Abstract

Optical coherence tomography (OCT) and OCT angiography (OCTA) enable three-dimensional, high-resolution imaging of the eye. Yet, while they provide unprecedented structural and angiographic imaging detail, both have only limited fields of view in comparison to other imaging modalities like fundus photography. In this paper, we present a high-speed, high-sensitivity, swept source laser-based system that can acquire non-mydriatic 75-degree field of view OCT and OCTA images in a single complete scan without resorting to montaging techniques. The system uses an optimized scanning protocol and achieves capillary-level image quality. Such data may improve early detection of pathology and provide valuable information during disease monitoring.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wide field and highly sensitive angiography based on optical coherence tomography with akinetic swept source

Jingjiang Xu, Shaozhen Song, Wei Wei, and Ruikang K. Wang
Biomed. Opt. Express 8(1) 420-435 (2017)

Invariant features-based automated registration and montage for wide-field OCT angiography

Jie Wang, Acner Camino, Xiaohui Hua, Liang Liu, David Huang, Thomas S. Hwang, and Yali Jia
Biomed. Opt. Express 10(1) 120-136 (2019)

Development of a clinical prototype of a miniature hand-held optical coherence tomography probe for prematurity and pediatric ophthalmic imaging

Shaozhen Song, Kanheng Zhou, Jing Jiang Xu, Qinqin Zhang, Shuyuan Lyu, and Ruikang Wang
Biomed. Opt. Express 10(5) 2383-2398 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref]
  2. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
    [Crossref]
  3. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008).
    [Crossref]
  4. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, and J. Hornegger, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
    [Crossref]
  5. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. Leung, J. Jiang, A. Cable, B. C. Wilson, and I. A. Vitkin, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
    [Crossref]
  6. T. E. De Carlo, A. Romano, N. K. Waheed, and J. S. Duker, “A review of optical coherence tomography angiography (OCTA),” Int. J. Retin. Vitr. 1(1), 5 (2015).
    [Crossref]
  7. I. Gorczynska, J. V. Migacz, R. J. Zawadzki, A. G. Capps, and J. S. Werner, “Comparison of amplitude-decorrelation, speckle-variance and phase-variance OCT angiography methods for imaging the human retina and choroid,” Biomed. Opt. Express 7(3), 911–942 (2016).
    [Crossref]
  8. R. F. Spaide, J. G. Fujimoto, and N. K. Waheed, “Image artifacts in optical coherence angiography,” Retina 35(11), 2163–2180 (2015).
    [Crossref]
  9. S. Chinn, E. Swanson, and J. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
    [Crossref]
  10. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
    [Crossref]
  11. J. P. Kolb, T. Klein, C. L. Kufner, W. Wieser, A. S. Neubauer, and R. Huber, “Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle,” Biomed. Opt. Express 6(5), 1534–1552 (2015).
    [Crossref]
  12. Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, and K. L. Pepple, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
    [Crossref]
  13. X. Wei, A. Camino, S. Pi, T. T. Hormel, W. Cepurna, D. Huang, J. C. Morrison, and Y. Jia, “Real-time cross-sectional and en face OCT angiography guiding high-quality scan acquisition,” Opt. Lett. 44(6), 1431–1434 (2019).
    [Crossref]
  14. X. Wei, T. T. Hormel, S. Pi, Y. Guo, Y. Jian, and Y. Jia, “High dynamic range optical coherence tomography angiography (HDR-OCTA),” Biomed. Opt. Express 10(7), 3560–3571 (2019).
    [Crossref]
  15. M. J. Ju, M. Heisler, A. Athwal, M. V. Sarunic, and Y. Jian, “Effective bidirectional scanning pattern for optical coherence tomography angiography,” Biomed. Opt. Express 9(5), 2336–2350 (2018).
    [Crossref]
  16. W. R. Benner, Laser Scanners: Technologies and Applications; how They Work, and how They Can Work for Your Product (Pangolin, 2016).
  17. Y. Guo, A. Camino, M. Zhang, J. Wang, D. Huang, T. Hwang, and Y. Jia, “Automated segmentation of retinal layer boundaries and capillary plexuses in wide-field optical coherence tomographic angiography,” Biomed. Opt. Express 9(9), 4429–4442 (2018).
    [Crossref]
  18. T. T. Hormel, J. Wang, S. T. Bailey, T. S. Hwang, D. Huang, and Y. Jia, “Maximum value projection produces better en face OCT angiograms than mean value projection,” Biomed. Opt. Express 9(12), 6412–6424 (2018).
    [Crossref]

2019 (2)

2018 (3)

2016 (2)

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, and K. L. Pepple, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref]

I. Gorczynska, J. V. Migacz, R. J. Zawadzki, A. G. Capps, and J. S. Werner, “Comparison of amplitude-decorrelation, speckle-variance and phase-variance OCT angiography methods for imaging the human retina and choroid,” Biomed. Opt. Express 7(3), 911–942 (2016).
[Crossref]

2015 (3)

R. F. Spaide, J. G. Fujimoto, and N. K. Waheed, “Image artifacts in optical coherence angiography,” Retina 35(11), 2163–2180 (2015).
[Crossref]

T. E. De Carlo, A. Romano, N. K. Waheed, and J. S. Duker, “A review of optical coherence tomography angiography (OCTA),” Int. J. Retin. Vitr. 1(1), 5 (2015).
[Crossref]

J. P. Kolb, T. Klein, C. L. Kufner, W. Wieser, A. S. Neubauer, and R. Huber, “Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle,” Biomed. Opt. Express 6(5), 1534–1552 (2015).
[Crossref]

2012 (1)

2011 (1)

2008 (2)

2006 (1)

1997 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

An, L.

Athwal, A.

Bailey, S. T.

Benner, W. R.

W. R. Benner, Laser Scanners: Technologies and Applications; how They Work, and how They Can Work for Your Product (Pangolin, 2016).

Biedermann, B. R.

Cable, A.

Camino, A.

Capps, A. G.

Cepurna, W.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Chao, J.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, and K. L. Pepple, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref]

Chen, C.-L.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, and K. L. Pepple, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref]

Chinn, S.

De Carlo, T. E.

T. E. De Carlo, A. Romano, N. K. Waheed, and J. S. Duker, “A review of optical coherence tomography angiography (OCTA),” Int. J. Retin. Vitr. 1(1), 5 (2015).
[Crossref]

Duker, J. S.

T. E. De Carlo, A. Romano, N. K. Waheed, and J. S. Duker, “A review of optical coherence tomography angiography (OCTA),” Int. J. Retin. Vitr. 1(1), 5 (2015).
[Crossref]

Eigenwillig, C. M.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Fujimoto, J.

Fujimoto, J. G.

Gorczynska, I.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Guo, Y.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Heisler, M.

Hong, Y.

Hormel, T. T.

Hornegger, J.

Huang, D.

Huber, R.

Hwang, T.

Hwang, T. S.

Jia, Y.

Jian, Y.

Jiang, J.

Ju, M. J.

Khurana, M.

Klein, T.

Kolb, J. P.

Kraus, M. F.

Kufner, C. L.

Lee, C. S.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, and K. L. Pepple, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref]

Leung, M. K.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Liu, J.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, and K. L. Pepple, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref]

Liu, J. J.

Makita, S.

Mariampillai, A.

Migacz, J. V.

Moriyama, E. H.

Morrison, J. C.

Munce, N. R.

Neubauer, A. S.

Pepple, K. L.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, and K. L. Pepple, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref]

Pi, S.

Potsaid, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Rezaei, K.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, and K. L. Pepple, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref]

Romano, A.

T. E. De Carlo, A. Romano, N. K. Waheed, and J. S. Duker, “A review of optical coherence tomography angiography (OCTA),” Int. J. Retin. Vitr. 1(1), 5 (2015).
[Crossref]

Sarunic, M. V.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Sharma, U.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, and K. L. Pepple, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref]

Spaide, R. F.

R. F. Spaide, J. G. Fujimoto, and N. K. Waheed, “Image artifacts in optical coherence angiography,” Retina 35(11), 2163–2180 (2015).
[Crossref]

Standish, B. A.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Subhash, H.

Swanson, E.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Tan, O.

Tokayer, J.

Vitkin, I. A.

Waheed, N. K.

T. E. De Carlo, A. Romano, N. K. Waheed, and J. S. Duker, “A review of optical coherence tomography angiography (OCTA),” Int. J. Retin. Vitr. 1(1), 5 (2015).
[Crossref]

R. F. Spaide, J. G. Fujimoto, and N. K. Waheed, “Image artifacts in optical coherence angiography,” Retina 35(11), 2163–2180 (2015).
[Crossref]

Wang, J.

Wang, R. K.

Wang, Y.

Wei, X.

Werner, J. S.

Wieser, W.

Wilson, B. C.

Yamanari, M.

Yasuno, Y.

Yatagai, T.

Zawadzki, R. J.

Zhang, A.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, and K. L. Pepple, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref]

Zhang, M.

Zhang, Q.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, and K. L. Pepple, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref]

Zhang, T.

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, and K. L. Pepple, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref]

Biomed. Opt. Express (6)

Int. J. Retin. Vitr. (1)

T. E. De Carlo, A. Romano, N. K. Waheed, and J. S. Duker, “A review of optical coherence tomography angiography (OCTA),” Int. J. Retin. Vitr. 1(1), 5 (2015).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Retina (1)

R. F. Spaide, J. G. Fujimoto, and N. K. Waheed, “Image artifacts in optical coherence angiography,” Retina 35(11), 2163–2180 (2015).
[Crossref]

Sci. Rep. (1)

Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, and K. L. Pepple, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Other (1)

W. R. Benner, Laser Scanners: Technologies and Applications; how They Work, and how They Can Work for Your Product (Pangolin, 2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (A) 3D model of conventional galvo scanner setup. (B) Diagram of different scanning focal lengths on different axes; red light indicates the fast axis and blue light indicates the slow axis. (C) Health human OCT en face image with vignetting artifacts. (D) OpticStudio (Zemax, LLC) simulated ray tracing results with two 80 mm achromatic doublets (Thorlabs Inc.). (E) Energy map of the imaging plane. The red arrows indicate rays affected by vignetting artifacts. (F) 3D printed eye model with 3 mm pupil size. (G) wide-field en face image of the model eye. (H) vertical axis cross sectional image. (I) horizontal axis cross sectional image.
Fig. 2.
Fig. 2. (A) Schematic of the OCT sample arm with optical relay, with effective focal length Ef. Different color rays denote different scanning angles. (B) Spot diagrams of five different scanning angles, simulated in OpticStudio (Zemax, LLC). The color bar on the left corresponds to the ray colors in (A).
Fig. 3.
Fig. 3. Diagram of the wide-field OCT system used in this study. A 400-kHz swept-source laser is the light source. A Mach-Zehnder interferometer provides the sampling clock (CLK). A delay line (DL) is used to adjust the reference arm length. A 40 mm effective focal length lens (L1) provides the 75-degree scanning angle inside the pupil. Other optical elements used in the system are: L2: 100 mm effective focal length lens, L3, L4: 33 mm effective focal length lenses, L5 and L6 zoomable lenses, S1: 50:50 beam splitter, S2: silver mirror, EL: electric lens. System output is produced by a balanced photodetector (BD) which converts the optical signal to an electrical signal. The signal is digitized using a digitizer and collected by a computer (PC).
Fig. 4.
Fig. 4. (A) 3D rendered model (Solidworks, Dassault Systèmes) of the sample arm according to the design schematic in Fig. 3. Due to the size limitations, the optical relay is folded using a silver mirror. Grey colored parts are customized optical mounts which need to be 3D printed; other parts are either provided by the manufacture or designed according to hardware requirements. (B) Sensitivity roll-off across the whole imaging depth. Different colors indicate different depths. The red shaded are at the top indicates the signal roll off across the 4 mm imaging depth.
Fig. 5.
Fig. 5. (A) 75-degree OCT retinal structure image generated using full intensity projection. The dashed red line indicates the location of the cross-sectional image location. (B) Cross sectional retinal image.
Fig. 6.
Fig. 6. (A) Structural OCT of the choroid, showing dense vasculature, (B) OCTA of the inner retina.
Fig. 7.
Fig. 7. High-resolution OCTA (12 × 23-mm).
Fig. 8.
Fig. 8. (A) 75-degree wide-field OCTA image, with white box indicating the area of interest. (B) High resolution 10-degree (3 × 3 mm) field of view OCTA image acquired within the white box in (A). The image in (B) contains 304 A-scan per B-scan, and 912 B-scans with 2 repeats, captured with a total acquisition time is 1.4 s.