearance of Human Skin: A Survey,” Found. Trends Comput. Graph. Vis. 3(1), 1–95 (2007).
[Crossref]

Genes Dev. (1)

A. Gualberto, R. M. Patrick, and K. Walsh, “Nucleic acid specificity of a vertebrate telomere-binding protein: evidence for G-G base pair recognition at the core-binding site,” Genes Dev. 6(5), 815–824 (1992).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

X. Liang and S. A. Boppart, “Biomechanical properties of in vivo human skin from dynamic optical coherence elastography,” IEEE Trans. Biomed. Eng. 57(4), 953–959 (2010).
[Crossref] [PubMed]

Inflamm. Allergy Drug Targets (1)

R. Deshmukh and V. Trivedi, “Pro-stimulatory role of methemoglobin in inflammation through hemin oxidation and polymerization,” Inflamm. Allergy Drug Targets 12(1), 68–78 (2013).
[PubMed]

Inorg. Chem. (1)

R. K. Gupta, R. Pandey, G. Sharma, R. Prasad, B. Koch, S. Srikrishna, P.-Z. Li, Q. Xu, and D. S. Pandey, “DNA binding and anti-cancer activity of redox-active heteroleptic piano-stool Ru(II), Rh(III), and Ir(III) complexes containing 4-(2-methoxypyridyl)phenyldipyrromethene,” Inorg. Chem. 52(7), 3687–3698 (2013).
[Crossref] [PubMed]

Int. J. Electrochem. Sci. (1)

R. R. R. Sardari, S. R. Zarchi, S. Hajihosseini, Z. Aghili, R. Rasoolzadeh, S. Imani, H. Borna, A. M. Zand, A. Nejadmoghadam, M. Ghalavand, and Y. Panahi, “Identification of an independent measurement method for denaturation studies of cytochrome C,” Int. J. Electrochem. Sci. 8, 11578–11587 (2013).

Int. J. Tryptophan Res. (1)

S. Comai, A. Bertazzo, N. Carretti, A. Podfigurna-Stopa, S. Luisi, and C. V. L. Costa, “Serum levels of tryptophan, 5-hydroxytryptophan and serotonin in patients affected with different forms of amenorrhea,” Int. J. Tryptophan Res. 3, 69–75 (2010).
[Crossref] [PubMed]

J. Biol. Chem. (1)

R. E. Neuman and M. A. Logan, “The determination of collagen and elastin in tissues,” J. Biol. Chem. 186(2), 549–556 (1950).
[PubMed]

J. Histochem. Cytochem. (1)

B. J. van Beek-Harmsen and W. J. van der Laarse, “Immunohistochemical determination of cytosolic cytochrome C concentration in cardiomyocytes,” J. Histochem. Cytochem. 53(7), 803–807 (2005).
[Crossref] [PubMed]

J. Inorg. Biochem. (1)

J. L. García-Giménez, J. Hernández-Gil, A. Martínez-Ruíz, A. Castiñeiras, M. Liu-González, F. V. Pallardó, J. Borrás, and G. Alzuet Piña, “DNA binding, nuclease activity, DNA photocleavage and cytotoxic properties of Cu(II) complexes of N-substituted sulfonamides,” J. Inorg. Biochem. 121, 167–178 (2013).
[Crossref] [PubMed]

J. Microsc. (1)

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. Microsc. 214(Pt 1), 7–12 (2004).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

G. Kuppuraj, D. Kruise, and K. Yura, “Conformational behavior of flavin adenine dinucleotide: conserved stereochemistry in bound and free states,” J. Phys. Chem. B 118(47), 13486–13497 (2014).
[Crossref] [PubMed]

J. Phys. Conf. Ser. (1)

F. Siti Sakinah Mohd, N. Suardi, and I. S. Mustafa, “In Vitro UV-Visible Spectroscopy Study of Yellow Laser Irradiation on Human Blood,” J. Phys. Conf. Ser. 995, 012053 (2018).
[Crossref]

J. Sci. Food Agric. (1)

E. Shiratsuchi, M. Nakaba, and M. Yamada, “Elastin hydrolysate derived from fish enhances proliferation of human skin fibroblasts and elastin synthesis in human skin fibroblasts and improves the skin conditions,” J. Sci. Food Agric. 96(5), 1672–1677 (2016).
[Crossref] [PubMed]

Methods Appl. Fluoresc. (1)

G. Javier, S.-V. Isabel, N. Jesús, and M. Susana de, “The intrinsic fluorescence of FAD and its application in analytical chemistry: a review,” Methods Appl. Fluoresc. 4, 042005 (2016).
[Crossref] [PubMed]

Molecules (1)

X. Ma, L. Li, C. Xu, H. Wei, X. Wang, and X. Yang, “Spectroscopy and speciation studies on the interactions of aluminum (III) with ciprofloxacin and β-nicotinamide adenine dinucleotide phosphate in aqueous solutions,” Molecules 17(8), 9379–9396 (2012).
[Crossref] [PubMed]

Nat. Prod. Rep. (1)

S. E. J. Bowman and K. L. Bren, “The chemistry and biochemistry of heme C: functional bases for covalent attachment,” Nat. Prod. Rep. 25(6), 1118–1130 (2008).
[Crossref] [PubMed]

Opt. Commun. (1)

S. Arora, J. Mauser, D. Chakrabarti, and A. Schulte, “Spatially resolved micro-absorption spectroscopy with a broadband source and confocal detection,” Opt. Commun. 355, 533–537 (2015).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Osteoarthritis Cartilage (1)

A. Daneault, “Hydrolyzed collagen contributes to osteoblast differentiation in vitro and subsequent bone health in vivo,” Osteoarthritis Cartilage 22, S131 (2014).
[Crossref]

PLoS One (4)

R. V. Chertkova, N. A. Brazhe, T. V. Bryantseva, A. N. Nekrasov, D. A. Dolgikh, A. I. Yusipovich, O. Sosnovtseva, G. V. Maksimov, A. B. Rubin, and M. P. Kirpichnikov, “New insight into the mechanism of mitochondrial cytochrome c function,” PLoS One 12(5), e0178280 (2017).
[Crossref] [PubMed]

J. Y. Lo, J. Q. Brown, S. Dhar, B. Yu, G. M. Palmer, N. M. Jokerst, and N. Ramanujam, “Wavelength optimization for quantitative spectral imaging of breast tumor margins,” PLoS One 8(4), e61767 (2013).
[Crossref] [PubMed]

L. Pan, X. Wang, S. Yang, X. Wu, I. Lee, X. Zhang, R. A. Rupp, and J. Xu, “Ultraviolet irradiation-dependent fluorescence enhancement of hemoglobin catalyzed by reactive oxygen species,” PLoS One 7(8), e44142 (2012).
[Crossref] [PubMed]

H. Zhu, D. Li, M. Liu, V. Copié, and B. Lei, “Non-heme-binding domains and segments of the Staphylococcus aureus IsdB protein critically contribute to the kinetics and equilibrium of heme acquisition from methemoglobin,” PLoS One 9(6), e100744 (2014).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

E. Margoliash, “Primary structure and evolution of cytochrome C,” Proc. Natl. Acad. Sci. U.S.A. 50(4), 672–679 (1963).
[Crossref] [PubMed]

RSC Advances (1)

T. Mitra, P. J. Manna, S. T. K. Raja, A. Gnanamani, and P. P. Kundu, “Curcumin loaded nano graphene oxide reinforced fish scale collagen – a 3D scaffold biomaterial for wound healing applications,” RSC Advances 5(119), 98653–98665 (2015).
[Crossref]

Sci. Rep. (3)

I. Kassamakov, S. Lecler, A. Nolvi, A. Leong-Hoï, P. Montgomery, and E. Hæggström, “3D Super-Resolution Optical Profiling Using Microsphere Enhanced Mirau Interferometry,” Sci. Rep. 7(1), 3683 (2017).
[Crossref] [PubMed]

A. Ojaghi, M. E. Fay, W. A. Lam, and F. E. Robles, “Ultraviolet Hyperspectral Interferometric Microscopy,” Sci. Rep. 8(1), 9913 (2018).
[Crossref] [PubMed]

K. Lee, Y. Kim, J. Jung, H. Ihee, and Y. Park, “Measurements of complex refractive index change of photoactive yellow protein over a wide wavelength range using hyperspectral quantitative phase imaging,” Sci. Rep. 8(1), 3064 (2018).
[Crossref] [PubMed]

Sensors (Basel) (1)

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (2)

L. Shivakumar, K. Shivaprasad, and H. D. Revanasiddappa, “SODs, DNA binding and cleavage studies of new Mn(III) complexes with 2-((3-(benzyloxy)pyridin-2-ylimino)methyl)phenol,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 107, 203–212 (2013).
[Crossref] [PubMed]

D. Joshi, D. Kumar, A. K. Maini, and R. C. Sharma, “Detection of biological warfare agents using ultra violet-laser induced fluorescence LIDAR,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 112, 446–456 (2013).
[Crossref] [PubMed]

Surf. Sci. Rep. (1)

F. M. Hoffmann, “Infrared reflection-absorption spectroscopy of adsorbed molecules,” Surf. Sci. Rep. 3(2-3), 107–192 (1983).
[Crossref]

Trends Biochem. Sci. (1)

P. Belenky, K. L. Bogan, and C. Brenner, “NAD+ metabolism in health and disease,” Trends Biochem. Sci. 32(1), 12–19 (2007).
[Crossref] [PubMed]

Other (7)

H. R. Thapa, A. J. Lail, N. Garg, and V. Agarwal, “Chapter Ten - Chemoenzymatic Synthesis of Starting Materials and Characterization of Halogenases Requiring Acyl Carrier Protein-Tethered Substrates,” in Methods in Enzymology, B. S. Moore, ed. (Academic Press, 2018), pp. 333–366.

J. H. Kristensen and M. A. Karsdal, “Chapter 30 - Elastin,” in Biochemistry of Collagens, Laminins and Elastin, M. A. Karsdal, ed. (Academic Press, 2016), pp. 197–201.

C. K. Mathews, K. E. Van Holde, D. R. Appling, and S. J. Anthony-Cahill, Biochemistry (Pearson, Toronto, 2013).

R. M. C. Dawson, Data for Biochemical Research, 3rd ed. ed. (Clarendon Press, Oxford, 1986).

E. J. Benz and B. L. Ebert, “Chapter 43 - Hemoglobin Variants Associated With Hemolytic Anemia, Altered Oxygen Affinity, and Methemoglobinemias,” in Hematology (Seventh Edition), R. Hoffman, E. J. Benz, L. E. Silberstein, H. E. Heslop, J. I. Weitz, J. Anastasi, M. E. Salama, and S. A. Abutalib, eds. (Elsevier, 2018), pp. 608–615.

A. T. Lutes, “Intrinsic flavin as a biomarker for monitoring pathologically-induced changes in cellular energy metabolism,” Thesis: The Pennsylvania State University (2008).

B. J. Zeskind, “Quantitative imaging of living cells by deep ultraviolet microscopy,” Thesis (Ph. D., Massachusetts Institute of Technology, Biological Engineering Division (2006).

Supplementary Material (2)

NameDescription
» Data File 1       Molar extinction coefficient for all the tested bio materials
» Data File 2       Concentration independent refractive index increment for the tested biomaterials

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of interferometric setup. The incoming light is split into a sample and reference arm. The sample beam passes through a short path length flow cell (in green) and picks up a differential optical pathlength with respect to the reference arm. The inset shows a representative interferogram (intensity vs wavelength).
Fig. 2
Fig. 2 Different steps in data processing (a) importing interferogram (b) taking fft and filtering (c) calculation of phase difference and dividing by thickness and wavenumber
Fig. 3
Fig. 3 (a) Measured molar extinction coefficient spectra for tested materials.(See Data File 1 for table of the values) (b) Measured B spectra for tested materials (See Data File 2 for table of the values). To plot all the graphs in a single frame, we have divided Unstabilized Hemoglobin data by 2.5 and Calf DNA data by 500 as stated in the figure. (The supplemental material tabulates the raw data.) B graphs are split for clarity as some curves overlap significantly in certain regions.
Fig. 4
Fig. 4 (a) Projection of ε-B-λ curves on ε-B plane (b) ε-B curves for tested materials, with inset showing magnified ε-B curves for FAD and Tryptophan.
Fig. 5
Fig. 5 Comparison of (a) measured molar extinction coefficient of stabilized Hemoglobin in our work and reported by Prahl [45] (b) measured concentration independent refractive index increment of stabilized Hemoglobin and reported data reported by Gienger [59] and Friebel [60].
Fig. 6
Fig. 6 Variation of absorption in stabilized Hemoglobin exposed to Eq. (-99)X broadband source within 1 minute.

Tables (2)

Tables Icon

Table 1 list of characterized biomaterials

Tables Icon

Table 2 Calculated detection limits based on B and ε for each biological material. Typical concentration of each biochemical in human body is listed for comparison.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E (λ) tot = E r (λ)exp(-jkL)+exp( μ a h 2 ) E s (λ)exp(-jk(L'-h)-jkn(λ)h)
I (λ) tot =exp( μ a h) E s (λ) 2 + E r (λ) 2 +2exp( μ a h 2 ) E r (λ) E s (λ)cos(k(L'L)+kh(n(λ)1))
Δφ(λ)=ΔOPL(λ) 2π λ =h( n samp (λ) n solv (λ)) 2π λ
n samp (λ)= n solv (λ)+B(λ)c
ΔOPL(λ)=hB(λ)c
ln( I sample I solvent )=( μ a s + μ a r )h( μ a r )h= μ a s h
ε(λ)= μ as M cln(10)